|  | /* n2-drv.c: Niagara-2 RNG driver. | 
|  | * | 
|  | * Copyright (C) 2008 David S. Miller <davem@davemloft.net> | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/preempt.h> | 
|  | #include <linux/hw_random.h> | 
|  |  | 
|  | #include <linux/of.h> | 
|  | #include <linux/of_device.h> | 
|  |  | 
|  | #include <asm/hypervisor.h> | 
|  |  | 
|  | #include "n2rng.h" | 
|  |  | 
|  | #define DRV_MODULE_NAME		"n2rng" | 
|  | #define PFX DRV_MODULE_NAME	": " | 
|  | #define DRV_MODULE_VERSION	"0.1" | 
|  | #define DRV_MODULE_RELDATE	"May 15, 2008" | 
|  |  | 
|  | static char version[] __devinitdata = | 
|  | DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; | 
|  |  | 
|  | MODULE_AUTHOR("David S. Miller (davem@davemloft.net)"); | 
|  | MODULE_DESCRIPTION("Niagara2 RNG driver"); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_VERSION(DRV_MODULE_VERSION); | 
|  |  | 
|  | /* The Niagara2 RNG provides a 64-bit read-only random number | 
|  | * register, plus a control register.  Access to the RNG is | 
|  | * virtualized through the hypervisor so that both guests and control | 
|  | * nodes can access the device. | 
|  | * | 
|  | * The entropy source consists of raw entropy sources, each | 
|  | * constructed from a voltage controlled oscillator whose phase is | 
|  | * jittered by thermal noise sources. | 
|  | * | 
|  | * The oscillator in each of the three raw entropy sources run at | 
|  | * different frequencies.  Normally, all three generator outputs are | 
|  | * gathered, xored together, and fed into a CRC circuit, the output of | 
|  | * which is the 64-bit read-only register. | 
|  | * | 
|  | * Some time is necessary for all the necessary entropy to build up | 
|  | * such that a full 64-bits of entropy are available in the register. | 
|  | * In normal operating mode (RNG_CTL_LFSR is set), the chip implements | 
|  | * an interlock which blocks register reads until sufficient entropy | 
|  | * is available. | 
|  | * | 
|  | * A control register is provided for adjusting various aspects of RNG | 
|  | * operation, and to enable diagnostic modes.  Each of the three raw | 
|  | * entropy sources has an enable bit (RNG_CTL_ES{1,2,3}).  Also | 
|  | * provided are fields for controlling the minimum time in cycles | 
|  | * between read accesses to the register (RNG_CTL_WAIT, this controls | 
|  | * the interlock described in the previous paragraph). | 
|  | * | 
|  | * The standard setting is to have the mode bit (RNG_CTL_LFSR) set, | 
|  | * all three entropy sources enabled, and the interlock time set | 
|  | * appropriately. | 
|  | * | 
|  | * The CRC polynomial used by the chip is: | 
|  | * | 
|  | * P(X) = x64 + x61 + x57 + x56 + x52 + x51 + x50 + x48 + x47 + x46 + | 
|  | *        x43 + x42 + x41 + x39 + x38 + x37 + x35 + x32 + x28 + x25 + | 
|  | *        x22 + x21 + x17 + x15 + x13 + x12 + x11 + x7 + x5 + x + 1 | 
|  | * | 
|  | * The RNG_CTL_VCO value of each noise cell must be programmed | 
|  | * separately.  This is why 4 control register values must be provided | 
|  | * to the hypervisor.  During a write, the hypervisor writes them all, | 
|  | * one at a time, to the actual RNG_CTL register.  The first three | 
|  | * values are used to setup the desired RNG_CTL_VCO for each entropy | 
|  | * source, for example: | 
