|  | /* | 
|  | * Copyright (c) 2008 Atheros Communications Inc. | 
|  | * | 
|  | * Permission to use, copy, modify, and/or distribute this software for any | 
|  | * purpose with or without fee is hereby granted, provided that the above | 
|  | * copyright notice and this permission notice appear in all copies. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | 
|  | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | 
|  | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | 
|  | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | 
|  | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | 
|  | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | 
|  | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | 
|  | */ | 
|  |  | 
|  | #include "core.h" | 
|  |  | 
|  | #define BITS_PER_BYTE           8 | 
|  | #define OFDM_PLCP_BITS          22 | 
|  | #define HT_RC_2_MCS(_rc)        ((_rc) & 0x0f) | 
|  | #define HT_RC_2_STREAMS(_rc)    ((((_rc) & 0x78) >> 3) + 1) | 
|  | #define L_STF                   8 | 
|  | #define L_LTF                   8 | 
|  | #define L_SIG                   4 | 
|  | #define HT_SIG                  8 | 
|  | #define HT_STF                  4 | 
|  | #define HT_LTF(_ns)             (4 * (_ns)) | 
|  | #define SYMBOL_TIME(_ns)        ((_ns) << 2) /* ns * 4 us */ | 
|  | #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5)  /* ns * 3.6 us */ | 
|  | #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2) | 
|  | #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18) | 
|  |  | 
|  | #define OFDM_SIFS_TIME    	    16 | 
|  |  | 
|  | static u32 bits_per_symbol[][2] = { | 
|  | /* 20MHz 40MHz */ | 
|  | {    26,   54 },     /*  0: BPSK */ | 
|  | {    52,  108 },     /*  1: QPSK 1/2 */ | 
|  | {    78,  162 },     /*  2: QPSK 3/4 */ | 
|  | {   104,  216 },     /*  3: 16-QAM 1/2 */ | 
|  | {   156,  324 },     /*  4: 16-QAM 3/4 */ | 
|  | {   208,  432 },     /*  5: 64-QAM 2/3 */ | 
|  | {   234,  486 },     /*  6: 64-QAM 3/4 */ | 
|  | {   260,  540 },     /*  7: 64-QAM 5/6 */ | 
|  | {    52,  108 },     /*  8: BPSK */ | 
|  | {   104,  216 },     /*  9: QPSK 1/2 */ | 
|  | {   156,  324 },     /* 10: QPSK 3/4 */ | 
|  | {   208,  432 },     /* 11: 16-QAM 1/2 */ | 
|  | {   312,  648 },     /* 12: 16-QAM 3/4 */ | 
|  | {   416,  864 },     /* 13: 64-QAM 2/3 */ | 
|  | {   468,  972 },     /* 14: 64-QAM 3/4 */ | 
|  | {   520, 1080 },     /* 15: 64-QAM 5/6 */ | 
|  | }; | 
|  |  | 
|  | #define IS_HT_RATE(_rate)     ((_rate) & 0x80) | 
|  |  | 
|  | static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, | 
|  | struct ath_atx_tid *tid, | 
|  | struct list_head *bf_head); | 
|  | static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, | 
|  | struct list_head *bf_q, | 
|  | int txok, int sendbar); | 
|  | static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, | 
|  | struct list_head *head); | 
|  | static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf); | 
|  |  | 
|  | /*********************/ | 
|  | /* Aggregation logic */ | 
|  | /*********************/ | 
|  |  | 
|  | static int ath_aggr_query(struct ath_softc *sc, struct ath_node *an, u8 tidno) | 
|  | { | 
|  | struct ath_atx_tid *tid; | 
|  | tid = ATH_AN_2_TID(an, tidno); | 
|  |  | 
|  | if (tid->state & AGGR_ADDBA_COMPLETE || | 
|  | tid->state & AGGR_ADDBA_PROGRESS) | 
|  | return 1; | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid) | 
|  | { | 
|  | struct ath_atx_ac *ac = tid->ac; | 
|  |  | 
|  | if (tid->paused) | 
|  | return; | 
|  |  | 
|  | if (tid->sched) | 
|  | return; | 
|  |  | 
|  | tid->sched = true; | 
|  | list_add_tail(&tid->list, &ac->tid_q); | 
|  |  | 
|  | if (ac->sched) | 
|  | return; | 
|  |  | 
|  | ac->sched = true; | 
|  | list_add_tail(&ac->list, &txq->axq_acq); | 
|  | } | 
|  |  | 
|  | static void ath_tx_pause_tid(struct ath_softc *sc, struct ath_atx_tid *tid) | 
|  | { | 
|  | struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum]; | 
|  |  | 
|  | spin_lock_bh(&txq->axq_lock); | 
|  | tid->paused++; | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  | } | 
|  |  | 
|  | static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid) | 
|  | { | 
|  | struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum]; | 
|  |  | 
|  | ASSERT(tid->paused > 0); | 
|  | spin_lock_bh(&txq->axq_lock); | 
|  |  | 
|  | tid->paused--; | 
|  |  | 
|  | if (tid->paused > 0) | 
|  | goto unlock; | 
|  |  | 
|  | if (list_empty(&tid->buf_q)) | 
|  | goto unlock; | 
|  |  | 
|  | ath_tx_queue_tid(txq, tid); | 
|  | ath_txq_schedule(sc, txq); | 
|  | unlock: | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  | } | 
|  |  | 
|  | static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid) | 
|  | { | 
|  | struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum]; | 
|  | struct ath_buf *bf; | 
|  | struct list_head bf_head; | 
|  | INIT_LIST_HEAD(&bf_head); | 
|  |  | 
|  | ASSERT(tid->paused > 0); | 
|  | spin_lock_bh(&txq->axq_lock); | 
|  |  | 
|  | tid->paused--; | 
|  |  | 
|  | if (tid->paused > 0) { | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | while (!list_empty(&tid->buf_q)) { | 
|  | bf = list_first_entry(&tid->buf_q, struct ath_buf, list); | 
|  | ASSERT(!bf_isretried(bf)); | 
|  | list_move_tail(&bf->list, &bf_head); | 
|  | ath_tx_send_normal(sc, txq, tid, &bf_head); | 
|  | } | 
|  |  | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  | } | 
|  |  | 
|  | static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, | 
|  | int seqno) | 
|  | { | 
|  | int index, cindex; | 
|  |  | 
|  | index  = ATH_BA_INDEX(tid->seq_start, seqno); | 
|  | cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); | 
|  |  | 
|  | tid->tx_buf[cindex] = NULL; | 
|  |  | 
|  | while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) { | 
|  | INCR(tid->seq_start, IEEE80211_SEQ_MAX); | 
|  | INCR(tid->baw_head, ATH_TID_MAX_BUFS); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid, | 
|  | struct ath_buf *bf) | 
|  | { | 
|  | int index, cindex; | 
|  |  | 
|  | if (bf_isretried(bf)) | 
|  | return; | 
|  |  | 
|  | index  = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno); | 
|  | cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); | 
|  |  | 
|  | ASSERT(tid->tx_buf[cindex] == NULL); | 
|  | tid->tx_buf[cindex] = bf; | 
|  |  | 
|  | if (index >= ((tid->baw_tail - tid->baw_head) & | 
|  | (ATH_TID_MAX_BUFS - 1))) { | 
|  | tid->baw_tail = cindex; | 
|  | INCR(tid->baw_tail, ATH_TID_MAX_BUFS); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * TODO: For frame(s) that are in the retry state, we will reuse the | 
