|  | /* | 
|  | *	This program is free software; you can redistribute it and/or | 
|  | *	modify it under the terms of the GNU General Public License | 
|  | *	as published by the Free Software Foundation; either version | 
|  | *	2 of the License, or (at your option) any later version. | 
|  | * | 
|  | *	(c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk> | 
|  | *	(c) Copyright 2000, 2001 Red Hat Inc | 
|  | * | 
|  | *	Development of this driver was funded by Equiinet Ltd | 
|  | *			http://www.equiinet.com | 
|  | * | 
|  | *	ChangeLog: | 
|  | * | 
|  | *	Asynchronous mode dropped for 2.2. For 2.5 we will attempt the | 
|  | *	unification of all the Z85x30 asynchronous drivers for real. | 
|  | * | 
|  | *	DMA now uses get_free_page as kmalloc buffers may span a 64K | 
|  | *	boundary. | 
|  | * | 
|  | *	Modified for SMP safety and SMP locking by Alan Cox | 
|  | *					<alan@lxorguk.ukuu.org.uk> | 
|  | * | 
|  | *	Performance | 
|  | * | 
|  | *	Z85230: | 
|  | *	Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud | 
|  | *	X.25 is not unrealistic on all machines. DMA mode can in theory | 
|  | *	handle T1/E1 quite nicely. In practice the limit seems to be about | 
|  | *	512Kbit->1Mbit depending on motherboard. | 
|  | * | 
|  | *	Z85C30: | 
|  | *	64K will take DMA, 9600 baud X.25 should be ok. | 
|  | * | 
|  | *	Z8530: | 
|  | *	Synchronous mode without DMA is unlikely to pass about 2400 baud. | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/net.h> | 
|  | #include <linux/skbuff.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/if_arp.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/hdlc.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <asm/dma.h> | 
|  | #include <asm/io.h> | 
|  | #define RT_LOCK | 
|  | #define RT_UNLOCK | 
|  | #include <linux/spinlock.h> | 
|  |  | 
|  | #include "z85230.h" | 
|  |  | 
|  |  | 
|  | /** | 
|  | *	z8530_read_port - Architecture specific interface function | 
|  | *	@p: port to read | 
|  | * | 
|  | *	Provided port access methods. The Comtrol SV11 requires no delays | 
|  | *	between accesses and uses PC I/O. Some drivers may need a 5uS delay | 
|  | * | 
|  | *	In the longer term this should become an architecture specific | 
|  | *	section so that this can become a generic driver interface for all | 
|  | *	platforms. For now we only handle PC I/O ports with or without the | 
|  | *	dread 5uS sanity delay. | 
|  | * | 
|  | *	The caller must hold sufficient locks to avoid violating the horrible | 
|  | *	5uS delay rule. | 
|  | */ | 
|  |  | 
|  | static inline int z8530_read_port(unsigned long p) | 
|  | { | 
|  | u8 r=inb(Z8530_PORT_OF(p)); | 
|  | if(p&Z8530_PORT_SLEEP)	/* gcc should figure this out efficiently ! */ | 
|  | udelay(5); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	z8530_write_port - Architecture specific interface function | 
|  | *	@p: port to write | 
|  | *	@d: value to write | 
|  | * | 
|  | *	Write a value to a port with delays if need be. Note that the | 
|  | *	caller must hold locks to avoid read/writes from other contexts | 
|  | *	violating the 5uS rule | 
|  | * | 
|  | *	In the longer term this should become an architecture specific | 
|  | *	section so that this can become a generic driver interface for all | 
|  | *	platforms. For now we only handle PC I/O ports with or without the | 
|  | *	dread 5uS sanity delay. | 
|  | */ | 
|  |  | 
|  |  | 
|  | static inline void z8530_write_port(unsigned long p, u8 d) | 
|  | { | 
|  | outb(d,Z8530_PORT_OF(p)); | 
|  | if(p&Z8530_PORT_SLEEP) | 
|  | udelay(5); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | static void z8530_rx_done(struct z8530_channel *c); | 
|  | static void z8530_tx_done(struct z8530_channel *c); | 
|  |  | 
|  |  | 
|  | /** | 
|  | *	read_zsreg - Read a register from a Z85230 | 
|  | *	@c: Z8530 channel to read from (2 per chip) | 
|  | *	@reg: Register to read | 
|  | *	FIXME: Use a spinlock. | 
|  | * | 
|  | *	Most of the Z8530 registers are indexed off the control registers. | 
|  | *	A read is done by writing to the control register and reading the | 
|  | *	register back.  The caller must hold the lock | 
|  | */ | 
|  |  | 
|  | static inline u8 read_zsreg(struct z8530_channel *c, u8 reg) | 
|  | { | 
|  | if(reg) | 
|  | z8530_write_port(c->ctrlio, reg); | 
|  | return z8530_read_port(c->ctrlio); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	read_zsdata - Read the data port of a Z8530 channel | 
|  | *	@c: The Z8530 channel to read the data port from | 
|  | * | 
|  | *	The data port provides fast access to some things. We still | 
|  | *	have all the 5uS delays to worry about. | 
|  | */ | 
|  |  | 
|  | static inline u8 read_zsdata(struct z8530_channel *c) | 
|  | { | 
|  | u8 r; | 
|  | r=z8530_read_port(c->dataio); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	write_zsreg - Write to a Z8530 channel register | 
|  | *	@c: The Z8530 channel | 
|  | *	@reg: Register number | 
|  | *	@val: Value to write | 
|  | * | 
|  | *	Write a value to an indexed register. The caller must hold the lock | 
|  | *	to honour the irritating delay rules. We know about register 0 | 
|  | *	being fast to access. | 
|  | * | 
|  | *      Assumes c->lock is held. | 
|  | */ | 
|  | static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val) | 
|  | { | 
|  | if(reg) | 
|  | z8530_write_port(c->ctrlio, reg); | 
|  | z8530_write_port(c->ctrlio, val); | 
|  |  | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	write_zsctrl - Write to a Z8530 control register | 
|  | *	@c: The Z8530 channel | 
|  | *	@val: Value to write | 
|  | * | 
|  | *	Write directly to the control register on the Z8530 | 
|  | */ | 
|  |  | 
|  | static inline void write_zsctrl(struct z8530_channel *c, u8 val) | 
|  | { | 
|  | z8530_write_port(c->ctrlio, val); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	write_zsdata - Write to a Z8530 control register | 
|  | *	@c: The Z8530 channel | 
|  | *	@val: Value to write | 
|  | * | 
|  | *	Write directly to the data register on the Z8530 | 
|  | */ | 
|  |  | 
|  |  | 
|  | static inline void write_zsdata(struct z8530_channel *c, u8 val) | 
|  | { | 
|  | z8530_write_port(c->dataio, val); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Register loading parameters for a dead port | 
|  | */ | 
|  |  | 
|  | u8 z8530_dead_port[]= | 
|  | { | 
|  | 255 | 
|  | }; | 
|  |  | 
|  | EXPORT_SYMBOL(z8530_dead_port); | 
|  |  | 
|  | /* | 
