|  | /* | 
|  | * Copyright (c) 2008 Atheros Communications Inc. | 
|  | * | 
|  | * Permission to use, copy, modify, and/or distribute this software for any | 
|  | * purpose with or without fee is hereby granted, provided that the above | 
|  | * copyright notice and this permission notice appear in all copies. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | 
|  | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | 
|  | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | 
|  | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | 
|  | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | 
|  | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | 
|  | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | 
|  | */ | 
|  |  | 
|  | #include "core.h" | 
|  | #include "hw.h" | 
|  | #include "reg.h" | 
|  | #include "phy.h" | 
|  |  | 
|  | static void ath9k_hw_analog_shift_rmw(struct ath_hal *ah, | 
|  | u32 reg, u32 mask, | 
|  | u32 shift, u32 val) | 
|  | { | 
|  | u32 regVal; | 
|  |  | 
|  | regVal = REG_READ(ah, reg) & ~mask; | 
|  | regVal |= (val << shift) & mask; | 
|  |  | 
|  | REG_WRITE(ah, reg, regVal); | 
|  |  | 
|  | if (ah->ah_config.analog_shiftreg) | 
|  | udelay(100); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | static inline u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz) | 
|  | { | 
|  |  | 
|  | if (fbin == AR5416_BCHAN_UNUSED) | 
|  | return fbin; | 
|  |  | 
|  | return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin)); | 
|  | } | 
|  |  | 
|  | static inline int16_t ath9k_hw_interpolate(u16 target, | 
|  | u16 srcLeft, u16 srcRight, | 
|  | int16_t targetLeft, | 
|  | int16_t targetRight) | 
|  | { | 
|  | int16_t rv; | 
|  |  | 
|  | if (srcRight == srcLeft) { | 
|  | rv = targetLeft; | 
|  | } else { | 
|  | rv = (int16_t) (((target - srcLeft) * targetRight + | 
|  | (srcRight - target) * targetLeft) / | 
|  | (srcRight - srcLeft)); | 
|  | } | 
|  | return rv; | 
|  | } | 
|  |  | 
|  | static inline bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, | 
|  | u16 listSize, u16 *indexL, | 
|  | u16 *indexR) | 
|  | { | 
|  | u16 i; | 
|  |  | 
|  | if (target <= pList[0]) { | 
|  | *indexL = *indexR = 0; | 
|  | return true; | 
|  | } | 
|  | if (target >= pList[listSize - 1]) { | 
|  | *indexL = *indexR = (u16) (listSize - 1); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < listSize - 1; i++) { | 
|  | if (pList[i] == target) { | 
|  | *indexL = *indexR = i; | 
|  | return true; | 
|  | } | 
|  | if (target < pList[i + 1]) { | 
|  | *indexL = i; | 
|  | *indexR = (u16) (i + 1); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline bool ath9k_hw_nvram_read(struct ath_hal *ah, u32 off, u16 *data) | 
|  | { | 
|  | struct ath_softc *sc = ah->ah_sc; | 
|  |  | 
|  | return sc->bus_ops->eeprom_read(ah, off, data); | 
|  | } | 
|  |  | 
|  | static bool ath9k_hw_fill_4k_eeprom(struct ath_hal *ah) | 
|  | { | 
|  | #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16)) | 
|  | struct ath_hal_5416 *ahp = AH5416(ah); | 
|  | struct ar5416_eeprom_4k *eep = &ahp->ah_eeprom.map4k; | 
|  | u16 *eep_data; | 
|  | int addr, eep_start_loc = 0; | 
|  |  | 
|  | eep_start_loc = 64; | 
|  |  | 
|  | if (!ath9k_hw_use_flash(ah)) { | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, | 
|  | "Reading from EEPROM, not flash\n"); | 
|  | } | 
|  |  | 
|  | eep_data = (u16 *)eep; | 
|  |  | 
|  | for (addr = 0; addr < SIZE_EEPROM_4K; addr++) { | 
|  | if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data)) { | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, | 
|  | "Unable to read eeprom region \n"); | 
|  | return false; | 
|  | } | 
|  | eep_data++; | 
|  | } | 
|  | return true; | 
|  | #undef SIZE_EEPROM_4K | 
|  | } | 
|  |  | 
|  | static bool ath9k_hw_fill_def_eeprom(struct ath_hal *ah) | 
|  | { | 
|  | #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16)) | 
|  | struct ath_hal_5416 *ahp = AH5416(ah); | 
|  | struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def; | 
|  | u16 *eep_data; | 
|  | int addr, ar5416_eep_start_loc = 0x100; | 
|  |  | 
|  | eep_data = (u16 *)eep; | 
|  |  | 
|  | for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) { | 
|  | if (!ath9k_hw_nvram_read(ah, addr + ar5416_eep_start_loc, | 
|  | eep_data)) { | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, | 
|  | "Unable to read eeprom region\n"); | 
|  | return false; | 
|  | } | 
|  | eep_data++; | 
|  | } | 
|  | return true; | 
|  | #undef SIZE_EEPROM_DEF | 
|  | } | 
|  |  | 
|  | static bool (*ath9k_fill_eeprom[]) (struct ath_hal *) = { | 
|  | ath9k_hw_fill_def_eeprom, | 
|  | ath9k_hw_fill_4k_eeprom | 
|  | }; | 
|  |  | 
|  | static inline bool ath9k_hw_fill_eeprom(struct ath_hal *ah) | 
|  | { | 
|  | struct ath_hal_5416 *ahp = AH5416(ah); | 
|  |  | 
|  | return ath9k_fill_eeprom[ahp->ah_eep_map](ah); | 
|  | } | 
|  |  | 
|  | static int ath9k_hw_check_def_eeprom(struct ath_hal *ah) | 
|  | { | 
|  | struct ath_hal_5416 *ahp = AH5416(ah); | 
|  | struct ar5416_eeprom_def *eep = | 
|  | (struct ar5416_eeprom_def *) &ahp->ah_eeprom.def; | 
|  | u16 *eepdata, temp, magic, magic2; | 
|  | u32 sum = 0, el; | 
|  | bool need_swap = false; | 
|  | int i, addr, size; | 
|  |  | 
|  | if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, | 
|  | &magic)) { | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, | 
|  | "Reading Magic # failed\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!ath9k_hw_use_flash(ah)) { | 
|  |  | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, | 
|  | "Read Magic = 0x%04X\n", magic); | 
|  |  | 
|  | if (magic != AR5416_EEPROM_MAGIC) { | 
|  | magic2 = swab16(magic); | 
|  |  | 
|  | if (magic2 == AR5416_EEPROM_MAGIC) { | 
|  | size = sizeof(struct ar5416_eeprom_def); | 
|  | need_swap = true; | 
|  | eepdata = (u16 *) (&ahp->ah_eeprom); | 
|  |  | 
|  | for (addr = 0; addr < size / sizeof(u16); addr++) { | 
|  | temp = swab16(*eepdata); | 
|  | *eepdata = temp; | 
|  | eepdata++; | 
|  |  | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, | 
|  | "0x%04X  ", *eepdata); | 
|  |  | 
|  | if (((addr + 1) % 6) == 0) | 
|  | DPRINTF(ah->ah_sc, | 
|  | ATH_DBG_EEPROM, "\n"); | 
|  | } | 
|  | } else { | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, | 
|  | "Invalid EEPROM Magic. " | 
|  | "endianness mismatch.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n", | 
|  | need_swap ? "True" : "False"); | 
|  |  | 
|  | if (need_swap) | 
|  | el = swab16(ahp->ah_eeprom.def.baseEepHeader.length); | 
|  | else | 
|  | el = ahp->ah_eeprom.def.baseEepHeader.length; | 
|  |  | 
|  | if (el > sizeof(struct ar5416_eeprom_def)) | 
|  | el = sizeof(struct ar5416_eeprom_def) / sizeof(u16); | 
|  | else | 
|  | el = el / sizeof(u16); | 
|  |  | 
|  | eepdata = (u16 *)(&ahp->ah_eeprom); | 
|  |  | 
|  | for (i = 0; i < el; i++) | 
|  | sum ^= *eepdata++; | 
|  |  | 
|  | if (need_swap) { | 
|  | u32 integer, j; | 
|  | u16 word; | 
|  |  | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, | 
|  | "EEPROM Endianness is not native.. Changing \n"); | 
|  |  | 
|  | word = swab16(eep->baseEepHeader.length); | 
|  | eep->baseEepHeader.length = word; | 
|  |  | 
|  | word = swab16(eep->baseEepHeader.checksum); | 
|  | eep->baseEepHeader.checksum = word; | 
|  |  | 
|  | word = swab16(eep->baseEepHeader.version); | 
|  | eep->baseEepHeader.version = word; | 
|  |  | 
|  | word = swab16(eep->baseEepHeader.regDmn[0]); | 
|  | eep->baseEepHeader.regDmn[0] = word; | 
|  |  | 
|  | word = swab16(eep->baseEepHeader.regDmn[1]); | 
|  | eep->baseEepHeader.regDmn[1] = word; | 
|  |  | 
|  | word = swab16(eep->baseEepHeader.rfSilent); | 
|  | eep->baseEepHeader.rfSilent = word; | 
|  |  | 
|  | word = swab16(eep->baseEepHeader.blueToothOptions); | 
|  | eep->baseEepHeader.blueToothOptions = word; | 
|  |  | 
|  | word = swab16(eep->baseEepHeader.deviceCap); | 
|  | eep->baseEepHeader.deviceCap = word; | 
|  |  | 
|  | for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) { | 
|  | struct modal_eep_header *pModal = | 
|  | &eep->modalHeader[j]; | 
|  | integer = swab32(pModal->antCtrlCommon); | 
|  | pModal->antCtrlCommon = integer; | 
|  |  | 
|  | for (i = 0; i < AR5416_MAX_CHAINS; i++) { | 
|  | integer = swab32(pModal->antCtrlChain[i]); | 
|  | pModal->antCtrlChain[i] = integer; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) { | 
|  | word = swab16(pModal->spurChans[i].spurChan); | 
|  | pModal->spurChans[i].spurChan = word; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (sum != 0xffff || ar5416_get_eep_ver(ahp) != AR5416_EEP_VER || | 
|  | ar5416_get_eep_rev(ahp) < AR5416_EEP_NO_BACK_VER) { | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, | 
|  | "Bad EEPROM checksum 0x%x or revision 0x%04x\n", | 
|  | sum, ar5416_get_eep_ver(ahp)); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ath9k_hw_check_4k_eeprom(struct ath_hal *ah) | 
|  | { | 
|  | #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16)) | 
|  | struct ath_hal_5416 *ahp = AH5416(ah); | 
|  | struct ar5416_eeprom_4k *eep = | 
|  | (struct ar5416_eeprom_4k *) &ahp->ah_eeprom.map4k; | 
|  | u16 *eepdata, temp, magic, magic2; | 
|  | u32 sum = 0, el; | 
|  | bool need_swap = false; | 
|  | int i, addr; | 
|  |  | 
|  |  | 
|  | if (!ath9k_hw_use_flash(ah)) { | 
|  |  | 
|  | if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, | 
|  | &magic)) { | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, | 
|  | "Reading Magic # failed\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, | 
|  | "Read Magic = 0x%04X\n", magic); | 
|  |  | 
|  | if (magic != AR5416_EEPROM_MAGIC) { | 
|  | magic2 = swab16(magic); | 
|  |  | 
|  | if (magic2 == AR5416_EEPROM_MAGIC) { | 
|  | need_swap = true; | 
|  | eepdata = (u16 *) (&ahp->ah_eeprom); | 
|  |  | 
|  | for (addr = 0; addr < EEPROM_4K_SIZE; addr++) { | 
|  | temp = swab16(*eepdata); | 
|  | *eepdata = temp; | 
|  | eepdata++; | 
|  |  | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, | 
|  | "0x%04X  ", *eepdata); | 
|  |  | 
|  | if (((addr + 1) % 6) == 0) | 
|  | DPRINTF(ah->ah_sc, | 
|  | ATH_DBG_EEPROM, "\n"); | 
|  | } | 
|  | } else { | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, | 
|  | "Invalid EEPROM Magic. " | 
|  | "endianness mismatch.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n", | 
|  | need_swap ? "True" : "False"); | 
|  |  | 
|  | if (need_swap) | 
|  | el = swab16(ahp->ah_eeprom.map4k.baseEepHeader.length); | 
|  | else | 
|  | el = ahp->ah_eeprom.map4k.baseEepHeader.length; | 
|  |  | 
|  | if (el > sizeof(struct ar5416_eeprom_def)) | 
|  | el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16); | 
|  | else | 
|  | el = el / sizeof(u16); | 
|  |  | 
|  | eepdata = (u16 *)(&ahp->ah_eeprom); | 
|  |  | 
|  | for (i = 0; i < el; i++) | 
|  | sum ^= *eepdata++; | 
|  |  | 
|  | if (need_swap) { | 
|  | u32 integer; | 
|  | u16 word; | 
|  |  | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, | 
|  | "EEPROM Endianness is not native.. Changing \n"); | 
|  |  | 
|  | word = swab16(eep->baseEepHeader.length); | 
|  | eep->baseEepHeader.length = word; | 
|  |  | 
|  | word = swab16(eep->baseEepHeader.checksum); | 
|  | eep->baseEepHeader.checksum = word; | 
|  |  | 
|  | word = swab16(eep->baseEepHeader.version); | 
|  | eep->baseEepHeader.version = word; | 
|  |  | 
|  | word = swab16(eep->baseEepHeader.regDmn[0]); | 
|  | eep->baseEepHeader.regDmn[0] = word; | 
|  |  | 
|  | word = swab16(eep->baseEepHeader.regDmn[1]); | 
|  | eep->baseEepHeader.regDmn[1] = word; | 
|  |  | 
|  | word = swab16(eep->baseEepHeader.rfSilent); | 
|  | eep->baseEepHeader.rfSilent = word; | 
|  |  | 
|  | word = swab16(eep->baseEepHeader.blueToothOptions); | 
|  | eep->baseEepHeader.blueToothOptions = word; | 
|  |  | 
|  | word = swab16(eep->baseEepHeader.deviceCap); | 