|  | * sequence number(s) without setting the retry bit. The | 
|  | * alternative is to give up on these and BAR the receiver's window | 
|  | * forward. | 
|  | */ | 
|  | static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq, | 
|  | struct ath_atx_tid *tid) | 
|  |  | 
|  | { | 
|  | struct ath_buf *bf; | 
|  | struct list_head bf_head; | 
|  | INIT_LIST_HEAD(&bf_head); | 
|  |  | 
|  | for (;;) { | 
|  | if (list_empty(&tid->buf_q)) | 
|  | break; | 
|  |  | 
|  | bf = list_first_entry(&tid->buf_q, struct ath_buf, list); | 
|  | list_move_tail(&bf->list, &bf_head); | 
|  |  | 
|  | if (bf_isretried(bf)) | 
|  | ath_tx_update_baw(sc, tid, bf->bf_seqno); | 
|  |  | 
|  | spin_unlock(&txq->axq_lock); | 
|  | ath_tx_complete_buf(sc, bf, &bf_head, 0, 0); | 
|  | spin_lock(&txq->axq_lock); | 
|  | } | 
|  |  | 
|  | tid->seq_next = tid->seq_start; | 
|  | tid->baw_tail = tid->baw_head; | 
|  | } | 
|  |  | 
|  | static void ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  | struct ieee80211_hdr *hdr; | 
|  |  | 
|  | bf->bf_state.bf_type |= BUF_RETRY; | 
|  | bf->bf_retries++; | 
|  |  | 
|  | skb = bf->bf_mpdu; | 
|  | hdr = (struct ieee80211_hdr *)skb->data; | 
|  | hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY); | 
|  | } | 
|  |  | 
|  | static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf) | 
|  | { | 
|  | struct ath_buf *tbf; | 
|  |  | 
|  | spin_lock_bh(&sc->tx.txbuflock); | 
|  | ASSERT(!list_empty((&sc->tx.txbuf))); | 
|  | tbf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list); | 
|  | list_del(&tbf->list); | 
|  | spin_unlock_bh(&sc->tx.txbuflock); | 
|  |  | 
|  | ATH_TXBUF_RESET(tbf); | 
|  |  | 
|  | tbf->bf_mpdu = bf->bf_mpdu; | 
|  | tbf->bf_buf_addr = bf->bf_buf_addr; | 
|  | *(tbf->bf_desc) = *(bf->bf_desc); | 
|  | tbf->bf_state = bf->bf_state; | 
|  | tbf->bf_dmacontext = bf->bf_dmacontext; | 
|  |  | 
|  | return tbf; | 
|  | } | 
|  |  | 
|  | static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq, | 
|  | struct ath_buf *bf, struct list_head *bf_q, | 
|  | int txok) | 
|  | { | 
|  | struct ath_node *an = NULL; | 
|  | struct sk_buff *skb; | 
|  | struct ieee80211_tx_info *tx_info; | 
|  | struct ath_atx_tid *tid = NULL; | 
|  | struct ath_buf *bf_next, *bf_last = bf->bf_lastbf; | 
|  | struct ath_desc *ds = bf_last->bf_desc; | 
|  | struct list_head bf_head, bf_pending; | 
|  | u16 seq_st = 0; | 
|  | u32 ba[WME_BA_BMP_SIZE >> 5]; | 
|  | int isaggr, txfail, txpending, sendbar = 0, needreset = 0; | 
|  |  | 
|  | skb = (struct sk_buff *)bf->bf_mpdu; | 
|  | tx_info = IEEE80211_SKB_CB(skb); | 
|  |  | 
|  | if (tx_info->control.sta) { | 
|  | an = (struct ath_node *)tx_info->control.sta->drv_priv; | 
|  | tid = ATH_AN_2_TID(an, bf->bf_tidno); | 
|  | } | 
|  |  | 
|  | isaggr = bf_isaggr(bf); | 
|  | memset(ba, 0, WME_BA_BMP_SIZE >> 3); | 
|  |  | 
|  | if (isaggr && txok) { | 
|  | if (ATH_DS_TX_BA(ds)) { | 
|  | seq_st = ATH_DS_BA_SEQ(ds); | 
|  | memcpy(ba, ATH_DS_BA_BITMAP(ds), | 
|  | WME_BA_BMP_SIZE >> 3); | 
|  | } else { | 
|  | /* | 
|  | * AR5416 can become deaf/mute when BA | 
|  | * issue happens. Chip needs to be reset. | 
|  | * But AP code may have sychronization issues | 
|  | * when perform internal reset in this routine. | 
|  | * Only enable reset in STA mode for now. | 
|  | */ | 
|  | if (sc->sc_ah->ah_opmode == NL80211_IFTYPE_STATION) | 
|  | needreset = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | INIT_LIST_HEAD(&bf_pending); | 
|  | INIT_LIST_HEAD(&bf_head); | 
|  |  | 
|  | while (bf) { | 
|  | txfail = txpending = 0; | 
|  | bf_next = bf->bf_next; | 
|  |  | 
|  | if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) { | 
|  | /* transmit completion, subframe is | 
|  | * acked by block ack */ | 
|  | } else if (!isaggr && txok) { | 
|  | /* transmit completion */ | 
|  | } else { | 
|  | if (!(tid->state & AGGR_CLEANUP) && | 
|  | ds->ds_txstat.ts_flags != ATH9K_TX_SW_ABORTED) { | 
|  | if (bf->bf_retries < ATH_MAX_SW_RETRIES) { | 
|  | ath_tx_set_retry(sc, bf); | 
|  | txpending = 1; | 
|  | } else { | 
|  | bf->bf_state.bf_type |= BUF_XRETRY; | 
|  | txfail = 1; | 
|  | sendbar = 1; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * cleanup in progress, just fail | 
|  | * the un-acked sub-frames | 
|  | */ | 
|  | txfail = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (bf_next == NULL) { | 
|  | INIT_LIST_HEAD(&bf_head); | 
|  | } else { | 
|  | ASSERT(!list_empty(bf_q)); | 
|  | list_move_tail(&bf->list, &bf_head); | 
|  | } | 
|  |  | 
|  | if (!txpending) { | 
|  | /* | 
|  | * complete the acked-ones/xretried ones; update | 
|  | * block-ack window | 
|  | */ | 
|  | spin_lock_bh(&txq->axq_lock); | 
|  | ath_tx_update_baw(sc, tid, bf->bf_seqno); | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  |  | 
|  | ath_tx_complete_buf(sc, bf, &bf_head, !txfail, sendbar); | 
|  | } else { | 
|  | /* retry the un-acked ones */ | 
|  | if (bf->bf_next == NULL && | 
|  | bf_last->bf_status & ATH_BUFSTATUS_STALE) { | 
|  | struct ath_buf *tbf; | 
|  |  | 
|  | tbf = ath_clone_txbuf(sc, bf_last); | 
|  | ath9k_hw_cleartxdesc(sc->sc_ah, tbf->bf_desc); | 
|  | list_add_tail(&tbf->list, &bf_head); | 
|  | } else { | 
|  | /* | 
|  | * Clear descriptor status words for | 
|  | * software retry | 
|  | */ | 
|  | ath9k_hw_cleartxdesc(sc->sc_ah, bf->bf_desc); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Put this buffer to the temporary pending | 
|  | * queue to retain ordering | 
|  | */ | 
|  | list_splice_tail_init(&bf_head, &bf_pending); | 
|  | } | 
|  |  | 
|  | bf = bf_next; | 
|  | } | 
|  |  | 
|  | if (tid->state & AGGR_CLEANUP) { | 
|  | if (tid->baw_head == tid->baw_tail) { | 
|  | tid->state &= ~AGGR_ADDBA_COMPLETE; | 
|  | tid->addba_exchangeattempts = 0; | 
|  | tid->state &= ~AGGR_CLEANUP; | 
|  |  | 
|  | /* send buffered frames as singles */ | 
|  | ath_tx_flush_tid(sc, tid); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* prepend un-acked frames to the beginning of the pending frame queue */ | 
|  | if (!list_empty(&bf_pending)) { | 
|  | spin_lock_bh(&txq->axq_lock); | 
|  | list_splice(&bf_pending, &tid->buf_q); | 
|  | ath_tx_queue_tid(txq, tid); | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  | } | 
|  |  | 
|  | if (needreset) | 
|  | ath_reset(sc, false); | 
|  | } | 
|  |  | 
|  | static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf, | 
|  | struct ath_atx_tid *tid) | 
|  | { | 
|  | struct ath_rate_table *rate_table = sc->cur_rate_table; | 
|  | struct sk_buff *skb; | 
|  | struct ieee80211_tx_info *tx_info; | 
|  | struct ieee80211_tx_rate *rates; | 
|  | struct ath_tx_info_priv *tx_info_priv; | 