|  | *	Register loading parameters for currently supported circuit types | 
|  | */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | *	Data clocked by telco end. This is the correct data for the UK | 
|  | *	"kilostream" service, and most other similar services. | 
|  | */ | 
|  |  | 
|  | u8 z8530_hdlc_kilostream[]= | 
|  | { | 
|  | 4,	SYNC_ENAB|SDLC|X1CLK, | 
|  | 2,	0,	/* No vector */ | 
|  | 1,	0, | 
|  | 3,	ENT_HM|RxCRC_ENAB|Rx8, | 
|  | 5,	TxCRC_ENAB|RTS|TxENAB|Tx8|DTR, | 
|  | 9,	0,		/* Disable interrupts */ | 
|  | 6,	0xFF, | 
|  | 7,	FLAG, | 
|  | 10,	ABUNDER|NRZ|CRCPS,/*MARKIDLE ??*/ | 
|  | 11,	TCTRxCP, | 
|  | 14,	DISDPLL, | 
|  | 15,	DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE, | 
|  | 1,	EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx, | 
|  | 9,	NV|MIE|NORESET, | 
|  | 255 | 
|  | }; | 
|  |  | 
|  | EXPORT_SYMBOL(z8530_hdlc_kilostream); | 
|  |  | 
|  | /* | 
|  | *	As above but for enhanced chips. | 
|  | */ | 
|  |  | 
|  | u8 z8530_hdlc_kilostream_85230[]= | 
|  | { | 
|  | 4,	SYNC_ENAB|SDLC|X1CLK, | 
|  | 2,	0,	/* No vector */ | 
|  | 1,	0, | 
|  | 3,	ENT_HM|RxCRC_ENAB|Rx8, | 
|  | 5,	TxCRC_ENAB|RTS|TxENAB|Tx8|DTR, | 
|  | 9,	0,		/* Disable interrupts */ | 
|  | 6,	0xFF, | 
|  | 7,	FLAG, | 
|  | 10,	ABUNDER|NRZ|CRCPS,	/* MARKIDLE?? */ | 
|  | 11,	TCTRxCP, | 
|  | 14,	DISDPLL, | 
|  | 15,	DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE, | 
|  | 1,	EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx, | 
|  | 9,	NV|MIE|NORESET, | 
|  | 23,	3,		/* Extended mode AUTO TX and EOM*/ | 
|  |  | 
|  | 255 | 
|  | }; | 
|  |  | 
|  | EXPORT_SYMBOL(z8530_hdlc_kilostream_85230); | 
|  |  | 
|  | /** | 
|  | *	z8530_flush_fifo - Flush on chip RX FIFO | 
|  | *	@c: Channel to flush | 
|  | * | 
|  | *	Flush the receive FIFO. There is no specific option for this, we | 
|  | *	blindly read bytes and discard them. Reading when there is no data | 
|  | *	is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes. | 
|  | * | 
|  | *	All locking is handled for the caller. On return data may still be | 
|  | *	present if it arrived during the flush. | 
|  | */ | 
|  |  | 
|  | static void z8530_flush_fifo(struct z8530_channel *c) | 
|  | { | 
|  | read_zsreg(c, R1); | 
|  | read_zsreg(c, R1); | 
|  | read_zsreg(c, R1); | 
|  | read_zsreg(c, R1); | 
|  | if(c->dev->type==Z85230) | 
|  | { | 
|  | read_zsreg(c, R1); | 
|  | read_zsreg(c, R1); | 
|  | read_zsreg(c, R1); | 
|  | read_zsreg(c, R1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	z8530_rtsdtr - Control the outgoing DTS/RTS line | 
|  | *	@c: The Z8530 channel to control; | 
|  | *	@set: 1 to set, 0 to clear | 
|  | * | 
|  | *	Sets or clears DTR/RTS on the requested line. All locking is handled | 
|  | *	by the caller. For now we assume all boards use the actual RTS/DTR | 
|  | *	on the chip. Apparently one or two don't. We'll scream about them | 
|  | *	later. | 
|  | */ | 
|  |  | 
|  | static void z8530_rtsdtr(struct z8530_channel *c, int set) | 
|  | { | 
|  | if (set) | 
|  | c->regs[5] |= (RTS | DTR); | 
|  | else | 
|  | c->regs[5] &= ~(RTS | DTR); | 
|  | write_zsreg(c, R5, c->regs[5]); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	z8530_rx - Handle a PIO receive event | 
|  | *	@c: Z8530 channel to process | 
|  | * | 
|  | *	Receive handler for receiving in PIO mode. This is much like the | 
|  | *	async one but not quite the same or as complex | 
|  | * | 
|  | *	Note: Its intended that this handler can easily be separated from | 
|  | *	the main code to run realtime. That'll be needed for some machines | 
|  | *	(eg to ever clock 64kbits on a sparc ;)). | 
|  | * | 
|  | *	The RT_LOCK macros don't do anything now. Keep the code covered | 
|  | *	by them as short as possible in all circumstances - clocks cost | 
|  | *	baud. The interrupt handler is assumed to be atomic w.r.t. to | 
|  | *	other code - this is true in the RT case too. | 
|  | * | 
|  | *	We only cover the sync cases for this. If you want 2Mbit async | 
|  | *	do it yourself but consider medical assistance first. This non DMA | 
|  | *	synchronous mode is portable code. The DMA mode assumes PCI like | 
|  | *	ISA DMA | 
|  | * | 
|  | *	Called with the device lock held | 
|  | */ | 
|  |  | 
|  | static void z8530_rx(struct z8530_channel *c) | 
|  | { | 
|  | u8 ch,stat; | 
|  |  | 
|  | while(1) | 
|  | { | 
|  | /* FIFO empty ? */ | 
|  | if(!(read_zsreg(c, R0)&1)) | 
|  | break; | 
|  | ch=read_zsdata(c); | 
|  | stat=read_zsreg(c, R1); | 
|  |  | 
|  | /* | 
|  | *	Overrun ? | 
|  | */ | 
|  | if(c->count < c->max) | 
|  | { | 
|  | *c->dptr++=ch; | 
|  | c->count++; | 
|  | } | 
|  |  | 
|  | if(stat&END_FR) | 
|  | { | 
|  |  | 
|  | /* | 
|  | *	Error ? | 
|  | */ | 
|  | if(stat&(Rx_OVR|CRC_ERR)) | 
|  | { | 
|  | /* Rewind the buffer and return */ | 
|  | if(c->skb) | 
|  | c->dptr=c->skb->data; | 
|  | c->count=0; | 
|  | if(stat&Rx_OVR) | 
|  | { | 
|  | printk(KERN_WARNING "%s: overrun\n", c->dev->name); | 
|  | c->rx_overrun++; | 
|  | } | 
|  | if(stat&CRC_ERR) | 
|  | { | 
|  | c->rx_crc_err++; | 
|  | /* printk("crc error\n"); */ | 
|  | } | 
|  | /* Shove the frame upstream */ | 
|  | } | 
|  | else | 
|  | { | 
|  | /* | 
|  | *	Drop the lock for RX processing, or | 
|  | *	there are deadlocks | 
|  | */ | 
|  | z8530_rx_done(c); | 
|  | write_zsctrl(c, RES_Rx_CRC); | 
|  | } | 
|  | } | 
|  | } | 
|  | /* | 
|  | *	Clear irq | 
|  | */ | 
|  | write_zsctrl(c, ERR_RES); | 
|  | write_zsctrl(c, RES_H_IUS); | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | *	z8530_tx - Handle a PIO transmit event | 
|  | *	@c: Z8530 channel to process | 
|  | * | 
|  | *	Z8530 transmit interrupt handler for the PIO mode. The basic | 
|  | *	idea is to attempt to keep the FIFO fed. We fill as many bytes | 
|  | *	in as possible, its quite possible that we won't keep up with the | 
|  | *	data rate otherwise. | 
|  | */ | 
|  |  | 
|  | static void z8530_tx(struct z8530_channel *c) | 
|  | { | 
|  | while(c->txcount) { | 
|  | /* FIFO full ? */ | 
|  | if(!(read_zsreg(c, R0)&4)) | 
|  | return; | 
|  | c->txcount--; | 
|  | /* | 
|  | *	Shovel out the byte | 
|  | */ | 
|  | write_zsreg(c, R8, *c->tx_ptr++); | 
|  | write_zsctrl(c, RES_H_IUS); | 
|  | /* We are about to underflow */ | 
|  | if(c->txcount==0) | 
|  | { | 
|  | write_zsctrl(c, RES_EOM_L); | 
|  | write_zsreg(c, R10, c->regs[10]&~ABUNDER); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | *	End of frame TX - fire another one | 
|  | */ | 