|  | * | 
|  | *	control 0: (1 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES1 | 
|  | *	control 1: (2 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES2 | 
|  | *	control 2: (3 << RNG_CTL_VCO_SHIFT) | RNG_CTL_ES3 | 
|  | * | 
|  | * And then the fourth value sets the final chip state and enables | 
|  | * desired. | 
|  | */ | 
|  |  | 
|  | static int n2rng_hv_err_trans(unsigned long hv_err) | 
|  | { | 
|  | switch (hv_err) { | 
|  | case HV_EOK: | 
|  | return 0; | 
|  | case HV_EWOULDBLOCK: | 
|  | return -EAGAIN; | 
|  | case HV_ENOACCESS: | 
|  | return -EPERM; | 
|  | case HV_EIO: | 
|  | return -EIO; | 
|  | case HV_EBUSY: | 
|  | return -EBUSY; | 
|  | case HV_EBADALIGN: | 
|  | case HV_ENORADDR: | 
|  | return -EFAULT; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned long n2rng_generic_read_control_v2(unsigned long ra, | 
|  | unsigned long unit) | 
|  | { | 
|  | unsigned long hv_err, state, ticks, watchdog_delta, watchdog_status; | 
|  | int block = 0, busy = 0; | 
|  |  | 
|  | while (1) { | 
|  | hv_err = sun4v_rng_ctl_read_v2(ra, unit, &state, | 
|  | &ticks, | 
|  | &watchdog_delta, | 
|  | &watchdog_status); | 
|  | if (hv_err == HV_EOK) | 
|  | break; | 
|  |  | 
|  | if (hv_err == HV_EBUSY) { | 
|  | if (++busy >= N2RNG_BUSY_LIMIT) | 
|  | break; | 
|  |  | 
|  | udelay(1); | 
|  | } else if (hv_err == HV_EWOULDBLOCK) { | 
|  | if (++block >= N2RNG_BLOCK_LIMIT) | 
|  | break; | 
|  |  | 
|  | __delay(ticks); | 
|  | } else | 
|  | break; | 
|  | } | 
|  |  | 
|  | return hv_err; | 
|  | } | 
|  |  | 
|  | /* In multi-socket situations, the hypervisor might need to | 
|  | * queue up the RNG control register write if it's for a unit | 
|  | * that is on a cpu socket other than the one we are executing on. | 
|  | * | 
|  | * We poll here waiting for a successful read of that control | 
|  | * register to make sure the write has been actually performed. | 
|  | */ | 
|  | static unsigned long n2rng_control_settle_v2(struct n2rng *np, int unit) | 
|  | { | 
|  | unsigned long ra = __pa(&np->scratch_control[0]); | 
|  |  | 
|  | return n2rng_generic_read_control_v2(ra, unit); | 
|  | } | 
|  |  | 
|  | static unsigned long n2rng_write_ctl_one(struct n2rng *np, int unit, | 
|  | unsigned long state, | 
|  | unsigned long control_ra, | 
|  | unsigned long watchdog_timeout, | 
|  | unsigned long *ticks) | 
|  | { | 
|  | unsigned long hv_err; | 
|  |  | 
|  | if (np->hvapi_major == 1) { | 
|  | hv_err = sun4v_rng_ctl_write_v1(control_ra, state, | 
|  | watchdog_timeout, ticks); | 
|  | } else { | 
|  | hv_err = sun4v_rng_ctl_write_v2(control_ra, state, | 
|  | watchdog_timeout, unit); | 
|  | if (hv_err == HV_EOK) | 
|  | hv_err = n2rng_control_settle_v2(np, unit); | 
|  | *ticks = N2RNG_ACCUM_CYCLES_DEFAULT; | 
|  | } | 
|  |  | 
|  | return hv_err; | 
|  | } | 
|  |  | 
|  | static int n2rng_generic_read_data(unsigned long data_ra) | 
|  | { | 
|  | unsigned long ticks, hv_err; | 
|  | int block = 0, hcheck = 0; | 
|  |  | 
|  | while (1) { | 
|  | hv_err = sun4v_rng_data_read(data_ra, &ticks); | 
|  | if (hv_err == HV_EOK) | 
|  | return 0; | 
|  |  | 
|  | if (hv_err == HV_EWOULDBLOCK) { | 
|  | if (++block >= N2RNG_BLOCK_LIMIT) | 
|  | return -EWOULDBLOCK; | 
|  | __delay(ticks); | 
|  | } else if (hv_err == HV_ENOACCESS) { | 