|  | u32 max_4ms_framelen, frmlen; | 
|  | u16 aggr_limit, legacy = 0, maxampdu; | 
|  | int i; | 
|  |  | 
|  | skb = (struct sk_buff *)bf->bf_mpdu; | 
|  | tx_info = IEEE80211_SKB_CB(skb); | 
|  | rates = tx_info->control.rates; | 
|  | tx_info_priv = (struct ath_tx_info_priv *)tx_info->rate_driver_data[0]; | 
|  |  | 
|  | /* | 
|  | * Find the lowest frame length among the rate series that will have a | 
|  | * 4ms transmit duration. | 
|  | * TODO - TXOP limit needs to be considered. | 
|  | */ | 
|  | max_4ms_framelen = ATH_AMPDU_LIMIT_MAX; | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | if (rates[i].count) { | 
|  | if (!WLAN_RC_PHY_HT(rate_table->info[rates[i].idx].phy)) { | 
|  | legacy = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | frmlen = rate_table->info[rates[i].idx].max_4ms_framelen; | 
|  | max_4ms_framelen = min(max_4ms_framelen, frmlen); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * limit aggregate size by the minimum rate if rate selected is | 
|  | * not a probe rate, if rate selected is a probe rate then | 
|  | * avoid aggregation of this packet. | 
|  | */ | 
|  | if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy) | 
|  | return 0; | 
|  |  | 
|  | aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_DEFAULT); | 
|  |  | 
|  | /* | 
|  | * h/w can accept aggregates upto 16 bit lengths (65535). | 
|  | * The IE, however can hold upto 65536, which shows up here | 
|  | * as zero. Ignore 65536 since we  are constrained by hw. | 
|  | */ | 
|  | maxampdu = tid->an->maxampdu; | 
|  | if (maxampdu) | 
|  | aggr_limit = min(aggr_limit, maxampdu); | 
|  |  | 
|  | return aggr_limit; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns the number of delimiters to be added to | 
|  | * meet the minimum required mpdudensity. | 
|  | * caller should make sure that the rate is HT rate . | 
|  | */ | 
|  | static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid, | 
|  | struct ath_buf *bf, u16 frmlen) | 
|  | { | 
|  | struct ath_rate_table *rt = sc->cur_rate_table; | 
|  | struct sk_buff *skb = bf->bf_mpdu; | 
|  | struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); | 
|  | u32 nsymbits, nsymbols, mpdudensity; | 
|  | u16 minlen; | 
|  | u8 rc, flags, rix; | 
|  | int width, half_gi, ndelim, mindelim; | 
|  |  | 
|  | /* Select standard number of delimiters based on frame length alone */ | 
|  | ndelim = ATH_AGGR_GET_NDELIM(frmlen); | 
|  |  | 
|  | /* | 
|  | * If encryption enabled, hardware requires some more padding between | 
|  | * subframes. | 
|  | * TODO - this could be improved to be dependent on the rate. | 
|  | *      The hardware can keep up at lower rates, but not higher rates | 
|  | */ | 
|  | if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) | 
|  | ndelim += ATH_AGGR_ENCRYPTDELIM; | 
|  |  | 
|  | /* | 
|  | * Convert desired mpdu density from microeconds to bytes based | 
|  | * on highest rate in rate series (i.e. first rate) to determine | 
|  | * required minimum length for subframe. Take into account | 
|  | * whether high rate is 20 or 40Mhz and half or full GI. | 
|  | */ | 
|  | mpdudensity = tid->an->mpdudensity; | 
|  |  | 
|  | /* | 
|  | * If there is no mpdu density restriction, no further calculation | 
|  | * is needed. | 
|  | */ | 
|  | if (mpdudensity == 0) | 
|  | return ndelim; | 
|  |  | 
|  | rix = tx_info->control.rates[0].idx; | 
|  | flags = tx_info->control.rates[0].flags; | 
|  | rc = rt->info[rix].ratecode; | 
|  | width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0; | 
|  | half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0; | 
|  |  | 
|  | if (half_gi) | 
|  | nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(mpdudensity); | 
|  | else | 
|  | nsymbols = NUM_SYMBOLS_PER_USEC(mpdudensity); | 
|  |  | 
|  | if (nsymbols == 0) | 
|  | nsymbols = 1; | 
|  |  | 
|  | nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width]; | 
|  | minlen = (nsymbols * nsymbits) / BITS_PER_BYTE; | 
|  |  | 
|  | if (frmlen < minlen) { | 
|  | mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ; | 
|  | ndelim = max(mindelim, ndelim); | 
|  | } | 
|  |  | 
|  | return ndelim; | 
|  | } | 
|  |  | 
|  | static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc, | 
|  | struct ath_atx_tid *tid, | 
|  | struct list_head *bf_q) | 
|  | { | 
|  | #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4) | 
|  | struct ath_buf *bf, *bf_first, *bf_prev = NULL; | 
|  | int rl = 0, nframes = 0, ndelim, prev_al = 0; | 
|  | u16 aggr_limit = 0, al = 0, bpad = 0, | 
|  | al_delta, h_baw = tid->baw_size / 2; | 
|  | enum ATH_AGGR_STATUS status = ATH_AGGR_DONE; | 
|  |  | 
|  | bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list); | 
|  |  | 
|  | do { | 
|  | bf = list_first_entry(&tid->buf_q, struct ath_buf, list); | 
|  |  | 
|  | /* do not step over block-ack window */ | 
|  | if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) { | 
|  | status = ATH_AGGR_BAW_CLOSED; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!rl) { | 
|  | aggr_limit = ath_lookup_rate(sc, bf, tid); | 
|  | rl = 1; | 
|  | } | 
|  |  | 
|  | /* do not exceed aggregation limit */ | 
|  | al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen; | 
|  |  | 
|  | if (nframes && | 
|  | (aggr_limit < (al + bpad + al_delta + prev_al))) { | 
|  | status = ATH_AGGR_LIMITED; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* do not exceed subframe limit */ | 
|  | if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) { | 
|  | status = ATH_AGGR_LIMITED; | 
|  | break; | 
|  | } | 
|  | nframes++; | 
|  |  | 
|  | /* add padding for previous frame to aggregation length */ | 
|  | al += bpad + al_delta; | 
|  |  | 
|  | /* | 
|  | * Get the delimiters needed to meet the MPDU | 
|  | * density for this node. | 
|  | */ | 
|  | ndelim = ath_compute_num_delims(sc, tid, bf_first, bf->bf_frmlen); | 
|  | bpad = PADBYTES(al_delta) + (ndelim << 2); | 
|  |  | 
|  | bf->bf_next = NULL; | 
|  | bf->bf_desc->ds_link = 0; | 
|  |  | 
|  | /* link buffers of this frame to the aggregate */ | 
|  | ath_tx_addto_baw(sc, tid, bf); | 
|  | ath9k_hw_set11n_aggr_middle(sc->sc_ah, bf->bf_desc, ndelim); | 
|  | list_move_tail(&bf->list, bf_q); | 
|  | if (bf_prev) { | 
|  | bf_prev->bf_next = bf; | 
|  | bf_prev->bf_desc->ds_link = bf->bf_daddr; | 
|  | } | 
|  | bf_prev = bf; | 
|  | } while (!list_empty(&tid->buf_q)); | 
|  |  | 
|  | bf_first->bf_al = al; | 
|  | bf_first->bf_nframes = nframes; | 
|  |  | 
|  | return status; | 
|  | #undef PADBYTES | 
|  | } | 
|  |  | 
|  | static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq, | 