|  |  | 
|  | write_zsctrl(c, RES_Tx_P); | 
|  |  | 
|  | z8530_tx_done(c); | 
|  | write_zsctrl(c, RES_H_IUS); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	z8530_status - Handle a PIO status exception | 
|  | *	@chan: Z8530 channel to process | 
|  | * | 
|  | *	A status event occurred in PIO synchronous mode. There are several | 
|  | *	reasons the chip will bother us here. A transmit underrun means we | 
|  | *	failed to feed the chip fast enough and just broke a packet. A DCD | 
|  | *	change is a line up or down. | 
|  | */ | 
|  |  | 
|  | static void z8530_status(struct z8530_channel *chan) | 
|  | { | 
|  | u8 status, altered; | 
|  |  | 
|  | status = read_zsreg(chan, R0); | 
|  | altered = chan->status ^ status; | 
|  |  | 
|  | chan->status = status; | 
|  |  | 
|  | if (status & TxEOM) { | 
|  | /*		printk("%s: Tx underrun.\n", chan->dev->name); */ | 
|  | chan->netdevice->stats.tx_fifo_errors++; | 
|  | write_zsctrl(chan, ERR_RES); | 
|  | z8530_tx_done(chan); | 
|  | } | 
|  |  | 
|  | if (altered & chan->dcdcheck) | 
|  | { | 
|  | if (status & chan->dcdcheck) { | 
|  | printk(KERN_INFO "%s: DCD raised\n", chan->dev->name); | 
|  | write_zsreg(chan, R3, chan->regs[3] | RxENABLE); | 
|  | if (chan->netdevice) | 
|  | netif_carrier_on(chan->netdevice); | 
|  | } else { | 
|  | printk(KERN_INFO "%s: DCD lost\n", chan->dev->name); | 
|  | write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE); | 
|  | z8530_flush_fifo(chan); | 
|  | if (chan->netdevice) | 
|  | netif_carrier_off(chan->netdevice); | 
|  | } | 
|  |  | 
|  | } | 
|  | write_zsctrl(chan, RES_EXT_INT); | 
|  | write_zsctrl(chan, RES_H_IUS); | 
|  | } | 
|  |  | 
|  | struct z8530_irqhandler z8530_sync = | 
|  | { | 
|  | z8530_rx, | 
|  | z8530_tx, | 
|  | z8530_status | 
|  | }; | 
|  |  | 
|  | EXPORT_SYMBOL(z8530_sync); | 
|  |  | 
|  | /** | 
|  | *	z8530_dma_rx - Handle a DMA RX event | 
|  | *	@chan: Channel to handle | 
|  | * | 
|  | *	Non bus mastering DMA interfaces for the Z8x30 devices. This | 
|  | *	is really pretty PC specific. The DMA mode means that most receive | 
|  | *	events are handled by the DMA hardware. We get a kick here only if | 
|  | *	a frame ended. | 
|  | */ | 
|  |  | 
|  | static void z8530_dma_rx(struct z8530_channel *chan) | 
|  | { | 
|  | if(chan->rxdma_on) | 
|  | { | 
|  | /* Special condition check only */ | 
|  | u8 status; | 
|  |  | 
|  | read_zsreg(chan, R7); | 
|  | read_zsreg(chan, R6); | 
|  |  | 
|  | status=read_zsreg(chan, R1); | 
|  |  | 
|  | if(status&END_FR) | 
|  | { | 
|  | z8530_rx_done(chan);	/* Fire up the next one */ | 
|  | } | 
|  | write_zsctrl(chan, ERR_RES); | 
|  | write_zsctrl(chan, RES_H_IUS); | 
|  | } | 
|  | else | 
|  | { | 
|  | /* DMA is off right now, drain the slow way */ | 
|  | z8530_rx(chan); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	z8530_dma_tx - Handle a DMA TX event | 
|  | *	@chan:	The Z8530 channel to handle | 
|  | * | 
|  | *	We have received an interrupt while doing DMA transmissions. It | 
|  | *	shouldn't happen. Scream loudly if it does. | 
|  | */ | 
|  |  | 
|  | static void z8530_dma_tx(struct z8530_channel *chan) | 
|  | { | 
|  | if(!chan->dma_tx) | 
|  | { | 
|  | printk(KERN_WARNING "Hey who turned the DMA off?\n"); | 
|  | z8530_tx(chan); | 
|  | return; | 
|  | } | 
|  | /* This shouldnt occur in DMA mode */ | 
|  | printk(KERN_ERR "DMA tx - bogus event!\n"); | 
|  | z8530_tx(chan); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	z8530_dma_status - Handle a DMA status exception | 
|  | *	@chan: Z8530 channel to process | 
|  | * | 
|  | *	A status event occurred on the Z8530. We receive these for two reasons | 
|  | *	when in DMA mode. Firstly if we finished a packet transfer we get one | 
|  | *	and kick the next packet out. Secondly we may see a DCD change. | 
|  | * | 
|  | */ | 
|  |  | 
|  | static void z8530_dma_status(struct z8530_channel *chan) | 
|  | { | 
|  | u8 status, altered; | 
|  |  | 
|  | status=read_zsreg(chan, R0); | 
|  | altered=chan->status^status; | 
|  |  | 
|  | chan->status=status; | 
|  |  | 
|  |  | 
|  | if(chan->dma_tx) | 
|  | { | 
|  | if(status&TxEOM) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | flags=claim_dma_lock(); | 
|  | disable_dma(chan->txdma); | 
|  | clear_dma_ff(chan->txdma); | 
|  | chan->txdma_on=0; | 
|  | release_dma_lock(flags); | 
|  | z8530_tx_done(chan); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (altered & chan->dcdcheck) | 
|  | { | 
|  | if (status & chan->dcdcheck) { | 
|  | printk(KERN_INFO "%s: DCD raised\n", chan->dev->name); | 
|  | write_zsreg(chan, R3, chan->regs[3] | RxENABLE); | 
|  | if (chan->netdevice) | 
|  | netif_carrier_on(chan->netdevice); | 
|  | } else { | 
|  | printk(KERN_INFO "%s:DCD lost\n", chan->dev->name); | 
|  | write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE); | 
|  | z8530_flush_fifo(chan); | 
|  | if (chan->netdevice) | 
|  | netif_carrier_off(chan->netdevice); | 
|  | } | 
|  | } | 
|  |  | 
|  | write_zsctrl(chan, RES_EXT_INT); | 
|  | write_zsctrl(chan, RES_H_IUS); | 
|  | } | 
|  |  | 
|  | static struct z8530_irqhandler z8530_dma_sync = { | 
|  | z8530_dma_rx, | 
|  | z8530_dma_tx, | 
|  | z8530_dma_status | 
|  | }; | 
|  |  | 
|  | static struct z8530_irqhandler z8530_txdma_sync = { | 
|  | z8530_rx, | 
|  | z8530_dma_tx, | 
|  | z8530_dma_status | 
|  | }; | 
|  |  | 
|  | /** | 
|  | *	z8530_rx_clear - Handle RX events from a stopped chip | 
|  | *	@c: Z8530 channel to shut up | 
|  | * | 
|  | *	Receive interrupt vectors for a Z8530 that is in 'parked' mode. | 
|  | *	For machines with PCI Z85x30 cards, or level triggered interrupts | 
|  | *	(eg the MacII) we must clear the interrupt cause or die. | 
|  | */ | 
|  |  | 
|  |  | 
|  | static void z8530_rx_clear(struct z8530_channel *c) | 
|  | { | 
|  | /* | 
|  | *	Data and status bytes | 
|  | */ | 
|  | u8 stat; | 
|  |  | 
|  | read_zsdata(c); | 
|  | stat=read_zsreg(c, R1); | 
|  |  | 
|  | if(stat&END_FR) | 
|  | write_zsctrl(c, RES_Rx_CRC); | 
|  | /* | 
|  | *	Clear irq | 
|  | */ | 
|  | write_zsctrl(c, ERR_RES); | 
|  | write_zsctrl(c, RES_H_IUS); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	z8530_tx_clear - Handle TX events from a stopped chip | 
|  | *	@c: Z8530 channel to shut up | 
|  | * | 
|  | *	Transmit interrupt vectors for a Z8530 that is in 'parked' mode. | 
|  | *	For machines with PCI Z85x30 cards, or level triggered interrupts | 
|  | *	(eg the MacII) we must clear the interrupt cause or die. | 