|  | return -EPERM; | 
|  | } else if (hv_err == HV_EIO) { | 
|  | if (++hcheck >= N2RNG_HCHECK_LIMIT) | 
|  | return -EIO; | 
|  | udelay(10000); | 
|  | } else | 
|  | return -ENODEV; | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned long n2rng_read_diag_data_one(struct n2rng *np, | 
|  | unsigned long unit, | 
|  | unsigned long data_ra, | 
|  | unsigned long data_len, | 
|  | unsigned long *ticks) | 
|  | { | 
|  | unsigned long hv_err; | 
|  |  | 
|  | if (np->hvapi_major == 1) { | 
|  | hv_err = sun4v_rng_data_read_diag_v1(data_ra, data_len, ticks); | 
|  | } else { | 
|  | hv_err = sun4v_rng_data_read_diag_v2(data_ra, data_len, | 
|  | unit, ticks); | 
|  | if (!*ticks) | 
|  | *ticks = N2RNG_ACCUM_CYCLES_DEFAULT; | 
|  | } | 
|  | return hv_err; | 
|  | } | 
|  |  | 
|  | static int n2rng_generic_read_diag_data(struct n2rng *np, | 
|  | unsigned long unit, | 
|  | unsigned long data_ra, | 
|  | unsigned long data_len) | 
|  | { | 
|  | unsigned long ticks, hv_err; | 
|  | int block = 0; | 
|  |  | 
|  | while (1) { | 
|  | hv_err = n2rng_read_diag_data_one(np, unit, | 
|  | data_ra, data_len, | 
|  | &ticks); | 
|  | if (hv_err == HV_EOK) | 
|  | return 0; | 
|  |  | 
|  | if (hv_err == HV_EWOULDBLOCK) { | 
|  | if (++block >= N2RNG_BLOCK_LIMIT) | 
|  | return -EWOULDBLOCK; | 
|  | __delay(ticks); | 
|  | } else if (hv_err == HV_ENOACCESS) { | 
|  | return -EPERM; | 
|  | } else if (hv_err == HV_EIO) { | 
|  | return -EIO; | 
|  | } else | 
|  | return -ENODEV; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static int n2rng_generic_write_control(struct n2rng *np, | 
|  | unsigned long control_ra, | 
|  | unsigned long unit, | 
|  | unsigned long state) | 
|  | { | 
|  | unsigned long hv_err, ticks; | 
|  | int block = 0, busy = 0; | 
|  |  | 
|  | while (1) { | 
|  | hv_err = n2rng_write_ctl_one(np, unit, state, control_ra, | 
|  | np->wd_timeo, &ticks); | 
|  | if (hv_err == HV_EOK) | 
|  | return 0; | 
|  |  | 
|  | if (hv_err == HV_EWOULDBLOCK) { | 
|  | if (++block >= N2RNG_BLOCK_LIMIT) | 
|  | return -EWOULDBLOCK; | 
|  | __delay(ticks); | 
|  | } else if (hv_err == HV_EBUSY) { | 
|  | if (++busy >= N2RNG_BUSY_LIMIT) | 
|  | return -EBUSY; | 
|  | udelay(1); | 
|  | } else | 
|  | return -ENODEV; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Just try to see if we can successfully access the control register | 
|  | * of the RNG on the domain on which we are currently executing. | 
|  | */ | 
|  | static int n2rng_try_read_ctl(struct n2rng *np) | 
|  | { | 
|  | unsigned long hv_err; | 
|  | unsigned long x; | 
|  |  | 
|  | if (np->hvapi_major == 1) { | 
|  | hv_err = sun4v_rng_get_diag_ctl(); | 
|  | } else { | 
|  | /* We purposefully give invalid arguments, HV_NOACCESS | 
|  | * is higher priority than the errors we'd get from | 
|  | * these other cases, and that's the error we are | 
|  | * truly interested in. | 
|  | */ | 
|  | hv_err = sun4v_rng_ctl_read_v2(0UL, ~0UL, &x, &x, &x, &x); | 
|  | switch (hv_err) { | 
|  | case HV_EWOULDBLOCK: | 
|  | case HV_ENOACCESS: | 
|  | break; | 
|  | default: | 
|  | hv_err = HV_EOK; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return n2rng_hv_err_trans(hv_err); | 
|  | } | 
|  |  | 
|  | #define CONTROL_DEFAULT_BASE		\ | 
|  | ((2 << RNG_CTL_ASEL_SHIFT) |	\ | 