|  | struct ath_atx_tid *tid) | 
|  | { | 
|  | struct ath_buf *bf; | 
|  | enum ATH_AGGR_STATUS status; | 
|  | struct list_head bf_q; | 
|  |  | 
|  | do { | 
|  | if (list_empty(&tid->buf_q)) | 
|  | return; | 
|  |  | 
|  | INIT_LIST_HEAD(&bf_q); | 
|  |  | 
|  | status = ath_tx_form_aggr(sc, tid, &bf_q); | 
|  |  | 
|  | /* | 
|  | * no frames picked up to be aggregated; | 
|  | * block-ack window is not open. | 
|  | */ | 
|  | if (list_empty(&bf_q)) | 
|  | break; | 
|  |  | 
|  | bf = list_first_entry(&bf_q, struct ath_buf, list); | 
|  | bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list); | 
|  |  | 
|  | /* if only one frame, send as non-aggregate */ | 
|  | if (bf->bf_nframes == 1) { | 
|  | bf->bf_state.bf_type &= ~BUF_AGGR; | 
|  | ath9k_hw_clr11n_aggr(sc->sc_ah, bf->bf_desc); | 
|  | ath_buf_set_rate(sc, bf); | 
|  | ath_tx_txqaddbuf(sc, txq, &bf_q); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* setup first desc of aggregate */ | 
|  | bf->bf_state.bf_type |= BUF_AGGR; | 
|  | ath_buf_set_rate(sc, bf); | 
|  | ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al); | 
|  |  | 
|  | /* anchor last desc of aggregate */ | 
|  | ath9k_hw_set11n_aggr_last(sc->sc_ah, bf->bf_lastbf->bf_desc); | 
|  |  | 
|  | txq->axq_aggr_depth++; | 
|  | ath_tx_txqaddbuf(sc, txq, &bf_q); | 
|  |  | 
|  | } while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH && | 
|  | status != ATH_AGGR_BAW_CLOSED); | 
|  | } | 
|  |  | 
|  | int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta, | 
|  | u16 tid, u16 *ssn) | 
|  | { | 
|  | struct ath_atx_tid *txtid; | 
|  | struct ath_node *an; | 
|  |  | 
|  | an = (struct ath_node *)sta->drv_priv; | 
|  |  | 
|  | if (sc->sc_flags & SC_OP_TXAGGR) { | 
|  | txtid = ATH_AN_2_TID(an, tid); | 
|  | txtid->state |= AGGR_ADDBA_PROGRESS; | 
|  | ath_tx_pause_tid(sc, txtid); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid) | 
|  | { | 
|  | struct ath_node *an = (struct ath_node *)sta->drv_priv; | 
|  | struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid); | 
|  | struct ath_txq *txq = &sc->tx.txq[txtid->ac->qnum]; | 
|  | struct ath_buf *bf; | 
|  | struct list_head bf_head; | 
|  | INIT_LIST_HEAD(&bf_head); | 
|  |  | 
|  | if (txtid->state & AGGR_CLEANUP) | 
|  | return 0; | 
|  |  | 
|  | if (!(txtid->state & AGGR_ADDBA_COMPLETE)) { | 
|  | txtid->addba_exchangeattempts = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ath_tx_pause_tid(sc, txtid); | 
|  |  | 
|  | /* drop all software retried frames and mark this TID */ | 
|  | spin_lock_bh(&txq->axq_lock); | 
|  | while (!list_empty(&txtid->buf_q)) { | 
|  | bf = list_first_entry(&txtid->buf_q, struct ath_buf, list); | 
|  | if (!bf_isretried(bf)) { | 
|  | /* | 
|  | * NB: it's based on the assumption that | 
|  | * software retried frame will always stay | 
|  | * at the head of software queue. | 
|  | */ | 
|  | break; | 
|  | } | 
|  | list_move_tail(&bf->list, &bf_head); | 
|  | ath_tx_update_baw(sc, txtid, bf->bf_seqno); | 
|  | ath_tx_complete_buf(sc, bf, &bf_head, 0, 0); | 
|  | } | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  |  | 
|  | if (txtid->baw_head != txtid->baw_tail) { | 
|  | txtid->state |= AGGR_CLEANUP; | 
|  | } else { | 
|  | txtid->state &= ~AGGR_ADDBA_COMPLETE; | 
|  | txtid->addba_exchangeattempts = 0; | 
|  | ath_tx_flush_tid(sc, txtid); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid) | 
|  | { | 
|  | struct ath_atx_tid *txtid; | 
|  | struct ath_node *an; | 
|  |  | 
|  | an = (struct ath_node *)sta->drv_priv; | 
|  |  | 
|  | if (sc->sc_flags & SC_OP_TXAGGR) { | 
|  | txtid = ATH_AN_2_TID(an, tid); | 
|  | txtid->baw_size = | 
|  | IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor; | 
|  | txtid->state |= AGGR_ADDBA_COMPLETE; | 
|  | txtid->state &= ~AGGR_ADDBA_PROGRESS; | 
|  | ath_tx_resume_tid(sc, txtid); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool ath_tx_aggr_check(struct ath_softc *sc, struct ath_node *an, u8 tidno) | 
|  | { | 
|  | struct ath_atx_tid *txtid; | 
|  |  | 
|  | if (!(sc->sc_flags & SC_OP_TXAGGR)) | 
|  | return false; | 
|  |  | 
|  | txtid = ATH_AN_2_TID(an, tidno); | 
|  |  | 
|  | if (!(txtid->state & AGGR_ADDBA_COMPLETE)) { | 
|  | if (!(txtid->state & AGGR_ADDBA_PROGRESS) && | 
|  | (txtid->addba_exchangeattempts < ADDBA_EXCHANGE_ATTEMPTS)) { | 
|  | txtid->addba_exchangeattempts++; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /********************/ | 
|  | /* Queue Management */ | 
|  | /********************/ | 
|  |  | 
|  | static u32 ath_txq_depth(struct ath_softc *sc, int qnum) | 
|  | { | 
|  | return sc->tx.txq[qnum].axq_depth; | 
|  | } | 
|  |  | 
|  | static void ath_get_beaconconfig(struct ath_softc *sc, int if_id, | 
|  | struct ath_beacon_config *conf) | 
|  | { | 
|  | struct ieee80211_hw *hw = sc->hw; | 
|  |  | 
|  | /* fill in beacon config data */ | 
|  |  | 
|  | conf->beacon_interval = hw->conf.beacon_int; | 
|  | conf->listen_interval = 100; | 
|  | conf->dtim_count = 1; | 
|  | conf->bmiss_timeout = ATH_DEFAULT_BMISS_LIMIT * conf->listen_interval; | 
|  | } | 
|  |  | 
|  | static void ath_txq_drain_pending_buffers(struct ath_softc *sc, | 
|  | struct ath_txq *txq) | 
|  | { | 
|  | struct ath_atx_ac *ac, *ac_tmp; | 
|  | struct ath_atx_tid *tid, *tid_tmp; | 
|  |  | 
|  | list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) { | 
|  | list_del(&ac->list); | 
|  | ac->sched = false; | 
|  | list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) { | 
|  | list_del(&tid->list); | 
|  | tid->sched = false; | 
|  | ath_tid_drain(sc, txq, tid); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) | 
|  | { | 
|  | struct ath_hal *ah = sc->sc_ah; | 
|  | struct ath9k_tx_queue_info qi; | 
|  | int qnum; | 
|  |  | 
|  | memset(&qi, 0, sizeof(qi)); | 
|  | qi.tqi_subtype = subtype; | 
|  | qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT; | 
|  | qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT; | 
|  | qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT; | 
|  | qi.tqi_physCompBuf = 0; | 
|  |  | 
|  | /* | 
|  | * Enable interrupts only for EOL and DESC conditions. | 
|  | * We mark tx descriptors to receive a DESC interrupt | 
|  | * when a tx queue gets deep; otherwise waiting for the | 
|  | * EOL to reap descriptors.  Note that this is done to | 
|  | * reduce interrupt load and this only defers reaping | 
|  | * descriptors, never transmitting frames.  Aside from | 
|  | * reducing interrupts this also permits more concurrency. | 
|  | * The only potential downside is if the tx queue backs | 
|  | * up in which case the top half of the kernel may backup | 