|  | */ | 
|  |  | 
|  | static void z8530_tx_clear(struct z8530_channel *c) | 
|  | { | 
|  | write_zsctrl(c, RES_Tx_P); | 
|  | write_zsctrl(c, RES_H_IUS); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	z8530_status_clear - Handle status events from a stopped chip | 
|  | *	@chan: Z8530 channel to shut up | 
|  | * | 
|  | *	Status interrupt vectors for a Z8530 that is in 'parked' mode. | 
|  | *	For machines with PCI Z85x30 cards, or level triggered interrupts | 
|  | *	(eg the MacII) we must clear the interrupt cause or die. | 
|  | */ | 
|  |  | 
|  | static void z8530_status_clear(struct z8530_channel *chan) | 
|  | { | 
|  | u8 status=read_zsreg(chan, R0); | 
|  | if(status&TxEOM) | 
|  | write_zsctrl(chan, ERR_RES); | 
|  | write_zsctrl(chan, RES_EXT_INT); | 
|  | write_zsctrl(chan, RES_H_IUS); | 
|  | } | 
|  |  | 
|  | struct z8530_irqhandler z8530_nop= | 
|  | { | 
|  | z8530_rx_clear, | 
|  | z8530_tx_clear, | 
|  | z8530_status_clear | 
|  | }; | 
|  |  | 
|  |  | 
|  | EXPORT_SYMBOL(z8530_nop); | 
|  |  | 
|  | /** | 
|  | *	z8530_interrupt - Handle an interrupt from a Z8530 | 
|  | *	@irq: 	Interrupt number | 
|  | *	@dev_id: The Z8530 device that is interrupting. | 
|  | * | 
|  | *	A Z85[2]30 device has stuck its hand in the air for attention. | 
|  | *	We scan both the channels on the chip for events and then call | 
|  | *	the channel specific call backs for each channel that has events. | 
|  | *	We have to use callback functions because the two channels can be | 
|  | *	in different modes. | 
|  | * | 
|  | *	Locking is done for the handlers. Note that locking is done | 
|  | *	at the chip level (the 5uS delay issue is per chip not per | 
|  | *	channel). c->lock for both channels points to dev->lock | 
|  | */ | 
|  |  | 
|  | irqreturn_t z8530_interrupt(int irq, void *dev_id) | 
|  | { | 
|  | struct z8530_dev *dev=dev_id; | 
|  | u8 uninitialized_var(intr); | 
|  | static volatile int locker=0; | 
|  | int work=0; | 
|  | struct z8530_irqhandler *irqs; | 
|  |  | 
|  | if(locker) | 
|  | { | 
|  | printk(KERN_ERR "IRQ re-enter\n"); | 
|  | return IRQ_NONE; | 
|  | } | 
|  | locker=1; | 
|  |  | 
|  | spin_lock(&dev->lock); | 
|  |  | 
|  | while(++work<5000) | 
|  | { | 
|  |  | 
|  | intr = read_zsreg(&dev->chanA, R3); | 
|  | if(!(intr & (CHARxIP|CHATxIP|CHAEXT|CHBRxIP|CHBTxIP|CHBEXT))) | 
|  | break; | 
|  |  | 
|  | /* This holds the IRQ status. On the 8530 you must read it from chan | 
|  | A even though it applies to the whole chip */ | 
|  |  | 
|  | /* Now walk the chip and see what it is wanting - it may be | 
|  | an IRQ for someone else remember */ | 
|  |  | 
|  | irqs=dev->chanA.irqs; | 
|  |  | 
|  | if(intr & (CHARxIP|CHATxIP|CHAEXT)) | 
|  | { | 
|  | if(intr&CHARxIP) | 
|  | irqs->rx(&dev->chanA); | 
|  | if(intr&CHATxIP) | 
|  | irqs->tx(&dev->chanA); | 
|  | if(intr&CHAEXT) | 
|  | irqs->status(&dev->chanA); | 
|  | } | 
|  |  | 
|  | irqs=dev->chanB.irqs; | 
|  |  | 
|  | if(intr & (CHBRxIP|CHBTxIP|CHBEXT)) | 
|  | { | 
|  | if(intr&CHBRxIP) | 
|  | irqs->rx(&dev->chanB); | 
|  | if(intr&CHBTxIP) | 
|  | irqs->tx(&dev->chanB); | 
|  | if(intr&CHBEXT) | 
|  | irqs->status(&dev->chanB); | 
|  | } | 
|  | } | 
|  | spin_unlock(&dev->lock); | 
|  | if(work==5000) | 
|  | printk(KERN_ERR "%s: interrupt jammed - abort(0x%X)!\n", dev->name, intr); | 
|  | /* Ok all done */ | 
|  | locker=0; | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(z8530_interrupt); | 
|  |  | 
|  | static const u8 reg_init[16]= | 
|  | { | 
|  | 0,0,0,0, | 
|  | 0,0,0,0, | 
|  | 0,0,0,0, | 
|  | 0x55,0,0,0 | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | *	z8530_sync_open - Open a Z8530 channel for PIO | 
|  | *	@dev:	The network interface we are using | 
|  | *	@c:	The Z8530 channel to open in synchronous PIO mode | 
|  | * | 
|  | *	Switch a Z8530 into synchronous mode without DMA assist. We | 
|  | *	raise the RTS/DTR and commence network operation. | 
|  | */ | 
|  |  | 
|  | int z8530_sync_open(struct net_device *dev, struct z8530_channel *c) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(c->lock, flags); | 
|  |  | 
|  | c->sync = 1; | 
|  | c->mtu = dev->mtu+64; | 
|  | c->count = 0; | 
|  | c->skb = NULL; | 
|  | c->skb2 = NULL; | 
|  | c->irqs = &z8530_sync; | 
|  |  | 
|  | /* This loads the double buffer up */ | 
|  | z8530_rx_done(c);	/* Load the frame ring */ | 
|  | z8530_rx_done(c);	/* Load the backup frame */ | 
|  | z8530_rtsdtr(c,1); | 
|  | c->dma_tx = 0; | 
|  | c->regs[R1]|=TxINT_ENAB; | 
|  | write_zsreg(c, R1, c->regs[R1]); | 
|  | write_zsreg(c, R3, c->regs[R3]|RxENABLE); | 
|  |  | 
|  | spin_unlock_irqrestore(c->lock, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | EXPORT_SYMBOL(z8530_sync_open); | 
|  |  | 
|  | /** | 
|  | *	z8530_sync_close - Close a PIO Z8530 channel | 
|  | *	@dev: Network device to close | 
|  | *	@c: Z8530 channel to disassociate and move to idle | 
|  | * | 
|  | *	Close down a Z8530 interface and switch its interrupt handlers | 
|  | *	to discard future events. | 
|  | */ | 
|  |  | 
|  | int z8530_sync_close(struct net_device *dev, struct z8530_channel *c) | 
|  | { | 
|  | u8 chk; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(c->lock, flags); | 
|  | c->irqs = &z8530_nop; | 
|  | c->max = 0; | 
|  | c->sync = 0; | 
|  |  | 
|  | chk=read_zsreg(c,R0); | 
|  | write_zsreg(c, R3, c->regs[R3]); | 
|  | z8530_rtsdtr(c,0); | 
|  |  | 
|  | spin_unlock_irqrestore(c->lock, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(z8530_sync_close); | 
|  |  | 
|  | /** | 
|  | *	z8530_sync_dma_open - Open a Z8530 for DMA I/O | 
|  | *	@dev: The network device to attach | 
|  | *	@c: The Z8530 channel to configure in sync DMA mode. | 
|  | * | 
|  | *	Set up a Z85x30 device for synchronous DMA in both directions. Two | 
|  | *	ISA DMA channels must be available for this to work. We assume ISA | 
|  | *	DMA driven I/O and PC limits on access. | 
|  | */ | 
|  |  | 
|  | int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c) | 
|  | { | 
|  | unsigned long cflags, dflags; | 
|  |  | 
|  | c->sync = 1; | 
|  | c->mtu = dev->mtu+64; | 
|  | c->count = 0; | 
|  | c->skb = NULL; | 
|  | c->skb2 = NULL; | 
|  | /* | 
|  | *	Load the DMA interfaces up | 
|  | */ | 
|  | c->rxdma_on = 0; | 
|  | c->txdma_on = 0; | 
|  |  | 
|  | /* | 
|  | *	Allocate the DMA flip buffers. Limit by page size. | 
|  | *	Everyone runs 1500 mtu or less on wan links so this | 