|  | (N2RNG_ACCUM_CYCLES_DEFAULT << RNG_CTL_WAIT_SHIFT) |	\ | 
|  | RNG_CTL_LFSR) | 
|  |  | 
|  | #define CONTROL_DEFAULT_0		\ | 
|  | (CONTROL_DEFAULT_BASE |		\ | 
|  | (1 << RNG_CTL_VCO_SHIFT) |	\ | 
|  | RNG_CTL_ES1) | 
|  | #define CONTROL_DEFAULT_1		\ | 
|  | (CONTROL_DEFAULT_BASE |		\ | 
|  | (2 << RNG_CTL_VCO_SHIFT) |	\ | 
|  | RNG_CTL_ES2) | 
|  | #define CONTROL_DEFAULT_2		\ | 
|  | (CONTROL_DEFAULT_BASE |		\ | 
|  | (3 << RNG_CTL_VCO_SHIFT) |	\ | 
|  | RNG_CTL_ES3) | 
|  | #define CONTROL_DEFAULT_3		\ | 
|  | (CONTROL_DEFAULT_BASE |		\ | 
|  | RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3) | 
|  |  | 
|  | static void n2rng_control_swstate_init(struct n2rng *np) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | np->flags |= N2RNG_FLAG_CONTROL; | 
|  |  | 
|  | np->health_check_sec = N2RNG_HEALTH_CHECK_SEC_DEFAULT; | 
|  | np->accum_cycles = N2RNG_ACCUM_CYCLES_DEFAULT; | 
|  | np->wd_timeo = N2RNG_WD_TIMEO_DEFAULT; | 
|  |  | 
|  | for (i = 0; i < np->num_units; i++) { | 
|  | struct n2rng_unit *up = &np->units[i]; | 
|  |  | 
|  | up->control[0] = CONTROL_DEFAULT_0; | 
|  | up->control[1] = CONTROL_DEFAULT_1; | 
|  | up->control[2] = CONTROL_DEFAULT_2; | 
|  | up->control[3] = CONTROL_DEFAULT_3; | 
|  | } | 
|  |  | 
|  | np->hv_state = HV_RNG_STATE_UNCONFIGURED; | 
|  | } | 
|  |  | 
|  | static int n2rng_grab_diag_control(struct n2rng *np) | 
|  | { | 
|  | int i, busy_count, err = -ENODEV; | 
|  |  | 
|  | busy_count = 0; | 
|  | for (i = 0; i < 100; i++) { | 
|  | err = n2rng_try_read_ctl(np); | 
|  | if (err != -EAGAIN) | 
|  | break; | 
|  |  | 
|  | if (++busy_count > 100) { | 
|  | dev_err(&np->op->dev, | 
|  | "Grab diag control timeout.\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | udelay(1); | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int n2rng_init_control(struct n2rng *np) | 
|  | { | 
|  | int err = n2rng_grab_diag_control(np); | 
|  |  | 
|  | /* Not in the control domain, that's OK we are only a consumer | 
|  | * of the RNG data, we don't setup and program it. | 
|  | */ | 
|  | if (err == -EPERM) | 
|  | return 0; | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | n2rng_control_swstate_init(np); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int n2rng_data_read(struct hwrng *rng, u32 *data) | 
|  | { | 
|  | struct n2rng *np = (struct n2rng *) rng->priv; | 
|  | unsigned long ra = __pa(&np->test_data); | 
|  | int len; | 
|  |  | 
|  | if (!(np->flags & N2RNG_FLAG_READY)) { | 
|  | len = 0; | 
|  | } else if (np->flags & N2RNG_FLAG_BUFFER_VALID) { | 
|  | np->flags &= ~N2RNG_FLAG_BUFFER_VALID; | 
|  | *data = np->buffer; | 
|  | len = 4; | 
|  | } else { | 
|  | int err = n2rng_generic_read_data(ra); | 
|  | if (!err) { | 
|  | np->buffer = np->test_data >> 32; | 
|  | *data = np->test_data & 0xffffffff; | 
|  | len = 4; | 
|  | } else { | 
|  | dev_err(&np->op->dev, "RNG error, restesting\n"); | 
|  | np->flags &= ~N2RNG_FLAG_READY; | 
|  | if (!(np->flags & N2RNG_FLAG_SHUTDOWN)) | 
|  | schedule_delayed_work(&np->work, 0); | 
|  | len = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return len; | 
|  | } | 
|  |  | 
|  | /* On a guest node, just make sure we can read random data properly. | 
|  | * If a control node reboots or reloads it's n2rng driver, this won't | 