|  | * due to a lack of tx descriptors. | 
|  | * | 
|  | * The UAPSD queue is an exception, since we take a desc- | 
|  | * based intr on the EOSP frames. | 
|  | */ | 
|  | if (qtype == ATH9K_TX_QUEUE_UAPSD) | 
|  | qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE; | 
|  | else | 
|  | qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | | 
|  | TXQ_FLAG_TXDESCINT_ENABLE; | 
|  | qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi); | 
|  | if (qnum == -1) { | 
|  | /* | 
|  | * NB: don't print a message, this happens | 
|  | * normally on parts with too few tx queues | 
|  | */ | 
|  | return NULL; | 
|  | } | 
|  | if (qnum >= ARRAY_SIZE(sc->tx.txq)) { | 
|  | DPRINTF(sc, ATH_DBG_FATAL, | 
|  | "qnum %u out of range, max %u!\n", | 
|  | qnum, (unsigned int)ARRAY_SIZE(sc->tx.txq)); | 
|  | ath9k_hw_releasetxqueue(ah, qnum); | 
|  | return NULL; | 
|  | } | 
|  | if (!ATH_TXQ_SETUP(sc, qnum)) { | 
|  | struct ath_txq *txq = &sc->tx.txq[qnum]; | 
|  |  | 
|  | txq->axq_qnum = qnum; | 
|  | txq->axq_link = NULL; | 
|  | INIT_LIST_HEAD(&txq->axq_q); | 
|  | INIT_LIST_HEAD(&txq->axq_acq); | 
|  | spin_lock_init(&txq->axq_lock); | 
|  | txq->axq_depth = 0; | 
|  | txq->axq_aggr_depth = 0; | 
|  | txq->axq_totalqueued = 0; | 
|  | txq->axq_linkbuf = NULL; | 
|  | sc->tx.txqsetup |= 1<<qnum; | 
|  | } | 
|  | return &sc->tx.txq[qnum]; | 
|  | } | 
|  |  | 
|  | static int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype) | 
|  | { | 
|  | int qnum; | 
|  |  | 
|  | switch (qtype) { | 
|  | case ATH9K_TX_QUEUE_DATA: | 
|  | if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) { | 
|  | DPRINTF(sc, ATH_DBG_FATAL, | 
|  | "HAL AC %u out of range, max %zu!\n", | 
|  | haltype, ARRAY_SIZE(sc->tx.hwq_map)); | 
|  | return -1; | 
|  | } | 
|  | qnum = sc->tx.hwq_map[haltype]; | 
|  | break; | 
|  | case ATH9K_TX_QUEUE_BEACON: | 
|  | qnum = sc->beacon.beaconq; | 
|  | break; | 
|  | case ATH9K_TX_QUEUE_CAB: | 
|  | qnum = sc->beacon.cabq->axq_qnum; | 
|  | break; | 
|  | default: | 
|  | qnum = -1; | 
|  | } | 
|  | return qnum; | 
|  | } | 
|  |  | 
|  | struct ath_txq *ath_test_get_txq(struct ath_softc *sc, struct sk_buff *skb) | 
|  | { | 
|  | struct ath_txq *txq = NULL; | 
|  | int qnum; | 
|  |  | 
|  | qnum = ath_get_hal_qnum(skb_get_queue_mapping(skb), sc); | 
|  | txq = &sc->tx.txq[qnum]; | 
|  |  | 
|  | spin_lock_bh(&txq->axq_lock); | 
|  |  | 
|  | if (txq->axq_depth >= (ATH_TXBUF - 20)) { | 
|  | DPRINTF(sc, ATH_DBG_FATAL, | 
|  | "TX queue: %d is full, depth: %d\n", | 
|  | qnum, txq->axq_depth); | 
|  | ieee80211_stop_queue(sc->hw, skb_get_queue_mapping(skb)); | 
|  | txq->stopped = 1; | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  |  | 
|  | return txq; | 
|  | } | 
|  |  | 
|  | int ath_txq_update(struct ath_softc *sc, int qnum, | 
|  | struct ath9k_tx_queue_info *qinfo) | 
|  | { | 
|  | struct ath_hal *ah = sc->sc_ah; | 
|  | int error = 0; | 
|  | struct ath9k_tx_queue_info qi; | 
|  |  | 
|  | if (qnum == sc->beacon.beaconq) { | 
|  | /* | 
|  | * XXX: for beacon queue, we just save the parameter. | 
|  | * It will be picked up by ath_beaconq_config when | 
|  | * it's necessary. | 
|  | */ | 
|  | sc->beacon.beacon_qi = *qinfo; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ASSERT(sc->tx.txq[qnum].axq_qnum == qnum); | 
|  |  | 
|  | ath9k_hw_get_txq_props(ah, qnum, &qi); | 
|  | qi.tqi_aifs = qinfo->tqi_aifs; | 
|  | qi.tqi_cwmin = qinfo->tqi_cwmin; | 
|  | qi.tqi_cwmax = qinfo->tqi_cwmax; | 
|  | qi.tqi_burstTime = qinfo->tqi_burstTime; | 
|  | qi.tqi_readyTime = qinfo->tqi_readyTime; | 
|  |  | 
|  | if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) { | 
|  | DPRINTF(sc, ATH_DBG_FATAL, | 
|  | "Unable to update hardware queue %u!\n", qnum); | 
|  | error = -EIO; | 
|  | } else { | 
|  | ath9k_hw_resettxqueue(ah, qnum); | 
|  | } | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | int ath_cabq_update(struct ath_softc *sc) | 
|  | { | 
|  | struct ath9k_tx_queue_info qi; | 
|  | int qnum = sc->beacon.cabq->axq_qnum; | 
|  | struct ath_beacon_config conf; | 
|  |  | 
|  | ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi); | 
|  | /* | 
|  | * Ensure the readytime % is within the bounds. | 
|  | */ | 
|  | if (sc->sc_config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND) | 
|  | sc->sc_config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND; | 
|  | else if (sc->sc_config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND) | 
|  | sc->sc_config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND; | 
|  |  | 
|  | ath_get_beaconconfig(sc, ATH_IF_ID_ANY, &conf); | 
|  | qi.tqi_readyTime = | 
|  | (conf.beacon_interval * sc->sc_config.cabqReadytime) / 100; | 
|  | ath_txq_update(sc, qnum, &qi); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Drain a given TX queue (could be Beacon or Data) | 
|  | * | 
|  | * This assumes output has been stopped and | 
|  | * we do not need to block ath_tx_tasklet. | 
|  | */ | 
|  | void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx) | 
|  | { | 
|  | struct ath_buf *bf, *lastbf; | 
|  | struct list_head bf_head; | 
|  |  | 
|  | INIT_LIST_HEAD(&bf_head); | 
|  |  | 
|  | for (;;) { | 
|  | spin_lock_bh(&txq->axq_lock); | 
|  |  | 
|  | if (list_empty(&txq->axq_q)) { | 
|  | txq->axq_link = NULL; | 
|  | txq->axq_linkbuf = NULL; | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  | break; | 
|  | } | 
|  |  | 
|  | bf = list_first_entry(&txq->axq_q, struct ath_buf, list); | 
|  |  | 
|  | if (bf->bf_status & ATH_BUFSTATUS_STALE) { | 
|  | list_del(&bf->list); | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  |  | 
|  | spin_lock_bh(&sc->tx.txbuflock); | 
|  | list_add_tail(&bf->list, &sc->tx.txbuf); | 
|  | spin_unlock_bh(&sc->tx.txbuflock); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | lastbf = bf->bf_lastbf; | 
|  | if (!retry_tx) | 
|  | lastbf->bf_desc->ds_txstat.ts_flags = | 
|  | ATH9K_TX_SW_ABORTED; | 
|  |  | 
|  | /* remove ath_buf's of the same mpdu from txq */ | 
|  | list_cut_position(&bf_head, &txq->axq_q, &lastbf->list); | 
|  | txq->axq_depth--; | 
|  |  | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  |  | 
|  | if (bf_isampdu(bf)) | 
|  | ath_tx_complete_aggr(sc, txq, bf, &bf_head, 0); | 
|  | else | 
|  | ath_tx_complete_buf(sc, bf, &bf_head, 0, 0); | 
|  | } | 
|  |  | 
|  | /* flush any pending frames if aggregation is enabled */ | 
|  | if (sc->sc_flags & SC_OP_TXAGGR) { | 
|  | if (!retry_tx) { | 
|  | spin_lock_bh(&txq->axq_lock); | 
|  | ath_txq_drain_pending_buffers(sc, txq); | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void ath_drain_all_txq(struct ath_softc *sc, bool retry_tx) | 
