| /* | 
 |  * NAND Flash Controller Device Driver | 
 |  * Copyright © 2009-2010, Intel Corporation and its suppliers. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify it | 
 |  * under the terms and conditions of the GNU General Public License, | 
 |  * version 2, as published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope it will be useful, but WITHOUT | 
 |  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
 |  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
 |  * more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License along with | 
 |  * this program; if not, write to the Free Software Foundation, Inc., | 
 |  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | 
 |  * | 
 |  */ | 
 |  | 
 | #include <linux/interrupt.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/wait.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/mtd/mtd.h> | 
 | #include <linux/module.h> | 
 |  | 
 | #include "denali.h" | 
 |  | 
 | MODULE_LICENSE("GPL"); | 
 |  | 
 | /* We define a module parameter that allows the user to override | 
 |  * the hardware and decide what timing mode should be used. | 
 |  */ | 
 | #define NAND_DEFAULT_TIMINGS	-1 | 
 |  | 
 | static int onfi_timing_mode = NAND_DEFAULT_TIMINGS; | 
 | module_param(onfi_timing_mode, int, S_IRUGO); | 
 | MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting." | 
 | 			" -1 indicates use default timings"); | 
 |  | 
 | #define DENALI_NAND_NAME    "denali-nand" | 
 |  | 
 | /* We define a macro here that combines all interrupts this driver uses into | 
 |  * a single constant value, for convenience. */ | 
 | #define DENALI_IRQ_ALL	(INTR_STATUS0__DMA_CMD_COMP | \ | 
 | 			INTR_STATUS0__ECC_TRANSACTION_DONE | \ | 
 | 			INTR_STATUS0__ECC_ERR | \ | 
 | 			INTR_STATUS0__PROGRAM_FAIL | \ | 
 | 			INTR_STATUS0__LOAD_COMP | \ | 
 | 			INTR_STATUS0__PROGRAM_COMP | \ | 
 | 			INTR_STATUS0__TIME_OUT | \ | 
 | 			INTR_STATUS0__ERASE_FAIL | \ | 
 | 			INTR_STATUS0__RST_COMP | \ | 
 | 			INTR_STATUS0__ERASE_COMP) | 
 |  | 
 | /* indicates whether or not the internal value for the flash bank is | 
 |    valid or not */ | 
 | #define CHIP_SELECT_INVALID	-1 | 
 |  | 
 | #define SUPPORT_8BITECC		1 | 
 |  | 
 | /* This macro divides two integers and rounds fractional values up | 
 |  * to the nearest integer value. */ | 
 | #define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y))) | 
 |  | 
 | /* this macro allows us to convert from an MTD structure to our own | 
 |  * device context (denali) structure. | 
 |  */ | 
 | #define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd) | 
 |  | 
 | /* These constants are defined by the driver to enable common driver | 
 |    configuration options. */ | 
 | #define SPARE_ACCESS		0x41 | 
 | #define MAIN_ACCESS		0x42 | 
 | #define MAIN_SPARE_ACCESS	0x43 | 
 |  | 
 | #define DENALI_READ	0 | 
 | #define DENALI_WRITE	0x100 | 
 |  | 
 | /* types of device accesses. We can issue commands and get status */ | 
 | #define COMMAND_CYCLE	0 | 
 | #define ADDR_CYCLE	1 | 
 | #define STATUS_CYCLE	2 | 
 |  | 
 | /* this is a helper macro that allows us to | 
 |  * format the bank into the proper bits for the controller */ | 
 | #define BANK(x) ((x) << 24) | 
 |  | 
 | /* List of platforms this NAND controller has be integrated into */ | 
 | static const struct pci_device_id denali_pci_ids[] = { | 
 | 	{ PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 }, | 
 | 	{ PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST }, | 
 | 	{ /* end: all zeroes */ } | 
 | }; | 
 |  | 
 |  | 
 | /* these are static lookup tables that give us easy access to | 
 |    registers in the NAND controller. | 
 |  */ | 
 | static const uint32_t intr_status_addresses[4] = {INTR_STATUS0, | 
 | 						  INTR_STATUS1, | 
 | 						  INTR_STATUS2, | 
 | 						  INTR_STATUS3}; | 
 |  | 
 | static const uint32_t device_reset_banks[4] = {DEVICE_RESET__BANK0, | 
 | 							DEVICE_RESET__BANK1, | 
 | 							DEVICE_RESET__BANK2, | 
 | 							DEVICE_RESET__BANK3}; | 
 |  | 
 | static const uint32_t operation_timeout[4] = {INTR_STATUS0__TIME_OUT, | 
 | 							INTR_STATUS1__TIME_OUT, | 
 | 							INTR_STATUS2__TIME_OUT, | 
 | 							INTR_STATUS3__TIME_OUT}; | 
 |  | 
 | static const uint32_t reset_complete[4] = {INTR_STATUS0__RST_COMP, | 
 | 							INTR_STATUS1__RST_COMP, | 
 | 							INTR_STATUS2__RST_COMP, | 
 | 							INTR_STATUS3__RST_COMP}; | 
 |  | 
 | /* specifies the debug level of the driver */ | 
 | static int nand_debug_level; | 
 |  | 
 | /* forward declarations */ | 
 | static void clear_interrupts(struct denali_nand_info *denali); | 
 | static uint32_t wait_for_irq(struct denali_nand_info *denali, | 
 | 							uint32_t irq_mask); | 
 | static void denali_irq_enable(struct denali_nand_info *denali, | 
 | 							uint32_t int_mask); | 
 | static uint32_t read_interrupt_status(struct denali_nand_info *denali); | 
 |  | 
 | #define DEBUG_DENALI 0 | 
 |  | 
 | /* This is a wrapper for writing to the denali registers. | 
 |  * this allows us to create debug information so we can | 
 |  * observe how the driver is programming the device. | 
 |  * it uses standard linux convention for (val, addr) */ | 
 | static void denali_write32(uint32_t value, void *addr) | 
 | { | 
 | 	iowrite32(value, addr); | 
 |  | 
 | #if DEBUG_DENALI | 
 | 	printk(KERN_INFO "wrote: 0x%x -> 0x%x\n", value, | 
 | 			(uint32_t)((uint32_t)addr & 0x1fff)); | 
 | #endif | 
 | } | 
 |  | 
 | /* Certain operations for the denali NAND controller use | 
 |  * an indexed mode to read/write data. The operation is | 
 |  * performed by writing the address value of the command | 
 |  * to the device memory followed by the data. This function | 
 |  * abstracts this common operation. | 
 | */ | 
 | static void index_addr(struct denali_nand_info *denali, | 
 | 				uint32_t address, uint32_t data) | 
 | { | 
 | 	denali_write32(address, denali->flash_mem); | 
 | 	denali_write32(data, denali->flash_mem + 0x10); | 
 | } | 
 |  | 
 | /* Perform an indexed read of the device */ | 
 | static void index_addr_read_data(struct denali_nand_info *denali, | 
 | 				 uint32_t address, uint32_t *pdata) | 
 | { | 
 | 	denali_write32(address, denali->flash_mem); | 
 | 	*pdata = ioread32(denali->flash_mem + 0x10); | 
 | } | 
 |  | 
 | /* We need to buffer some data for some of the NAND core routines. | 
 |  * The operations manage buffering that data. */ | 
 | static void reset_buf(struct denali_nand_info *denali) | 
 | { | 
 | 	denali->buf.head = denali->buf.tail = 0; | 
 | } | 
 |  | 
 | static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte) | 
 | { | 
 | 	BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf)); | 
 | 	denali->buf.buf[denali->buf.tail++] = byte; | 
 | } | 
 |  | 
 | /* reads the status of the device */ | 
 | static void read_status(struct denali_nand_info *denali) | 
 | { | 
 | 	uint32_t cmd = 0x0; | 
 |  | 
 | 	/* initialize the data buffer to store status */ | 
 | 	reset_buf(denali); | 
 |  | 
 | 	/* initiate a device status read */ | 
 | 	cmd = MODE_11 | BANK(denali->flash_bank); | 
 | 	index_addr(denali, cmd | COMMAND_CYCLE, 0x70); | 
 | 	denali_write32(cmd | STATUS_CYCLE, denali->flash_mem); | 
 |  | 
 | 	/* update buffer with status value */ | 
 | 	write_byte_to_buf(denali, ioread32(denali->flash_mem + 0x10)); | 
 |  | 
 | #if DEBUG_DENALI | 
 | 	printk(KERN_INFO "device reporting status value of 0x%2x\n", | 
 | 			denali->buf.buf[0]); | 
 | #endif | 
 | } | 
 |  | 
 | /* resets a specific device connected to the core */ | 
 | static void reset_bank(struct denali_nand_info *denali) | 
 | { | 
 | 	uint32_t irq_status = 0; | 
 | 	uint32_t irq_mask = reset_complete[denali->flash_bank] | | 
 | 			    operation_timeout[denali->flash_bank]; | 
 | 	int bank = 0; | 
 |  | 
 | 	clear_interrupts(denali); | 
 |  | 
 | 	bank = device_reset_banks[denali->flash_bank]; | 
 | 	denali_write32(bank, denali->flash_reg + DEVICE_RESET); | 
 |  | 
 | 	irq_status = wait_for_irq(denali, irq_mask); | 
 |  | 
 | 	if (irq_status & operation_timeout[denali->flash_bank]) | 
 | 		printk(KERN_ERR "reset bank failed.\n"); | 
 | } | 
 |  | 
 | /* Reset the flash controller */ | 
 | static uint16_t denali_nand_reset(struct denali_nand_info *denali) | 