|  | * work during that time.  So we have to keep probing until the device | 
|  | * becomes usable. | 
|  | */ | 
|  | static int n2rng_guest_check(struct n2rng *np) | 
|  | { | 
|  | unsigned long ra = __pa(&np->test_data); | 
|  |  | 
|  | return n2rng_generic_read_data(ra); | 
|  | } | 
|  |  | 
|  | static int n2rng_entropy_diag_read(struct n2rng *np, unsigned long unit, | 
|  | u64 *pre_control, u64 pre_state, | 
|  | u64 *buffer, unsigned long buf_len, | 
|  | u64 *post_control, u64 post_state) | 
|  | { | 
|  | unsigned long post_ctl_ra = __pa(post_control); | 
|  | unsigned long pre_ctl_ra = __pa(pre_control); | 
|  | unsigned long buffer_ra = __pa(buffer); | 
|  | int err; | 
|  |  | 
|  | err = n2rng_generic_write_control(np, pre_ctl_ra, unit, pre_state); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = n2rng_generic_read_diag_data(np, unit, | 
|  | buffer_ra, buf_len); | 
|  |  | 
|  | (void) n2rng_generic_write_control(np, post_ctl_ra, unit, | 
|  | post_state); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static u64 advance_polynomial(u64 poly, u64 val, int count) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < count; i++) { | 
|  | int highbit_set = ((s64)val < 0); | 
|  |  | 
|  | val <<= 1; | 
|  | if (highbit_set) | 
|  | val ^= poly; | 
|  | } | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static int n2rng_test_buffer_find(struct n2rng *np, u64 val) | 
|  | { | 
|  | int i, count = 0; | 
|  |  | 
|  | /* Purposefully skip over the first word.  */ | 
|  | for (i = 1; i < SELFTEST_BUFFER_WORDS; i++) { | 
|  | if (np->test_buffer[i] == val) | 
|  | count++; | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static void n2rng_dump_test_buffer(struct n2rng *np) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < SELFTEST_BUFFER_WORDS; i++) | 
|  | dev_err(&np->op->dev, "Test buffer slot %d [0x%016llx]\n", | 
|  | i, np->test_buffer[i]); | 
|  | } | 
|  |  | 
|  | static int n2rng_check_selftest_buffer(struct n2rng *np, unsigned long unit) | 
|  | { | 
|  | u64 val = SELFTEST_VAL; | 
|  | int err, matches, limit; | 
|  |  | 
|  | matches = 0; | 
|  | for (limit = 0; limit < SELFTEST_LOOPS_MAX; limit++) { | 
|  | matches += n2rng_test_buffer_find(np, val); | 
|  | if (matches >= SELFTEST_MATCH_GOAL) | 
|  | break; | 
|  | val = advance_polynomial(SELFTEST_POLY, val, 1); | 
|  | } | 
|  |  | 
|  | err = 0; | 
|  | if (limit >= SELFTEST_LOOPS_MAX) { | 
|  | err = -ENODEV; | 
|  | dev_err(&np->op->dev, "Selftest failed on unit %lu\n", unit); | 
|  | n2rng_dump_test_buffer(np); | 
|  | } else | 
|  | dev_info(&np->op->dev, "Selftest passed on unit %lu\n", unit); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int n2rng_control_selftest(struct n2rng *np, unsigned long unit) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | np->test_control[0] = (0x2 << RNG_CTL_ASEL_SHIFT); | 
|  | np->test_control[1] = (0x2 << RNG_CTL_ASEL_SHIFT); | 
|  | np->test_control[2] = (0x2 << RNG_CTL_ASEL_SHIFT); | 
|  | np->test_control[3] = ((0x2 << RNG_CTL_ASEL_SHIFT) | | 
|  | RNG_CTL_LFSR | | 
|  | ((SELFTEST_TICKS - 2) << RNG_CTL_WAIT_SHIFT)); | 
|  |  | 
|  |  | 
|  | err = n2rng_entropy_diag_read(np, unit, np->test_control, | 
|  | HV_RNG_STATE_HEALTHCHECK, | 
|  | np->test_buffer, | 
|  | sizeof(np->test_buffer), | 
|  | &np->units[unit].control[0], | 