|  | { | 
|  | struct ath_hal *ah = sc->sc_ah; | 
|  | struct ath_txq *txq; | 
|  | int i, npend = 0; | 
|  |  | 
|  | if (sc->sc_flags & SC_OP_INVALID) | 
|  | return; | 
|  |  | 
|  | /* Stop beacon queue */ | 
|  | ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq); | 
|  |  | 
|  | /* Stop data queues */ | 
|  | for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { | 
|  | if (ATH_TXQ_SETUP(sc, i)) { | 
|  | txq = &sc->tx.txq[i]; | 
|  | ath9k_hw_stoptxdma(ah, txq->axq_qnum); | 
|  | npend += ath9k_hw_numtxpending(ah, txq->axq_qnum); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (npend) { | 
|  | int r; | 
|  |  | 
|  | DPRINTF(sc, ATH_DBG_XMIT, "Unable to stop TxDMA. Reset HAL!\n"); | 
|  |  | 
|  | spin_lock_bh(&sc->sc_resetlock); | 
|  | r = ath9k_hw_reset(ah, sc->sc_ah->ah_curchan, true); | 
|  | if (r) | 
|  | DPRINTF(sc, ATH_DBG_FATAL, | 
|  | "Unable to reset hardware; reset status %u\n", | 
|  | r); | 
|  | spin_unlock_bh(&sc->sc_resetlock); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { | 
|  | if (ATH_TXQ_SETUP(sc, i)) | 
|  | ath_draintxq(sc, &sc->tx.txq[i], retry_tx); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) | 
|  | { | 
|  | ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum); | 
|  | sc->tx.txqsetup &= ~(1<<txq->axq_qnum); | 
|  | } | 
|  |  | 
|  | void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq) | 
|  | { | 
|  | struct ath_atx_ac *ac; | 
|  | struct ath_atx_tid *tid; | 
|  |  | 
|  | if (list_empty(&txq->axq_acq)) | 
|  | return; | 
|  |  | 
|  | ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list); | 
|  | list_del(&ac->list); | 
|  | ac->sched = false; | 
|  |  | 
|  | do { | 
|  | if (list_empty(&ac->tid_q)) | 
|  | return; | 
|  |  | 
|  | tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list); | 
|  | list_del(&tid->list); | 
|  | tid->sched = false; | 
|  |  | 
|  | if (tid->paused) | 
|  | continue; | 
|  |  | 
|  | if ((txq->axq_depth % 2) == 0) | 
|  | ath_tx_sched_aggr(sc, txq, tid); | 
|  |  | 
|  | /* | 
|  | * add tid to round-robin queue if more frames | 
|  | * are pending for the tid | 
|  | */ | 
|  | if (!list_empty(&tid->buf_q)) | 
|  | ath_tx_queue_tid(txq, tid); | 
|  |  | 
|  | break; | 
|  | } while (!list_empty(&ac->tid_q)); | 
|  |  | 
|  | if (!list_empty(&ac->tid_q)) { | 
|  | if (!ac->sched) { | 
|  | ac->sched = true; | 
|  | list_add_tail(&ac->list, &txq->axq_acq); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int ath_tx_setup(struct ath_softc *sc, int haltype) | 
|  | { | 
|  | struct ath_txq *txq; | 
|  |  | 
|  | if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) { | 
|  | DPRINTF(sc, ATH_DBG_FATAL, | 
|  | "HAL AC %u out of range, max %zu!\n", | 
|  | haltype, ARRAY_SIZE(sc->tx.hwq_map)); | 
|  | return 0; | 
|  | } | 
|  | txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype); | 
|  | if (txq != NULL) { | 
|  | sc->tx.hwq_map[haltype] = txq->axq_qnum; | 
|  | return 1; | 
|  | } else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /***********/ | 
|  | /* TX, DMA */ | 
|  | /***********/ | 
|  |  | 
|  | /* | 
|  | * Insert a chain of ath_buf (descriptors) on a txq and | 
|  | * assume the descriptors are already chained together by caller. | 
|  | */ | 
|  | static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, | 
|  | struct list_head *head) | 
|  | { | 
|  | struct ath_hal *ah = sc->sc_ah; | 
|  | struct ath_buf *bf; | 
|  |  | 
|  | /* | 
|  | * Insert the frame on the outbound list and | 
|  | * pass it on to the hardware. | 
|  | */ | 
|  |  | 
|  | if (list_empty(head)) | 
|  | return; | 
|  |  | 
|  | bf = list_first_entry(head, struct ath_buf, list); | 
|  |  | 
|  | list_splice_tail_init(head, &txq->axq_q); | 
|  | txq->axq_depth++; | 
|  | txq->axq_totalqueued++; | 
|  | txq->axq_linkbuf = list_entry(txq->axq_q.prev, struct ath_buf, list); | 
|  |  | 
|  | DPRINTF(sc, ATH_DBG_QUEUE, | 
|  | "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth); | 
|  |  | 
|  | if (txq->axq_link == NULL) { | 
|  | ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); | 
|  | DPRINTF(sc, ATH_DBG_XMIT, | 
|  | "TXDP[%u] = %llx (%p)\n", | 
|  | txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc); | 
|  | } else { | 
|  | *txq->axq_link = bf->bf_daddr; | 
|  | DPRINTF(sc, ATH_DBG_XMIT, "link[%u] (%p)=%llx (%p)\n", | 
|  | txq->axq_qnum, txq->axq_link, | 
|  | ito64(bf->bf_daddr), bf->bf_desc); | 
|  | } | 
|  | txq->axq_link = &(bf->bf_lastbf->bf_desc->ds_link); | 
|  | ath9k_hw_txstart(ah, txq->axq_qnum); | 
|  | } | 
|  |  | 
|  | static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc) | 
|  | { | 
|  | struct ath_buf *bf = NULL; | 
|  |  | 
|  | spin_lock_bh(&sc->tx.txbuflock); | 
|  |  | 
|  | if (unlikely(list_empty(&sc->tx.txbuf))) { | 
|  | spin_unlock_bh(&sc->tx.txbuflock); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list); | 
|  | list_del(&bf->list); | 
|  |  | 
|  | spin_unlock_bh(&sc->tx.txbuflock); | 
|  |  | 
|  | return bf; | 
|  | } | 
|  |  | 
|  | static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid, | 
|  | struct list_head *bf_head, | 
|  | struct ath_tx_control *txctl) | 
|  | { | 
|  | struct ath_buf *bf; | 
|  |  | 
|  | bf = list_first_entry(bf_head, struct ath_buf, list); | 
|  | bf->bf_state.bf_type |= BUF_AMPDU; | 
|  |  | 
|  | /* | 
|  | * Do not queue to h/w when any of the following conditions is true: | 
|  | * - there are pending frames in software queue | 
|  | * - the TID is currently paused for ADDBA/BAR request | 
|  | * - seqno is not within block-ack window | 
|  | * - h/w queue depth exceeds low water mark | 
|  | */ | 
|  | if (!list_empty(&tid->buf_q) || tid->paused || | 
|  | !BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) || | 
|  | txctl->txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) { | 
|  | /* | 
|  | * Add this frame to software queue for scheduling later | 
|  | * for aggregation. | 
|  | */ | 
|  | list_move_tail(&bf->list, &tid->buf_q); | 
|  | ath_tx_queue_tid(txctl->txq, tid); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Add sub-frame to BAW */ | 
|  | ath_tx_addto_baw(sc, tid, bf); | 
|  |  | 
|  | /* Queue to h/w without aggregation */ | 
|  | bf->bf_nframes = 1; | 
|  | bf->bf_lastbf = bf; | 
|  | ath_buf_set_rate(sc, bf); | 
|  | ath_tx_txqaddbuf(sc, txctl->txq, bf_head); | 
|  | } | 
|  |  | 
|  | static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, | 
|  | struct ath_atx_tid *tid, | 
|  | struct list_head *bf_head) | 
|  | { | 
|  | struct ath_buf *bf; | 
|  |  | 
|  | bf = list_first_entry(bf_head, struct ath_buf, list); | 
|  | bf->bf_state.bf_type &= ~BUF_AMPDU; | 