|  | *	should be fine. | 
|  | */ | 
|  |  | 
|  | if(c->mtu  > PAGE_SIZE/2) | 
|  | return -EMSGSIZE; | 
|  |  | 
|  | c->rx_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA); | 
|  | if(c->rx_buf[0]==NULL) | 
|  | return -ENOBUFS; | 
|  | c->rx_buf[1]=c->rx_buf[0]+PAGE_SIZE/2; | 
|  |  | 
|  | c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA); | 
|  | if(c->tx_dma_buf[0]==NULL) | 
|  | { | 
|  | free_page((unsigned long)c->rx_buf[0]); | 
|  | c->rx_buf[0]=NULL; | 
|  | return -ENOBUFS; | 
|  | } | 
|  | c->tx_dma_buf[1]=c->tx_dma_buf[0]+PAGE_SIZE/2; | 
|  |  | 
|  | c->tx_dma_used=0; | 
|  | c->dma_tx = 1; | 
|  | c->dma_num=0; | 
|  | c->dma_ready=1; | 
|  |  | 
|  | /* | 
|  | *	Enable DMA control mode | 
|  | */ | 
|  |  | 
|  | spin_lock_irqsave(c->lock, cflags); | 
|  |  | 
|  | /* | 
|  | *	TX DMA via DIR/REQ | 
|  | */ | 
|  |  | 
|  | c->regs[R14]|= DTRREQ; | 
|  | write_zsreg(c, R14, c->regs[R14]); | 
|  |  | 
|  | c->regs[R1]&= ~TxINT_ENAB; | 
|  | write_zsreg(c, R1, c->regs[R1]); | 
|  |  | 
|  | /* | 
|  | *	RX DMA via W/Req | 
|  | */ | 
|  |  | 
|  | c->regs[R1]|= WT_FN_RDYFN; | 
|  | c->regs[R1]|= WT_RDY_RT; | 
|  | c->regs[R1]|= INT_ERR_Rx; | 
|  | c->regs[R1]&= ~TxINT_ENAB; | 
|  | write_zsreg(c, R1, c->regs[R1]); | 
|  | c->regs[R1]|= WT_RDY_ENAB; | 
|  | write_zsreg(c, R1, c->regs[R1]); | 
|  |  | 
|  | /* | 
|  | *	DMA interrupts | 
|  | */ | 
|  |  | 
|  | /* | 
|  | *	Set up the DMA configuration | 
|  | */ | 
|  |  | 
|  | dflags=claim_dma_lock(); | 
|  |  | 
|  | disable_dma(c->rxdma); | 
|  | clear_dma_ff(c->rxdma); | 
|  | set_dma_mode(c->rxdma, DMA_MODE_READ|0x10); | 
|  | set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0])); | 
|  | set_dma_count(c->rxdma, c->mtu); | 
|  | enable_dma(c->rxdma); | 
|  |  | 
|  | disable_dma(c->txdma); | 
|  | clear_dma_ff(c->txdma); | 
|  | set_dma_mode(c->txdma, DMA_MODE_WRITE); | 
|  | disable_dma(c->txdma); | 
|  |  | 
|  | release_dma_lock(dflags); | 
|  |  | 
|  | /* | 
|  | *	Select the DMA interrupt handlers | 
|  | */ | 
|  |  | 
|  | c->rxdma_on = 1; | 
|  | c->txdma_on = 1; | 
|  | c->tx_dma_used = 1; | 
|  |  | 
|  | c->irqs = &z8530_dma_sync; | 
|  | z8530_rtsdtr(c,1); | 
|  | write_zsreg(c, R3, c->regs[R3]|RxENABLE); | 
|  |  | 
|  | spin_unlock_irqrestore(c->lock, cflags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(z8530_sync_dma_open); | 
|  |  | 
|  | /** | 
|  | *	z8530_sync_dma_close - Close down DMA I/O | 
|  | *	@dev: Network device to detach | 
|  | *	@c: Z8530 channel to move into discard mode | 
|  | * | 
|  | *	Shut down a DMA mode synchronous interface. Halt the DMA, and | 
|  | *	free the buffers. | 
|  | */ | 
|  |  | 
|  | int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c) | 
|  | { | 
|  | u8 chk; | 
|  | unsigned long flags; | 
|  |  | 
|  | c->irqs = &z8530_nop; | 
|  | c->max = 0; | 
|  | c->sync = 0; | 
|  |  | 
|  | /* | 
|  | *	Disable the PC DMA channels | 
|  | */ | 
|  |  | 
|  | flags=claim_dma_lock(); | 
|  | disable_dma(c->rxdma); | 
|  | clear_dma_ff(c->rxdma); | 
|  |  | 
|  | c->rxdma_on = 0; | 
|  |  | 
|  | disable_dma(c->txdma); | 
|  | clear_dma_ff(c->txdma); | 
|  | release_dma_lock(flags); | 
|  |  | 
|  | c->txdma_on = 0; | 
|  | c->tx_dma_used = 0; | 
|  |  | 
|  | spin_lock_irqsave(c->lock, flags); | 
|  |  | 
|  | /* | 
|  | *	Disable DMA control mode | 
|  | */ | 
|  |  | 
|  | c->regs[R1]&= ~WT_RDY_ENAB; | 
|  | write_zsreg(c, R1, c->regs[R1]); | 
|  | c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx); | 
|  | c->regs[R1]|= INT_ALL_Rx; | 
|  | write_zsreg(c, R1, c->regs[R1]); | 
|  | c->regs[R14]&= ~DTRREQ; | 
|  | write_zsreg(c, R14, c->regs[R14]); | 
|  |  | 
|  | if(c->rx_buf[0]) | 
|  | { | 
|  | free_page((unsigned long)c->rx_buf[0]); | 
|  | c->rx_buf[0]=NULL; | 
|  | } | 
|  | if(c->tx_dma_buf[0]) | 
|  | { | 
|  | free_page((unsigned  long)c->tx_dma_buf[0]); | 
|  | c->tx_dma_buf[0]=NULL; | 
|  | } | 
|  | chk=read_zsreg(c,R0); | 
|  | write_zsreg(c, R3, c->regs[R3]); | 
|  | z8530_rtsdtr(c,0); | 
|  |  | 
|  | spin_unlock_irqrestore(c->lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(z8530_sync_dma_close); | 
|  |  | 
|  | /** | 
|  | *	z8530_sync_txdma_open - Open a Z8530 for TX driven DMA | 
|  | *	@dev: The network device to attach | 
|  | *	@c: The Z8530 channel to configure in sync DMA mode. | 
|  | * | 
|  | *	Set up a Z85x30 device for synchronous DMA tranmission. One | 
|  | *	ISA DMA channel must be available for this to work. The receive | 
|  | *	side is run in PIO mode, but then it has the bigger FIFO. | 
|  | */ | 
|  |  | 
|  | int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c) | 
|  | { | 
|  | unsigned long cflags, dflags; | 
|  |  | 
|  | printk("Opening sync interface for TX-DMA\n"); | 
|  | c->sync = 1; | 
|  | c->mtu = dev->mtu+64; | 
|  | c->count = 0; | 
|  | c->skb = NULL; | 
|  | c->skb2 = NULL; | 
|  |  | 
|  | /* | 
|  | *	Allocate the DMA flip buffers. Limit by page size. | 
|  | *	Everyone runs 1500 mtu or less on wan links so this | 
|  | *	should be fine. | 
|  | */ | 
|  |  | 
|  | if(c->mtu  > PAGE_SIZE/2) | 
|  | return -EMSGSIZE; | 
|  |  | 
|  | c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA); | 
|  | if(c->tx_dma_buf[0]==NULL) | 
|  | return -ENOBUFS; | 
|  |  | 
|  | c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE/2; | 
|  |  | 
|  |  | 
|  | spin_lock_irqsave(c->lock, cflags); | 
|  |  | 
|  | /* | 
|  | *	Load the PIO receive ring | 
|  | */ | 
|  |  | 
|  | z8530_rx_done(c); | 
|  | z8530_rx_done(c); | 
|  |  | 
|  | /* | 
|  | *	Load the DMA interfaces up | 
|  | */ | 
|  |  | 
|  | c->rxdma_on = 0; | 
|  | c->txdma_on = 0; | 
|  |  | 
|  | c->tx_dma_used=0; | 
|  | c->dma_num=0; | 
|  | c->dma_ready=1; | 
|  | c->dma_tx = 1; | 
|  |  | 
|  | /* | 
|  | *	Enable DMA control mode | 
|  | */ | 
|  |  | 
|  | /* | 
|  | *	TX DMA via DIR/REQ | 
|  | */ | 
|  | c->regs[R14]|= DTRREQ; | 
|  | write_zsreg(c, R14, c->regs[R14]); | 
|  |  | 
|  | c->regs[R1]&= ~TxINT_ENAB; | 
|  | write_zsreg(c, R1, c->regs[R1]); | 
|  |  | 
|  | /* | 
|  | *	Set up the DMA configuration | 
|  | */ | 
|  |  | 
|  | dflags = claim_dma_lock(); | 
|  |  | 
|  | disable_dma(c->txdma); | 
|  | clear_dma_ff(c->txdma); | 
|  | set_dma_mode(c->txdma, DMA_MODE_WRITE); | 
|  | disable_dma(c->txdma); | 
|  |  | 
|  | release_dma_lock(dflags); | 
|  |  | 
|  | /* | 
|  | *	Select the DMA interrupt handlers | 
|  | */ | 
|  |  | 
|  | c->rxdma_on = 0; | 
|  | c->txdma_on = 1; | 