|  | eep->baseEepHeader.deviceCap = word; | 
|  |  | 
|  | integer = swab32(eep->modalHeader.antCtrlCommon); | 
|  | eep->modalHeader.antCtrlCommon = integer; | 
|  |  | 
|  | for (i = 0; i < AR5416_MAX_CHAINS; i++) { | 
|  | integer = swab32(eep->modalHeader.antCtrlChain[i]); | 
|  | eep->modalHeader.antCtrlChain[i] = integer; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) { | 
|  | word = swab16(eep->modalHeader.spurChans[i].spurChan); | 
|  | eep->modalHeader.spurChans[i].spurChan = word; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (sum != 0xffff || ar5416_get_eep4k_ver(ahp) != AR5416_EEP_VER || | 
|  | ar5416_get_eep4k_rev(ahp) < AR5416_EEP_NO_BACK_VER) { | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, | 
|  | "Bad EEPROM checksum 0x%x or revision 0x%04x\n", | 
|  | sum, ar5416_get_eep4k_ver(ahp)); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | #undef EEPROM_4K_SIZE | 
|  | } | 
|  |  | 
|  | static int (*ath9k_check_eeprom[]) (struct ath_hal *) = { | 
|  | ath9k_hw_check_def_eeprom, | 
|  | ath9k_hw_check_4k_eeprom | 
|  | }; | 
|  |  | 
|  | static inline int ath9k_hw_check_eeprom(struct ath_hal *ah) | 
|  | { | 
|  | struct ath_hal_5416 *ahp = AH5416(ah); | 
|  |  | 
|  | return ath9k_check_eeprom[ahp->ah_eep_map](ah); | 
|  | } | 
|  |  | 
|  | static inline bool ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList, | 
|  | u8 *pVpdList, u16 numIntercepts, | 
|  | u8 *pRetVpdList) | 
|  | { | 
|  | u16 i, k; | 
|  | u8 currPwr = pwrMin; | 
|  | u16 idxL = 0, idxR = 0; | 
|  |  | 
|  | for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) { | 
|  | ath9k_hw_get_lower_upper_index(currPwr, pPwrList, | 
|  | numIntercepts, &(idxL), | 
|  | &(idxR)); | 
|  | if (idxR < 1) | 
|  | idxR = 1; | 
|  | if (idxL == numIntercepts - 1) | 
|  | idxL = (u16) (numIntercepts - 2); | 
|  | if (pPwrList[idxL] == pPwrList[idxR]) | 
|  | k = pVpdList[idxL]; | 
|  | else | 
|  | k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] + | 
|  | (pPwrList[idxR] - currPwr) * pVpdList[idxL]) / | 
|  | (pPwrList[idxR] - pPwrList[idxL])); | 
|  | pRetVpdList[i] = (u8) k; | 
|  | currPwr += 2; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void ath9k_hw_get_4k_gain_boundaries_pdadcs(struct ath_hal *ah, | 
|  | struct ath9k_channel *chan, | 
|  | struct cal_data_per_freq_4k *pRawDataSet, | 
|  | u8 *bChans, u16 availPiers, | 
|  | u16 tPdGainOverlap, int16_t *pMinCalPower, | 
|  | u16 *pPdGainBoundaries, u8 *pPDADCValues, | 
|  | u16 numXpdGains) | 
|  | { | 
|  | #define TMP_VAL_VPD_TABLE \ | 
|  | ((vpdTableI[i][sizeCurrVpdTable - 1] + (ss - maxIndex + 1) * vpdStep)); | 
|  | int i, j, k; | 
|  | int16_t ss; | 
|  | u16 idxL = 0, idxR = 0, numPiers; | 
|  | static u8 vpdTableL[AR5416_EEP4K_NUM_PD_GAINS] | 
|  | [AR5416_MAX_PWR_RANGE_IN_HALF_DB]; | 
|  | static u8 vpdTableR[AR5416_EEP4K_NUM_PD_GAINS] | 
|  | [AR5416_MAX_PWR_RANGE_IN_HALF_DB]; | 
|  | static u8 vpdTableI[AR5416_EEP4K_NUM_PD_GAINS] | 
|  | [AR5416_MAX_PWR_RANGE_IN_HALF_DB]; | 
|  |  | 
|  | u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR; | 
|  | u8 minPwrT4[AR5416_EEP4K_NUM_PD_GAINS]; | 
|  | u8 maxPwrT4[AR5416_EEP4K_NUM_PD_GAINS]; | 
|  | int16_t vpdStep; | 
|  | int16_t tmpVal; | 
|  | u16 sizeCurrVpdTable, maxIndex, tgtIndex; | 
|  | bool match; | 
|  | int16_t minDelta = 0; | 
|  | struct chan_centers centers; | 
|  | #define PD_GAIN_BOUNDARY_DEFAULT 58; | 
|  |  | 
|  | ath9k_hw_get_channel_centers(ah, chan, ¢ers); | 
|  |  | 
|  | for (numPiers = 0; numPiers < availPiers; numPiers++) { | 
|  | if (bChans[numPiers] == AR5416_BCHAN_UNUSED) | 
|  | break; | 
|  | } | 
|  |  | 
|  | match = ath9k_hw_get_lower_upper_index( | 
|  | (u8)FREQ2FBIN(centers.synth_center, | 
|  | IS_CHAN_2GHZ(chan)), bChans, numPiers, | 
|  | &idxL, &idxR); | 
|  |  | 
|  | if (match) { | 
|  | for (i = 0; i < numXpdGains; i++) { | 
|  | minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0]; | 
|  | maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4]; | 
|  | ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i], | 
|  | pRawDataSet[idxL].pwrPdg[i], | 
|  | pRawDataSet[idxL].vpdPdg[i], | 
|  | AR5416_EEP4K_PD_GAIN_ICEPTS, | 
|  | vpdTableI[i]); | 
|  | } | 
|  | } else { | 
|  | for (i = 0; i < numXpdGains; i++) { | 
|  | pVpdL = pRawDataSet[idxL].vpdPdg[i]; | 
|  | pPwrL = pRawDataSet[idxL].pwrPdg[i]; | 
|  | pVpdR = pRawDataSet[idxR].vpdPdg[i]; | 
|  | pPwrR = pRawDataSet[idxR].pwrPdg[i]; | 
|  |  | 
|  | minPwrT4[i] = max(pPwrL[0], pPwrR[0]); | 
|  |  | 
|  | maxPwrT4[i] = | 
|  | min(pPwrL[AR5416_EEP4K_PD_GAIN_ICEPTS - 1], | 
|  | pPwrR[AR5416_EEP4K_PD_GAIN_ICEPTS - 1]); | 
|  |  | 
|  |  | 
|  | ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i], | 
|  | pPwrL, pVpdL, | 
|  | AR5416_EEP4K_PD_GAIN_ICEPTS, | 
|  | vpdTableL[i]); | 
|  | ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i], | 
|  | pPwrR, pVpdR, | 
|  | AR5416_EEP4K_PD_GAIN_ICEPTS, | 
|  | vpdTableR[i]); | 
|  |  | 
|  | for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) { | 
|  | vpdTableI[i][j] = | 
|  | (u8)(ath9k_hw_interpolate((u16) | 
|  | FREQ2FBIN(centers. | 
|  | synth_center, | 
|  | IS_CHAN_2GHZ | 
|  | (chan)), | 
|  | bChans[idxL], bChans[idxR], | 
|  | vpdTableL[i][j], vpdTableR[i][j])); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | *pMinCalPower = (int16_t)(minPwrT4[0] / 2); | 
|  |  | 
|  | k = 0; | 
|  |  | 
|  | for (i = 0; i < numXpdGains; i++) { | 
|  | if (i == (numXpdGains - 1)) | 
|  | pPdGainBoundaries[i] = | 
|  | (u16)(maxPwrT4[i] / 2); | 
|  | else | 
|  | pPdGainBoundaries[i] = | 
|  | (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4); | 
|  |  | 
|  | pPdGainBoundaries[i] = | 
|  | min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]); | 
|  |  | 
|  | if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah)) { | 
|  | minDelta = pPdGainBoundaries[0] - 23; | 
|  | pPdGainBoundaries[0] = 23; | 
|  | } else { | 
|  | minDelta = 0; | 
|  | } | 
|  |  | 
|  | if (i == 0) { | 
|  | if (AR_SREV_9280_10_OR_LATER(ah)) | 
|  | ss = (int16_t)(0 - (minPwrT4[i] / 2)); | 
|  | else | 
|  | ss = 0; | 
|  | } else { | 
|  | ss = (int16_t)((pPdGainBoundaries[i - 1] - | 
|  | (minPwrT4[i] / 2)) - | 
|  | tPdGainOverlap + 1 + minDelta); | 
|  | } | 
|  | vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]); | 
|  | vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep); | 
|  |  | 
|  | while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { | 
|  | tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep); | 
|  | pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal); | 
|  | ss++; | 
|  | } | 
|  |  | 
|  | sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1); | 
|  | tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap - | 
|  | (minPwrT4[i] / 2)); | 
|  | maxIndex = (tgtIndex < sizeCurrVpdTable) ? | 
|  | tgtIndex : sizeCurrVpdTable; | 
|  |  | 
|  | while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) | 
|  | pPDADCValues[k++] = vpdTableI[i][ss++]; | 
|  |  | 
|  | vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - | 
|  | vpdTableI[i][sizeCurrVpdTable - 2]); | 
|  | vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep); | 
|  |  | 
|  | if (tgtIndex > maxIndex) { | 
|  | while ((ss <= tgtIndex) && | 
|  | (k < (AR5416_NUM_PDADC_VALUES - 1))) { | 
|  | tmpVal = (int16_t) TMP_VAL_VPD_TABLE; | 
|  | pPDADCValues[k++] = (u8)((tmpVal > 255) ? | 
|  | 255 : tmpVal); | 
|  | ss++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | while (i < AR5416_EEP4K_PD_GAINS_IN_MASK) { | 
|  | pPdGainBoundaries[i] = PD_GAIN_BOUNDARY_DEFAULT; | 
|  | i++; | 
|  | } | 
|  |  | 
|  | while (k < AR5416_NUM_PDADC_VALUES) { | 
|  | pPDADCValues[k] = pPDADCValues[k - 1]; | 
|  | k++; | 
|  | } | 
|  |  | 
|  | return; | 
|  | #undef TMP_VAL_VPD_TABLE | 
|  | } | 
|  |  | 
|  | static void ath9k_hw_get_def_gain_boundaries_pdadcs(struct ath_hal *ah, | 
|  | struct ath9k_channel *chan, | 
|  | struct cal_data_per_freq *pRawDataSet, | 
|  | u8 *bChans, u16 availPiers, | 
|  | u16 tPdGainOverlap, int16_t *pMinCalPower, | 
|  | u16 *pPdGainBoundaries, u8 *pPDADCValues, | 
|  | u16 numXpdGains) | 
|  | { | 
|  | int i, j, k; | 
|  | int16_t ss; | 
|  | u16 idxL = 0, idxR = 0, numPiers; | 
|  | static u8 vpdTableL[AR5416_NUM_PD_GAINS] | 
|  | [AR5416_MAX_PWR_RANGE_IN_HALF_DB]; | 
|  | static u8 vpdTableR[AR5416_NUM_PD_GAINS] | 
|  | [AR5416_MAX_PWR_RANGE_IN_HALF_DB]; | 
|  | static u8 vpdTableI[AR5416_NUM_PD_GAINS] | 
|  | [AR5416_MAX_PWR_RANGE_IN_HALF_DB]; | 
|  |  | 
|  | u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR; | 
|  | u8 minPwrT4[AR5416_NUM_PD_GAINS]; | 
|  | u8 maxPwrT4[AR5416_NUM_PD_GAINS]; | 
|  | int16_t vpdStep; | 
|  | int16_t tmpVal; | 
|  | u16 sizeCurrVpdTable, maxIndex, tgtIndex; | 
|  | bool match; | 
|  | int16_t minDelta = 0; | 
|  | struct chan_centers centers; | 
|  |  | 
|  | ath9k_hw_get_channel_centers(ah, chan, ¢ers); | 
|  |  | 
|  | for (numPiers = 0; numPiers < availPiers; numPiers++) { | 
|  | if (bChans[numPiers] == AR5416_BCHAN_UNUSED) | 
|  | break; | 
|  | } | 
|  |  | 
|  | match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center, | 
|  | IS_CHAN_2GHZ(chan)), | 
|  | bChans, numPiers, &idxL, &idxR); | 
|  |  | 
|  | if (match) { | 
|  | for (i = 0; i < numXpdGains; i++) { | 
|  | minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0]; | 
|  | maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4]; | 
|  | ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i], | 
|  | pRawDataSet[idxL].pwrPdg[i], | 
|  | pRawDataSet[idxL].vpdPdg[i], | 
|  | AR5416_PD_GAIN_ICEPTS, | 
|  | vpdTableI[i]); | 
|  | } | 
|  | } else { | 
|  | for (i = 0; i < numXpdGains; i++) { | 
|  | pVpdL = pRawDataSet[idxL].vpdPdg[i]; | 
|  | pPwrL = pRawDataSet[idxL].pwrPdg[i]; | 
|  | pVpdR = pRawDataSet[idxR].vpdPdg[i]; | 
|  | pPwrR = pRawDataSet[idxR].pwrPdg[i]; | 
|  |  | 
|  | minPwrT4[i] = max(pPwrL[0], pPwrR[0]); | 
|  |  | 
|  | maxPwrT4[i] = | 
|  | min(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], | 
|  | pPwrR[AR5416_PD_GAIN_ICEPTS - 1]); | 
|  |  | 
|  |  | 
|  | ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i], | 
|  | pPwrL, pVpdL, | 
|  | AR5416_PD_GAIN_ICEPTS, | 
|  | vpdTableL[i]); | 
|  | ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i], | 
|  | pPwrR, pVpdR, | 
|  | AR5416_PD_GAIN_ICEPTS, | 
|  | vpdTableR[i]); | 
|  |  | 
|  | for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) { | 
|  | vpdTableI[i][j] = | 
|  | (u8)(ath9k_hw_interpolate((u16) | 
|  | FREQ2FBIN(centers. | 
|  | synth_center, | 
|  | IS_CHAN_2GHZ | 
|  | (chan)), | 
|  | bChans[idxL], bChans[idxR], | 
|  | vpdTableL[i][j], vpdTableR[i][j])); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | *pMinCalPower = (int16_t)(minPwrT4[0] / 2); | 
|  |  | 
|  | k = 0; | 
|  |  | 
|  | for (i = 0; i < numXpdGains; i++) { | 
|  | if (i == (numXpdGains - 1)) | 
|  | pPdGainBoundaries[i] = | 
|  | (u16)(maxPwrT4[i] / 2); | 
|  | else | 
|  | pPdGainBoundaries[i] = | 
|  | (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4); | 
|  |  | 
|  | pPdGainBoundaries[i] = | 
|  | min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]); | 
|  |  | 
|  | if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah)) { | 
|  | minDelta = pPdGainBoundaries[0] - 23; | 
|  | pPdGainBoundaries[0] = 23; | 
|  | } else { | 
|  | minDelta = 0; | 
|  | } | 
|  |  | 
|  | if (i == 0) { | 
|  | if (AR_SREV_9280_10_OR_LATER(ah)) | 
|  | ss = (int16_t)(0 - (minPwrT4[i] / 2)); | 
|  | else | 
|  | ss = 0; | 
|  | } else { | 
|  | ss = (int16_t)((pPdGainBoundaries[i - 1] - | 
|  | (minPwrT4[i] / 2)) - | 
|  | tPdGainOverlap + 1 + minDelta); | 
|  | } | 
|  | vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]); | 
|  | vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep); | 
|  |  | 