 | { | 
 | 	uint32_t i; | 
 |  | 
 | 	nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n", | 
 | 		       __FILE__, __LINE__, __func__); | 
 |  | 
 | 	for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) | 
 | 		denali_write32(reset_complete[i] | operation_timeout[i], | 
 | 		denali->flash_reg + intr_status_addresses[i]); | 
 |  | 
 | 	for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) { | 
 | 		denali_write32(device_reset_banks[i], | 
 | 				denali->flash_reg + DEVICE_RESET); | 
 | 		while (!(ioread32(denali->flash_reg + | 
 | 						intr_status_addresses[i]) & | 
 | 			(reset_complete[i] | operation_timeout[i]))) | 
 | 			; | 
 | 		if (ioread32(denali->flash_reg + intr_status_addresses[i]) & | 
 | 			operation_timeout[i]) | 
 | 			nand_dbg_print(NAND_DBG_WARN, | 
 | 			"NAND Reset operation timed out on bank %d\n", i); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < LLD_MAX_FLASH_BANKS; i++) | 
 | 		denali_write32(reset_complete[i] | operation_timeout[i], | 
 | 			denali->flash_reg + intr_status_addresses[i]); | 
 |  | 
 | 	return PASS; | 
 | } | 
 |  | 
 | /* this routine calculates the ONFI timing values for a given mode and | 
 |  * programs the clocking register accordingly. The mode is determined by | 
 |  * the get_onfi_nand_para routine. | 
 |  */ | 
 | static void nand_onfi_timing_set(struct denali_nand_info *denali, | 
 | 								uint16_t mode) | 
 | { | 
 | 	uint16_t Trea[6] = {40, 30, 25, 20, 20, 16}; | 
 | 	uint16_t Trp[6] = {50, 25, 17, 15, 12, 10}; | 
 | 	uint16_t Treh[6] = {30, 15, 15, 10, 10, 7}; | 
 | 	uint16_t Trc[6] = {100, 50, 35, 30, 25, 20}; | 
 | 	uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15}; | 
 | 	uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5}; | 
 | 	uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25}; | 
 | 	uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70}; | 
 | 	uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100}; | 
 | 	uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100}; | 
 | 	uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60}; | 
 | 	uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15}; | 
 |  | 
 | 	uint16_t TclsRising = 1; | 
 | 	uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid; | 
 | 	uint16_t dv_window = 0; | 
 | 	uint16_t en_lo, en_hi; | 
 | 	uint16_t acc_clks; | 
 | 	uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt; | 
 |  | 
 | 	nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n", | 
 | 		       __FILE__, __LINE__, __func__); | 
 |  | 
 | 	en_lo = CEIL_DIV(Trp[mode], CLK_X); | 
 | 	en_hi = CEIL_DIV(Treh[mode], CLK_X); | 
 | #if ONFI_BLOOM_TIME | 
 | 	if ((en_hi * CLK_X) < (Treh[mode] + 2)) | 
 | 		en_hi++; | 
 | #endif | 
 |  | 
 | 	if ((en_lo + en_hi) * CLK_X < Trc[mode]) | 
 | 		en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X); | 
 |  | 
 | 	if ((en_lo + en_hi) < CLK_MULTI) | 
 | 		en_lo += CLK_MULTI - en_lo - en_hi; | 
 |  | 
 | 	while (dv_window < 8) { | 
 | 		data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode]; | 
 |  | 
 | 		data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode]; | 
 |  | 
 | 		data_invalid = | 
 | 		    data_invalid_rhoh < | 
 | 		    data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh; | 
 |  | 
 | 		dv_window = data_invalid - Trea[mode]; | 
 |  | 
 | 		if (dv_window < 8) | 
 | 			en_lo++; | 
 | 	} | 
 |  | 
 | 	acc_clks = CEIL_DIV(Trea[mode], CLK_X); | 
 |  | 
 | 	while (((acc_clks * CLK_X) - Trea[mode]) < 3) | 
 | 		acc_clks++; | 
 |  | 
 | 	if ((data_invalid - acc_clks * CLK_X) < 2) | 
 | 		nand_dbg_print(NAND_DBG_WARN, "%s, Line %d: Warning!\n", | 
 | 			__FILE__, __LINE__); | 
 |  | 
 | 	addr_2_data = CEIL_DIV(Tadl[mode], CLK_X); | 
 | 	re_2_we = CEIL_DIV(Trhw[mode], CLK_X); | 
 | 	re_2_re = CEIL_DIV(Trhz[mode], CLK_X); | 
 | 	we_2_re = CEIL_DIV(Twhr[mode], CLK_X); | 
 | 	cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X); | 
 | 	if (!TclsRising) | 
 | 		cs_cnt = CEIL_DIV(Tcs[mode], CLK_X); | 
 | 	if (cs_cnt == 0) | 
 | 		cs_cnt = 1; | 
 |  | 
 | 	if (Tcea[mode]) { | 
 | 		while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode]) | 
 | 			cs_cnt++; | 
 | 	} | 
 |  | 
 | #if MODE5_WORKAROUND | 
 | 	if (mode == 5) | 
 | 		acc_clks = 5; | 
 | #endif | 
 |  | 
 | 	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */ | 
 | 	if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) && | 
 | 		(ioread32(denali->flash_reg + DEVICE_ID) == 0x88)) | 
 | 		acc_clks = 6; | 
 |  | 
 | 	denali_write32(acc_clks, denali->flash_reg + ACC_CLKS); | 
 | 	denali_write32(re_2_we, denali->flash_reg + RE_2_WE); | 
 | 	denali_write32(re_2_re, denali->flash_reg + RE_2_RE); | 
 | 	denali_write32(we_2_re, denali->flash_reg + WE_2_RE); | 
 | 	denali_write32(addr_2_data, denali->flash_reg + ADDR_2_DATA); | 
 | 	denali_write32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT); | 
 | 	denali_write32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT); | 
 | 	denali_write32(cs_cnt, denali->flash_reg + CS_SETUP_CNT); | 
 | } | 
 |  | 
 | /* queries the NAND device to see what ONFI modes it supports. */ | 
 | static uint16_t get_onfi_nand_para(struct denali_nand_info *denali) | 
 | { | 
 | 	int i; | 
 | 	/* we needn't to do a reset here because driver has already | 
 | 	 * reset all the banks before | 
 | 	 * */ | 
 | 	if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) & | 
 | 		ONFI_TIMING_MODE__VALUE)) | 
 | 		return FAIL; | 
 |  | 
 | 	for (i = 5; i > 0; i--) { | 
 | 		if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) & | 
 | 			(0x01 << i)) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	nand_onfi_timing_set(denali, i); | 
 |  | 
 | 	/* By now, all the ONFI devices we know support the page cache */ | 
 | 	/* rw feature. So here we enable the pipeline_rw_ahead feature */ | 
 | 	/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */ | 
 | 	/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */ | 
 |  | 
 | 	return PASS; | 
 | } | 
 |  | 
 | static void get_samsung_nand_para(struct denali_nand_info *denali, | 
 | 							uint8_t device_id) | 
 | { | 
 | 	if (device_id == 0xd3) { /* Samsung K9WAG08U1A */ | 
 | 		/* Set timing register values according to datasheet */ | 
 | 		denali_write32(5, denali->flash_reg + ACC_CLKS); | 
 | 		denali_write32(20, denali->flash_reg + RE_2_WE); | 
 | 		denali_write32(12, denali->flash_reg + WE_2_RE); | 
 | 		denali_write32(14, denali->flash_reg + ADDR_2_DATA); | 
 | 		denali_write32(3, denali->flash_reg + RDWR_EN_LO_CNT); | 
 | 		denali_write32(2, denali->flash_reg + RDWR_EN_HI_CNT); | 
 | 		denali_write32(2, denali->flash_reg + CS_SETUP_CNT); | 
 | 	} | 
 | } | 
 |  | 
 | static void get_toshiba_nand_para(struct denali_nand_info *denali) | 
 | { | 
 | 	uint32_t tmp; | 
 |  | 
 | 	/* Workaround to fix a controller bug which reports a wrong */ | 
 | 	/* spare area size for some kind of Toshiba NAND device */ | 
 | 	if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) && | 
 | 		(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) { | 
 | 		denali_write32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); | 
 | 		tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) * | 
 | 			ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE); | 
 | 		denali_write32(tmp, | 
 | 				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); | 
 | #if SUPPORT_15BITECC | 
 | 		denali_write32(15, denali->flash_reg + ECC_CORRECTION); | 
 | #elif SUPPORT_8BITECC | 
 | 		denali_write32(8, denali->flash_reg + ECC_CORRECTION); | 
 | #endif | 
 | 	} | 
 | } | 
 |  | 
 | static void get_hynix_nand_para(struct denali_nand_info *denali, | 
 | 							uint8_t device_id) | 
 | { | 
 | 	uint32_t main_size, spare_size; | 
 |  | 
 | 	switch (device_id) { | 
 | 	case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */ | 
 | 	case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */ | 
 | 		denali_write32(128, denali->flash_reg + PAGES_PER_BLOCK); | 
 | 		denali_write32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE); | 
 | 		denali_write32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); | 
 | 		main_size = 4096 * | 
 | 			ioread32(denali->flash_reg + DEVICES_CONNECTED); | 