|  |  | 
|  | /* update starting sequence number for subsequent ADDBA request */ | 
|  | INCR(tid->seq_start, IEEE80211_SEQ_MAX); | 
|  |  | 
|  | bf->bf_nframes = 1; | 
|  | bf->bf_lastbf = bf; | 
|  | ath_buf_set_rate(sc, bf); | 
|  | ath_tx_txqaddbuf(sc, txq, bf_head); | 
|  | } | 
|  |  | 
|  | static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb) | 
|  | { | 
|  | struct ieee80211_hdr *hdr; | 
|  | enum ath9k_pkt_type htype; | 
|  | __le16 fc; | 
|  |  | 
|  | hdr = (struct ieee80211_hdr *)skb->data; | 
|  | fc = hdr->frame_control; | 
|  |  | 
|  | if (ieee80211_is_beacon(fc)) | 
|  | htype = ATH9K_PKT_TYPE_BEACON; | 
|  | else if (ieee80211_is_probe_resp(fc)) | 
|  | htype = ATH9K_PKT_TYPE_PROBE_RESP; | 
|  | else if (ieee80211_is_atim(fc)) | 
|  | htype = ATH9K_PKT_TYPE_ATIM; | 
|  | else if (ieee80211_is_pspoll(fc)) | 
|  | htype = ATH9K_PKT_TYPE_PSPOLL; | 
|  | else | 
|  | htype = ATH9K_PKT_TYPE_NORMAL; | 
|  |  | 
|  | return htype; | 
|  | } | 
|  |  | 
|  | static bool is_pae(struct sk_buff *skb) | 
|  | { | 
|  | struct ieee80211_hdr *hdr; | 
|  | __le16 fc; | 
|  |  | 
|  | hdr = (struct ieee80211_hdr *)skb->data; | 
|  | fc = hdr->frame_control; | 
|  |  | 
|  | if (ieee80211_is_data(fc)) { | 
|  | if (ieee80211_is_nullfunc(fc) || | 
|  | /* Port Access Entity (IEEE 802.1X) */ | 
|  | (skb->protocol == cpu_to_be16(ETH_P_PAE))) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int get_hw_crypto_keytype(struct sk_buff *skb) | 
|  | { | 
|  | struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); | 
|  |  | 
|  | if (tx_info->control.hw_key) { | 
|  | if (tx_info->control.hw_key->alg == ALG_WEP) | 
|  | return ATH9K_KEY_TYPE_WEP; | 
|  | else if (tx_info->control.hw_key->alg == ALG_TKIP) | 
|  | return ATH9K_KEY_TYPE_TKIP; | 
|  | else if (tx_info->control.hw_key->alg == ALG_CCMP) | 
|  | return ATH9K_KEY_TYPE_AES; | 
|  | } | 
|  |  | 
|  | return ATH9K_KEY_TYPE_CLEAR; | 
|  | } | 
|  |  | 
|  | static void assign_aggr_tid_seqno(struct sk_buff *skb, | 
|  | struct ath_buf *bf) | 
|  | { | 
|  | struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); | 
|  | struct ieee80211_hdr *hdr; | 
|  | struct ath_node *an; | 
|  | struct ath_atx_tid *tid; | 
|  | __le16 fc; | 
|  | u8 *qc; | 
|  |  | 
|  | if (!tx_info->control.sta) | 
|  | return; | 
|  |  | 
|  | an = (struct ath_node *)tx_info->control.sta->drv_priv; | 
|  | hdr = (struct ieee80211_hdr *)skb->data; | 
|  | fc = hdr->frame_control; | 
|  |  | 
|  | if (ieee80211_is_data_qos(fc)) { | 
|  | qc = ieee80211_get_qos_ctl(hdr); | 
|  | bf->bf_tidno = qc[0] & 0xf; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For HT capable stations, we save tidno for later use. | 
|  | * We also override seqno set by upper layer with the one | 
|  | * in tx aggregation state. | 
|  | * | 
|  | * If fragmentation is on, the sequence number is | 
|  | * not overridden, since it has been | 
|  | * incremented by the fragmentation routine. | 
|  | * | 
|  | * FIXME: check if the fragmentation threshold exceeds | 
|  | * IEEE80211 max. | 
|  | */ | 
|  | tid = ATH_AN_2_TID(an, bf->bf_tidno); | 
|  | hdr->seq_ctrl = cpu_to_le16(tid->seq_next << | 
|  | IEEE80211_SEQ_SEQ_SHIFT); | 
|  | bf->bf_seqno = tid->seq_next; | 
|  | INCR(tid->seq_next, IEEE80211_SEQ_MAX); | 
|  | } | 
|  |  | 
|  | static int setup_tx_flags(struct ath_softc *sc, struct sk_buff *skb, | 
|  | struct ath_txq *txq) | 
|  | { | 
|  | struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); | 
|  | int flags = 0; | 
|  |  | 
|  | flags |= ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */ | 
|  | flags |= ATH9K_TXDESC_INTREQ; | 
|  |  | 
|  | if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) | 
|  | flags |= ATH9K_TXDESC_NOACK; | 
|  | if (tx_info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS) | 
|  | flags |= ATH9K_TXDESC_RTSENA; | 
|  |  | 
|  | return flags; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * rix - rate index | 
|  | * pktlen - total bytes (delims + data + fcs + pads + pad delims) | 
|  | * width  - 0 for 20 MHz, 1 for 40 MHz | 
|  | * half_gi - to use 4us v/s 3.6 us for symbol time | 
|  | */ | 
|  | static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, struct ath_buf *bf, | 
|  | int width, int half_gi, bool shortPreamble) | 
|  | { | 
|  | struct ath_rate_table *rate_table = sc->cur_rate_table; | 
|  | u32 nbits, nsymbits, duration, nsymbols; | 
|  | u8 rc; | 
|  | int streams, pktlen; | 
|  |  | 
|  | pktlen = bf_isaggr(bf) ? bf->bf_al : bf->bf_frmlen; | 
|  | rc = rate_table->info[rix].ratecode; | 
|  |  | 
|  | /* for legacy rates, use old function to compute packet duration */ | 
|  | if (!IS_HT_RATE(rc)) | 
|  | return ath9k_hw_computetxtime(sc->sc_ah, rate_table, pktlen, | 
|  | rix, shortPreamble); | 
|  |  | 
|  | /* find number of symbols: PLCP + data */ | 
|  | nbits = (pktlen << 3) + OFDM_PLCP_BITS; | 
|  | nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width]; | 
|  | nsymbols = (nbits + nsymbits - 1) / nsymbits; | 
|  |  | 
|  | if (!half_gi) | 
|  | duration = SYMBOL_TIME(nsymbols); | 
|  | else | 
|  | duration = SYMBOL_TIME_HALFGI(nsymbols); | 
|  |  | 
|  | /* addup duration for legacy/ht training and signal fields */ | 
|  | streams = HT_RC_2_STREAMS(rc); | 
|  | duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); | 
|  |  | 
|  | return duration; | 
|  | } | 
|  |  | 
|  | static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf) | 
|  | { | 
|  | struct ath_hal *ah = sc->sc_ah; | 
|  | struct ath_rate_table *rt; | 
|  | struct ath_desc *ds = bf->bf_desc; | 
|  | struct ath_desc *lastds = bf->bf_lastbf->bf_desc; | 
|  | struct ath9k_11n_rate_series series[4]; | 
|  | struct sk_buff *skb; | 
|  | struct ieee80211_tx_info *tx_info; | 
|  | struct ieee80211_tx_rate *rates; | 
|  | struct ieee80211_hdr *hdr; | 
|  | struct ieee80211_hw *hw = sc->hw; | 
|  | int i, flags, rtsctsena = 0, enable_g_protection = 0; | 
|  | u32 ctsduration = 0; | 
|  | u8 rix = 0, cix, ctsrate = 0; | 
|  | __le16 fc; | 
|  |  | 
|  | memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4); | 
|  |  | 
|  | skb = (struct sk_buff *)bf->bf_mpdu; | 
|  | hdr = (struct ieee80211_hdr *)skb->data; | 
|  | fc = hdr->frame_control; | 
|  | tx_info = IEEE80211_SKB_CB(skb); | 
|  | rates = tx_info->control.rates; | 
|  |  | 
|  | if (ieee80211_has_morefrags(fc) || | 
|  | (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) { | 
|  | rates[1].count = rates[2].count = rates[3].count = 0; | 
|  | rates[1].idx = rates[2].idx = rates[3].idx = 0; | 
|  | rates[0].count = ATH_TXMAXTRY; | 
|  | } | 
|  |  | 
|  | /* get the cix for the lowest valid rix */ | 