|  | while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { | 
|  | tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep); | 
|  | pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal); | 
|  | ss++; | 
|  | } | 
|  |  | 
|  | sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1); | 
|  | tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap - | 
|  | (minPwrT4[i] / 2)); | 
|  | maxIndex = (tgtIndex < sizeCurrVpdTable) ? | 
|  | tgtIndex : sizeCurrVpdTable; | 
|  |  | 
|  | while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { | 
|  | pPDADCValues[k++] = vpdTableI[i][ss++]; | 
|  | } | 
|  |  | 
|  | vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - | 
|  | vpdTableI[i][sizeCurrVpdTable - 2]); | 
|  | vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep); | 
|  |  | 
|  | if (tgtIndex > maxIndex) { | 
|  | while ((ss <= tgtIndex) && | 
|  | (k < (AR5416_NUM_PDADC_VALUES - 1))) { | 
|  | tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] + | 
|  | (ss - maxIndex + 1) * vpdStep)); | 
|  | pPDADCValues[k++] = (u8)((tmpVal > 255) ? | 
|  | 255 : tmpVal); | 
|  | ss++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | while (i < AR5416_PD_GAINS_IN_MASK) { | 
|  | pPdGainBoundaries[i] = pPdGainBoundaries[i - 1]; | 
|  | i++; | 
|  | } | 
|  |  | 
|  | while (k < AR5416_NUM_PDADC_VALUES) { | 
|  | pPDADCValues[k] = pPDADCValues[k - 1]; | 
|  | k++; | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | static void ath9k_hw_get_legacy_target_powers(struct ath_hal *ah, | 
|  | struct ath9k_channel *chan, | 
|  | struct cal_target_power_leg *powInfo, | 
|  | u16 numChannels, | 
|  | struct cal_target_power_leg *pNewPower, | 
|  | u16 numRates, bool isExtTarget) | 
|  | { | 
|  | struct chan_centers centers; | 
|  | u16 clo, chi; | 
|  | int i; | 
|  | int matchIndex = -1, lowIndex = -1; | 
|  | u16 freq; | 
|  |  | 
|  | ath9k_hw_get_channel_centers(ah, chan, ¢ers); | 
|  | freq = (isExtTarget) ? centers.ext_center : centers.ctl_center; | 
|  |  | 
|  | if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, | 
|  | IS_CHAN_2GHZ(chan))) { | 
|  | matchIndex = 0; | 
|  | } else { | 
|  | for (i = 0; (i < numChannels) && | 
|  | (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) { | 
|  | if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel, | 
|  | IS_CHAN_2GHZ(chan))) { | 
|  | matchIndex = i; | 
|  | break; | 
|  | } else if ((freq < ath9k_hw_fbin2freq(powInfo[i].bChannel, | 
|  | IS_CHAN_2GHZ(chan))) && | 
|  | (freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel, | 
|  | IS_CHAN_2GHZ(chan)))) { | 
|  | lowIndex = i - 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if ((matchIndex == -1) && (lowIndex == -1)) | 
|  | matchIndex = i - 1; | 
|  | } | 
|  |  | 
|  | if (matchIndex != -1) { | 
|  | *pNewPower = powInfo[matchIndex]; | 
|  | } else { | 
|  | clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel, | 
|  | IS_CHAN_2GHZ(chan)); | 
|  | chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel, | 
|  | IS_CHAN_2GHZ(chan)); | 
|  |  | 
|  | for (i = 0; i < numRates; i++) { | 
|  | pNewPower->tPow2x[i] = | 
|  | (u8)ath9k_hw_interpolate(freq, clo, chi, | 
|  | powInfo[lowIndex].tPow2x[i], | 
|  | powInfo[lowIndex + 1].tPow2x[i]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ath9k_hw_get_target_powers(struct ath_hal *ah, | 
|  | struct ath9k_channel *chan, | 
|  | struct cal_target_power_ht *powInfo, | 
|  | u16 numChannels, | 
|  | struct cal_target_power_ht *pNewPower, | 
|  | u16 numRates, bool isHt40Target) | 
|  | { | 
|  | struct chan_centers centers; | 
|  | u16 clo, chi; | 
|  | int i; | 
|  | int matchIndex = -1, lowIndex = -1; | 
|  | u16 freq; | 
|  |  | 
|  | ath9k_hw_get_channel_centers(ah, chan, ¢ers); | 
|  | freq = isHt40Target ? centers.synth_center : centers.ctl_center; | 
|  |  | 
|  | if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) { | 
|  | matchIndex = 0; | 
|  | } else { | 
|  | for (i = 0; (i < numChannels) && | 
|  | (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) { | 
|  | if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel, | 
|  | IS_CHAN_2GHZ(chan))) { | 
|  | matchIndex = i; | 
|  | break; | 
|  | } else | 
|  | if ((freq < ath9k_hw_fbin2freq(powInfo[i].bChannel, | 
|  | IS_CHAN_2GHZ(chan))) && | 
|  | (freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel, | 
|  | IS_CHAN_2GHZ(chan)))) { | 
|  | lowIndex = i - 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if ((matchIndex == -1) && (lowIndex == -1)) | 
|  | matchIndex = i - 1; | 
|  | } | 
|  |  | 
|  | if (matchIndex != -1) { | 
|  | *pNewPower = powInfo[matchIndex]; | 
|  | } else { | 
|  | clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel, | 
|  | IS_CHAN_2GHZ(chan)); | 
|  | chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel, | 
|  | IS_CHAN_2GHZ(chan)); | 
|  |  | 
|  | for (i = 0; i < numRates; i++) { | 
|  | pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq, | 
|  | clo, chi, | 
|  | powInfo[lowIndex].tPow2x[i], | 
|  | powInfo[lowIndex + 1].tPow2x[i]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static u16 ath9k_hw_get_max_edge_power(u16 freq, | 
|  | struct cal_ctl_edges *pRdEdgesPower, | 
|  | bool is2GHz, int num_band_edges) | 
|  | { | 
|  | u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; (i < num_band_edges) && | 
|  | (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) { | 
|  | if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) { | 
|  | twiceMaxEdgePower = pRdEdgesPower[i].tPower; | 
|  | break; | 
|  | } else if ((i > 0) && | 
|  | (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, | 
|  | is2GHz))) { | 
|  | if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel, | 
|  | is2GHz) < freq && | 
|  | pRdEdgesPower[i - 1].flag) { | 
|  | twiceMaxEdgePower = | 
|  | pRdEdgesPower[i - 1].tPower; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return twiceMaxEdgePower; | 
|  | } | 
|  |  | 
|  | static bool ath9k_hw_set_def_power_cal_table(struct ath_hal *ah, | 
|  | struct ath9k_channel *chan, | 
|  | int16_t *pTxPowerIndexOffset) | 
|  | { | 
|  | struct ath_hal_5416 *ahp = AH5416(ah); | 
|  | struct ar5416_eeprom_def *pEepData = &ahp->ah_eeprom.def; | 
|  | struct cal_data_per_freq *pRawDataset; | 
|  | u8 *pCalBChans = NULL; | 
|  | u16 pdGainOverlap_t2; | 
|  | static u8 pdadcValues[AR5416_NUM_PDADC_VALUES]; | 
|  | u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK]; | 
|  | u16 numPiers, i, j; | 
|  | int16_t tMinCalPower; | 
|  | u16 numXpdGain, xpdMask; | 
|  | u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 }; | 
|  | u32 reg32, regOffset, regChainOffset; | 
|  | int16_t modalIdx; | 
|  |  | 
|  | modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0; | 
|  | xpdMask = pEepData->modalHeader[modalIdx].xpdGain; | 
|  |  | 
|  | if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= | 
|  | AR5416_EEP_MINOR_VER_2) { | 
|  | pdGainOverlap_t2 = | 
|  | pEepData->modalHeader[modalIdx].pdGainOverlap; | 
|  | } else { | 
|  | pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5), | 
|  | AR_PHY_TPCRG5_PD_GAIN_OVERLAP)); | 
|  | } | 
|  |  | 
|  | if (IS_CHAN_2GHZ(chan)) { | 
|  | pCalBChans = pEepData->calFreqPier2G; | 
|  | numPiers = AR5416_NUM_2G_CAL_PIERS; | 
|  | } else { | 
|  | pCalBChans = pEepData->calFreqPier5G; | 
|  | numPiers = AR5416_NUM_5G_CAL_PIERS; | 
|  | } | 
|  |  | 
|  | numXpdGain = 0; | 
|  |  | 
|  | for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) { | 
|  | if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) { | 
|  | if (numXpdGain >= AR5416_NUM_PD_GAINS) | 
|  | break; | 
|  | xpdGainValues[numXpdGain] = | 
|  | (u16)(AR5416_PD_GAINS_IN_MASK - i); | 
|  | numXpdGain++; | 
|  | } | 
|  | } | 
|  |  | 
|  | REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, | 
|  | (numXpdGain - 1) & 0x3); | 
|  | REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1, | 
|  | xpdGainValues[0]); | 
|  | REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2, | 
|  | xpdGainValues[1]); | 
|  | REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, | 
|  | xpdGainValues[2]); | 
|  |  | 
|  | for (i = 0; i < AR5416_MAX_CHAINS; i++) { | 
|  | if (AR_SREV_5416_V20_OR_LATER(ah) && | 
|  | (ahp->ah_rxchainmask == 5 || ahp->ah_txchainmask == 5) && | 
|  | (i != 0)) { | 
|  | regChainOffset = (i == 1) ? 0x2000 : 0x1000; | 
|  | } else | 
|  | regChainOffset = i * 0x1000; | 
|  |  | 
|  | if (pEepData->baseEepHeader.txMask & (1 << i)) { | 
|  | if (IS_CHAN_2GHZ(chan)) | 
|  | pRawDataset = pEepData->calPierData2G[i]; | 
|  | else | 
|  | pRawDataset = pEepData->calPierData5G[i]; | 
|  |  | 
|  | ath9k_hw_get_def_gain_boundaries_pdadcs(ah, chan, | 
|  | pRawDataset, pCalBChans, | 
|  | numPiers, pdGainOverlap_t2, | 
|  | &tMinCalPower, gainBoundaries, | 
|  | pdadcValues, numXpdGain); | 
|  |  | 
|  | if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) { | 
|  | REG_WRITE(ah, | 
|  | AR_PHY_TPCRG5 + regChainOffset, | 
|  | SM(pdGainOverlap_t2, | 
|  | AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | 
|  | | SM(gainBoundaries[0], | 
|  | AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) | 
|  | | SM(gainBoundaries[1], | 
|  | AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) | 
|  | | SM(gainBoundaries[2], | 
|  | AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) | 
|  | | SM(gainBoundaries[3], | 
|  | AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4)); | 
|  | } | 
|  |  | 
|  | regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset; | 
|  | for (j = 0; j < 32; j++) { | 
|  | reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) | | 
|  | ((pdadcValues[4 * j + 1] & 0xFF) << 8) | | 
|  | ((pdadcValues[4 * j + 2] & 0xFF) << 16)| | 
|  | ((pdadcValues[4 * j + 3] & 0xFF) << 24); | 
|  | REG_WRITE(ah, regOffset, reg32); | 
|  |  | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, | 
|  | "PDADC (%d,%4x): %4.4x %8.8x\n", | 
|  | i, regChainOffset, regOffset, | 
|  | reg32); | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, | 
|  | "PDADC: Chain %d | PDADC %3d " | 
|  | "Value %3d | PDADC %3d Value %3d | " | 
|  | "PDADC %3d Value %3d | PDADC %3d " | 
|  | "Value %3d |\n", | 
|  | i, 4 * j, pdadcValues[4 * j], | 
|  | 4 * j + 1, pdadcValues[4 * j + 1], | 
|  | 4 * j + 2, pdadcValues[4 * j + 2], | 
|  | 4 * j + 3, | 
|  | pdadcValues[4 * j + 3]); | 
|  |  | 
|  | regOffset += 4; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | *pTxPowerIndexOffset = 0; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool ath9k_hw_set_4k_power_cal_table(struct ath_hal *ah, | 
|  | struct ath9k_channel *chan, | 
|  | int16_t *pTxPowerIndexOffset) | 
|  | { | 
|  | struct ath_hal_5416 *ahp = AH5416(ah); | 
|  | struct ar5416_eeprom_4k *pEepData = &ahp->ah_eeprom.map4k; | 
|  | struct cal_data_per_freq_4k *pRawDataset; | 
|  | u8 *pCalBChans = NULL; | 
|  | u16 pdGainOverlap_t2; | 
|  | static u8 pdadcValues[AR5416_NUM_PDADC_VALUES]; | 
|  | u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK]; | 
|  | u16 numPiers, i, j; | 
|  | int16_t tMinCalPower; | 
|  | u16 numXpdGain, xpdMask; | 
|  | u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 }; | 
|  | u32 reg32, regOffset, regChainOffset; | 
|  |  | 
|  | xpdMask = pEepData->modalHeader.xpdGain; | 
|  |  | 
|  | if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= | 
|  | AR5416_EEP_MINOR_VER_2) { | 
|  | pdGainOverlap_t2 = | 
|  | pEepData->modalHeader.pdGainOverlap; | 
|  | } else { | 
|  | pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5), | 
|  | AR_PHY_TPCRG5_PD_GAIN_OVERLAP)); | 
|  | } | 
|  |  | 
|  | pCalBChans = pEepData->calFreqPier2G; | 
|  | numPiers = AR5416_NUM_2G_CAL_PIERS; | 
|  |  | 
|  | numXpdGain = 0; | 
|  |  | 
|  | for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) { | 
|  | if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) { | 