 | 		spare_size = 224 * | 
 | 			ioread32(denali->flash_reg + DEVICES_CONNECTED); | 
 | 		denali_write32(main_size, | 
 | 				denali->flash_reg + LOGICAL_PAGE_DATA_SIZE); | 
 | 		denali_write32(spare_size, | 
 | 				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); | 
 | 		denali_write32(0, denali->flash_reg + DEVICE_WIDTH); | 
 | #if SUPPORT_15BITECC | 
 | 		denali_write32(15, denali->flash_reg + ECC_CORRECTION); | 
 | #elif SUPPORT_8BITECC | 
 | 		denali_write32(8, denali->flash_reg + ECC_CORRECTION); | 
 | #endif | 
 | 		break; | 
 | 	default: | 
 | 		nand_dbg_print(NAND_DBG_WARN, | 
 | 			"Spectra: Unknown Hynix NAND (Device ID: 0x%x)." | 
 | 			"Will use default parameter values instead.\n", | 
 | 			device_id); | 
 | 	} | 
 | } | 
 |  | 
 | /* determines how many NAND chips are connected to the controller. Note for | 
 |    Intel CE4100 devices we don't support more than one device. | 
 |  */ | 
 | static void find_valid_banks(struct denali_nand_info *denali) | 
 | { | 
 | 	uint32_t id[LLD_MAX_FLASH_BANKS]; | 
 | 	int i; | 
 |  | 
 | 	denali->total_used_banks = 1; | 
 | 	for (i = 0; i < LLD_MAX_FLASH_BANKS; i++) { | 
 | 		index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90); | 
 | 		index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0); | 
 | 		index_addr_read_data(denali, | 
 | 				(uint32_t)(MODE_11 | (i << 24) | 2), &id[i]); | 
 |  | 
 | 		nand_dbg_print(NAND_DBG_DEBUG, | 
 | 			"Return 1st ID for bank[%d]: %x\n", i, id[i]); | 
 |  | 
 | 		if (i == 0) { | 
 | 			if (!(id[i] & 0x0ff)) | 
 | 				break; /* WTF? */ | 
 | 		} else { | 
 | 			if ((id[i] & 0x0ff) == (id[0] & 0x0ff)) | 
 | 				denali->total_used_banks++; | 
 | 			else | 
 | 				break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (denali->platform == INTEL_CE4100) { | 
 | 		/* Platform limitations of the CE4100 device limit | 
 | 		 * users to a single chip solution for NAND. | 
 | 		 * Multichip support is not enabled. | 
 | 		 */ | 
 | 		if (denali->total_used_banks != 1) { | 
 | 			printk(KERN_ERR "Sorry, Intel CE4100 only supports " | 
 | 					"a single NAND device.\n"); | 
 | 			BUG(); | 
 | 		} | 
 | 	} | 
 | 	nand_dbg_print(NAND_DBG_DEBUG, | 
 | 		"denali->total_used_banks: %d\n", denali->total_used_banks); | 
 | } | 
 |  | 
 | static void detect_partition_feature(struct denali_nand_info *denali) | 
 | { | 
 | 	/* For MRST platform, denali->fwblks represent the | 
 | 	 * number of blocks firmware is taken, | 
 | 	 * FW is in protect partition and MTD driver has no | 
 | 	 * permission to access it. So let driver know how many | 
 | 	 * blocks it can't touch. | 
 | 	 * */ | 
 | 	if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) { | 
 | 		if ((ioread32(denali->flash_reg + PERM_SRC_ID_1) & | 
 | 			PERM_SRC_ID_1__SRCID) == SPECTRA_PARTITION_ID) { | 
 | 			denali->fwblks = | 
 | 			    ((ioread32(denali->flash_reg + MIN_MAX_BANK_1) & | 
 | 			      MIN_MAX_BANK_1__MIN_VALUE) * | 
 | 			     denali->blksperchip) | 
 | 			    + | 
 | 			    (ioread32(denali->flash_reg + MIN_BLK_ADDR_1) & | 
 | 			    MIN_BLK_ADDR_1__VALUE); | 
 | 		} else | 
 | 			denali->fwblks = SPECTRA_START_BLOCK; | 
 | 	} else | 
 | 		denali->fwblks = SPECTRA_START_BLOCK; | 
 | } | 
 |  | 
 | static uint16_t denali_nand_timing_set(struct denali_nand_info *denali) | 
 | { | 
 | 	uint16_t status = PASS; | 
 | 	uint32_t id_bytes[5], addr; | 
 | 	uint8_t i, maf_id, device_id; | 
 |  | 
 | 	nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n", | 
 | 		       __FILE__, __LINE__, __func__); | 
 |  | 
 | 	/* Use read id method to get device ID and other | 
 | 	 * params. For some NAND chips, controller can't | 
 | 	 * report the correct device ID by reading from | 
 | 	 * DEVICE_ID register | 
 | 	 * */ | 
 | 	addr = (uint32_t)MODE_11 | BANK(denali->flash_bank); | 
 | 	index_addr(denali, (uint32_t)addr | 0, 0x90); | 
 | 	index_addr(denali, (uint32_t)addr | 1, 0); | 
 | 	for (i = 0; i < 5; i++) | 
 | 		index_addr_read_data(denali, addr | 2, &id_bytes[i]); | 
 | 	maf_id = id_bytes[0]; | 
 | 	device_id = id_bytes[1]; | 
 |  | 
 | 	if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) & | 
 | 		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */ | 
 | 		if (FAIL == get_onfi_nand_para(denali)) | 
 | 			return FAIL; | 
 | 	} else if (maf_id == 0xEC) { /* Samsung NAND */ | 
 | 		get_samsung_nand_para(denali, device_id); | 
 | 	} else if (maf_id == 0x98) { /* Toshiba NAND */ | 
 | 		get_toshiba_nand_para(denali); | 
 | 	} else if (maf_id == 0xAD) { /* Hynix NAND */ | 
 | 		get_hynix_nand_para(denali, device_id); | 
 | 	} | 
 |  | 
 | 	nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:" | 
 | 			"acc_clks: %d, re_2_we: %d, we_2_re: %d," | 
 | 			"addr_2_data: %d, rdwr_en_lo_cnt: %d, " | 
 | 			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n", | 
 | 			ioread32(denali->flash_reg + ACC_CLKS), | 
 | 			ioread32(denali->flash_reg + RE_2_WE), | 
 | 			ioread32(denali->flash_reg + WE_2_RE), | 
 | 			ioread32(denali->flash_reg + ADDR_2_DATA), | 
 | 			ioread32(denali->flash_reg + RDWR_EN_LO_CNT), | 
 | 			ioread32(denali->flash_reg + RDWR_EN_HI_CNT), | 
 | 			ioread32(denali->flash_reg + CS_SETUP_CNT)); | 
 |  | 
 | 	find_valid_banks(denali); | 
 |  | 
 | 	detect_partition_feature(denali); | 
 |  | 
 | 	/* If the user specified to override the default timings | 
 | 	 * with a specific ONFI mode, we apply those changes here. | 
 | 	 */ | 
 | 	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS) | 
 | 		nand_onfi_timing_set(denali, onfi_timing_mode); | 
 |  | 
 | 	return status; | 
 | } | 
 |  | 
 | static void denali_set_intr_modes(struct denali_nand_info *denali, | 
 | 					uint16_t INT_ENABLE) | 
 | { | 
 | 	nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n", | 
 | 		       __FILE__, __LINE__, __func__); | 
 |  | 
 | 	if (INT_ENABLE) | 
 | 		denali_write32(1, denali->flash_reg + GLOBAL_INT_ENABLE); | 
 | 	else | 
 | 		denali_write32(0, denali->flash_reg + GLOBAL_INT_ENABLE); | 
 | } | 
 |  | 
 | /* validation function to verify that the controlling software is making | 
 |    a valid request | 
 |  */ | 
 | static inline bool is_flash_bank_valid(int flash_bank) | 
 | { | 
 | 	return (flash_bank >= 0 && flash_bank < 4); | 
 | } | 
 |  | 
 | static void denali_irq_init(struct denali_nand_info *denali) | 
 | { | 
 | 	uint32_t int_mask = 0; | 
 |  | 
 | 	/* Disable global interrupts */ | 
 | 	denali_set_intr_modes(denali, false); | 
 |  | 
 | 	int_mask = DENALI_IRQ_ALL; | 
 |  | 
 | 	/* Clear all status bits */ | 
 | 	denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS0); | 
 | 	denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS1); | 
 | 	denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS2); | 
 | 	denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS3); | 
 |  | 
 | 	denali_irq_enable(denali, int_mask); | 
 | } | 
 |  | 
 | static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali) | 
 | { | 
 | 	denali_set_intr_modes(denali, false); | 
 | 	free_irq(irqnum, denali); | 
 | } | 
 |  | 
 | static void denali_irq_enable(struct denali_nand_info *denali, | 
 | 							uint32_t int_mask) | 
 | { | 
 | 	denali_write32(int_mask, denali->flash_reg + INTR_EN0); | 
 | 	denali_write32(int_mask, denali->flash_reg + INTR_EN1); | 
 | 	denali_write32(int_mask, denali->flash_reg + INTR_EN2); | 
 | 	denali_write32(int_mask, denali->flash_reg + INTR_EN3); | 
 | } | 
 |  | 
 | /* This function only returns when an interrupt that this driver cares about | 
 |  * occurs. This is to reduce the overhead of servicing interrupts | 
 |  */ | 
 | static inline uint32_t denali_irq_detected(struct denali_nand_info *denali) | 
 | { | 
 | 	return read_interrupt_status(denali) & DENALI_IRQ_ALL; | 
 | } | 
 |  | 
 | /* Interrupts are cleared by writing a 1 to the appropriate status bit */ | 
 | static inline void clear_interrupt(struct denali_nand_info *denali, | 
 | 							uint32_t irq_mask) | 
 | { | 
 | 	uint32_t intr_status_reg = 0; | 
 |  | 
 | 	intr_status_reg = intr_status_addresses[denali->flash_bank]; | 
 |  | 
 | 	denali_write32(irq_mask, denali->flash_reg + intr_status_reg); | 
 | } | 
 |  | 
 | static void clear_interrupts(struct denali_nand_info *denali) | 
 | { | 