|  | c->tx_dma_used = 1; | 
|  |  | 
|  | c->irqs = &z8530_txdma_sync; | 
|  | z8530_rtsdtr(c,1); | 
|  | write_zsreg(c, R3, c->regs[R3]|RxENABLE); | 
|  | spin_unlock_irqrestore(c->lock, cflags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(z8530_sync_txdma_open); | 
|  |  | 
|  | /** | 
|  | *	z8530_sync_txdma_close - Close down a TX driven DMA channel | 
|  | *	@dev: Network device to detach | 
|  | *	@c: Z8530 channel to move into discard mode | 
|  | * | 
|  | *	Shut down a DMA/PIO split mode synchronous interface. Halt the DMA, | 
|  | *	and  free the buffers. | 
|  | */ | 
|  |  | 
|  | int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c) | 
|  | { | 
|  | unsigned long dflags, cflags; | 
|  | u8 chk; | 
|  |  | 
|  |  | 
|  | spin_lock_irqsave(c->lock, cflags); | 
|  |  | 
|  | c->irqs = &z8530_nop; | 
|  | c->max = 0; | 
|  | c->sync = 0; | 
|  |  | 
|  | /* | 
|  | *	Disable the PC DMA channels | 
|  | */ | 
|  |  | 
|  | dflags = claim_dma_lock(); | 
|  |  | 
|  | disable_dma(c->txdma); | 
|  | clear_dma_ff(c->txdma); | 
|  | c->txdma_on = 0; | 
|  | c->tx_dma_used = 0; | 
|  |  | 
|  | release_dma_lock(dflags); | 
|  |  | 
|  | /* | 
|  | *	Disable DMA control mode | 
|  | */ | 
|  |  | 
|  | c->regs[R1]&= ~WT_RDY_ENAB; | 
|  | write_zsreg(c, R1, c->regs[R1]); | 
|  | c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx); | 
|  | c->regs[R1]|= INT_ALL_Rx; | 
|  | write_zsreg(c, R1, c->regs[R1]); | 
|  | c->regs[R14]&= ~DTRREQ; | 
|  | write_zsreg(c, R14, c->regs[R14]); | 
|  |  | 
|  | if(c->tx_dma_buf[0]) | 
|  | { | 
|  | free_page((unsigned long)c->tx_dma_buf[0]); | 
|  | c->tx_dma_buf[0]=NULL; | 
|  | } | 
|  | chk=read_zsreg(c,R0); | 
|  | write_zsreg(c, R3, c->regs[R3]); | 
|  | z8530_rtsdtr(c,0); | 
|  |  | 
|  | spin_unlock_irqrestore(c->lock, cflags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | EXPORT_SYMBOL(z8530_sync_txdma_close); | 
|  |  | 
|  |  | 
|  | /* | 
|  | *	Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny | 
|  | *	it exists... | 
|  | */ | 
|  |  | 
|  | static const char *z8530_type_name[]={ | 
|  | "Z8530", | 
|  | "Z85C30", | 
|  | "Z85230" | 
|  | }; | 
|  |  | 
|  | /** | 
|  | *	z8530_describe - Uniformly describe a Z8530 port | 
|  | *	@dev: Z8530 device to describe | 
|  | *	@mapping: string holding mapping type (eg "I/O" or "Mem") | 
|  | *	@io: the port value in question | 
|  | * | 
|  | *	Describe a Z8530 in a standard format. We must pass the I/O as | 
|  | *	the port offset isnt predictable. The main reason for this function | 
|  | *	is to try and get a common format of report. | 
|  | */ | 
|  |  | 
|  | void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io) | 
|  | { | 
|  | printk(KERN_INFO "%s: %s found at %s 0x%lX, IRQ %d.\n", | 
|  | dev->name, | 
|  | z8530_type_name[dev->type], | 
|  | mapping, | 
|  | Z8530_PORT_OF(io), | 
|  | dev->irq); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(z8530_describe); | 
|  |  | 
|  | /* | 
|  | *	Locked operation part of the z8530 init code | 
|  | */ | 
|  |  | 
|  | static inline int do_z8530_init(struct z8530_dev *dev) | 
|  | { | 
|  | /* NOP the interrupt handlers first - we might get a | 
|  | floating IRQ transition when we reset the chip */ | 
|  | dev->chanA.irqs=&z8530_nop; | 
|  | dev->chanB.irqs=&z8530_nop; | 
|  | dev->chanA.dcdcheck=DCD; | 
|  | dev->chanB.dcdcheck=DCD; | 
|  |  | 
|  | /* Reset the chip */ | 
|  | write_zsreg(&dev->chanA, R9, 0xC0); | 
|  | udelay(200); | 
|  | /* Now check its valid */ | 
|  | write_zsreg(&dev->chanA, R12, 0xAA); | 
|  | if(read_zsreg(&dev->chanA, R12)!=0xAA) | 
|  | return -ENODEV; | 
|  | write_zsreg(&dev->chanA, R12, 0x55); | 
|  | if(read_zsreg(&dev->chanA, R12)!=0x55) | 
|  | return -ENODEV; | 
|  |  | 
|  | dev->type=Z8530; | 
|  |  | 
|  | /* | 
|  | *	See the application note. | 
|  | */ | 
|  |  | 
|  | write_zsreg(&dev->chanA, R15, 0x01); | 
|  |  | 
|  | /* | 
|  | *	If we can set the low bit of R15 then | 
|  | *	the chip is enhanced. | 
|  | */ | 
|  |  | 
|  | if(read_zsreg(&dev->chanA, R15)==0x01) | 
|  | { | 
|  | /* This C30 versus 230 detect is from Klaus Kudielka's dmascc */ | 
|  | /* Put a char in the fifo */ | 
|  | write_zsreg(&dev->chanA, R8, 0); | 
|  | if(read_zsreg(&dev->chanA, R0)&Tx_BUF_EMP) | 
|  | dev->type = Z85230;	/* Has a FIFO */ | 
|  | else | 
|  | dev->type = Z85C30;	/* Z85C30, 1 byte FIFO */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	The code assumes R7' and friends are | 
|  | *	off. Use write_zsext() for these and keep | 
|  | *	this bit clear. | 
|  | */ | 
|  |  | 
|  | write_zsreg(&dev->chanA, R15, 0); | 
|  |  | 
|  | /* | 
|  | *	At this point it looks like the chip is behaving | 
|  | */ | 
|  |  | 
|  | memcpy(dev->chanA.regs, reg_init, 16); | 
|  | memcpy(dev->chanB.regs, reg_init ,16); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	z8530_init - Initialise a Z8530 device | 
|  | *	@dev: Z8530 device to initialise. | 
|  | * | 
|  | *	Configure up a Z8530/Z85C30 or Z85230 chip. We check the device | 
|  | *	is present, identify the type and then program it to hopefully | 
|  | *	keep quite and behave. This matters a lot, a Z8530 in the wrong | 
|  | *	state will sometimes get into stupid modes generating 10Khz | 
|  | *	interrupt streams and the like. | 
|  | * | 
|  | *	We set the interrupt handler up to discard any events, in case | 
|  | *	we get them during reset or setp. | 
|  | * | 
|  | *	Return 0 for success, or a negative value indicating the problem | 
|  | *	in errno form. | 
|  | */ | 
|  |  | 
|  | int z8530_init(struct z8530_dev *dev) | 
|  | { | 
|  | unsigned long flags; | 
|  | int ret; | 
|  |  | 
|  | /* Set up the chip level lock */ | 
|  | spin_lock_init(&dev->lock); | 
|  | dev->chanA.lock = &dev->lock; | 
|  | dev->chanB.lock = &dev->lock; | 
|  |  | 
|  | spin_lock_irqsave(&dev->lock, flags); | 
|  | ret = do_z8530_init(dev); | 
|  | spin_unlock_irqrestore(&dev->lock, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | EXPORT_SYMBOL(z8530_init); | 
|  |  | 
|  | /** | 
|  | *	z8530_shutdown - Shutdown a Z8530 device | 
|  | *	@dev: The Z8530 chip to shutdown | 
|  | * | 
|  | *	We set the interrupt handlers to silence any interrupts. We then | 
|  | *	reset the chip and wait 100uS to be sure the reset completed. Just | 
|  | *	in case the caller then tries to do stuff. | 
|  | * | 
|  | *	This is called without the lock held | 
|  | */ | 
|  |  | 
|  | int z8530_shutdown(struct z8530_dev *dev) | 
|  | { | 