|  | if (numXpdGain >= AR5416_NUM_PD_GAINS) | 
|  | break; | 
|  | xpdGainValues[numXpdGain] = | 
|  | (u16)(AR5416_PD_GAINS_IN_MASK - i); | 
|  | numXpdGain++; | 
|  | } | 
|  | } | 
|  |  | 
|  | REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, | 
|  | (numXpdGain - 1) & 0x3); | 
|  | REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1, | 
|  | xpdGainValues[0]); | 
|  | REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2, | 
|  | xpdGainValues[1]); | 
|  | REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, | 
|  | xpdGainValues[2]); | 
|  |  | 
|  | for (i = 0; i < AR5416_MAX_CHAINS; i++) { | 
|  | if (AR_SREV_5416_V20_OR_LATER(ah) && | 
|  | (ahp->ah_rxchainmask == 5 || ahp->ah_txchainmask == 5) && | 
|  | (i != 0)) { | 
|  | regChainOffset = (i == 1) ? 0x2000 : 0x1000; | 
|  | } else | 
|  | regChainOffset = i * 0x1000; | 
|  |  | 
|  | if (pEepData->baseEepHeader.txMask & (1 << i)) { | 
|  | pRawDataset = pEepData->calPierData2G[i]; | 
|  |  | 
|  | ath9k_hw_get_4k_gain_boundaries_pdadcs(ah, chan, | 
|  | pRawDataset, pCalBChans, | 
|  | numPiers, pdGainOverlap_t2, | 
|  | &tMinCalPower, gainBoundaries, | 
|  | pdadcValues, numXpdGain); | 
|  |  | 
|  | if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) { | 
|  | REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset, | 
|  | SM(pdGainOverlap_t2, | 
|  | AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | 
|  | | SM(gainBoundaries[0], | 
|  | AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) | 
|  | | SM(gainBoundaries[1], | 
|  | AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) | 
|  | | SM(gainBoundaries[2], | 
|  | AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) | 
|  | | SM(gainBoundaries[3], | 
|  | AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4)); | 
|  | } | 
|  |  | 
|  | regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset; | 
|  | for (j = 0; j < 32; j++) { | 
|  | reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) | | 
|  | ((pdadcValues[4 * j + 1] & 0xFF) << 8) | | 
|  | ((pdadcValues[4 * j + 2] & 0xFF) << 16)| | 
|  | ((pdadcValues[4 * j + 3] & 0xFF) << 24); | 
|  | REG_WRITE(ah, regOffset, reg32); | 
|  |  | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, | 
|  | "PDADC (%d,%4x): %4.4x %8.8x\n", | 
|  | i, regChainOffset, regOffset, | 
|  | reg32); | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, | 
|  | "PDADC: Chain %d | " | 
|  | "PDADC %3d Value %3d | " | 
|  | "PDADC %3d Value %3d | " | 
|  | "PDADC %3d Value %3d | " | 
|  | "PDADC %3d Value %3d |\n", | 
|  | i, 4 * j, pdadcValues[4 * j], | 
|  | 4 * j + 1, pdadcValues[4 * j + 1], | 
|  | 4 * j + 2, pdadcValues[4 * j + 2], | 
|  | 4 * j + 3, | 
|  | pdadcValues[4 * j + 3]); | 
|  |  | 
|  | regOffset += 4; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | *pTxPowerIndexOffset = 0; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool ath9k_hw_set_def_power_per_rate_table(struct ath_hal *ah, | 
|  | struct ath9k_channel *chan, | 
|  | int16_t *ratesArray, | 
|  | u16 cfgCtl, | 
|  | u16 AntennaReduction, | 
|  | u16 twiceMaxRegulatoryPower, | 
|  | u16 powerLimit) | 
|  | { | 
|  | #define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6  /* 10*log10(2)*2 */ | 
|  | #define REDUCE_SCALED_POWER_BY_THREE_CHAIN   10 /* 10*log10(3)*2 */ | 
|  |  | 
|  | struct ath_hal_5416 *ahp = AH5416(ah); | 
|  | struct ar5416_eeprom_def *pEepData = &ahp->ah_eeprom.def; | 
|  | u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER; | 
|  | static const u16 tpScaleReductionTable[5] = | 
|  | { 0, 3, 6, 9, AR5416_MAX_RATE_POWER }; | 
|  |  | 
|  | int i; | 
|  | int16_t twiceLargestAntenna; | 
|  | struct cal_ctl_data *rep; | 
|  | struct cal_target_power_leg targetPowerOfdm, targetPowerCck = { | 
|  | 0, { 0, 0, 0, 0} | 
|  | }; | 
|  | struct cal_target_power_leg targetPowerOfdmExt = { | 
|  | 0, { 0, 0, 0, 0} }, targetPowerCckExt = { | 
|  | 0, { 0, 0, 0, 0 } | 
|  | }; | 
|  | struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = { | 
|  | 0, {0, 0, 0, 0} | 
|  | }; | 
|  | u16 scaledPower = 0, minCtlPower, maxRegAllowedPower; | 
|  | u16 ctlModesFor11a[] = | 
|  | { CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 }; | 
|  | u16 ctlModesFor11g[] = | 
|  | { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, | 
|  | CTL_2GHT40 | 
|  | }; | 
|  | u16 numCtlModes, *pCtlMode, ctlMode, freq; | 
|  | struct chan_centers centers; | 
|  | int tx_chainmask; | 
|  | u16 twiceMinEdgePower; | 
|  |  | 
|  | tx_chainmask = ahp->ah_txchainmask; | 
|  |  | 
|  | ath9k_hw_get_channel_centers(ah, chan, ¢ers); | 
|  |  | 
|  | twiceLargestAntenna = max( | 
|  | pEepData->modalHeader | 
|  | [IS_CHAN_2GHZ(chan)].antennaGainCh[0], | 
|  | pEepData->modalHeader | 
|  | [IS_CHAN_2GHZ(chan)].antennaGainCh[1]); | 
|  |  | 
|  | twiceLargestAntenna = max((u8)twiceLargestAntenna, | 
|  | pEepData->modalHeader | 
|  | [IS_CHAN_2GHZ(chan)].antennaGainCh[2]); | 
|  |  | 
|  | twiceLargestAntenna = (int16_t)min(AntennaReduction - | 
|  | twiceLargestAntenna, 0); | 
|  |  | 
|  | maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna; | 
|  |  | 
|  | if (ah->ah_tpScale != ATH9K_TP_SCALE_MAX) { | 
|  | maxRegAllowedPower -= | 
|  | (tpScaleReductionTable[(ah->ah_tpScale)] * 2); | 
|  | } | 
|  |  | 
|  | scaledPower = min(powerLimit, maxRegAllowedPower); | 
|  |  | 
|  | switch (ar5416_get_ntxchains(tx_chainmask)) { | 
|  | case 1: | 
|  | break; | 
|  | case 2: | 
|  | scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN; | 
|  | break; | 
|  | case 3: | 
|  | scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN; | 
|  | break; | 
|  | } | 
|  |  | 
|  | scaledPower = max((u16)0, scaledPower); | 
|  |  | 
|  | if (IS_CHAN_2GHZ(chan)) { | 
|  | numCtlModes = ARRAY_SIZE(ctlModesFor11g) - | 
|  | SUB_NUM_CTL_MODES_AT_2G_40; | 
|  | pCtlMode = ctlModesFor11g; | 
|  |  | 
|  | ath9k_hw_get_legacy_target_powers(ah, chan, | 
|  | pEepData->calTargetPowerCck, | 
|  | AR5416_NUM_2G_CCK_TARGET_POWERS, | 
|  | &targetPowerCck, 4, false); | 
|  | ath9k_hw_get_legacy_target_powers(ah, chan, | 
|  | pEepData->calTargetPower2G, | 
|  | AR5416_NUM_2G_20_TARGET_POWERS, | 
|  | &targetPowerOfdm, 4, false); | 
|  | ath9k_hw_get_target_powers(ah, chan, | 
|  | pEepData->calTargetPower2GHT20, | 
|  | AR5416_NUM_2G_20_TARGET_POWERS, | 
|  | &targetPowerHt20, 8, false); | 
|  |  | 
|  | if (IS_CHAN_HT40(chan)) { | 
|  | numCtlModes = ARRAY_SIZE(ctlModesFor11g); | 
|  | ath9k_hw_get_target_powers(ah, chan, | 
|  | pEepData->calTargetPower2GHT40, | 
|  | AR5416_NUM_2G_40_TARGET_POWERS, | 
|  | &targetPowerHt40, 8, true); | 
|  | ath9k_hw_get_legacy_target_powers(ah, chan, | 
|  | pEepData->calTargetPowerCck, | 
|  | AR5416_NUM_2G_CCK_TARGET_POWERS, | 
|  | &targetPowerCckExt, 4, true); | 
|  | ath9k_hw_get_legacy_target_powers(ah, chan, | 
|  | pEepData->calTargetPower2G, | 
|  | AR5416_NUM_2G_20_TARGET_POWERS, | 
|  | &targetPowerOfdmExt, 4, true); | 
|  | } | 
|  | } else { | 
|  | numCtlModes = ARRAY_SIZE(ctlModesFor11a) - | 
|  | SUB_NUM_CTL_MODES_AT_5G_40; | 
|  | pCtlMode = ctlModesFor11a; | 
|  |  | 
|  | ath9k_hw_get_legacy_target_powers(ah, chan, | 
|  | pEepData->calTargetPower5G, | 
|  | AR5416_NUM_5G_20_TARGET_POWERS, | 
|  | &targetPowerOfdm, 4, false); | 
|  | ath9k_hw_get_target_powers(ah, chan, | 
|  | pEepData->calTargetPower5GHT20, | 
|  | AR5416_NUM_5G_20_TARGET_POWERS, | 
|  | &targetPowerHt20, 8, false); | 
|  |  | 
|  | if (IS_CHAN_HT40(chan)) { | 
|  | numCtlModes = ARRAY_SIZE(ctlModesFor11a); | 
|  | ath9k_hw_get_target_powers(ah, chan, | 
|  | pEepData->calTargetPower5GHT40, | 
|  | AR5416_NUM_5G_40_TARGET_POWERS, | 
|  | &targetPowerHt40, 8, true); | 
|  | ath9k_hw_get_legacy_target_powers(ah, chan, | 
|  | pEepData->calTargetPower5G, | 
|  | AR5416_NUM_5G_20_TARGET_POWERS, | 
|  | &targetPowerOfdmExt, 4, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) { | 
|  | bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) || | 
|  | (pCtlMode[ctlMode] == CTL_2GHT40); | 
|  | if (isHt40CtlMode) | 
|  | freq = centers.synth_center; | 
|  | else if (pCtlMode[ctlMode] & EXT_ADDITIVE) | 
|  | freq = centers.ext_center; | 
|  | else | 
|  | freq = centers.ctl_center; | 
|  |  | 
|  | if (ar5416_get_eep_ver(ahp) == 14 && ar5416_get_eep_rev(ahp) <= 2) | 
|  | twiceMaxEdgePower = AR5416_MAX_RATE_POWER; | 
|  |  | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, | 
|  | "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, " | 
|  | "EXT_ADDITIVE %d\n", | 
|  | ctlMode, numCtlModes, isHt40CtlMode, | 
|  | (pCtlMode[ctlMode] & EXT_ADDITIVE)); | 
|  |  | 
|  | for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) { | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, | 
|  | "  LOOP-Ctlidx %d: cfgCtl 0x%2.2x " | 
|  | "pCtlMode 0x%2.2x ctlIndex 0x%2.2x " | 
|  | "chan %d\n", | 
|  | i, cfgCtl, pCtlMode[ctlMode], | 
|  | pEepData->ctlIndex[i], chan->channel); | 
|  |  | 
|  | if ((((cfgCtl & ~CTL_MODE_M) | | 
|  | (pCtlMode[ctlMode] & CTL_MODE_M)) == | 
|  | pEepData->ctlIndex[i]) || | 
|  | (((cfgCtl & ~CTL_MODE_M) | | 
|  | (pCtlMode[ctlMode] & CTL_MODE_M)) == | 
|  | ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) { | 
|  | rep = &(pEepData->ctlData[i]); | 
|  |  | 
|  | twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq, | 
|  | rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1], | 
|  | IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES); | 
|  |  | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, | 
|  | "    MATCH-EE_IDX %d: ch %d is2 %d " | 
|  | "2xMinEdge %d chainmask %d chains %d\n", | 
|  | i, freq, IS_CHAN_2GHZ(chan), | 
|  | twiceMinEdgePower, tx_chainmask, | 
|  | ar5416_get_ntxchains | 
|  | (tx_chainmask)); | 
|  | if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) { | 
|  | twiceMaxEdgePower = min(twiceMaxEdgePower, | 
|  | twiceMinEdgePower); | 
|  | } else { | 
|  | twiceMaxEdgePower = twiceMinEdgePower; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | minCtlPower = min(twiceMaxEdgePower, scaledPower); | 
|  |  | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, | 
|  | "    SEL-Min ctlMode %d pCtlMode %d " | 
|  | "2xMaxEdge %d sP %d minCtlPwr %d\n", | 
|  | ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower, | 
|  | scaledPower, minCtlPower); | 
|  |  | 
|  | switch (pCtlMode[ctlMode]) { | 
|  | case CTL_11B: | 
|  | for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) { | 
|  | targetPowerCck.tPow2x[i] = | 
|  | min((u16)targetPowerCck.tPow2x[i], | 
|  | minCtlPower); | 
|  | } | 
|  | break; | 
|  | case CTL_11A: | 
|  | case CTL_11G: | 
|  | for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) { | 
|  | targetPowerOfdm.tPow2x[i] = | 
|  | min((u16)targetPowerOfdm.tPow2x[i], | 
|  | minCtlPower); | 
|  | } | 
|  | break; | 
|  | case CTL_5GHT20: | 
|  | case CTL_2GHT20: | 
|  | for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) { | 
|  | targetPowerHt20.tPow2x[i] = | 
|  | min((u16)targetPowerHt20.tPow2x[i], | 
|  | minCtlPower); | 
|  | } | 
|  | break; | 
|  | case CTL_11B_EXT: | 
|  | targetPowerCckExt.tPow2x[0] = min((u16) | 
|  | targetPowerCckExt.tPow2x[0], | 
|  | minCtlPower); | 
|  | break; | 
|  | case CTL_11A_EXT: | 
|  | case CTL_11G_EXT: | 
|  | targetPowerOfdmExt.tPow2x[0] = min((u16) | 
|  | targetPowerOfdmExt.tPow2x[0], | 
|  | minCtlPower); | 
|  | break; | 
|  | case CTL_5GHT40: | 
|  | case CTL_2GHT40: | 
|  | for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) { | 
|  | targetPowerHt40.tPow2x[i] = | 
|  | min((u16)targetPowerHt40.tPow2x[i], | 
|  | minCtlPower); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] = | 
|  | ratesArray[rate18mb] = ratesArray[rate24mb] = | 
|  | targetPowerOfdm.tPow2x[0]; | 
|  | ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1]; | 