 | 	uint32_t status = 0x0; | 
 | 	spin_lock_irq(&denali->irq_lock); | 
 |  | 
 | 	status = read_interrupt_status(denali); | 
 |  | 
 | #if DEBUG_DENALI | 
 | 	denali->irq_debug_array[denali->idx++] = 0x30000000 | status; | 
 | 	denali->idx %= 32; | 
 | #endif | 
 |  | 
 | 	denali->irq_status = 0x0; | 
 | 	spin_unlock_irq(&denali->irq_lock); | 
 | } | 
 |  | 
 | static uint32_t read_interrupt_status(struct denali_nand_info *denali) | 
 | { | 
 | 	uint32_t intr_status_reg = 0; | 
 |  | 
 | 	intr_status_reg = intr_status_addresses[denali->flash_bank]; | 
 |  | 
 | 	return ioread32(denali->flash_reg + intr_status_reg); | 
 | } | 
 |  | 
 | #if DEBUG_DENALI | 
 | static void print_irq_log(struct denali_nand_info *denali) | 
 | { | 
 | 	int i = 0; | 
 |  | 
 | 	printk(KERN_INFO "ISR debug log index = %X\n", denali->idx); | 
 | 	for (i = 0; i < 32; i++) | 
 | 		printk(KERN_INFO "%08X: %08X\n", i, denali->irq_debug_array[i]); | 
 | } | 
 | #endif | 
 |  | 
 | /* This is the interrupt service routine. It handles all interrupts | 
 |  * sent to this device. Note that on CE4100, this is a shared | 
 |  * interrupt. | 
 |  */ | 
 | static irqreturn_t denali_isr(int irq, void *dev_id) | 
 | { | 
 | 	struct denali_nand_info *denali = dev_id; | 
 | 	uint32_t irq_status = 0x0; | 
 | 	irqreturn_t result = IRQ_NONE; | 
 |  | 
 | 	spin_lock(&denali->irq_lock); | 
 |  | 
 | 	/* check to see if a valid NAND chip has | 
 | 	 * been selected. | 
 | 	 */ | 
 | 	if (is_flash_bank_valid(denali->flash_bank)) { | 
 | 		/* check to see if controller generated | 
 | 		 * the interrupt, since this is a shared interrupt */ | 
 | 		irq_status = denali_irq_detected(denali); | 
 | 		if (irq_status != 0) { | 
 | #if DEBUG_DENALI | 
 | 			denali->irq_debug_array[denali->idx++] = | 
 | 				0x10000000 | irq_status; | 
 | 			denali->idx %= 32; | 
 |  | 
 | 			printk(KERN_INFO "IRQ status = 0x%04x\n", irq_status); | 
 | #endif | 
 | 			/* handle interrupt */ | 
 | 			/* first acknowledge it */ | 
 | 			clear_interrupt(denali, irq_status); | 
 | 			/* store the status in the device context for someone | 
 | 			   to read */ | 
 | 			denali->irq_status |= irq_status; | 
 | 			/* notify anyone who cares that it happened */ | 
 | 			complete(&denali->complete); | 
 | 			/* tell the OS that we've handled this */ | 
 | 			result = IRQ_HANDLED; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&denali->irq_lock); | 
 | 	return result; | 
 | } | 
 | #define BANK(x) ((x) << 24) | 
 |  | 
 | static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask) | 
 | { | 
 | 	unsigned long comp_res = 0; | 
 | 	uint32_t intr_status = 0; | 
 | 	bool retry = false; | 
 | 	unsigned long timeout = msecs_to_jiffies(1000); | 
 |  | 
 | 	do { | 
 | #if DEBUG_DENALI | 
 | 		printk(KERN_INFO "waiting for 0x%x\n", irq_mask); | 
 | #endif | 
 | 		comp_res = | 
 | 			wait_for_completion_timeout(&denali->complete, timeout); | 
 | 		spin_lock_irq(&denali->irq_lock); | 
 | 		intr_status = denali->irq_status; | 
 |  | 
 | #if DEBUG_DENALI | 
 | 		denali->irq_debug_array[denali->idx++] = | 
 | 			0x20000000 | (irq_mask << 16) | intr_status; | 
 | 		denali->idx %= 32; | 
 | #endif | 
 |  | 
 | 		if (intr_status & irq_mask) { | 
 | 			denali->irq_status &= ~irq_mask; | 
 | 			spin_unlock_irq(&denali->irq_lock); | 
 | #if DEBUG_DENALI | 
 | 			if (retry) | 
 | 				printk(KERN_INFO "status on retry = 0x%x\n", | 
 | 						intr_status); | 
 | #endif | 
 | 			/* our interrupt was detected */ | 
 | 			break; | 
 | 		} else { | 
 | 			/* these are not the interrupts you are looking for - | 
 | 			 * need to wait again */ | 
 | 			spin_unlock_irq(&denali->irq_lock); | 
 | #if DEBUG_DENALI | 
 | 			print_irq_log(denali); | 
 | 			printk(KERN_INFO "received irq nobody cared:" | 
 | 					" irq_status = 0x%x, irq_mask = 0x%x," | 
 | 					" timeout = %ld\n", intr_status, | 
 | 					irq_mask, comp_res); | 
 | #endif | 
 | 			retry = true; | 
 | 		} | 
 | 	} while (comp_res != 0); | 
 |  | 
 | 	if (comp_res == 0) { | 
 | 		/* timeout */ | 
 | 		printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n", | 
 | 				intr_status, irq_mask); | 
 |  | 
 | 		intr_status = 0; | 
 | 	} | 
 | 	return intr_status; | 
 | } | 
 |  | 
 | /* This helper function setups the registers for ECC and whether or not | 
 |    the spare area will be transfered. */ | 
 | static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en, | 
 | 				bool transfer_spare) | 
 | { | 
 | 	int ecc_en_flag = 0, transfer_spare_flag = 0; | 
 |  | 
 | 	/* set ECC, transfer spare bits if needed */ | 
 | 	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0; | 
 | 	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0; | 
 |  | 
 | 	/* Enable spare area/ECC per user's request. */ | 
 | 	denali_write32(ecc_en_flag, denali->flash_reg + ECC_ENABLE); | 
 | 	denali_write32(transfer_spare_flag, | 
 | 			denali->flash_reg + TRANSFER_SPARE_REG); | 
 | } | 
 |  | 
 | /* sends a pipeline command operation to the controller. See the Denali NAND | 
 |    controller's user guide for more information (section 4.2.3.6). | 
 |  */ | 
 | static int denali_send_pipeline_cmd(struct denali_nand_info *denali, | 
 | 							bool ecc_en, | 
 | 							bool transfer_spare, | 
 | 							int access_type, | 
 | 							int op) | 
 | { | 
 | 	int status = PASS; | 
 | 	uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0, | 
 | 		 irq_mask = 0; | 
 |  | 
 | 	if (op == DENALI_READ) | 
 | 		irq_mask = INTR_STATUS0__LOAD_COMP; | 
 | 	else if (op == DENALI_WRITE) | 
 | 		irq_mask = 0; | 
 | 	else | 
 | 		BUG(); | 
 |  | 
 | 	setup_ecc_for_xfer(denali, ecc_en, transfer_spare); | 
 |  | 
 | #if DEBUG_DENALI | 
 | 	spin_lock_irq(&denali->irq_lock); | 
 | 	denali->irq_debug_array[denali->idx++] = | 
 | 		0x40000000 | ioread32(denali->flash_reg + ECC_ENABLE) | | 
 | 		(access_type << 4); | 
 | 	denali->idx %= 32; | 
 | 	spin_unlock_irq(&denali->irq_lock); | 
 | #endif | 
 |  | 
 |  | 
 | 	/* clear interrupts */ | 
 | 	clear_interrupts(denali); | 
 |  | 
 | 	addr = BANK(denali->flash_bank) | denali->page; | 
 |  | 
 | 	if (op == DENALI_WRITE && access_type != SPARE_ACCESS) { | 
 | 		cmd = MODE_01 | addr; | 
 | 		denali_write32(cmd, denali->flash_mem); | 
 | 	} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) { | 
 | 		/* read spare area */ | 
 | 		cmd = MODE_10 | addr; | 
 | 		index_addr(denali, (uint32_t)cmd, access_type); | 
 |  | 
 | 		cmd = MODE_01 | addr; | 
 | 		denali_write32(cmd, denali->flash_mem); | 
 | 	} else if (op == DENALI_READ) { | 
 | 		/* setup page read request for access type */ | 
 | 		cmd = MODE_10 | addr; | 
 | 		index_addr(denali, (uint32_t)cmd, access_type); | 
 |  | 
 | 		/* page 33 of the NAND controller spec indicates we should not | 
 | 		   use the pipeline commands in Spare area only mode. So we | 
 | 		   don't. | 
 | 		 */ | 
 | 		if (access_type == SPARE_ACCESS) { | 
 | 			cmd = MODE_01 | addr; | 
 | 			denali_write32(cmd, denali->flash_mem); | 
 | 		} else { | 
 | 			index_addr(denali, (uint32_t)cmd, | 
 | 					0x2000 | op | page_count); | 
 |  | 
 | 			/* wait for command to be accepted | 
 | 			 * can always use status0 bit as the | 
 | 			 * mask is identical for each | 
 | 			 * bank. */ | 
 | 			irq_status = wait_for_irq(denali, irq_mask); | 
 |  | 
 | 			if (irq_status == 0) { | 
 | 				printk(KERN_ERR "cmd, page, addr on timeout " | 
 | 					"(0x%x, 0x%x, 0x%x)\n", cmd, | 
 | 					denali->page, addr); | 
 | 				status = FAIL; | 
 | 			} else { | 
 | 				cmd = MODE_01 | addr; | 
 | 				denali_write32(cmd, denali->flash_mem); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	return status; | 
 | } | 
 |  | 
 | /* helper function that simply writes a buffer to the flash */ | 
 | static int write_data_to_flash_mem(struct denali_nand_info *denali, | 
 | 							const uint8_t *buf, | 
 | 							int len) | 
 | { | 
 | 	uint32_t i = 0, *buf32; | 
 |  | 
 | 	/* verify that the len is a multiple of 4. see comment in | 
 | 	 * read_data_from_flash_mem() */ | 
 | 	BUG_ON((len % 4) != 0); | 
 |  | 
 | 	/* write the data to the flash memory */ | 
 | 	buf32 = (uint32_t *)buf; | 
 | 	for (i = 0; i < len / 4; i++) | 
 | 		denali_write32(*buf32++, denali->flash_mem + 0x10); | 