|  | unsigned long flags; | 
|  | /* Reset the chip */ | 
|  |  | 
|  | spin_lock_irqsave(&dev->lock, flags); | 
|  | dev->chanA.irqs=&z8530_nop; | 
|  | dev->chanB.irqs=&z8530_nop; | 
|  | write_zsreg(&dev->chanA, R9, 0xC0); | 
|  | /* We must lock the udelay, the chip is offlimits here */ | 
|  | udelay(100); | 
|  | spin_unlock_irqrestore(&dev->lock, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(z8530_shutdown); | 
|  |  | 
|  | /** | 
|  | *	z8530_channel_load - Load channel data | 
|  | *	@c: Z8530 channel to configure | 
|  | *	@rtable: table of register, value pairs | 
|  | *	FIXME: ioctl to allow user uploaded tables | 
|  | * | 
|  | *	Load a Z8530 channel up from the system data. We use +16 to | 
|  | *	indicate the "prime" registers. The value 255 terminates the | 
|  | *	table. | 
|  | */ | 
|  |  | 
|  | int z8530_channel_load(struct z8530_channel *c, u8 *rtable) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(c->lock, flags); | 
|  |  | 
|  | while(*rtable!=255) | 
|  | { | 
|  | int reg=*rtable++; | 
|  | if(reg>0x0F) | 
|  | write_zsreg(c, R15, c->regs[15]|1); | 
|  | write_zsreg(c, reg&0x0F, *rtable); | 
|  | if(reg>0x0F) | 
|  | write_zsreg(c, R15, c->regs[15]&~1); | 
|  | c->regs[reg]=*rtable++; | 
|  | } | 
|  | c->rx_function=z8530_null_rx; | 
|  | c->skb=NULL; | 
|  | c->tx_skb=NULL; | 
|  | c->tx_next_skb=NULL; | 
|  | c->mtu=1500; | 
|  | c->max=0; | 
|  | c->count=0; | 
|  | c->status=read_zsreg(c, R0); | 
|  | c->sync=1; | 
|  | write_zsreg(c, R3, c->regs[R3]|RxENABLE); | 
|  |  | 
|  | spin_unlock_irqrestore(c->lock, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(z8530_channel_load); | 
|  |  | 
|  |  | 
|  | /** | 
|  | *	z8530_tx_begin - Begin packet transmission | 
|  | *	@c: The Z8530 channel to kick | 
|  | * | 
|  | *	This is the speed sensitive side of transmission. If we are called | 
|  | *	and no buffer is being transmitted we commence the next buffer. If | 
|  | *	nothing is queued we idle the sync. | 
|  | * | 
|  | *	Note: We are handling this code path in the interrupt path, keep it | 
|  | *	fast or bad things will happen. | 
|  | * | 
|  | *	Called with the lock held. | 
|  | */ | 
|  |  | 
|  | static void z8530_tx_begin(struct z8530_channel *c) | 
|  | { | 
|  | unsigned long flags; | 
|  | if(c->tx_skb) | 
|  | return; | 
|  |  | 
|  | c->tx_skb=c->tx_next_skb; | 
|  | c->tx_next_skb=NULL; | 
|  | c->tx_ptr=c->tx_next_ptr; | 
|  |  | 
|  | if(c->tx_skb==NULL) | 
|  | { | 
|  | /* Idle on */ | 
|  | if(c->dma_tx) | 
|  | { | 
|  | flags=claim_dma_lock(); | 
|  | disable_dma(c->txdma); | 
|  | /* | 
|  | *	Check if we crapped out. | 
|  | */ | 
|  | if (get_dma_residue(c->txdma)) | 
|  | { | 
|  | c->netdevice->stats.tx_dropped++; | 
|  | c->netdevice->stats.tx_fifo_errors++; | 
|  | } | 
|  | release_dma_lock(flags); | 
|  | } | 
|  | c->txcount=0; | 
|  | } | 
|  | else | 
|  | { | 
|  | c->txcount=c->tx_skb->len; | 
|  |  | 
|  |  | 
|  | if(c->dma_tx) | 
|  | { | 
|  | /* | 
|  | *	FIXME. DMA is broken for the original 8530, | 
|  | *	on the older parts we need to set a flag and | 
|  | *	wait for a further TX interrupt to fire this | 
|  | *	stage off | 
|  | */ | 
|  |  | 
|  | flags=claim_dma_lock(); | 
|  | disable_dma(c->txdma); | 
|  |  | 
|  | /* | 
|  | *	These two are needed by the 8530/85C30 | 
|  | *	and must be issued when idling. | 
|  | */ | 
|  |  | 
|  | if(c->dev->type!=Z85230) | 
|  | { | 
|  | write_zsctrl(c, RES_Tx_CRC); | 
|  | write_zsctrl(c, RES_EOM_L); | 
|  | } | 
|  | write_zsreg(c, R10, c->regs[10]&~ABUNDER); | 
|  | clear_dma_ff(c->txdma); | 
|  | set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr)); | 
|  | set_dma_count(c->txdma, c->txcount); | 
|  | enable_dma(c->txdma); | 
|  | release_dma_lock(flags); | 
|  | write_zsctrl(c, RES_EOM_L); | 
|  | write_zsreg(c, R5, c->regs[R5]|TxENAB); | 
|  | } | 
|  | else | 
|  | { | 
|  |  | 
|  | /* ABUNDER off */ | 
|  | write_zsreg(c, R10, c->regs[10]); | 
|  | write_zsctrl(c, RES_Tx_CRC); | 
|  |  | 
|  | while(c->txcount && (read_zsreg(c,R0)&Tx_BUF_EMP)) | 
|  | { | 
|  | write_zsreg(c, R8, *c->tx_ptr++); | 
|  | c->txcount--; | 
|  | } | 
|  |  | 
|  | } | 
|  | } | 
|  | /* | 
|  | *	Since we emptied tx_skb we can ask for more | 
|  | */ | 
|  | netif_wake_queue(c->netdevice); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	z8530_tx_done - TX complete callback | 
|  | *	@c: The channel that completed a transmit. | 
|  | * | 
|  | *	This is called when we complete a packet send. We wake the queue, | 
|  | *	start the next packet going and then free the buffer of the existing | 
|  | *	packet. This code is fairly timing sensitive. | 
|  | * | 
|  | *	Called with the register lock held. | 
|  | */ | 
|  |  | 
|  | static void z8530_tx_done(struct z8530_channel *c) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | /* Actually this can happen.*/ | 
|  | if (c->tx_skb == NULL) | 
|  | return; | 
|  |  | 
|  | skb = c->tx_skb; | 
|  | c->tx_skb = NULL; | 
|  | z8530_tx_begin(c); | 
|  | c->netdevice->stats.tx_packets++; | 
|  | c->netdevice->stats.tx_bytes += skb->len; | 
|  | dev_kfree_skb_irq(skb); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	z8530_null_rx - Discard a packet | 
|  | *	@c: The channel the packet arrived on | 
|  | *	@skb: The buffer | 
|  | * | 
|  | *	We point the receive handler at this function when idle. Instead | 
|  | *	of processing the frames we get to throw them away. | 
|  | */ | 
|  |  | 
|  | void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb) | 
|  | { | 
|  | dev_kfree_skb_any(skb); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(z8530_null_rx); | 
|  |  | 
|  | /** | 
|  | *	z8530_rx_done - Receive completion callback | 
|  | *	@c: The channel that completed a receive | 
|  | * | 
|  | *	A new packet is complete. Our goal here is to get back into receive | 
|  | *	mode as fast as possible. On the Z85230 we could change to using | 
|  | *	ESCC mode, but on the older chips we have no choice. We flip to the | 
|  | *	new buffer immediately in DMA mode so that the DMA of the next | 
|  | *	frame can occur while we are copying the previous buffer to an sk_buff | 
|  | * | 
|  | *	Called with the lock held | 
|  | */ | 
|  |  | 
|  | static void z8530_rx_done(struct z8530_channel *c) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  | int ct; | 
|  |  | 
|  | /* | 
|  | *	Is our receive engine in DMA mode | 
|  | */ | 
|  |  | 
|  | if(c->rxdma_on) | 
|  | { | 
|  | /* | 