|  | ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2]; | 
|  | ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3]; | 
|  | ratesArray[rateXr] = targetPowerOfdm.tPow2x[0]; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) | 
|  | ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i]; | 
|  |  | 
|  | if (IS_CHAN_2GHZ(chan)) { | 
|  | ratesArray[rate1l] = targetPowerCck.tPow2x[0]; | 
|  | ratesArray[rate2s] = ratesArray[rate2l] = | 
|  | targetPowerCck.tPow2x[1]; | 
|  | ratesArray[rate5_5s] = ratesArray[rate5_5l] = | 
|  | targetPowerCck.tPow2x[2]; | 
|  | ; | 
|  | ratesArray[rate11s] = ratesArray[rate11l] = | 
|  | targetPowerCck.tPow2x[3]; | 
|  | ; | 
|  | } | 
|  | if (IS_CHAN_HT40(chan)) { | 
|  | for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) { | 
|  | ratesArray[rateHt40_0 + i] = | 
|  | targetPowerHt40.tPow2x[i]; | 
|  | } | 
|  | ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0]; | 
|  | ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0]; | 
|  | ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0]; | 
|  | if (IS_CHAN_2GHZ(chan)) { | 
|  | ratesArray[rateExtCck] = | 
|  | targetPowerCckExt.tPow2x[0]; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool ath9k_hw_set_4k_power_per_rate_table(struct ath_hal *ah, | 
|  | struct ath9k_channel *chan, | 
|  | int16_t *ratesArray, | 
|  | u16 cfgCtl, | 
|  | u16 AntennaReduction, | 
|  | u16 twiceMaxRegulatoryPower, | 
|  | u16 powerLimit) | 
|  | { | 
|  | struct ath_hal_5416 *ahp = AH5416(ah); | 
|  | struct ar5416_eeprom_4k *pEepData = &ahp->ah_eeprom.map4k; | 
|  | u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER; | 
|  | static const u16 tpScaleReductionTable[5] = | 
|  | { 0, 3, 6, 9, AR5416_MAX_RATE_POWER }; | 
|  |  | 
|  | int i; | 
|  | int16_t twiceLargestAntenna; | 
|  | struct cal_ctl_data_4k *rep; | 
|  | struct cal_target_power_leg targetPowerOfdm, targetPowerCck = { | 
|  | 0, { 0, 0, 0, 0} | 
|  | }; | 
|  | struct cal_target_power_leg targetPowerOfdmExt = { | 
|  | 0, { 0, 0, 0, 0} }, targetPowerCckExt = { | 
|  | 0, { 0, 0, 0, 0 } | 
|  | }; | 
|  | struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = { | 
|  | 0, {0, 0, 0, 0} | 
|  | }; | 
|  | u16 scaledPower = 0, minCtlPower, maxRegAllowedPower; | 
|  | u16 ctlModesFor11g[] = | 
|  | { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, | 
|  | CTL_2GHT40 | 
|  | }; | 
|  | u16 numCtlModes, *pCtlMode, ctlMode, freq; | 
|  | struct chan_centers centers; | 
|  | int tx_chainmask; | 
|  | u16 twiceMinEdgePower; | 
|  |  | 
|  | tx_chainmask = ahp->ah_txchainmask; | 
|  |  | 
|  | ath9k_hw_get_channel_centers(ah, chan, ¢ers); | 
|  |  | 
|  | twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0]; | 
|  |  | 
|  | twiceLargestAntenna = (int16_t)min(AntennaReduction - | 
|  | twiceLargestAntenna, 0); | 
|  |  | 
|  | maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna; | 
|  |  | 
|  | if (ah->ah_tpScale != ATH9K_TP_SCALE_MAX) { | 
|  | maxRegAllowedPower -= | 
|  | (tpScaleReductionTable[(ah->ah_tpScale)] * 2); | 
|  | } | 
|  |  | 
|  | scaledPower = min(powerLimit, maxRegAllowedPower); | 
|  | scaledPower = max((u16)0, scaledPower); | 
|  |  | 
|  | numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; | 
|  | pCtlMode = ctlModesFor11g; | 
|  |  | 
|  | ath9k_hw_get_legacy_target_powers(ah, chan, | 
|  | pEepData->calTargetPowerCck, | 
|  | AR5416_NUM_2G_CCK_TARGET_POWERS, | 
|  | &targetPowerCck, 4, false); | 
|  | ath9k_hw_get_legacy_target_powers(ah, chan, | 
|  | pEepData->calTargetPower2G, | 
|  | AR5416_NUM_2G_20_TARGET_POWERS, | 
|  | &targetPowerOfdm, 4, false); | 
|  | ath9k_hw_get_target_powers(ah, chan, | 
|  | pEepData->calTargetPower2GHT20, | 
|  | AR5416_NUM_2G_20_TARGET_POWERS, | 
|  | &targetPowerHt20, 8, false); | 
|  |  | 
|  | if (IS_CHAN_HT40(chan)) { | 
|  | numCtlModes = ARRAY_SIZE(ctlModesFor11g); | 
|  | ath9k_hw_get_target_powers(ah, chan, | 
|  | pEepData->calTargetPower2GHT40, | 
|  | AR5416_NUM_2G_40_TARGET_POWERS, | 
|  | &targetPowerHt40, 8, true); | 
|  | ath9k_hw_get_legacy_target_powers(ah, chan, | 
|  | pEepData->calTargetPowerCck, | 
|  | AR5416_NUM_2G_CCK_TARGET_POWERS, | 
|  | &targetPowerCckExt, 4, true); | 
|  | ath9k_hw_get_legacy_target_powers(ah, chan, | 
|  | pEepData->calTargetPower2G, | 
|  | AR5416_NUM_2G_20_TARGET_POWERS, | 
|  | &targetPowerOfdmExt, 4, true); | 
|  | } | 
|  |  | 
|  | for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) { | 
|  | bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) || | 
|  | (pCtlMode[ctlMode] == CTL_2GHT40); | 
|  | if (isHt40CtlMode) | 
|  | freq = centers.synth_center; | 
|  | else if (pCtlMode[ctlMode] & EXT_ADDITIVE) | 
|  | freq = centers.ext_center; | 
|  | else | 
|  | freq = centers.ctl_center; | 
|  |  | 
|  | if (ar5416_get_eep_ver(ahp) == 14 && | 
|  | ar5416_get_eep_rev(ahp) <= 2) | 
|  | twiceMaxEdgePower = AR5416_MAX_RATE_POWER; | 
|  |  | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, | 
|  | "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, " | 
|  | "EXT_ADDITIVE %d\n", | 
|  | ctlMode, numCtlModes, isHt40CtlMode, | 
|  | (pCtlMode[ctlMode] & EXT_ADDITIVE)); | 
|  |  | 
|  | for (i = 0; (i < AR5416_NUM_CTLS) && | 
|  | pEepData->ctlIndex[i]; i++) { | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, | 
|  | "  LOOP-Ctlidx %d: cfgCtl 0x%2.2x " | 
|  | "pCtlMode 0x%2.2x ctlIndex 0x%2.2x " | 
|  | "chan %d\n", | 
|  | i, cfgCtl, pCtlMode[ctlMode], | 
|  | pEepData->ctlIndex[i], chan->channel); | 
|  |  | 
|  | if ((((cfgCtl & ~CTL_MODE_M) | | 
|  | (pCtlMode[ctlMode] & CTL_MODE_M)) == | 
|  | pEepData->ctlIndex[i]) || | 
|  | (((cfgCtl & ~CTL_MODE_M) | | 
|  | (pCtlMode[ctlMode] & CTL_MODE_M)) == | 
|  | ((pEepData->ctlIndex[i] & CTL_MODE_M) | | 
|  | SD_NO_CTL))) { | 
|  | rep = &(pEepData->ctlData[i]); | 
|  |  | 
|  | twiceMinEdgePower = | 
|  | ath9k_hw_get_max_edge_power(freq, | 
|  | rep->ctlEdges[ar5416_get_ntxchains | 
|  | (tx_chainmask) - 1], | 
|  | IS_CHAN_2GHZ(chan), | 
|  | AR5416_EEP4K_NUM_BAND_EDGES); | 
|  |  | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, | 
|  | "    MATCH-EE_IDX %d: ch %d is2 %d " | 
|  | "2xMinEdge %d chainmask %d chains %d\n", | 
|  | i, freq, IS_CHAN_2GHZ(chan), | 
|  | twiceMinEdgePower, tx_chainmask, | 
|  | ar5416_get_ntxchains | 
|  | (tx_chainmask)); | 
|  | if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) { | 
|  | twiceMaxEdgePower = | 
|  | min(twiceMaxEdgePower, | 
|  | twiceMinEdgePower); | 
|  | } else { | 
|  | twiceMaxEdgePower = twiceMinEdgePower; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower); | 
|  |  | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, | 
|  | "    SEL-Min ctlMode %d pCtlMode %d " | 
|  | "2xMaxEdge %d sP %d minCtlPwr %d\n", | 
|  | ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower, | 
|  | scaledPower, minCtlPower); | 
|  |  | 
|  | switch (pCtlMode[ctlMode]) { | 
|  | case CTL_11B: | 
|  | for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); | 
|  | i++) { | 
|  | targetPowerCck.tPow2x[i] = | 
|  | min((u16)targetPowerCck.tPow2x[i], | 
|  | minCtlPower); | 
|  | } | 
|  | break; | 
|  | case CTL_11G: | 
|  | for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); | 
|  | i++) { | 
|  | targetPowerOfdm.tPow2x[i] = | 
|  | min((u16)targetPowerOfdm.tPow2x[i], | 
|  | minCtlPower); | 
|  | } | 
|  | break; | 
|  | case CTL_2GHT20: | 
|  | for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); | 
|  | i++) { | 
|  | targetPowerHt20.tPow2x[i] = | 
|  | min((u16)targetPowerHt20.tPow2x[i], | 
|  | minCtlPower); | 
|  | } | 
|  | break; | 
|  | case CTL_11B_EXT: | 
|  | targetPowerCckExt.tPow2x[0] = min((u16) | 
|  | targetPowerCckExt.tPow2x[0], | 
|  | minCtlPower); | 
|  | break; | 
|  | case CTL_11G_EXT: | 
|  | targetPowerOfdmExt.tPow2x[0] = min((u16) | 
|  | targetPowerOfdmExt.tPow2x[0], | 
|  | minCtlPower); | 
|  | break; | 
|  | case CTL_2GHT40: | 
|  | for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); | 
|  | i++) { | 
|  | targetPowerHt40.tPow2x[i] = | 
|  | min((u16)targetPowerHt40.tPow2x[i], | 
|  | minCtlPower); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] = | 
|  | ratesArray[rate18mb] = ratesArray[rate24mb] = | 
|  | targetPowerOfdm.tPow2x[0]; | 
|  | ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1]; | 
|  | ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2]; | 
|  | ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3]; | 
|  | ratesArray[rateXr] = targetPowerOfdm.tPow2x[0]; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) | 
|  | ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i]; | 
|  |  | 
|  | ratesArray[rate1l] = targetPowerCck.tPow2x[0]; | 
|  | ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1]; | 
|  | ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2]; | 
|  | ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3]; | 
|  |  | 
|  | if (IS_CHAN_HT40(chan)) { | 
|  | for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) { | 
|  | ratesArray[rateHt40_0 + i] = | 
|  | targetPowerHt40.tPow2x[i]; | 
|  | } | 
|  | ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0]; | 
|  | ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0]; | 
|  | ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0]; | 
|  | ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0]; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int ath9k_hw_def_set_txpower(struct ath_hal *ah, | 
|  | struct ath9k_channel *chan, | 
|  | u16 cfgCtl, | 
|  | u8 twiceAntennaReduction, | 
|  | u8 twiceMaxRegulatoryPower, | 
|  | u8 powerLimit) | 
|  | { | 
|  | struct ath_hal_5416 *ahp = AH5416(ah); | 
|  | struct ar5416_eeprom_def *pEepData = &ahp->ah_eeprom.def; | 
|  | struct modal_eep_header *pModal = | 
|  | &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]); | 
|  | int16_t ratesArray[Ar5416RateSize]; | 
|  | int16_t txPowerIndexOffset = 0; | 
|  | u8 ht40PowerIncForPdadc = 2; | 
|  | int i; | 
|  |  | 
|  | memset(ratesArray, 0, sizeof(ratesArray)); | 
|  |  | 
|  | if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= | 
|  | AR5416_EEP_MINOR_VER_2) { | 
|  | ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc; | 
|  | } | 
|  |  | 
|  | if (!ath9k_hw_set_def_power_per_rate_table(ah, chan, | 
|  | &ratesArray[0], cfgCtl, | 
|  | twiceAntennaReduction, | 
|  | twiceMaxRegulatoryPower, | 
|  | powerLimit)) { | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, | 
|  | "ath9k_hw_set_txpower: unable to set " | 
|  | "tx power per rate table\n"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | if (!ath9k_hw_set_def_power_cal_table(ah, chan, &txPowerIndexOffset)) { | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, | 
|  | "ath9k_hw_set_txpower: unable to set power table\n"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(ratesArray); i++) { | 
|  | ratesArray[i] =	(int16_t)(txPowerIndexOffset + ratesArray[i]); | 
|  | if (ratesArray[i] > AR5416_MAX_RATE_POWER) | 
|  | ratesArray[i] = AR5416_MAX_RATE_POWER; | 
|  | } | 
|  |  | 
|  | if (AR_SREV_9280_10_OR_LATER(ah)) { | 
|  | for (i = 0; i < Ar5416RateSize; i++) | 
|  | ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2; | 
|  | } | 
|  |  | 
|  | REG_WRITE(ah, AR_PHY_POWER_TX_RATE1, | 
|  | ATH9K_POW_SM(ratesArray[rate18mb], 24) | 
|  | | ATH9K_POW_SM(ratesArray[rate12mb], 16) | 
|  | | ATH9K_POW_SM(ratesArray[rate9mb], 8) | 
|  | | ATH9K_POW_SM(ratesArray[rate6mb], 0)); | 
|  | REG_WRITE(ah, AR_PHY_POWER_TX_RATE2, | 
|  | ATH9K_POW_SM(ratesArray[rate54mb], 24) | 
|  | | ATH9K_POW_SM(ratesArray[rate48mb], 16) | 
|  | | ATH9K_POW_SM(ratesArray[rate36mb], 8) | 
|  | | ATH9K_POW_SM(ratesArray[rate24mb], 0)); | 
|  |  | 
|  | if (IS_CHAN_2GHZ(chan)) { | 
|  | REG_WRITE(ah, AR_PHY_POWER_TX_RATE3, | 
|  | ATH9K_POW_SM(ratesArray[rate2s], 24) | 
|  | | ATH9K_POW_SM(ratesArray[rate2l], 16) | 