 | 	return i*4; /* intent is to return the number of bytes read */ | 
 | } | 
 |  | 
 | /* helper function that simply reads a buffer from the flash */ | 
 | static int read_data_from_flash_mem(struct denali_nand_info *denali, | 
 | 								uint8_t *buf, | 
 | 								int len) | 
 | { | 
 | 	uint32_t i = 0, *buf32; | 
 |  | 
 | 	/* we assume that len will be a multiple of 4, if not | 
 | 	 * it would be nice to know about it ASAP rather than | 
 | 	 * have random failures... | 
 | 	 * This assumption is based on the fact that this | 
 | 	 * function is designed to be used to read flash pages, | 
 | 	 * which are typically multiples of 4... | 
 | 	 */ | 
 |  | 
 | 	BUG_ON((len % 4) != 0); | 
 |  | 
 | 	/* transfer the data from the flash */ | 
 | 	buf32 = (uint32_t *)buf; | 
 | 	for (i = 0; i < len / 4; i++) | 
 | 		*buf32++ = ioread32(denali->flash_mem + 0x10); | 
 | 	return i*4; /* intent is to return the number of bytes read */ | 
 | } | 
 |  | 
 | /* writes OOB data to the device */ | 
 | static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) | 
 | { | 
 | 	struct denali_nand_info *denali = mtd_to_denali(mtd); | 
 | 	uint32_t irq_status = 0; | 
 | 	uint32_t irq_mask = INTR_STATUS0__PROGRAM_COMP | | 
 | 						INTR_STATUS0__PROGRAM_FAIL; | 
 | 	int status = 0; | 
 |  | 
 | 	denali->page = page; | 
 |  | 
 | 	if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS, | 
 | 							DENALI_WRITE) == PASS) { | 
 | 		write_data_to_flash_mem(denali, buf, mtd->oobsize); | 
 |  | 
 | #if DEBUG_DENALI | 
 | 		spin_lock_irq(&denali->irq_lock); | 
 | 		denali->irq_debug_array[denali->idx++] = | 
 | 			0x80000000 | mtd->oobsize; | 
 | 		denali->idx %= 32; | 
 | 		spin_unlock_irq(&denali->irq_lock); | 
 | #endif | 
 |  | 
 |  | 
 | 		/* wait for operation to complete */ | 
 | 		irq_status = wait_for_irq(denali, irq_mask); | 
 |  | 
 | 		if (irq_status == 0) { | 
 | 			printk(KERN_ERR "OOB write failed\n"); | 
 | 			status = -EIO; | 
 | 		} | 
 | 	} else { | 
 | 		printk(KERN_ERR "unable to send pipeline command\n"); | 
 | 		status = -EIO; | 
 | 	} | 
 | 	return status; | 
 | } | 
 |  | 
 | /* reads OOB data from the device */ | 
 | static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) | 
 | { | 
 | 	struct denali_nand_info *denali = mtd_to_denali(mtd); | 
 | 	uint32_t irq_mask = INTR_STATUS0__LOAD_COMP, | 
 | 			 irq_status = 0, addr = 0x0, cmd = 0x0; | 
 |  | 
 | 	denali->page = page; | 
 |  | 
 | #if DEBUG_DENALI | 
 | 	printk(KERN_INFO "read_oob %d\n", page); | 
 | #endif | 
 | 	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS, | 
 | 							DENALI_READ) == PASS) { | 
 | 		read_data_from_flash_mem(denali, buf, mtd->oobsize); | 
 |  | 
 | 		/* wait for command to be accepted | 
 | 		 * can always use status0 bit as the mask is identical for each | 
 | 		 * bank. */ | 
 | 		irq_status = wait_for_irq(denali, irq_mask); | 
 |  | 
 | 		if (irq_status == 0) | 
 | 			printk(KERN_ERR "page on OOB timeout %d\n", | 
 | 					denali->page); | 
 |  | 
 | 		/* We set the device back to MAIN_ACCESS here as I observed | 
 | 		 * instability with the controller if you do a block erase | 
 | 		 * and the last transaction was a SPARE_ACCESS. Block erase | 
 | 		 * is reliable (according to the MTD test infrastructure) | 
 | 		 * if you are in MAIN_ACCESS. | 
 | 		 */ | 
 | 		addr = BANK(denali->flash_bank) | denali->page; | 
 | 		cmd = MODE_10 | addr; | 
 | 		index_addr(denali, (uint32_t)cmd, MAIN_ACCESS); | 
 |  | 
 | #if DEBUG_DENALI | 
 | 		spin_lock_irq(&denali->irq_lock); | 
 | 		denali->irq_debug_array[denali->idx++] = | 
 | 			0x60000000 | mtd->oobsize; | 
 | 		denali->idx %= 32; | 
 | 		spin_unlock_irq(&denali->irq_lock); | 
 | #endif | 
 | 	} | 
 | } | 
 |  | 
 | /* this function examines buffers to see if they contain data that | 
 |  * indicate that the buffer is part of an erased region of flash. | 
 |  */ | 
 | bool is_erased(uint8_t *buf, int len) | 
 | { | 
 | 	int i = 0; | 
 | 	for (i = 0; i < len; i++) | 
 | 		if (buf[i] != 0xFF) | 
 | 			return false; | 
 | 	return true; | 
 | } | 
 | #define ECC_SECTOR_SIZE 512 | 
 |  | 
 | #define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12) | 
 | #define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET)) | 
 | #define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK) | 
 | #define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO)) | 
 | #define ECC_ERR_DEVICE(x)	((x) & ERR_CORRECTION_INFO__DEVICE_NR >> 8) | 
 | #define ECC_LAST_ERR(x)		((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO) | 
 |  | 
 | static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf, | 
 | 			uint8_t *oobbuf, uint32_t irq_status) | 
 | { | 
 | 	bool check_erased_page = false; | 
 |  | 
 | 	if (irq_status & INTR_STATUS0__ECC_ERR) { | 
 | 		/* read the ECC errors. we'll ignore them for now */ | 
 | 		uint32_t err_address = 0, err_correction_info = 0; | 
 | 		uint32_t err_byte = 0, err_sector = 0, err_device = 0; | 
 | 		uint32_t err_correction_value = 0; | 
 |  | 
 | 		do { | 
 | 			err_address = ioread32(denali->flash_reg + | 
 | 						ECC_ERROR_ADDRESS); | 
 | 			err_sector = ECC_SECTOR(err_address); | 
 | 			err_byte = ECC_BYTE(err_address); | 
 |  | 
 |  | 
 | 			err_correction_info = ioread32(denali->flash_reg + | 
 | 						ERR_CORRECTION_INFO); | 
 | 			err_correction_value = | 
 | 				ECC_CORRECTION_VALUE(err_correction_info); | 
 | 			err_device = ECC_ERR_DEVICE(err_correction_info); | 
 |  | 
 | 			if (ECC_ERROR_CORRECTABLE(err_correction_info)) { | 
 | 				/* offset in our buffer is computed as: | 
 | 				   sector number * sector size + offset in | 
 | 				   sector | 
 | 				 */ | 
 | 				int offset = err_sector * ECC_SECTOR_SIZE + | 
 | 								err_byte; | 
 | 				if (offset < denali->mtd.writesize) { | 
 | 					/* correct the ECC error */ | 
 | 					buf[offset] ^= err_correction_value; | 
 | 					denali->mtd.ecc_stats.corrected++; | 
 | 				} else { | 
 | 					/* bummer, couldn't correct the error */ | 
 | 					printk(KERN_ERR "ECC offset invalid\n"); | 
 | 					denali->mtd.ecc_stats.failed++; | 
 | 				} | 
 | 			} else { | 
 | 				/* if the error is not correctable, need to | 
 | 				 * look at the page to see if it is an erased | 
 | 				 * page. if so, then it's not a real ECC error | 
 | 				 * */ | 
 | 				check_erased_page = true; | 
 | 			} | 
 |  | 
 | #if DEBUG_DENALI | 
 | 			printk(KERN_INFO "Detected ECC error in page %d:" | 
 | 					" err_addr = 0x%08x, info to fix is" | 
 | 					" 0x%08x\n", denali->page, err_address, | 
 | 					err_correction_info); | 
 | #endif | 
 | 		} while (!ECC_LAST_ERR(err_correction_info)); | 
 | 	} | 
 | 	return check_erased_page; | 
 | } | 
 |  | 
 | /* programs the controller to either enable/disable DMA transfers */ | 
 | static void denali_enable_dma(struct denali_nand_info *denali, bool en) | 
 | { | 
 | 	uint32_t reg_val = 0x0; | 
 |  | 
 | 	if (en) | 
 | 		reg_val = DMA_ENABLE__FLAG; | 
 |  | 
 | 	denali_write32(reg_val, denali->flash_reg + DMA_ENABLE); | 
 | 	ioread32(denali->flash_reg + DMA_ENABLE); | 
 | } | 
 |  | 
 | /* setups the HW to perform the data DMA */ | 
 | static void denali_setup_dma(struct denali_nand_info *denali, int op) | 
 | { | 
 | 	uint32_t mode = 0x0; | 
 | 	const int page_count = 1; | 
 | 	dma_addr_t addr = denali->buf.dma_buf; | 
 |  | 
 | 	mode = MODE_10 | BANK(denali->flash_bank); | 
 |  | 
 | 	/* DMA is a four step process */ | 
 |  | 
 | 	/* 1. setup transfer type and # of pages */ | 
 | 	index_addr(denali, mode | denali->page, 0x2000 | op | page_count); | 
 |  | 
 | 	/* 2. set memory high address bits 23:8 */ | 
 | 	index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200); | 
 |  | 
 | 	/* 3. set memory low address bits 23:8 */ | 
 | 	index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300); | 
 |  | 
 | 	/* 4.  interrupt when complete, burst len = 64 bytes*/ | 
 | 	index_addr(denali, mode | 0x14000, 0x2400); | 
 | } | 
 |  | 
 | /* writes a page. user specifies type, and this function handles the | 
 |    configuration details. */ | 
 | static void write_page(struct mtd_info *mtd, struct nand_chip *chip, | 
 | 			const uint8_t *buf, bool raw_xfer) | 
 | { | 
 | 	struct denali_nand_info *denali = mtd_to_denali(mtd); | 