|  | np->hv_state); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | return n2rng_check_selftest_buffer(np, unit); | 
|  | } | 
|  |  | 
|  | static int n2rng_control_check(struct n2rng *np) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < np->num_units; i++) { | 
|  | int err = n2rng_control_selftest(np, i); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* The sanity checks passed, install the final configuration into the | 
|  | * chip, it's ready to use. | 
|  | */ | 
|  | static int n2rng_control_configure_units(struct n2rng *np) | 
|  | { | 
|  | int unit, err; | 
|  |  | 
|  | err = 0; | 
|  | for (unit = 0; unit < np->num_units; unit++) { | 
|  | struct n2rng_unit *up = &np->units[unit]; | 
|  | unsigned long ctl_ra = __pa(&up->control[0]); | 
|  | int esrc; | 
|  | u64 base; | 
|  |  | 
|  | base = ((np->accum_cycles << RNG_CTL_WAIT_SHIFT) | | 
|  | (2 << RNG_CTL_ASEL_SHIFT) | | 
|  | RNG_CTL_LFSR); | 
|  |  | 
|  | /* XXX This isn't the best.  We should fetch a bunch | 
|  | * XXX of words using each entropy source combined XXX | 
|  | * with each VCO setting, and see which combinations | 
|  | * XXX give the best random data. | 
|  | */ | 
|  | for (esrc = 0; esrc < 3; esrc++) | 
|  | up->control[esrc] = base | | 
|  | (esrc << RNG_CTL_VCO_SHIFT) | | 
|  | (RNG_CTL_ES1 << esrc); | 
|  |  | 
|  | up->control[3] = base | | 
|  | (RNG_CTL_ES1 | RNG_CTL_ES2 | RNG_CTL_ES3); | 
|  |  | 
|  | err = n2rng_generic_write_control(np, ctl_ra, unit, | 
|  | HV_RNG_STATE_CONFIGURED); | 
|  | if (err) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void n2rng_work(struct work_struct *work) | 
|  | { | 
|  | struct n2rng *np = container_of(work, struct n2rng, work.work); | 
|  | int err = 0; | 
|  |  | 
|  | if (!(np->flags & N2RNG_FLAG_CONTROL)) { | 
|  | err = n2rng_guest_check(np); | 
|  | } else { | 
|  | preempt_disable(); | 
|  | err = n2rng_control_check(np); | 
|  | preempt_enable(); | 
|  |  | 
|  | if (!err) | 
|  | err = n2rng_control_configure_units(np); | 
|  | } | 
|  |  | 
|  | if (!err) { | 
|  | np->flags |= N2RNG_FLAG_READY; | 
|  | dev_info(&np->op->dev, "RNG ready\n"); | 
|  | } | 
|  |  | 
|  | if (err && !(np->flags & N2RNG_FLAG_SHUTDOWN)) | 
|  | schedule_delayed_work(&np->work, HZ * 2); | 
|  | } | 
|  |  | 
|  | static void __devinit n2rng_driver_version(void) | 
|  | { | 
|  | static int n2rng_version_printed; | 
|  |  | 
|  | if (n2rng_version_printed++ == 0) | 
|  | pr_info("%s", version); | 
|  | } | 
|  |  | 
|  | static int __devinit n2rng_probe(struct platform_device *op, | 
|  | const struct of_device_id *match) | 
|  | { | 
|  | int victoria_falls = (match->data != NULL); | 
|  | int err = -ENOMEM; | 
|  | struct n2rng *np; | 
|  |  | 
|  | n2rng_driver_version(); | 
|  |  | 
|  | np = kzalloc(sizeof(*np), GFP_KERNEL); | 
|  | if (!np) | 
|  | goto out; | 
|  | np->op = op; | 
|  |  | 
|  | INIT_DELAYED_WORK(&np->work, n2rng_work); | 
|  |  | 
|  | if (victoria_falls) | 
|  | np->flags |= N2RNG_FLAG_VF; | 
|  |  | 
|  | err = -ENODEV; | 
|  | np->hvapi_major = 2; | 
|  | if (sun4v_hvapi_register(HV_GRP_RNG, | 
|  | np->hvapi_major, | 
|  | &np->hvapi_minor)) { | 
|  | np->hvapi_major = 1; | 
|  | if (sun4v_hvapi_register(HV_GRP_RNG, | 
|  | np->hvapi_major, | 
|  | &np->hvapi_minor)) { | 