|  | | ATH9K_POW_SM(ratesArray[rateXr], 8) | 
|  | | ATH9K_POW_SM(ratesArray[rate1l], 0)); | 
|  | REG_WRITE(ah, AR_PHY_POWER_TX_RATE4, | 
|  | ATH9K_POW_SM(ratesArray[rate11s], 24) | 
|  | | ATH9K_POW_SM(ratesArray[rate11l], 16) | 
|  | | ATH9K_POW_SM(ratesArray[rate5_5s], 8) | 
|  | | ATH9K_POW_SM(ratesArray[rate5_5l], 0)); | 
|  | } | 
|  |  | 
|  | REG_WRITE(ah, AR_PHY_POWER_TX_RATE5, | 
|  | ATH9K_POW_SM(ratesArray[rateHt20_3], 24) | 
|  | | ATH9K_POW_SM(ratesArray[rateHt20_2], 16) | 
|  | | ATH9K_POW_SM(ratesArray[rateHt20_1], 8) | 
|  | | ATH9K_POW_SM(ratesArray[rateHt20_0], 0)); | 
|  | REG_WRITE(ah, AR_PHY_POWER_TX_RATE6, | 
|  | ATH9K_POW_SM(ratesArray[rateHt20_7], 24) | 
|  | | ATH9K_POW_SM(ratesArray[rateHt20_6], 16) | 
|  | | ATH9K_POW_SM(ratesArray[rateHt20_5], 8) | 
|  | | ATH9K_POW_SM(ratesArray[rateHt20_4], 0)); | 
|  |  | 
|  | if (IS_CHAN_HT40(chan)) { | 
|  | REG_WRITE(ah, AR_PHY_POWER_TX_RATE7, | 
|  | ATH9K_POW_SM(ratesArray[rateHt40_3] + | 
|  | ht40PowerIncForPdadc, 24) | 
|  | | ATH9K_POW_SM(ratesArray[rateHt40_2] + | 
|  | ht40PowerIncForPdadc, 16) | 
|  | | ATH9K_POW_SM(ratesArray[rateHt40_1] + | 
|  | ht40PowerIncForPdadc, 8) | 
|  | | ATH9K_POW_SM(ratesArray[rateHt40_0] + | 
|  | ht40PowerIncForPdadc, 0)); | 
|  | REG_WRITE(ah, AR_PHY_POWER_TX_RATE8, | 
|  | ATH9K_POW_SM(ratesArray[rateHt40_7] + | 
|  | ht40PowerIncForPdadc, 24) | 
|  | | ATH9K_POW_SM(ratesArray[rateHt40_6] + | 
|  | ht40PowerIncForPdadc, 16) | 
|  | | ATH9K_POW_SM(ratesArray[rateHt40_5] + | 
|  | ht40PowerIncForPdadc, 8) | 
|  | | ATH9K_POW_SM(ratesArray[rateHt40_4] + | 
|  | ht40PowerIncForPdadc, 0)); | 
|  |  | 
|  | REG_WRITE(ah, AR_PHY_POWER_TX_RATE9, | 
|  | ATH9K_POW_SM(ratesArray[rateExtOfdm], 24) | 
|  | | ATH9K_POW_SM(ratesArray[rateExtCck], 16) | 
|  | | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8) | 
|  | | ATH9K_POW_SM(ratesArray[rateDupCck], 0)); | 
|  | } | 
|  |  | 
|  | REG_WRITE(ah, AR_PHY_POWER_TX_SUB, | 
|  | ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6) | 
|  | | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0)); | 
|  |  | 
|  | i = rate6mb; | 
|  |  | 
|  | if (IS_CHAN_HT40(chan)) | 
|  | i = rateHt40_0; | 
|  | else if (IS_CHAN_HT20(chan)) | 
|  | i = rateHt20_0; | 
|  |  | 
|  | if (AR_SREV_9280_10_OR_LATER(ah)) | 
|  | ah->ah_maxPowerLevel = | 
|  | ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2; | 
|  | else | 
|  | ah->ah_maxPowerLevel = ratesArray[i]; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ath9k_hw_4k_set_txpower(struct ath_hal *ah, | 
|  | struct ath9k_channel *chan, | 
|  | u16 cfgCtl, | 
|  | u8 twiceAntennaReduction, | 
|  | u8 twiceMaxRegulatoryPower, | 
|  | u8 powerLimit) | 
|  | { | 
|  | struct ath_hal_5416 *ahp = AH5416(ah); | 
|  | struct ar5416_eeprom_4k *pEepData = &ahp->ah_eeprom.map4k; | 
|  | struct modal_eep_4k_header *pModal = &pEepData->modalHeader; | 
|  | int16_t ratesArray[Ar5416RateSize]; | 
|  | int16_t txPowerIndexOffset = 0; | 
|  | u8 ht40PowerIncForPdadc = 2; | 
|  | int i; | 
|  |  | 
|  | memset(ratesArray, 0, sizeof(ratesArray)); | 
|  |  | 
|  | if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= | 
|  | AR5416_EEP_MINOR_VER_2) { | 
|  | ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc; | 
|  | } | 
|  |  | 
|  | if (!ath9k_hw_set_4k_power_per_rate_table(ah, chan, | 
|  | &ratesArray[0], cfgCtl, | 
|  | twiceAntennaReduction, | 
|  | twiceMaxRegulatoryPower, | 
|  | powerLimit)) { | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, | 
|  | "ath9k_hw_set_txpower: unable to set " | 
|  | "tx power per rate table\n"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | if (!ath9k_hw_set_4k_power_cal_table(ah, chan, &txPowerIndexOffset)) { | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, | 
|  | "ath9k_hw_set_txpower: unable to set power table\n"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(ratesArray); i++) { | 
|  | ratesArray[i] =	(int16_t)(txPowerIndexOffset + ratesArray[i]); | 
|  | if (ratesArray[i] > AR5416_MAX_RATE_POWER) | 
|  | ratesArray[i] = AR5416_MAX_RATE_POWER; | 
|  | } | 
|  |  | 
|  | if (AR_SREV_9280_10_OR_LATER(ah)) { | 
|  | for (i = 0; i < Ar5416RateSize; i++) | 
|  | ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2; | 
|  | } | 
|  |  | 
|  | REG_WRITE(ah, AR_PHY_POWER_TX_RATE1, | 
|  | ATH9K_POW_SM(ratesArray[rate18mb], 24) | 
|  | | ATH9K_POW_SM(ratesArray[rate12mb], 16) | 
|  | | ATH9K_POW_SM(ratesArray[rate9mb], 8) | 
|  | | ATH9K_POW_SM(ratesArray[rate6mb], 0)); | 
|  | REG_WRITE(ah, AR_PHY_POWER_TX_RATE2, | 
|  | ATH9K_POW_SM(ratesArray[rate54mb], 24) | 
|  | | ATH9K_POW_SM(ratesArray[rate48mb], 16) | 
|  | | ATH9K_POW_SM(ratesArray[rate36mb], 8) | 
|  | | ATH9K_POW_SM(ratesArray[rate24mb], 0)); | 
|  |  | 
|  | if (IS_CHAN_2GHZ(chan)) { | 
|  | REG_WRITE(ah, AR_PHY_POWER_TX_RATE3, | 
|  | ATH9K_POW_SM(ratesArray[rate2s], 24) | 
|  | | ATH9K_POW_SM(ratesArray[rate2l], 16) | 
|  | | ATH9K_POW_SM(ratesArray[rateXr], 8) | 
|  | | ATH9K_POW_SM(ratesArray[rate1l], 0)); | 
|  | REG_WRITE(ah, AR_PHY_POWER_TX_RATE4, | 
|  | ATH9K_POW_SM(ratesArray[rate11s], 24) | 
|  | | ATH9K_POW_SM(ratesArray[rate11l], 16) | 
|  | | ATH9K_POW_SM(ratesArray[rate5_5s], 8) | 
|  | | ATH9K_POW_SM(ratesArray[rate5_5l], 0)); | 
|  | } | 
|  |  | 
|  | REG_WRITE(ah, AR_PHY_POWER_TX_RATE5, | 
|  | ATH9K_POW_SM(ratesArray[rateHt20_3], 24) | 
|  | | ATH9K_POW_SM(ratesArray[rateHt20_2], 16) | 
|  | | ATH9K_POW_SM(ratesArray[rateHt20_1], 8) | 
|  | | ATH9K_POW_SM(ratesArray[rateHt20_0], 0)); | 
|  | REG_WRITE(ah, AR_PHY_POWER_TX_RATE6, | 
|  | ATH9K_POW_SM(ratesArray[rateHt20_7], 24) | 
|  | | ATH9K_POW_SM(ratesArray[rateHt20_6], 16) | 
|  | | ATH9K_POW_SM(ratesArray[rateHt20_5], 8) | 
|  | | ATH9K_POW_SM(ratesArray[rateHt20_4], 0)); | 
|  |  | 
|  | if (IS_CHAN_HT40(chan)) { | 
|  | REG_WRITE(ah, AR_PHY_POWER_TX_RATE7, | 
|  | ATH9K_POW_SM(ratesArray[rateHt40_3] + | 
|  | ht40PowerIncForPdadc, 24) | 
|  | | ATH9K_POW_SM(ratesArray[rateHt40_2] + | 
|  | ht40PowerIncForPdadc, 16) | 
|  | | ATH9K_POW_SM(ratesArray[rateHt40_1] + | 
|  | ht40PowerIncForPdadc, 8) | 
|  | | ATH9K_POW_SM(ratesArray[rateHt40_0] + | 
|  | ht40PowerIncForPdadc, 0)); | 
|  | REG_WRITE(ah, AR_PHY_POWER_TX_RATE8, | 
|  | ATH9K_POW_SM(ratesArray[rateHt40_7] + | 
|  | ht40PowerIncForPdadc, 24) | 
|  | | ATH9K_POW_SM(ratesArray[rateHt40_6] + | 
|  | ht40PowerIncForPdadc, 16) | 
|  | | ATH9K_POW_SM(ratesArray[rateHt40_5] + | 
|  | ht40PowerIncForPdadc, 8) | 
|  | | ATH9K_POW_SM(ratesArray[rateHt40_4] + | 
|  | ht40PowerIncForPdadc, 0)); | 
|  |  | 
|  | REG_WRITE(ah, AR_PHY_POWER_TX_RATE9, | 
|  | ATH9K_POW_SM(ratesArray[rateExtOfdm], 24) | 
|  | | ATH9K_POW_SM(ratesArray[rateExtCck], 16) | 
|  | | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8) | 
|  | | ATH9K_POW_SM(ratesArray[rateDupCck], 0)); | 
|  | } | 
|  |  | 
|  | i = rate6mb; | 
|  |  | 
|  | if (IS_CHAN_HT40(chan)) | 
|  | i = rateHt40_0; | 
|  | else if (IS_CHAN_HT20(chan)) | 
|  | i = rateHt20_0; | 
|  |  | 
|  | if (AR_SREV_9280_10_OR_LATER(ah)) | 
|  | ah->ah_maxPowerLevel = | 
|  | ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2; | 
|  | else | 
|  | ah->ah_maxPowerLevel = ratesArray[i]; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int (*ath9k_set_txpower[]) (struct ath_hal *, | 
|  | struct ath9k_channel *, | 
|  | u16, u8, u8, u8) = { | 
|  | ath9k_hw_def_set_txpower, | 
|  | ath9k_hw_4k_set_txpower | 
|  | }; | 
|  |  | 
|  | int ath9k_hw_set_txpower(struct ath_hal *ah, | 
|  | struct ath9k_channel *chan, | 
|  | u16 cfgCtl, | 
|  | u8 twiceAntennaReduction, | 
|  | u8 twiceMaxRegulatoryPower, | 
|  | u8 powerLimit) | 
|  | { | 
|  | struct ath_hal_5416 *ahp = AH5416(ah); | 
|  |  | 
|  | return ath9k_set_txpower[ahp->ah_eep_map](ah, chan, cfgCtl, | 
|  | twiceAntennaReduction, twiceMaxRegulatoryPower, | 
|  | powerLimit); | 
|  | } | 
|  |  | 
|  | static void ath9k_hw_set_def_addac(struct ath_hal *ah, | 
|  | struct ath9k_channel *chan) | 
|  | { | 
|  | #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt]) | 
|  | struct modal_eep_header *pModal; | 
|  | struct ath_hal_5416 *ahp = AH5416(ah); | 
|  | struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def; | 
|  | u8 biaslevel; | 
|  |  | 
|  | if (ah->ah_macVersion != AR_SREV_VERSION_9160) | 
|  | return; | 
|  |  | 
|  | if (ar5416_get_eep_rev(ahp) < AR5416_EEP_MINOR_VER_7) | 
|  | return; | 
|  |  | 
|  | pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]); | 
|  |  | 
|  | if (pModal->xpaBiasLvl != 0xff) { | 
|  | biaslevel = pModal->xpaBiasLvl; | 
|  | } else { | 
|  | u16 resetFreqBin, freqBin, freqCount = 0; | 
|  | struct chan_centers centers; | 
|  |  | 
|  | ath9k_hw_get_channel_centers(ah, chan, ¢ers); | 
|  |  | 
|  | resetFreqBin = FREQ2FBIN(centers.synth_center, | 
|  | IS_CHAN_2GHZ(chan)); | 
|  | freqBin = XPA_LVL_FREQ(0) & 0xff; | 
|  | biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14); | 
|  |  | 
|  | freqCount++; | 
|  |  | 
|  | while (freqCount < 3) { | 
|  | if (XPA_LVL_FREQ(freqCount) == 0x0) | 
|  | break; | 
|  |  | 
|  | freqBin = XPA_LVL_FREQ(freqCount) & 0xff; | 
|  | if (resetFreqBin >= freqBin) | 
|  | biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14); | 
|  | else | 
|  | break; | 
|  | freqCount++; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (IS_CHAN_2GHZ(chan)) { | 
|  | INI_RA(&ahp->ah_iniAddac, 7, 1) = (INI_RA(&ahp->ah_iniAddac, | 
|  | 7, 1) & (~0x18)) | biaslevel << 3; | 
|  | } else { | 
|  | INI_RA(&ahp->ah_iniAddac, 6, 1) = (INI_RA(&ahp->ah_iniAddac, | 
|  | 6, 1) & (~0xc0)) | biaslevel << 6; | 
|  | } | 
|  | #undef XPA_LVL_FREQ | 
|  | } | 
|  |  | 
|  | static void ath9k_hw_set_4k_addac(struct ath_hal *ah, | 
|  | struct ath9k_channel *chan) | 
|  | { | 
|  | struct modal_eep_4k_header *pModal; | 
|  | struct ath_hal_5416 *ahp = AH5416(ah); | 
|  | struct ar5416_eeprom_4k *eep = &ahp->ah_eeprom.map4k; | 
|  | u8 biaslevel; | 
|  |  | 
|  | if (ah->ah_macVersion != AR_SREV_VERSION_9160) | 
|  | return; | 
|  |  | 
|  | if (ar5416_get_eep_rev(ahp) < AR5416_EEP_MINOR_VER_7) | 
|  | return; | 
|  |  | 
|  | pModal = &eep->modalHeader; | 
|  |  | 
|  | if (pModal->xpaBiasLvl != 0xff) { | 
|  | biaslevel = pModal->xpaBiasLvl; | 
|  | INI_RA(&ahp->ah_iniAddac, 7, 1) = | 
|  | (INI_RA(&ahp->ah_iniAddac, 7, 1) & (~0x18)) | biaslevel << 3; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void (*ath9k_set_addac[]) (struct ath_hal *, struct ath9k_channel *) = { | 
|  | ath9k_hw_set_def_addac, | 
|  | ath9k_hw_set_4k_addac | 
|  | }; | 
|  |  | 
|  | void ath9k_hw_set_addac(struct ath_hal *ah, struct ath9k_channel *chan) | 
|  | { | 
|  | struct ath_hal_5416 *ahp = AH5416(ah); | 
|  |  | 
|  | ath9k_set_addac[ahp->ah_eep_map](ah, chan); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /* XXX: Clean me up, make me more legible */ | 
|  | static bool ath9k_hw_eeprom_set_def_board_values(struct ath_hal *ah, | 
|  | struct ath9k_channel *chan) | 
|  | { | 
|  | #define AR5416_VER_MASK (eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) | 
|  | struct modal_eep_header *pModal; | 
|  | struct ath_hal_5416 *ahp = AH5416(ah); | 
|  | struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def; | 
|  | int i, regChainOffset; | 
|  | u8 txRxAttenLocal; | 
|  |  | 
|  | pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]); | 
|  |  | 
|  | txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44; | 
|  |  | 
|  | REG_WRITE(ah, AR_PHY_SWITCH_COM, | 
|  | ath9k_hw_get_eeprom_antenna_cfg(ah, chan)); | 
|  |  | 
|  | for (i = 0; i < AR5416_MAX_CHAINS; i++) { | 
|  | if (AR_SREV_9280(ah)) { | 
|  | if (i >= 2) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (AR_SREV_5416_V20_OR_LATER(ah) && | 
|  | (ahp->ah_rxchainmask == 5 || ahp->ah_txchainmask == 5) | 
|  | && (i != 0)) | 
|  | regChainOffset = (i == 1) ? 0x2000 : 0x1000; | 