 | 	struct pci_dev *pci_dev = denali->dev; | 
 |  | 
 | 	dma_addr_t addr = denali->buf.dma_buf; | 
 | 	size_t size = denali->mtd.writesize + denali->mtd.oobsize; | 
 |  | 
 | 	uint32_t irq_status = 0; | 
 | 	uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP | | 
 | 						INTR_STATUS0__PROGRAM_FAIL; | 
 |  | 
 | 	/* if it is a raw xfer, we want to disable ecc, and send | 
 | 	 * the spare area. | 
 | 	 * !raw_xfer - enable ecc | 
 | 	 * raw_xfer - transfer spare | 
 | 	 */ | 
 | 	setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer); | 
 |  | 
 | 	/* copy buffer into DMA buffer */ | 
 | 	memcpy(denali->buf.buf, buf, mtd->writesize); | 
 |  | 
 | 	if (raw_xfer) { | 
 | 		/* transfer the data to the spare area */ | 
 | 		memcpy(denali->buf.buf + mtd->writesize, | 
 | 			chip->oob_poi, | 
 | 			mtd->oobsize); | 
 | 	} | 
 |  | 
 | 	pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_TODEVICE); | 
 |  | 
 | 	clear_interrupts(denali); | 
 | 	denali_enable_dma(denali, true); | 
 |  | 
 | 	denali_setup_dma(denali, DENALI_WRITE); | 
 |  | 
 | 	/* wait for operation to complete */ | 
 | 	irq_status = wait_for_irq(denali, irq_mask); | 
 |  | 
 | 	if (irq_status == 0) { | 
 | 		printk(KERN_ERR "timeout on write_page" | 
 | 				" (type = %d)\n", raw_xfer); | 
 | 		denali->status = | 
 | 			(irq_status & INTR_STATUS0__PROGRAM_FAIL) ? | 
 | 			NAND_STATUS_FAIL : PASS; | 
 | 	} | 
 |  | 
 | 	denali_enable_dma(denali, false); | 
 | 	pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_TODEVICE); | 
 | } | 
 |  | 
 | /* NAND core entry points */ | 
 |  | 
 | /* this is the callback that the NAND core calls to write a page. Since | 
 |    writing a page with ECC or without is similar, all the work is done | 
 |    by write_page above.   */ | 
 | static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip, | 
 | 				const uint8_t *buf) | 
 | { | 
 | 	/* for regular page writes, we let HW handle all the ECC | 
 | 	 * data written to the device. */ | 
 | 	write_page(mtd, chip, buf, false); | 
 | } | 
 |  | 
 | /* This is the callback that the NAND core calls to write a page without ECC. | 
 |    raw access is similiar to ECC page writes, so all the work is done in the | 
 |    write_page() function above. | 
 |  */ | 
 | static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, | 
 | 					const uint8_t *buf) | 
 | { | 
 | 	/* for raw page writes, we want to disable ECC and simply write | 
 | 	   whatever data is in the buffer. */ | 
 | 	write_page(mtd, chip, buf, true); | 
 | } | 
 |  | 
 | static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip, | 
 | 			    int page) | 
 | { | 
 | 	return write_oob_data(mtd, chip->oob_poi, page); | 
 | } | 
 |  | 
 | static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip, | 
 | 			   int page, int sndcmd) | 
 | { | 
 | 	read_oob_data(mtd, chip->oob_poi, page); | 
 |  | 
 | 	return 0; /* notify NAND core to send command to | 
 | 			   NAND device. */ | 
 | } | 
 |  | 
 | static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip, | 
 | 			    uint8_t *buf, int page) | 
 | { | 
 | 	struct denali_nand_info *denali = mtd_to_denali(mtd); | 
 | 	struct pci_dev *pci_dev = denali->dev; | 
 |  | 
 | 	dma_addr_t addr = denali->buf.dma_buf; | 
 | 	size_t size = denali->mtd.writesize + denali->mtd.oobsize; | 
 |  | 
 | 	uint32_t irq_status = 0; | 
 | 	uint32_t irq_mask = INTR_STATUS0__ECC_TRANSACTION_DONE | | 
 | 			    INTR_STATUS0__ECC_ERR; | 
 | 	bool check_erased_page = false; | 
 |  | 
 | 	setup_ecc_for_xfer(denali, true, false); | 
 |  | 
 | 	denali_enable_dma(denali, true); | 
 | 	pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE); | 
 |  | 
 | 	clear_interrupts(denali); | 
 | 	denali_setup_dma(denali, DENALI_READ); | 
 |  | 
 | 	/* wait for operation to complete */ | 
 | 	irq_status = wait_for_irq(denali, irq_mask); | 
 |  | 
 | 	pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE); | 
 |  | 
 | 	memcpy(buf, denali->buf.buf, mtd->writesize); | 
 |  | 
 | 	check_erased_page = handle_ecc(denali, buf, chip->oob_poi, irq_status); | 
 | 	denali_enable_dma(denali, false); | 
 |  | 
 | 	if (check_erased_page) { | 
 | 		read_oob_data(&denali->mtd, chip->oob_poi, denali->page); | 
 |  | 
 | 		/* check ECC failures that may have occurred on erased pages */ | 
 | 		if (check_erased_page) { | 
 | 			if (!is_erased(buf, denali->mtd.writesize)) | 
 | 				denali->mtd.ecc_stats.failed++; | 
 | 			if (!is_erased(buf, denali->mtd.oobsize)) | 
 | 				denali->mtd.ecc_stats.failed++; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, | 
 | 				uint8_t *buf, int page) | 
 | { | 
 | 	struct denali_nand_info *denali = mtd_to_denali(mtd); | 
 | 	struct pci_dev *pci_dev = denali->dev; | 
 |  | 
 | 	dma_addr_t addr = denali->buf.dma_buf; | 
 | 	size_t size = denali->mtd.writesize + denali->mtd.oobsize; | 
 |  | 
 | 	uint32_t irq_status = 0; | 
 | 	uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP; | 
 |  | 
 | 	setup_ecc_for_xfer(denali, false, true); | 
 | 	denali_enable_dma(denali, true); | 
 |  | 
 | 	pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE); | 
 |  | 
 | 	clear_interrupts(denali); | 
 | 	denali_setup_dma(denali, DENALI_READ); | 
 |  | 
 | 	/* wait for operation to complete */ | 
 | 	irq_status = wait_for_irq(denali, irq_mask); | 
 |  | 
 | 	pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE); | 
 |  | 
 | 	denali_enable_dma(denali, false); | 
 |  | 
 | 	memcpy(buf, denali->buf.buf, mtd->writesize); | 
 | 	memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static uint8_t denali_read_byte(struct mtd_info *mtd) | 
 | { | 
 | 	struct denali_nand_info *denali = mtd_to_denali(mtd); | 
 | 	uint8_t result = 0xff; | 
 |  | 
 | 	if (denali->buf.head < denali->buf.tail) | 
 | 		result = denali->buf.buf[denali->buf.head++]; | 
 |  | 
 | #if DEBUG_DENALI | 
 | 	printk(KERN_INFO "read byte -> 0x%02x\n", result); | 
 | #endif | 
 | 	return result; | 
 | } | 
 |  | 
 | static void denali_select_chip(struct mtd_info *mtd, int chip) | 
 | { | 
 | 	struct denali_nand_info *denali = mtd_to_denali(mtd); | 
 | #if DEBUG_DENALI | 
 | 	printk(KERN_INFO "denali select chip %d\n", chip); | 
 | #endif | 
 | 	spin_lock_irq(&denali->irq_lock); | 
 | 	denali->flash_bank = chip; | 
 | 	spin_unlock_irq(&denali->irq_lock); | 
 | } | 
 |  | 
 | static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) | 
 | { | 
 | 	struct denali_nand_info *denali = mtd_to_denali(mtd); | 
 | 	int status = denali->status; | 
 | 	denali->status = 0; | 
 |  | 
 | #if DEBUG_DENALI | 
 | 	printk(KERN_INFO "waitfunc %d\n", status); | 
 | #endif | 
 | 	return status; | 
 | } | 
 |  | 
 | static void denali_erase(struct mtd_info *mtd, int page) | 
 | { | 
 | 	struct denali_nand_info *denali = mtd_to_denali(mtd); | 
 |  | 
 | 	uint32_t cmd = 0x0, irq_status = 0; | 
 |  | 
 | #if DEBUG_DENALI | 
 | 	printk(KERN_INFO "erase page: %d\n", page); | 
 | #endif | 
 | 	/* clear interrupts */ | 
 | 	clear_interrupts(denali); | 
 |  | 
 | 	/* setup page read request for access type */ | 
 | 	cmd = MODE_10 | BANK(denali->flash_bank) | page; | 
 | 	index_addr(denali, (uint32_t)cmd, 0x1); | 
 |  | 
 | 	/* wait for erase to complete or failure to occur */ | 
 | 	irq_status = wait_for_irq(denali, INTR_STATUS0__ERASE_COMP | | 
 | 					INTR_STATUS0__ERASE_FAIL); | 
 |  | 
 | 	denali->status = (irq_status & INTR_STATUS0__ERASE_FAIL) ? | 
 | 						NAND_STATUS_FAIL : PASS; | 
 | } | 
 |  | 
 | static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, | 
 | 			   int page) | 
 | { | 
 | 	struct denali_nand_info *denali = mtd_to_denali(mtd); | 
 | 	uint32_t addr, id; | 
 | 	int i; | 
 |  | 
 | #if DEBUG_DENALI | 
 | 	printk(KERN_INFO "cmdfunc: 0x%x %d %d\n", cmd, col, page); | 
 | #endif | 
 | 	switch (cmd) { | 
 | 	case NAND_CMD_PAGEPROG: | 
 | 		break; | 
 | 	case NAND_CMD_STATUS: | 
 | 		read_status(denali); | 
 | 		break; | 
 | 	case NAND_CMD_READID: | 
 | 		reset_buf(denali); | 
 | 		/*sometimes ManufactureId read from register is not right | 
 | 		 * e.g. some of Micron MT29F32G08QAA MLC NAND chips | 
 | 		 * So here we send READID cmd to NAND insteand | 
 | 		 * */ | 
 | 		addr = (uint32_t)MODE_11 | BANK(denali->flash_bank); | 