|  | *	Save the ready state and the buffer currently | 
|  | *	being used as the DMA target | 
|  | */ | 
|  |  | 
|  | int ready=c->dma_ready; | 
|  | unsigned char *rxb=c->rx_buf[c->dma_num]; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | *	Complete this DMA. Neccessary to find the length | 
|  | */ | 
|  |  | 
|  | flags=claim_dma_lock(); | 
|  |  | 
|  | disable_dma(c->rxdma); | 
|  | clear_dma_ff(c->rxdma); | 
|  | c->rxdma_on=0; | 
|  | ct=c->mtu-get_dma_residue(c->rxdma); | 
|  | if(ct<0) | 
|  | ct=2;	/* Shit happens.. */ | 
|  | c->dma_ready=0; | 
|  |  | 
|  | /* | 
|  | *	Normal case: the other slot is free, start the next DMA | 
|  | *	into it immediately. | 
|  | */ | 
|  |  | 
|  | if(ready) | 
|  | { | 
|  | c->dma_num^=1; | 
|  | set_dma_mode(c->rxdma, DMA_MODE_READ|0x10); | 
|  | set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num])); | 
|  | set_dma_count(c->rxdma, c->mtu); | 
|  | c->rxdma_on = 1; | 
|  | enable_dma(c->rxdma); | 
|  | /* Stop any frames that we missed the head of | 
|  | from passing */ | 
|  | write_zsreg(c, R0, RES_Rx_CRC); | 
|  | } | 
|  | else | 
|  | /* Can't occur as we dont reenable the DMA irq until | 
|  | after the flip is done */ | 
|  | printk(KERN_WARNING "%s: DMA flip overrun!\n", | 
|  | c->netdevice->name); | 
|  |  | 
|  | release_dma_lock(flags); | 
|  |  | 
|  | /* | 
|  | *	Shove the old buffer into an sk_buff. We can't DMA | 
|  | *	directly into one on a PC - it might be above the 16Mb | 
|  | *	boundary. Optimisation - we could check to see if we | 
|  | *	can avoid the copy. Optimisation 2 - make the memcpy | 
|  | *	a copychecksum. | 
|  | */ | 
|  |  | 
|  | skb = dev_alloc_skb(ct); | 
|  | if (skb == NULL) { | 
|  | c->netdevice->stats.rx_dropped++; | 
|  | printk(KERN_WARNING "%s: Memory squeeze.\n", | 
|  | c->netdevice->name); | 
|  | } else { | 
|  | skb_put(skb, ct); | 
|  | skb_copy_to_linear_data(skb, rxb, ct); | 
|  | c->netdevice->stats.rx_packets++; | 
|  | c->netdevice->stats.rx_bytes += ct; | 
|  | } | 
|  | c->dma_ready = 1; | 
|  | } else { | 
|  | RT_LOCK; | 
|  | skb = c->skb; | 
|  |  | 
|  | /* | 
|  | *	The game we play for non DMA is similar. We want to | 
|  | *	get the controller set up for the next packet as fast | 
|  | *	as possible. We potentially only have one byte + the | 
|  | *	fifo length for this. Thus we want to flip to the new | 
|  | *	buffer and then mess around copying and allocating | 
|  | *	things. For the current case it doesn't matter but | 
|  | *	if you build a system where the sync irq isnt blocked | 
|  | *	by the kernel IRQ disable then you need only block the | 
|  | *	sync IRQ for the RT_LOCK area. | 
|  | * | 
|  | */ | 
|  | ct=c->count; | 
|  |  | 
|  | c->skb = c->skb2; | 
|  | c->count = 0; | 
|  | c->max = c->mtu; | 
|  | if (c->skb) { | 
|  | c->dptr = c->skb->data; | 
|  | c->max = c->mtu; | 
|  | } else { | 
|  | c->count = 0; | 
|  | c->max = 0; | 
|  | } | 
|  | RT_UNLOCK; | 
|  |  | 
|  | c->skb2 = dev_alloc_skb(c->mtu); | 
|  | if (c->skb2 == NULL) | 
|  | printk(KERN_WARNING "%s: memory squeeze.\n", | 
|  | c->netdevice->name); | 
|  | else | 
|  | skb_put(c->skb2, c->mtu); | 
|  | c->netdevice->stats.rx_packets++; | 
|  | c->netdevice->stats.rx_bytes += ct; | 
|  | } | 
|  | /* | 
|  | *	If we received a frame we must now process it. | 
|  | */ | 
|  | if (skb) { | 
|  | skb_trim(skb, ct); | 
|  | c->rx_function(c, skb); | 
|  | } else { | 
|  | c->netdevice->stats.rx_dropped++; | 
|  | printk(KERN_ERR "%s: Lost a frame\n", c->netdevice->name); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	spans_boundary - Check a packet can be ISA DMA'd | 
|  | *	@skb: The buffer to check | 
|  | * | 
|  | *	Returns true if the buffer cross a DMA boundary on a PC. The poor | 
|  | *	thing can only DMA within a 64K block not across the edges of it. | 
|  | */ | 
|  |  | 
|  | static inline int spans_boundary(struct sk_buff *skb) | 
|  | { | 
|  | unsigned long a=(unsigned long)skb->data; | 
|  | a^=(a+skb->len); | 
|  | if(a&0x00010000)	/* If the 64K bit is different.. */ | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	z8530_queue_xmit - Queue a packet | 
|  | *	@c: The channel to use | 
|  | *	@skb: The packet to kick down the channel | 
|  | * | 
|  | *	Queue a packet for transmission. Because we have rather | 
|  | *	hard to hit interrupt latencies for the Z85230 per packet | 
|  | *	even in DMA mode we do the flip to DMA buffer if needed here | 
|  | *	not in the IRQ. | 
|  | * | 
|  | *	Called from the network code. The lock is not held at this | 
|  | *	point. | 
|  | */ | 
|  |  | 
|  | netdev_tx_t z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | netif_stop_queue(c->netdevice); | 
|  | if(c->tx_next_skb) | 
|  | return NETDEV_TX_BUSY; | 
|  |  | 
|  |  | 
|  | /* PC SPECIFIC - DMA limits */ | 
|  |  | 
|  | /* | 
|  | *	If we will DMA the transmit and its gone over the ISA bus | 
|  | *	limit, then copy to the flip buffer | 
|  | */ | 
|  |  | 
|  | if(c->dma_tx && ((unsigned long)(virt_to_bus(skb->data+skb->len))>=16*1024*1024 || spans_boundary(skb))) | 
|  | { | 
|  | /* | 
|  | *	Send the flip buffer, and flip the flippy bit. | 
|  | *	We don't care which is used when just so long as | 
|  | *	we never use the same buffer twice in a row. Since | 
|  | *	only one buffer can be going out at a time the other | 
|  | *	has to be safe. | 
|  | */ | 
|  | c->tx_next_ptr=c->tx_dma_buf[c->tx_dma_used]; | 
|  | c->tx_dma_used^=1;	/* Flip temp buffer */ | 
|  | skb_copy_from_linear_data(skb, c->tx_next_ptr, skb->len); | 
|  | } | 
|  | else | 
|  | c->tx_next_ptr=skb->data; | 
|  | RT_LOCK; | 
|  | c->tx_next_skb=skb; | 
|  | RT_UNLOCK; | 
|  |  | 
|  | spin_lock_irqsave(c->lock, flags); | 
|  | z8530_tx_begin(c); | 
|  | spin_unlock_irqrestore(c->lock, flags); | 
|  |  | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(z8530_queue_xmit); | 
|  |  | 
|  | /* | 
|  | *	Module support | 
|  | */ | 
|  | static const char banner[] __initdata = | 
|  | KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n"; | 
|  |  | 
|  | static int __init z85230_init_driver(void) | 
|  | { | 
|  | printk(banner); | 
|  | return 0; | 
|  | } | 
|  | module_init(z85230_init_driver); | 
|  |  | 
|  | static void __exit z85230_cleanup_driver(void) | 
|  | { | 
|  | } | 
|  | module_exit(z85230_cleanup_driver); | 
|  |  | 
|  | MODULE_AUTHOR("Red Hat Inc."); | 
|  | MODULE_DESCRIPTION("Z85x30 synchronous driver core"); | 
|  | MODULE_LICENSE("GPL"); |