|  | else | 
|  | regChainOffset = i * 0x1000; | 
|  |  | 
|  | REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, | 
|  | pModal->antCtrlChain[i]); | 
|  |  | 
|  | REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset, | 
|  | (REG_READ(ah, | 
|  | AR_PHY_TIMING_CTRL4(0) + | 
|  | regChainOffset) & | 
|  | ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | | 
|  | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) | | 
|  | SM(pModal->iqCalICh[i], | 
|  | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) | | 
|  | SM(pModal->iqCalQCh[i], | 
|  | AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF)); | 
|  |  | 
|  | if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) { | 
|  | if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) { | 
|  | txRxAttenLocal = pModal->txRxAttenCh[i]; | 
|  | if (AR_SREV_9280_10_OR_LATER(ah)) { | 
|  | REG_RMW_FIELD(ah, | 
|  | AR_PHY_GAIN_2GHZ + | 
|  | regChainOffset, | 
|  | AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, | 
|  | pModal-> | 
|  | bswMargin[i]); | 
|  | REG_RMW_FIELD(ah, | 
|  | AR_PHY_GAIN_2GHZ + | 
|  | regChainOffset, | 
|  | AR_PHY_GAIN_2GHZ_XATTEN1_DB, | 
|  | pModal-> | 
|  | bswAtten[i]); | 
|  | REG_RMW_FIELD(ah, | 
|  | AR_PHY_GAIN_2GHZ + | 
|  | regChainOffset, | 
|  | AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, | 
|  | pModal-> | 
|  | xatten2Margin[i]); | 
|  | REG_RMW_FIELD(ah, | 
|  | AR_PHY_GAIN_2GHZ + | 
|  | regChainOffset, | 
|  | AR_PHY_GAIN_2GHZ_XATTEN2_DB, | 
|  | pModal-> | 
|  | xatten2Db[i]); | 
|  | } else { | 
|  | REG_WRITE(ah, | 
|  | AR_PHY_GAIN_2GHZ + | 
|  | regChainOffset, | 
|  | (REG_READ(ah, | 
|  | AR_PHY_GAIN_2GHZ + | 
|  | regChainOffset) & | 
|  | ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) | 
|  | | SM(pModal-> | 
|  | bswMargin[i], | 
|  | AR_PHY_GAIN_2GHZ_BSW_MARGIN)); | 
|  | REG_WRITE(ah, | 
|  | AR_PHY_GAIN_2GHZ + | 
|  | regChainOffset, | 
|  | (REG_READ(ah, | 
|  | AR_PHY_GAIN_2GHZ + | 
|  | regChainOffset) & | 
|  | ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) | 
|  | | SM(pModal->bswAtten[i], | 
|  | AR_PHY_GAIN_2GHZ_BSW_ATTEN)); | 
|  | } | 
|  | } | 
|  | if (AR_SREV_9280_10_OR_LATER(ah)) { | 
|  | REG_RMW_FIELD(ah, | 
|  | AR_PHY_RXGAIN + | 
|  | regChainOffset, | 
|  | AR9280_PHY_RXGAIN_TXRX_ATTEN, | 
|  | txRxAttenLocal); | 
|  | REG_RMW_FIELD(ah, | 
|  | AR_PHY_RXGAIN + | 
|  | regChainOffset, | 
|  | AR9280_PHY_RXGAIN_TXRX_MARGIN, | 
|  | pModal->rxTxMarginCh[i]); | 
|  | } else { | 
|  | REG_WRITE(ah, | 
|  | AR_PHY_RXGAIN + regChainOffset, | 
|  | (REG_READ(ah, | 
|  | AR_PHY_RXGAIN + | 
|  | regChainOffset) & | 
|  | ~AR_PHY_RXGAIN_TXRX_ATTEN) | | 
|  | SM(txRxAttenLocal, | 
|  | AR_PHY_RXGAIN_TXRX_ATTEN)); | 
|  | REG_WRITE(ah, | 
|  | AR_PHY_GAIN_2GHZ + | 
|  | regChainOffset, | 
|  | (REG_READ(ah, | 
|  | AR_PHY_GAIN_2GHZ + | 
|  | regChainOffset) & | 
|  | ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) | | 
|  | SM(pModal->rxTxMarginCh[i], | 
|  | AR_PHY_GAIN_2GHZ_RXTX_MARGIN)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (AR_SREV_9280_10_OR_LATER(ah)) { | 
|  | if (IS_CHAN_2GHZ(chan)) { | 
|  | ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0, | 
|  | AR_AN_RF2G1_CH0_OB, | 
|  | AR_AN_RF2G1_CH0_OB_S, | 
|  | pModal->ob); | 
|  | ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0, | 
|  | AR_AN_RF2G1_CH0_DB, | 
|  | AR_AN_RF2G1_CH0_DB_S, | 
|  | pModal->db); | 
|  | ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1, | 
|  | AR_AN_RF2G1_CH1_OB, | 
|  | AR_AN_RF2G1_CH1_OB_S, | 
|  | pModal->ob_ch1); | 
|  | ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1, | 
|  | AR_AN_RF2G1_CH1_DB, | 
|  | AR_AN_RF2G1_CH1_DB_S, | 
|  | pModal->db_ch1); | 
|  | } else { | 
|  | ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0, | 
|  | AR_AN_RF5G1_CH0_OB5, | 
|  | AR_AN_RF5G1_CH0_OB5_S, | 
|  | pModal->ob); | 
|  | ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0, | 
|  | AR_AN_RF5G1_CH0_DB5, | 
|  | AR_AN_RF5G1_CH0_DB5_S, | 
|  | pModal->db); | 
|  | ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1, | 
|  | AR_AN_RF5G1_CH1_OB5, | 
|  | AR_AN_RF5G1_CH1_OB5_S, | 
|  | pModal->ob_ch1); | 
|  | ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1, | 
|  | AR_AN_RF5G1_CH1_DB5, | 
|  | AR_AN_RF5G1_CH1_DB5_S, | 
|  | pModal->db_ch1); | 
|  | } | 
|  | ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2, | 
|  | AR_AN_TOP2_XPABIAS_LVL, | 
|  | AR_AN_TOP2_XPABIAS_LVL_S, | 
|  | pModal->xpaBiasLvl); | 
|  | ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2, | 
|  | AR_AN_TOP2_LOCALBIAS, | 
|  | AR_AN_TOP2_LOCALBIAS_S, | 
|  | pModal->local_bias); | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "ForceXPAon: %d\n", | 
|  | pModal->force_xpaon); | 
|  | REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG, | 
|  | pModal->force_xpaon); | 
|  | } | 
|  |  | 
|  | REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, | 
|  | pModal->switchSettling); | 
|  | REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, | 
|  | pModal->adcDesiredSize); | 
|  |  | 
|  | if (!AR_SREV_9280_10_OR_LATER(ah)) | 
|  | REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, | 
|  | AR_PHY_DESIRED_SZ_PGA, | 
|  | pModal->pgaDesiredSize); | 
|  |  | 
|  | REG_WRITE(ah, AR_PHY_RF_CTL4, | 
|  | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) | 
|  | | SM(pModal->txEndToXpaOff, | 
|  | AR_PHY_RF_CTL4_TX_END_XPAB_OFF) | 
|  | | SM(pModal->txFrameToXpaOn, | 
|  | AR_PHY_RF_CTL4_FRAME_XPAA_ON) | 
|  | | SM(pModal->txFrameToXpaOn, | 
|  | AR_PHY_RF_CTL4_FRAME_XPAB_ON)); | 
|  |  | 
|  | REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON, | 
|  | pModal->txEndToRxOn); | 
|  | if (AR_SREV_9280_10_OR_LATER(ah)) { | 
|  | REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62, | 
|  | pModal->thresh62); | 
|  | REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, | 
|  | AR_PHY_EXT_CCA0_THRESH62, | 
|  | pModal->thresh62); | 
|  | } else { | 
|  | REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62, | 
|  | pModal->thresh62); | 
|  | REG_RMW_FIELD(ah, AR_PHY_EXT_CCA, | 
|  | AR_PHY_EXT_CCA_THRESH62, | 
|  | pModal->thresh62); | 
|  | } | 
|  |  | 
|  | if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) { | 
|  | REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, | 
|  | AR_PHY_TX_END_DATA_START, | 
|  | pModal->txFrameToDataStart); | 
|  | REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON, | 
|  | pModal->txFrameToPaOn); | 
|  | } | 
|  |  | 
|  | if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) { | 
|  | if (IS_CHAN_HT40(chan)) | 
|  | REG_RMW_FIELD(ah, AR_PHY_SETTLING, | 
|  | AR_PHY_SETTLING_SWITCH, | 
|  | pModal->swSettleHt40); | 
|  | } | 
|  |  | 
|  | if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) { | 
|  | if (IS_CHAN_HT20(chan)) | 
|  | REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, | 
|  | eep->baseEepHeader.dacLpMode); | 
|  | else if (eep->baseEepHeader.dacHiPwrMode_5G) | 
|  | REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0); | 
|  | else | 
|  | REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, | 
|  | eep->baseEepHeader.dacLpMode); | 
|  |  | 
|  | REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP, | 
|  | pModal->miscBits >> 2); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | #undef AR5416_VER_MASK | 
|  | } | 
|  |  | 
|  | static bool ath9k_hw_eeprom_set_4k_board_values(struct ath_hal *ah, | 
|  | struct ath9k_channel *chan) | 
|  | { | 
|  | struct modal_eep_4k_header *pModal; | 
|  | struct ath_hal_5416 *ahp = AH5416(ah); | 
|  | struct ar5416_eeprom_4k *eep = &ahp->ah_eeprom.map4k; | 
|  | int regChainOffset; | 
|  | u8 txRxAttenLocal; | 
|  | u8 ob[5], db1[5], db2[5]; | 
|  | u8 ant_div_control1, ant_div_control2; | 
|  | u32 regVal; | 
|  |  | 
|  |  | 
|  | pModal = &eep->modalHeader; | 
|  |  | 
|  | txRxAttenLocal = 23; | 
|  |  | 
|  | REG_WRITE(ah, AR_PHY_SWITCH_COM, | 
|  | ath9k_hw_get_eeprom_antenna_cfg(ah, chan)); | 
|  |  | 
|  | regChainOffset = 0; | 
|  | REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, | 
|  | pModal->antCtrlChain[0]); | 
|  |  | 
|  | REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset, | 
|  | (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) & | 
|  | ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | | 
|  | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) | | 
|  | SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) | | 
|  | SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF)); | 
|  |  | 
|  | if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= | 
|  | AR5416_EEP_MINOR_VER_3) { | 
|  | txRxAttenLocal = pModal->txRxAttenCh[0]; | 
|  | REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, | 
|  | AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]); | 
|  | REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, | 
|  | AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]); | 
|  | REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, | 
|  | AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, | 
|  | pModal->xatten2Margin[0]); | 
|  | REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, | 
|  | AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]); | 
|  | } | 
|  |  | 
|  | REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset, | 
|  | AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal); | 
|  | REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset, | 
|  | AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]); | 
|  |  | 
|  | if (AR_SREV_9285_11(ah)) | 
|  | REG_WRITE(ah, AR9285_AN_TOP4, (AR9285_AN_TOP4_DEFAULT | 0x14)); | 
|  |  | 
|  | /* Initialize Ant Diversity settings from EEPROM */ | 
|  | if (pModal->version == 3) { | 
|  | ant_div_control1 = ((pModal->ob_234 >> 12) & 0xf); | 
|  | ant_div_control2 = ((pModal->db1_234 >> 12) & 0xf); | 
|  | regVal = REG_READ(ah, 0x99ac); | 
|  | regVal &= (~(0x7f000000)); | 
|  | regVal |= ((ant_div_control1 & 0x1) << 24); | 
|  | regVal |= (((ant_div_control1 >> 1) & 0x1) << 29); | 
|  | regVal |= (((ant_div_control1 >> 2) & 0x1) << 30); | 
|  | regVal |= ((ant_div_control2 & 0x3) << 25); | 
|  | regVal |= (((ant_div_control2 >> 2) & 0x3) << 27); | 
|  | REG_WRITE(ah, 0x99ac, regVal); | 
|  | regVal = REG_READ(ah, 0x99ac); | 
|  | regVal = REG_READ(ah, 0xa208); | 
|  | regVal &= (~(0x1 << 13)); | 
|  | regVal |= (((ant_div_control1 >> 3) & 0x1) << 13); | 
|  | REG_WRITE(ah, 0xa208, regVal); | 
|  | regVal = REG_READ(ah, 0xa208); | 
|  | } | 
|  |  | 
|  | if (pModal->version >= 2) { | 
|  | ob[0] = (pModal->ob_01 & 0xf); | 
|  | ob[1] = (pModal->ob_01 >> 4) & 0xf; | 
|  | ob[2] = (pModal->ob_234 & 0xf); | 
|  | ob[3] = ((pModal->ob_234 >> 4) & 0xf); | 
|  | ob[4] = ((pModal->ob_234 >> 8) & 0xf); | 
|  |  | 
|  | db1[0] = (pModal->db1_01 & 0xf); | 
|  | db1[1] = ((pModal->db1_01 >> 4) & 0xf); | 
|  | db1[2] = (pModal->db1_234 & 0xf); | 
|  | db1[3] = ((pModal->db1_234 >> 4) & 0xf); | 
|  | db1[4] = ((pModal->db1_234 >> 8) & 0xf); | 
|  |  | 
|  | db2[0] = (pModal->db2_01 & 0xf); | 
|  | db2[1] = ((pModal->db2_01 >> 4) & 0xf); | 
|  | db2[2] = (pModal->db2_234 & 0xf); | 
|  | db2[3] = ((pModal->db2_234 >> 4) & 0xf); | 
|  | db2[4] = ((pModal->db2_234 >> 8) & 0xf); | 
|  |  | 
|  | } else if (pModal->version == 1) { | 
|  |  | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, | 
|  | "EEPROM Model version is set to 1 \n"); | 
|  | ob[0] = (pModal->ob_01 & 0xf); | 
|  | ob[1] = ob[2] = ob[3] = ob[4] = (pModal->ob_01 >> 4) & 0xf; | 
|  | db1[0] = (pModal->db1_01 & 0xf); | 
|  | db1[1] = db1[2] = db1[3] = | 
|  | db1[4] = ((pModal->db1_01 >> 4) & 0xf); | 
|  | db2[0] = (pModal->db2_01 & 0xf); | 
|  | db2[1] = db2[2] = db2[3] = | 
|  | db2[4] = ((pModal->db2_01 >> 4) & 0xf); | 
|  | } else { | 
|  | int i; | 
|  | for (i = 0; i < 5; i++) { | 