 | 		index_addr(denali, (uint32_t)addr | 0, 0x90); | 
 | 		index_addr(denali, (uint32_t)addr | 1, 0); | 
 | 		for (i = 0; i < 5; i++) { | 
 | 			index_addr_read_data(denali, | 
 | 						(uint32_t)addr | 2, | 
 | 						&id); | 
 | 			write_byte_to_buf(denali, id); | 
 | 		} | 
 | 		break; | 
 | 	case NAND_CMD_READ0: | 
 | 	case NAND_CMD_SEQIN: | 
 | 		denali->page = page; | 
 | 		break; | 
 | 	case NAND_CMD_RESET: | 
 | 		reset_bank(denali); | 
 | 		break; | 
 | 	case NAND_CMD_READOOB: | 
 | 		/* TODO: Read OOB data */ | 
 | 		break; | 
 | 	default: | 
 | 		printk(KERN_ERR ": unsupported command" | 
 | 				" received 0x%x\n", cmd); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /* stubs for ECC functions not used by the NAND core */ | 
 | static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data, | 
 | 				uint8_t *ecc_code) | 
 | { | 
 | 	printk(KERN_ERR "denali_ecc_calculate called unexpectedly\n"); | 
 | 	BUG(); | 
 | 	return -EIO; | 
 | } | 
 |  | 
 | static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data, | 
 | 				uint8_t *read_ecc, uint8_t *calc_ecc) | 
 | { | 
 | 	printk(KERN_ERR "denali_ecc_correct called unexpectedly\n"); | 
 | 	BUG(); | 
 | 	return -EIO; | 
 | } | 
 |  | 
 | static void denali_ecc_hwctl(struct mtd_info *mtd, int mode) | 
 | { | 
 | 	printk(KERN_ERR "denali_ecc_hwctl called unexpectedly\n"); | 
 | 	BUG(); | 
 | } | 
 | /* end NAND core entry points */ | 
 |  | 
 | /* Initialization code to bring the device up to a known good state */ | 
 | static void denali_hw_init(struct denali_nand_info *denali) | 
 | { | 
 | 	/* tell driver how many bit controller will skip before | 
 | 	 * writing ECC code in OOB, this register may be already | 
 | 	 * set by firmware. So we read this value out. | 
 | 	 * if this value is 0, just let it be. | 
 | 	 * */ | 
 | 	denali->bbtskipbytes = ioread32(denali->flash_reg + | 
 | 						SPARE_AREA_SKIP_BYTES); | 
 | 	denali_irq_init(denali); | 
 | 	denali_nand_reset(denali); | 
 | 	denali_write32(0x0F, denali->flash_reg + RB_PIN_ENABLED); | 
 | 	denali_write32(CHIP_EN_DONT_CARE__FLAG, | 
 | 			denali->flash_reg + CHIP_ENABLE_DONT_CARE); | 
 |  | 
 | 	denali_write32(0x0, denali->flash_reg + SPARE_AREA_SKIP_BYTES); | 
 | 	denali_write32(0xffff, denali->flash_reg + SPARE_AREA_MARKER); | 
 |  | 
 | 	/* Should set value for these registers when init */ | 
 | 	denali_write32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES); | 
 | 	denali_write32(1, denali->flash_reg + ECC_ENABLE); | 
 | } | 
 |  | 
 | /* Althogh controller spec said SLC ECC is forceb to be 4bit, | 
 |  * but denali controller in MRST only support 15bit and 8bit ECC | 
 |  * correction | 
 |  * */ | 
 | #define ECC_8BITS	14 | 
 | static struct nand_ecclayout nand_8bit_oob = { | 
 | 	.eccbytes = 14, | 
 | }; | 
 |  | 
 | #define ECC_15BITS	26 | 
 | static struct nand_ecclayout nand_15bit_oob = { | 
 | 	.eccbytes = 26, | 
 | }; | 
 |  | 
 | static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' }; | 
 | static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' }; | 
 |  | 
 | static struct nand_bbt_descr bbt_main_descr = { | 
 | 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 
 | 		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, | 
 | 	.offs =	8, | 
 | 	.len = 4, | 
 | 	.veroffs = 12, | 
 | 	.maxblocks = 4, | 
 | 	.pattern = bbt_pattern, | 
 | }; | 
 |  | 
 | static struct nand_bbt_descr bbt_mirror_descr = { | 
 | 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 
 | 		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, | 
 | 	.offs =	8, | 
 | 	.len = 4, | 
 | 	.veroffs = 12, | 
 | 	.maxblocks = 4, | 
 | 	.pattern = mirror_pattern, | 
 | }; | 
 |  | 
 | /* initialize driver data structures */ | 
 | void denali_drv_init(struct denali_nand_info *denali) | 
 | { | 
 | 	denali->idx = 0; | 
 |  | 
 | 	/* setup interrupt handler */ | 
 | 	/* the completion object will be used to notify | 
 | 	 * the callee that the interrupt is done */ | 
 | 	init_completion(&denali->complete); | 
 |  | 
 | 	/* the spinlock will be used to synchronize the ISR | 
 | 	 * with any element that might be access shared | 
 | 	 * data (interrupt status) */ | 
 | 	spin_lock_init(&denali->irq_lock); | 
 |  | 
 | 	/* indicate that MTD has not selected a valid bank yet */ | 
 | 	denali->flash_bank = CHIP_SELECT_INVALID; | 
 |  | 
 | 	/* initialize our irq_status variable to indicate no interrupts */ | 
 | 	denali->irq_status = 0; | 
 | } | 
 |  | 
 | /* driver entry point */ | 
 | static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) | 
 | { | 
 | 	int ret = -ENODEV; | 
 | 	resource_size_t csr_base, mem_base; | 
 | 	unsigned long csr_len, mem_len; | 
 | 	struct denali_nand_info *denali; | 
 |  | 
 | 	nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n", | 
 | 		       __FILE__, __LINE__, __func__); | 
 |  | 
 | 	denali = kzalloc(sizeof(*denali), GFP_KERNEL); | 
 | 	if (!denali) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ret = pci_enable_device(dev); | 
 | 	if (ret) { | 
 | 		printk(KERN_ERR "Spectra: pci_enable_device failed.\n"); | 
 | 		goto failed_enable; | 
 | 	} | 
 |  | 
 | 	if (id->driver_data == INTEL_CE4100) { | 
 | 		/* Due to a silicon limitation, we can only support | 
 | 		 * ONFI timing mode 1 and below. | 
 | 		 */ | 
 | 		if (onfi_timing_mode < -1 || onfi_timing_mode > 1) { | 
 | 			printk(KERN_ERR "Intel CE4100 only supports" | 
 | 					" ONFI timing mode 1 or below\n"); | 
 | 			ret = -EINVAL; | 
 | 			goto failed_enable; | 
 | 		} | 
 | 		denali->platform = INTEL_CE4100; | 
 | 		mem_base = pci_resource_start(dev, 0); | 
 | 		mem_len = pci_resource_len(dev, 1); | 
 | 		csr_base = pci_resource_start(dev, 1); | 
 | 		csr_len = pci_resource_len(dev, 1); | 
 | 	} else { | 
 | 		denali->platform = INTEL_MRST; | 
 | 		csr_base = pci_resource_start(dev, 0); | 
 | 		csr_len = pci_resource_start(dev, 0); | 
 | 		mem_base = pci_resource_start(dev, 1); | 
 | 		mem_len = pci_resource_len(dev, 1); | 
 | 		if (!mem_len) { | 
 | 			mem_base = csr_base + csr_len; | 
 | 			mem_len = csr_len; | 
 | 			nand_dbg_print(NAND_DBG_WARN, | 
 | 				       "Spectra: No second" | 
 | 					   " BAR for PCI device;" | 
 | 					   " assuming %08Lx\n", | 
 | 				       (uint64_t)csr_base); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Is 32-bit DMA supported? */ | 
 | 	ret = pci_set_dma_mask(dev, DMA_BIT_MASK(32)); | 
 |  | 
 | 	if (ret) { | 
 | 		printk(KERN_ERR "Spectra: no usable DMA configuration\n"); | 
 | 		goto failed_enable; | 
 | 	} | 
 | 	denali->buf.dma_buf = | 
 | 		pci_map_single(dev, denali->buf.buf, | 
 | 						DENALI_BUF_SIZE, | 
 | 						PCI_DMA_BIDIRECTIONAL); | 
 |  | 
 | 	if (pci_dma_mapping_error(dev, denali->buf.dma_buf)) { | 
 | 		printk(KERN_ERR "Spectra: failed to map DMA buffer\n"); | 
 | 		goto failed_enable; | 
 | 	} | 
 |  | 
 | 	pci_set_master(dev); | 
 | 	denali->dev = dev; | 
 |  | 
 | 	ret = pci_request_regions(dev, DENALI_NAND_NAME); | 
 | 	if (ret) { | 
 | 		printk(KERN_ERR "Spectra: Unable to request memory regions\n"); | 
 | 		goto failed_req_csr; | 
 | 	} | 
 |  | 
 | 	denali->flash_reg = ioremap_nocache(csr_base, csr_len); | 
 | 	if (!denali->flash_reg) { | 
 | 		printk(KERN_ERR "Spectra: Unable to remap memory region\n"); | 
 | 		ret = -ENOMEM; | 
 | 		goto failed_remap_csr; | 
 | 	} | 
 | 	nand_dbg_print(NAND_DBG_DEBUG, "Spectra: CSR 0x%08Lx -> 0x%p (0x%lx)\n", | 
 | 		       (uint64_t)csr_base, denali->flash_reg, csr_len); | 
 |  | 
 | 	denali->flash_mem = ioremap_nocache(mem_base, mem_len); | 
 | 	if (!denali->flash_mem) { | 
 | 		printk(KERN_ERR "Spectra: ioremap_nocache failed!"); | 
 | 		iounmap(denali->flash_reg); | 
 | 		ret = -ENOMEM; | 
 | 		goto failed_remap_csr; | 
 | 	} | 
 |  | 
 | 	nand_dbg_print(NAND_DBG_WARN, | 
 | 		"Spectra: Remapped flash base address: " | 
 | 		"0x%p, len: %ld\n", | 
 | 		denali->flash_mem, csr_len); | 
 |  | 
 | 	denali_hw_init(denali); | 
 | 	denali_drv_init(denali); | 
 |  | 
 | 	nand_dbg_print(NAND_DBG_DEBUG, "Spectra: IRQ %d\n", dev->irq); | 
 | 	if (request_irq(dev->irq, denali_isr, IRQF_SHARED, | 
 | 			DENALI_NAND_NAME, denali)) { | 
 | 		printk(KERN_ERR "Spectra: Unable to allocate IRQ\n"); | 
 | 		ret = -ENODEV; | 
 | 		goto failed_request_irq; | 