|  | dev_err(&op->dev, "Cannot register suitable " | 
|  | "HVAPI version.\n"); | 
|  | goto out_free; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (np->flags & N2RNG_FLAG_VF) { | 
|  | if (np->hvapi_major < 2) { | 
|  | dev_err(&op->dev, "VF RNG requires HVAPI major " | 
|  | "version 2 or later, got %lu\n", | 
|  | np->hvapi_major); | 
|  | goto out_hvapi_unregister; | 
|  | } | 
|  | np->num_units = of_getintprop_default(op->dev.of_node, | 
|  | "rng-#units", 0); | 
|  | if (!np->num_units) { | 
|  | dev_err(&op->dev, "VF RNG lacks rng-#units property\n"); | 
|  | goto out_hvapi_unregister; | 
|  | } | 
|  | } else | 
|  | np->num_units = 1; | 
|  |  | 
|  | dev_info(&op->dev, "Registered RNG HVAPI major %lu minor %lu\n", | 
|  | np->hvapi_major, np->hvapi_minor); | 
|  |  | 
|  | np->units = kzalloc(sizeof(struct n2rng_unit) * np->num_units, | 
|  | GFP_KERNEL); | 
|  | err = -ENOMEM; | 
|  | if (!np->units) | 
|  | goto out_hvapi_unregister; | 
|  |  | 
|  | err = n2rng_init_control(np); | 
|  | if (err) | 
|  | goto out_free_units; | 
|  |  | 
|  | dev_info(&op->dev, "Found %s RNG, units: %d\n", | 
|  | ((np->flags & N2RNG_FLAG_VF) ? | 
|  | "Victoria Falls" : "Niagara2"), | 
|  | np->num_units); | 
|  |  | 
|  | np->hwrng.name = "n2rng"; | 
|  | np->hwrng.data_read = n2rng_data_read; | 
|  | np->hwrng.priv = (unsigned long) np; | 
|  |  | 
|  | err = hwrng_register(&np->hwrng); | 
|  | if (err) | 
|  | goto out_free_units; | 
|  |  | 
|  | dev_set_drvdata(&op->dev, np); | 
|  |  | 
|  | schedule_delayed_work(&np->work, 0); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_free_units: | 
|  | kfree(np->units); | 
|  | np->units = NULL; | 
|  |  | 
|  | out_hvapi_unregister: | 
|  | sun4v_hvapi_unregister(HV_GRP_RNG); | 
|  |  | 
|  | out_free: | 
|  | kfree(np); | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int __devexit n2rng_remove(struct platform_device *op) | 
|  | { | 
|  | struct n2rng *np = dev_get_drvdata(&op->dev); | 
|  |  | 
|  | np->flags |= N2RNG_FLAG_SHUTDOWN; | 
|  |  | 
|  | cancel_delayed_work_sync(&np->work); | 
|  |  | 
|  | hwrng_unregister(&np->hwrng); | 
|  |  | 
|  | sun4v_hvapi_unregister(HV_GRP_RNG); | 
|  |  | 
|  | kfree(np->units); | 
|  | np->units = NULL; | 
|  |  | 
|  | kfree(np); | 
|  |  | 
|  | dev_set_drvdata(&op->dev, NULL); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct of_device_id n2rng_match[] = { | 
|  | { | 
|  | .name		= "random-number-generator", | 
|  | .compatible	= "SUNW,n2-rng", | 
|  | }, | 
|  | { | 
|  | .name		= "random-number-generator", | 
|  | .compatible	= "SUNW,vf-rng", | 
|  | .data		= (void *) 1, | 
|  | }, | 
|  | {}, | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(of, n2rng_match); | 
|  |  | 
|  | static struct of_platform_driver n2rng_driver = { | 
|  | .driver = { | 
|  | .name = "n2rng", | 
|  | .owner = THIS_MODULE, | 
|  | .of_match_table = n2rng_match, | 
|  | }, | 
|  | .probe		= n2rng_probe, | 
|  | .remove		= __devexit_p(n2rng_remove), | 
|  | }; | 
|  |  | 
|  | static int __init n2rng_init(void) | 
|  | { | 
|  | return of_register_platform_driver(&n2rng_driver); | 
|  | } | 
|  |  | 
|  | static void __exit n2rng_exit(void) | 
|  | { | 
|  | of_unregister_platform_driver(&n2rng_driver); | 
|  | } | 
|  |  | 
|  | module_init(n2rng_init); | 
|  | module_exit(n2rng_exit); |