|  | ob[i] = pModal->ob_01; | 
|  | db1[i] = pModal->db1_01; | 
|  | db2[i] = pModal->db1_01; | 
|  | } | 
|  | } | 
|  |  | 
|  | ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3, | 
|  | AR9285_AN_RF2G3_OB_0, AR9285_AN_RF2G3_OB_0_S, ob[0]); | 
|  | ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3, | 
|  | AR9285_AN_RF2G3_OB_1, AR9285_AN_RF2G3_OB_1_S, ob[1]); | 
|  | ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3, | 
|  | AR9285_AN_RF2G3_OB_2, AR9285_AN_RF2G3_OB_2_S, ob[2]); | 
|  | ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3, | 
|  | AR9285_AN_RF2G3_OB_3, AR9285_AN_RF2G3_OB_3_S, ob[3]); | 
|  | ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3, | 
|  | AR9285_AN_RF2G3_OB_4, AR9285_AN_RF2G3_OB_4_S, ob[4]); | 
|  |  | 
|  | ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3, | 
|  | AR9285_AN_RF2G3_DB1_0, AR9285_AN_RF2G3_DB1_0_S, db1[0]); | 
|  | ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3, | 
|  | AR9285_AN_RF2G3_DB1_1, AR9285_AN_RF2G3_DB1_1_S, db1[1]); | 
|  | ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3, | 
|  | AR9285_AN_RF2G3_DB1_2, AR9285_AN_RF2G3_DB1_2_S, db1[2]); | 
|  | ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4, | 
|  | AR9285_AN_RF2G4_DB1_3, AR9285_AN_RF2G4_DB1_3_S, db1[3]); | 
|  | ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4, | 
|  | AR9285_AN_RF2G4_DB1_4, AR9285_AN_RF2G4_DB1_4_S, db1[4]); | 
|  |  | 
|  | ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4, | 
|  | AR9285_AN_RF2G4_DB2_0, AR9285_AN_RF2G4_DB2_0_S, db2[0]); | 
|  | ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4, | 
|  | AR9285_AN_RF2G4_DB2_1, AR9285_AN_RF2G4_DB2_1_S, db2[1]); | 
|  | ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4, | 
|  | AR9285_AN_RF2G4_DB2_2, AR9285_AN_RF2G4_DB2_2_S, db2[2]); | 
|  | ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4, | 
|  | AR9285_AN_RF2G4_DB2_3, AR9285_AN_RF2G4_DB2_3_S, db2[3]); | 
|  | ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4, | 
|  | AR9285_AN_RF2G4_DB2_4, AR9285_AN_RF2G4_DB2_4_S, db2[4]); | 
|  |  | 
|  |  | 
|  | if (AR_SREV_9285_11(ah)) | 
|  | REG_WRITE(ah, AR9285_AN_TOP4, AR9285_AN_TOP4_DEFAULT); | 
|  |  | 
|  | REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, | 
|  | pModal->switchSettling); | 
|  | REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, | 
|  | pModal->adcDesiredSize); | 
|  |  | 
|  | REG_WRITE(ah, AR_PHY_RF_CTL4, | 
|  | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) | | 
|  | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) | | 
|  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)  | | 
|  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON)); | 
|  |  | 
|  | REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON, | 
|  | pModal->txEndToRxOn); | 
|  | REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62, | 
|  | pModal->thresh62); | 
|  | REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62, | 
|  | pModal->thresh62); | 
|  |  | 
|  | if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= | 
|  | AR5416_EEP_MINOR_VER_2) { | 
|  | REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START, | 
|  | pModal->txFrameToDataStart); | 
|  | REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON, | 
|  | pModal->txFrameToPaOn); | 
|  | } | 
|  |  | 
|  | if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= | 
|  | AR5416_EEP_MINOR_VER_3) { | 
|  | if (IS_CHAN_HT40(chan)) | 
|  | REG_RMW_FIELD(ah, AR_PHY_SETTLING, | 
|  | AR_PHY_SETTLING_SWITCH, | 
|  | pModal->swSettleHt40); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool (*ath9k_eeprom_set_board_values[])(struct ath_hal *, | 
|  | struct ath9k_channel *) = { | 
|  | ath9k_hw_eeprom_set_def_board_values, | 
|  | ath9k_hw_eeprom_set_4k_board_values | 
|  | }; | 
|  |  | 
|  | bool ath9k_hw_eeprom_set_board_values(struct ath_hal *ah, | 
|  | struct ath9k_channel *chan) | 
|  | { | 
|  | struct ath_hal_5416 *ahp = AH5416(ah); | 
|  |  | 
|  | return ath9k_eeprom_set_board_values[ahp->ah_eep_map](ah, chan); | 
|  | } | 
|  |  | 
|  | static u16 ath9k_hw_get_def_eeprom_antenna_cfg(struct ath_hal *ah, | 
|  | struct ath9k_channel *chan) | 
|  | { | 
|  | struct ath_hal_5416 *ahp = AH5416(ah); | 
|  | struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def; | 
|  | struct modal_eep_header *pModal = | 
|  | &(eep->modalHeader[IS_CHAN_2GHZ(chan)]); | 
|  |  | 
|  | return pModal->antCtrlCommon & 0xFFFF; | 
|  | } | 
|  |  | 
|  | static u16 ath9k_hw_get_4k_eeprom_antenna_cfg(struct ath_hal *ah, | 
|  | struct ath9k_channel *chan) | 
|  | { | 
|  | struct ath_hal_5416 *ahp = AH5416(ah); | 
|  | struct ar5416_eeprom_4k *eep = &ahp->ah_eeprom.map4k; | 
|  | struct modal_eep_4k_header *pModal = &eep->modalHeader; | 
|  |  | 
|  | return pModal->antCtrlCommon & 0xFFFF; | 
|  | } | 
|  |  | 
|  | static u16 (*ath9k_get_eeprom_antenna_cfg[])(struct ath_hal *, | 
|  | struct ath9k_channel *) = { | 
|  | ath9k_hw_get_def_eeprom_antenna_cfg, | 
|  | ath9k_hw_get_4k_eeprom_antenna_cfg | 
|  | }; | 
|  |  | 
|  | u16 ath9k_hw_get_eeprom_antenna_cfg(struct ath_hal *ah, | 
|  | struct ath9k_channel *chan) | 
|  | { | 
|  | struct ath_hal_5416 *ahp = AH5416(ah); | 
|  |  | 
|  | return ath9k_get_eeprom_antenna_cfg[ahp->ah_eep_map](ah, chan); | 
|  | } | 
|  |  | 
|  | static u8 ath9k_hw_get_4k_num_ant_config(struct ath_hal *ah, | 
|  | enum ieee80211_band freq_band) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static u8 ath9k_hw_get_def_num_ant_config(struct ath_hal *ah, | 
|  | enum ieee80211_band freq_band) | 
|  | { | 
|  | struct ath_hal_5416 *ahp = AH5416(ah); | 
|  | struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def; | 
|  | struct modal_eep_header *pModal = | 
|  | &(eep->modalHeader[ATH9K_HAL_FREQ_BAND_2GHZ == freq_band]); | 
|  | struct base_eep_header *pBase = &eep->baseEepHeader; | 
|  | u8 num_ant_config; | 
|  |  | 
|  | num_ant_config = 1; | 
|  |  | 
|  | if (pBase->version >= 0x0E0D) | 
|  | if (pModal->useAnt1) | 
|  | num_ant_config += 1; | 
|  |  | 
|  | return num_ant_config; | 
|  | } | 
|  |  | 
|  | static u8 (*ath9k_get_num_ant_config[])(struct ath_hal *, | 
|  | enum ieee80211_band) = { | 
|  | ath9k_hw_get_def_num_ant_config, | 
|  | ath9k_hw_get_4k_num_ant_config | 
|  | }; | 
|  |  | 
|  | u8 ath9k_hw_get_num_ant_config(struct ath_hal *ah, | 
|  | enum ieee80211_band freq_band) | 
|  | { | 
|  | struct ath_hal_5416 *ahp = AH5416(ah); | 
|  |  | 
|  | return ath9k_get_num_ant_config[ahp->ah_eep_map](ah, freq_band); | 
|  | } | 
|  |  | 
|  | u16 ath9k_hw_eeprom_get_spur_chan(struct ath_hal *ah, u16 i, bool is2GHz) | 
|  | { | 
|  | #define EEP_MAP4K_SPURCHAN \ | 
|  | (ahp->ah_eeprom.map4k.modalHeader.spurChans[i].spurChan) | 
|  | #define EEP_DEF_SPURCHAN \ | 
|  | (ahp->ah_eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan) | 
|  | struct ath_hal_5416 *ahp = AH5416(ah); | 
|  | u16 spur_val = AR_NO_SPUR; | 
|  |  | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_ANI, | 
|  | "Getting spur idx %d is2Ghz. %d val %x\n", | 
|  | i, is2GHz, ah->ah_config.spurchans[i][is2GHz]); | 
|  |  | 
|  | switch (ah->ah_config.spurmode) { | 
|  | case SPUR_DISABLE: | 
|  | break; | 
|  | case SPUR_ENABLE_IOCTL: | 
|  | spur_val = ah->ah_config.spurchans[i][is2GHz]; | 
|  | DPRINTF(ah->ah_sc, ATH_DBG_ANI, | 
|  | "Getting spur val from new loc. %d\n", spur_val); | 
|  | break; | 
|  | case SPUR_ENABLE_EEPROM: | 
|  | if (ahp->ah_eep_map == EEP_MAP_4KBITS) | 
|  | spur_val = EEP_MAP4K_SPURCHAN; | 
|  | else | 
|  | spur_val = EEP_DEF_SPURCHAN; | 
|  | break; | 
|  |  | 
|  | } | 
|  |  | 
|  | return spur_val; | 
|  | #undef EEP_DEF_SPURCHAN | 
|  | #undef EEP_MAP4K_SPURCHAN | 
|  | } | 
|  |  | 
|  | static u32 ath9k_hw_get_eeprom_4k(struct ath_hal *ah, | 
|  | enum eeprom_param param) | 
|  | { | 
|  | struct ath_hal_5416 *ahp = AH5416(ah); | 
|  | struct ar5416_eeprom_4k *eep = &ahp->ah_eeprom.map4k; | 
|  | struct modal_eep_4k_header *pModal = &eep->modalHeader; | 
|  | struct base_eep_header_4k *pBase = &eep->baseEepHeader; | 
|  |  | 
|  | switch (param) { | 
|  | case EEP_NFTHRESH_2: | 
|  | return pModal[1].noiseFloorThreshCh[0]; | 
|  | case AR_EEPROM_MAC(0): | 
|  | return pBase->macAddr[0] << 8 | pBase->macAddr[1]; | 
|  | case AR_EEPROM_MAC(1): | 
|  | return pBase->macAddr[2] << 8 | pBase->macAddr[3]; | 
|  | case AR_EEPROM_MAC(2): | 
|  | return pBase->macAddr[4] << 8 | pBase->macAddr[5]; | 
|  | case EEP_REG_0: | 
|  | return pBase->regDmn[0]; | 
|  | case EEP_REG_1: | 
|  | return pBase->regDmn[1]; | 
|  | case EEP_OP_CAP: | 
|  | return pBase->deviceCap; | 
|  | case EEP_OP_MODE: | 
|  | return pBase->opCapFlags; | 
|  | case EEP_RF_SILENT: | 
|  | return pBase->rfSilent; | 
|  | case EEP_OB_2: | 
|  | return pModal->ob_01; | 
|  | case EEP_DB_2: | 
|  | return pModal->db1_01; | 
|  | case EEP_MINOR_REV: | 
|  | return pBase->version & AR5416_EEP_VER_MINOR_MASK; | 
|  | case EEP_TX_MASK: | 
|  | return pBase->txMask; | 
|  | case EEP_RX_MASK: | 
|  | return pBase->rxMask; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static u32 ath9k_hw_get_eeprom_def(struct ath_hal *ah, | 
|  | enum eeprom_param param) | 
|  | { | 
|  | #define AR5416_VER_MASK (pBase->version & AR5416_EEP_VER_MINOR_MASK) | 
|  | struct ath_hal_5416 *ahp = AH5416(ah); | 
|  | struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def; | 
|  | struct modal_eep_header *pModal = eep->modalHeader; | 
|  | struct base_eep_header *pBase = &eep->baseEepHeader; | 
|  |  | 
|  | switch (param) { | 
|  | case EEP_NFTHRESH_5: | 
|  | return pModal[0].noiseFloorThreshCh[0]; | 
|  | case EEP_NFTHRESH_2: | 
|  | return pModal[1].noiseFloorThreshCh[0]; | 
|  | case AR_EEPROM_MAC(0): | 
|  | return pBase->macAddr[0] << 8 | pBase->macAddr[1]; | 
|  | case AR_EEPROM_MAC(1): | 
|  | return pBase->macAddr[2] << 8 | pBase->macAddr[3]; | 
|  | case AR_EEPROM_MAC(2): | 
|  | return pBase->macAddr[4] << 8 | pBase->macAddr[5]; | 
|  | case EEP_REG_0: | 
|  | return pBase->regDmn[0]; | 
|  | case EEP_REG_1: | 
|  | return pBase->regDmn[1]; | 
|  | case EEP_OP_CAP: | 
|  | return pBase->deviceCap; | 
|  | case EEP_OP_MODE: | 
|  | return pBase->opCapFlags; | 
|  | case EEP_RF_SILENT: | 
|  | return pBase->rfSilent; | 
|  | case EEP_OB_5: | 
|  | return pModal[0].ob; | 
|  | case EEP_DB_5: | 
|  | return pModal[0].db; | 
|  | case EEP_OB_2: | 
|  | return pModal[1].ob; | 
|  | case EEP_DB_2: | 
|  | return pModal[1].db; | 
|  | case EEP_MINOR_REV: | 
|  | return AR5416_VER_MASK; | 
|  | case EEP_TX_MASK: | 
|  | return pBase->txMask; | 
|  | case EEP_RX_MASK: | 
|  | return pBase->rxMask; | 
|  | case EEP_RXGAIN_TYPE: | 
|  | return pBase->rxGainType; | 
|  | case EEP_TXGAIN_TYPE: | 
|  | return pBase->txGainType; | 
|  | case EEP_DAC_HPWR_5G: | 
|  | if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) | 
|  | return pBase->dacHiPwrMode_5G; | 
|  | else | 
|  | return 0; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | #undef AR5416_VER_MASK | 
|  | } | 
|  |  | 
|  | static u32 (*ath9k_get_eeprom[])(struct ath_hal *, enum eeprom_param) = { | 
|  | ath9k_hw_get_eeprom_def, | 
|  | ath9k_hw_get_eeprom_4k | 
|  | }; | 
|  |  | 
|  | u32 ath9k_hw_get_eeprom(struct ath_hal *ah, | 
|  | enum eeprom_param param) | 
|  | { | 
|  | struct ath_hal_5416 *ahp = AH5416(ah); | 
|  |  | 
|  | return ath9k_get_eeprom[ahp->ah_eep_map](ah, param); | 
|  | } | 
|  |  | 
|  | int ath9k_hw_eeprom_attach(struct ath_hal *ah) | 
|  | { | 
|  | int status; | 
|  | struct ath_hal_5416 *ahp = AH5416(ah); | 
|  |  | 
|  | if (AR_SREV_9285(ah)) | 
|  | ahp->ah_eep_map = EEP_MAP_4KBITS; | 
|  | else | 
|  | ahp->ah_eep_map = EEP_MAP_DEFAULT; | 
|  |  | 
|  | if (!ath9k_hw_fill_eeprom(ah)) | 
|  | return -EIO; | 
|  |  | 
|  | status = ath9k_hw_check_eeprom(ah); | 
|  |  | 
|  | return status; | 
|  | } |