 | 	} | 
 |  | 
 | 	/* now that our ISR is registered, we can enable interrupts */ | 
 | 	denali_set_intr_modes(denali, true); | 
 |  | 
 | 	pci_set_drvdata(dev, denali); | 
 |  | 
 | 	denali_nand_timing_set(denali); | 
 |  | 
 | 	nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:" | 
 | 			"acc_clks: %d, re_2_we: %d, we_2_re: %d," | 
 | 			"addr_2_data: %d, rdwr_en_lo_cnt: %d, " | 
 | 			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n", | 
 | 			ioread32(denali->flash_reg + ACC_CLKS), | 
 | 			ioread32(denali->flash_reg + RE_2_WE), | 
 | 			ioread32(denali->flash_reg + WE_2_RE), | 
 | 			ioread32(denali->flash_reg + ADDR_2_DATA), | 
 | 			ioread32(denali->flash_reg + RDWR_EN_LO_CNT), | 
 | 			ioread32(denali->flash_reg + RDWR_EN_HI_CNT), | 
 | 			ioread32(denali->flash_reg + CS_SETUP_CNT)); | 
 |  | 
 | 	denali->mtd.name = "Denali NAND"; | 
 | 	denali->mtd.owner = THIS_MODULE; | 
 | 	denali->mtd.priv = &denali->nand; | 
 |  | 
 | 	/* register the driver with the NAND core subsystem */ | 
 | 	denali->nand.select_chip = denali_select_chip; | 
 | 	denali->nand.cmdfunc = denali_cmdfunc; | 
 | 	denali->nand.read_byte = denali_read_byte; | 
 | 	denali->nand.waitfunc = denali_waitfunc; | 
 |  | 
 | 	/* scan for NAND devices attached to the controller | 
 | 	 * this is the first stage in a two step process to register | 
 | 	 * with the nand subsystem */ | 
 | 	if (nand_scan_ident(&denali->mtd, LLD_MAX_FLASH_BANKS, NULL)) { | 
 | 		ret = -ENXIO; | 
 | 		goto failed_nand; | 
 | 	} | 
 |  | 
 | 	/* MTD supported page sizes vary by kernel. We validate our | 
 | 	 * kernel supports the device here. | 
 | 	 */ | 
 | 	if (denali->mtd.writesize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) { | 
 | 		ret = -ENODEV; | 
 | 		printk(KERN_ERR "Spectra: device size not supported by this " | 
 | 			"version of MTD."); | 
 | 		goto failed_nand; | 
 | 	} | 
 |  | 
 | 	/* support for multi nand | 
 | 	 * MTD known nothing about multi nand, | 
 | 	 * so we should tell it the real pagesize | 
 | 	 * and anything necessery | 
 | 	 */ | 
 | 	denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED); | 
 | 	denali->nand.chipsize <<= (denali->devnum - 1); | 
 | 	denali->nand.page_shift += (denali->devnum - 1); | 
 | 	denali->nand.pagemask = (denali->nand.chipsize >> | 
 | 						denali->nand.page_shift) - 1; | 
 | 	denali->nand.bbt_erase_shift += (denali->devnum - 1); | 
 | 	denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift; | 
 | 	denali->nand.chip_shift += (denali->devnum - 1); | 
 | 	denali->mtd.writesize <<= (denali->devnum - 1); | 
 | 	denali->mtd.oobsize <<= (denali->devnum - 1); | 
 | 	denali->mtd.erasesize <<= (denali->devnum - 1); | 
 | 	denali->mtd.size = denali->nand.numchips * denali->nand.chipsize; | 
 | 	denali->bbtskipbytes *= denali->devnum; | 
 |  | 
 | 	/* second stage of the NAND scan | 
 | 	 * this stage requires information regarding ECC and | 
 | 	 * bad block management. */ | 
 |  | 
 | 	/* Bad block management */ | 
 | 	denali->nand.bbt_td = &bbt_main_descr; | 
 | 	denali->nand.bbt_md = &bbt_mirror_descr; | 
 |  | 
 | 	/* skip the scan for now until we have OOB read and write support */ | 
 | 	denali->nand.options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN; | 
 | 	denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME; | 
 |  | 
 | 	/* Denali Controller only support 15bit and 8bit ECC in MRST, | 
 | 	 * so just let controller do 15bit ECC for MLC and 8bit ECC for | 
 | 	 * SLC if possible. | 
 | 	 * */ | 
 | 	if (denali->nand.cellinfo & 0xc && | 
 | 			(denali->mtd.oobsize > (denali->bbtskipbytes + | 
 | 			ECC_15BITS * (denali->mtd.writesize / | 
 | 			ECC_SECTOR_SIZE)))) { | 
 | 		/* if MLC OOB size is large enough, use 15bit ECC*/ | 
 | 		denali->nand.ecc.layout = &nand_15bit_oob; | 
 | 		denali->nand.ecc.bytes = ECC_15BITS; | 
 | 		denali_write32(15, denali->flash_reg + ECC_CORRECTION); | 
 | 	} else if (denali->mtd.oobsize < (denali->bbtskipbytes + | 
 | 			ECC_8BITS * (denali->mtd.writesize / | 
 | 			ECC_SECTOR_SIZE))) { | 
 | 		printk(KERN_ERR "Your NAND chip OOB is not large enough to" | 
 | 				" contain 8bit ECC correction codes"); | 
 | 		goto failed_nand; | 
 | 	} else { | 
 | 		denali->nand.ecc.layout = &nand_8bit_oob; | 
 | 		denali->nand.ecc.bytes = ECC_8BITS; | 
 | 		denali_write32(8, denali->flash_reg + ECC_CORRECTION); | 
 | 	} | 
 |  | 
 | 	denali->nand.ecc.bytes *= denali->devnum; | 
 | 	denali->nand.ecc.layout->eccbytes *= | 
 | 		denali->mtd.writesize / ECC_SECTOR_SIZE; | 
 | 	denali->nand.ecc.layout->oobfree[0].offset = | 
 | 		denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes; | 
 | 	denali->nand.ecc.layout->oobfree[0].length = | 
 | 		denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes - | 
 | 		denali->bbtskipbytes; | 
 |  | 
 | 	/* Let driver know the total blocks number and | 
 | 	 * how many blocks contained by each nand chip. | 
 | 	 * blksperchip will help driver to know how many | 
 | 	 * blocks is taken by FW. | 
 | 	 * */ | 
 | 	denali->totalblks = denali->mtd.size >> | 
 | 				denali->nand.phys_erase_shift; | 
 | 	denali->blksperchip = denali->totalblks / denali->nand.numchips; | 
 |  | 
 | 	/* These functions are required by the NAND core framework, otherwise, | 
 | 	 * the NAND core will assert. However, we don't need them, so we'll stub | 
 | 	 * them out. */ | 
 | 	denali->nand.ecc.calculate = denali_ecc_calculate; | 
 | 	denali->nand.ecc.correct = denali_ecc_correct; | 
 | 	denali->nand.ecc.hwctl = denali_ecc_hwctl; | 
 |  | 
 | 	/* override the default read operations */ | 
 | 	denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum; | 
 | 	denali->nand.ecc.read_page = denali_read_page; | 
 | 	denali->nand.ecc.read_page_raw = denali_read_page_raw; | 
 | 	denali->nand.ecc.write_page = denali_write_page; | 
 | 	denali->nand.ecc.write_page_raw = denali_write_page_raw; | 
 | 	denali->nand.ecc.read_oob = denali_read_oob; | 
 | 	denali->nand.ecc.write_oob = denali_write_oob; | 
 | 	denali->nand.erase_cmd = denali_erase; | 
 |  | 
 | 	if (nand_scan_tail(&denali->mtd)) { | 
 | 		ret = -ENXIO; | 
 | 		goto failed_nand; | 
 | 	} | 
 |  | 
 | 	ret = add_mtd_device(&denali->mtd); | 
 | 	if (ret) { | 
 | 		printk(KERN_ERR "Spectra: Failed to register" | 
 | 				" MTD device: %d\n", ret); | 
 | 		goto failed_nand; | 
 | 	} | 
 | 	return 0; | 
 |  | 
 |  failed_nand: | 
 | 	denali_irq_cleanup(dev->irq, denali); | 
 |  failed_request_irq: | 
 | 	iounmap(denali->flash_reg); | 
 | 	iounmap(denali->flash_mem); | 
 |  failed_remap_csr: | 
 | 	pci_release_regions(dev); | 
 |  failed_req_csr: | 
 | 	pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE, | 
 | 							PCI_DMA_BIDIRECTIONAL); | 
 |  failed_enable: | 
 | 	kfree(denali); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* driver exit point */ | 
 | static void denali_pci_remove(struct pci_dev *dev) | 
 | { | 
 | 	struct denali_nand_info *denali = pci_get_drvdata(dev); | 
 |  | 
 | 	nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n", | 
 | 		       __FILE__, __LINE__, __func__); | 
 |  | 
 | 	nand_release(&denali->mtd); | 
 | 	del_mtd_device(&denali->mtd); | 
 |  | 
 | 	denali_irq_cleanup(dev->irq, denali); | 
 |  | 
 | 	iounmap(denali->flash_reg); | 
 | 	iounmap(denali->flash_mem); | 
 | 	pci_release_regions(dev); | 
 | 	pci_disable_device(dev); | 
 | 	pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE, | 
 | 							PCI_DMA_BIDIRECTIONAL); | 
 | 	pci_set_drvdata(dev, NULL); | 
 | 	kfree(denali); | 
 | } | 
 |  | 
 | MODULE_DEVICE_TABLE(pci, denali_pci_ids); | 
 |  | 
 | static struct pci_driver denali_pci_driver = { | 
 | 	.name = DENALI_NAND_NAME, | 
 | 	.id_table = denali_pci_ids, | 
 | 	.probe = denali_pci_probe, | 
 | 	.remove = denali_pci_remove, | 
 | }; | 
 |  | 
 | static int __devinit denali_init(void) | 
 | { | 
 | 	printk(KERN_INFO "Spectra MTD driver built on %s @ %s\n", | 
 | 			__DATE__, __TIME__); | 
 | 	return pci_register_driver(&denali_pci_driver); | 
 | } | 
 |  | 
 | /* Free memory */ | 
 | static void __devexit denali_exit(void) | 
 | { | 
 | 	pci_unregister_driver(&denali_pci_driver); | 
 | } | 
 |  | 
 | module_init(denali_init); | 
 | module_exit(denali_exit); |