|  | rt = sc->cur_rate_table; | 
|  | for (i = 3; i >= 0; i--) { | 
|  | if (rates[i].count && (rates[i].idx >= 0)) { | 
|  | rix = rates[i].idx; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | flags = (bf->bf_flags & (ATH9K_TXDESC_RTSENA | ATH9K_TXDESC_CTSENA)); | 
|  | cix = rt->info[rix].ctrl_rate; | 
|  |  | 
|  | /* All protection frames are transmited at 2Mb/s for 802.11g, | 
|  | * otherwise we transmit them at 1Mb/s */ | 
|  | if (hw->conf.channel->band == IEEE80211_BAND_2GHZ && | 
|  | !conf_is_ht(&hw->conf)) | 
|  | enable_g_protection = 1; | 
|  |  | 
|  | /* | 
|  | * If 802.11g protection is enabled, determine whether to use RTS/CTS or | 
|  | * just CTS.  Note that this is only done for OFDM/HT unicast frames. | 
|  | */ | 
|  | if (sc->sc_protmode != PROT_M_NONE && !(bf->bf_flags & ATH9K_TXDESC_NOACK) | 
|  | && (rt->info[rix].phy == WLAN_RC_PHY_OFDM || | 
|  | WLAN_RC_PHY_HT(rt->info[rix].phy))) { | 
|  | if (sc->sc_protmode == PROT_M_RTSCTS) | 
|  | flags = ATH9K_TXDESC_RTSENA; | 
|  | else if (sc->sc_protmode == PROT_M_CTSONLY) | 
|  | flags = ATH9K_TXDESC_CTSENA; | 
|  |  | 
|  | cix = rt->info[enable_g_protection].ctrl_rate; | 
|  | rtsctsena = 1; | 
|  | } | 
|  |  | 
|  | /* For 11n, the default behavior is to enable RTS for hw retried frames. | 
|  | * We enable the global flag here and let rate series flags determine | 
|  | * which rates will actually use RTS. | 
|  | */ | 
|  | if ((ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) && bf_isdata(bf)) { | 
|  | /* 802.11g protection not needed, use our default behavior */ | 
|  | if (!rtsctsena) | 
|  | flags = ATH9K_TXDESC_RTSENA; | 
|  | } | 
|  |  | 
|  | /* Set protection if aggregate protection on */ | 
|  | if (sc->sc_config.ath_aggr_prot && | 
|  | (!bf_isaggr(bf) || (bf_isaggr(bf) && bf->bf_al < 8192))) { | 
|  | flags = ATH9K_TXDESC_RTSENA; | 
|  | cix = rt->info[enable_g_protection].ctrl_rate; | 
|  | rtsctsena = 1; | 
|  | } | 
|  |  | 
|  | /* For AR5416 - RTS cannot be followed by a frame larger than 8K */ | 
|  | if (bf_isaggr(bf) && (bf->bf_al > ah->ah_caps.rts_aggr_limit)) | 
|  | flags &= ~(ATH9K_TXDESC_RTSENA); | 
|  |  | 
|  | /* | 
|  | * CTS transmit rate is derived from the transmit rate by looking in the | 
|  | * h/w rate table.  We must also factor in whether or not a short | 
|  | * preamble is to be used. NB: cix is set above where RTS/CTS is enabled | 
|  | */ | 
|  | ctsrate = rt->info[cix].ratecode | | 
|  | (bf_isshpreamble(bf) ? rt->info[cix].short_preamble : 0); | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | if (!rates[i].count || (rates[i].idx < 0)) | 
|  | continue; | 
|  |  | 
|  | rix = rates[i].idx; | 
|  |  | 
|  | series[i].Rate = rt->info[rix].ratecode | | 
|  | (bf_isshpreamble(bf) ? rt->info[rix].short_preamble : 0); | 
|  |  | 
|  | series[i].Tries = rates[i].count; | 
|  |  | 
|  | series[i].RateFlags = ( | 
|  | (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) ? | 
|  | ATH9K_RATESERIES_RTS_CTS : 0) | | 
|  | ((rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? | 
|  | ATH9K_RATESERIES_2040 : 0) | | 
|  | ((rates[i].flags & IEEE80211_TX_RC_SHORT_GI) ? | 
|  | ATH9K_RATESERIES_HALFGI : 0); | 
|  |  | 
|  | series[i].PktDuration = ath_pkt_duration(sc, rix, bf, | 
|  | (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) != 0, | 
|  | (rates[i].flags & IEEE80211_TX_RC_SHORT_GI), | 
|  | bf_isshpreamble(bf)); | 
|  |  | 
|  | series[i].ChSel = sc->sc_tx_chainmask; | 
|  |  | 
|  | if (rtsctsena) | 
|  | series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; | 
|  | } | 
|  |  | 
|  | /* set dur_update_en for l-sig computation except for PS-Poll frames */ | 
|  | ath9k_hw_set11n_ratescenario(ah, ds, lastds, !bf_ispspoll(bf), | 
|  | ctsrate, ctsduration, | 
|  | series, 4, flags); | 
|  |  | 
|  | if (sc->sc_config.ath_aggr_prot && flags) | 
|  | ath9k_hw_set11n_burstduration(ah, ds, 8192); | 
|  | } | 
|  |  | 
|  | static int ath_tx_setup_buffer(struct ath_softc *sc, struct ath_buf *bf, | 
|  | struct sk_buff *skb, | 
|  | struct ath_tx_control *txctl) | 
|  | { | 
|  | struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); | 
|  | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; | 
|  | struct ath_tx_info_priv *tx_info_priv; | 
|  | int hdrlen; | 
|  | __le16 fc; | 
|  |  | 
|  | tx_info_priv = kzalloc(sizeof(*tx_info_priv), GFP_ATOMIC); | 
|  | if (unlikely(!tx_info_priv)) | 
|  | return -ENOMEM; | 
|  | tx_info->rate_driver_data[0] = tx_info_priv; | 
|  | hdrlen = ieee80211_get_hdrlen_from_skb(skb); | 
|  | fc = hdr->frame_control; | 
|  |  | 
|  | ATH_TXBUF_RESET(bf); | 
|  |  | 
|  | bf->bf_frmlen = skb->len + FCS_LEN - (hdrlen & 3); | 
|  |  | 
|  | if (ieee80211_is_data(fc)) | 
|  | bf->bf_state.bf_type |= BUF_DATA; | 
|  | if (ieee80211_is_back_req(fc)) | 
|  | bf->bf_state.bf_type |= BUF_BAR; | 
|  | if (ieee80211_is_pspoll(fc)) | 
|  | bf->bf_state.bf_type |= BUF_PSPOLL; | 
|  | if (sc->sc_flags & SC_OP_PREAMBLE_SHORT) | 
|  | bf->bf_state.bf_type |= BUF_SHORT_PREAMBLE; | 
|  | if ((conf_is_ht(&sc->hw->conf) && !is_pae(skb) && | 
|  | (tx_info->flags & IEEE80211_TX_CTL_AMPDU))) | 
|  | bf->bf_state.bf_type |= BUF_HT; | 
|  |  | 
|  | bf->bf_flags = setup_tx_flags(sc, skb, txctl->txq); | 
|  |  | 
|  | bf->bf_keytype = get_hw_crypto_keytype(skb); | 
|  | if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) { | 
|  | bf->bf_frmlen += tx_info->control.hw_key->icv_len; | 
|  | bf->bf_keyix = tx_info->control.hw_key->hw_key_idx; | 
|  | } else { | 
|  | bf->bf_keyix = ATH9K_TXKEYIX_INVALID; | 
|  | } | 
|  |  | 
|  | if (ieee80211_is_data_qos(fc) && (sc->sc_flags & SC_OP_TXAGGR)) | 
|  | assign_aggr_tid_seqno(skb, bf); | 
|  |  | 
|  | bf->bf_mpdu = skb; | 
|  |  | 
|  | bf->bf_dmacontext = dma_map_single(sc->dev, skb->data, | 
|  | skb->len, DMA_TO_DEVICE); | 
|  | if (unlikely(dma_mapping_error(sc->dev, bf->bf_dmacontext))) { | 
|  | bf->bf_mpdu = NULL; | 
|  | DPRINTF(sc, ATH_DBG_CONFIG, | 
|  | "dma_mapping_error() on TX\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | bf->bf_buf_addr = bf->bf_dmacontext; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* FIXME: tx power */ | 
|  | static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf, | 
|  | struct ath_tx_control *txctl) | 
|  | { | 
|  | struct sk_buff *skb = (struct sk_buff *)bf->bf_mpdu; | 
|  | struct ieee80211_tx_info *tx_info =  IEEE80211_SKB_CB(skb); | 
|  | struct ath_node *an = NULL; | 
|  | struct list_head bf_head; | 
|  | struct ath_desc *ds; | 
|  | struct ath_atx_tid *tid; | 
|  | struct ath_hal *ah = sc->sc_ah; | 
|  | int frm_type; | 
|  |  | 
|  | frm_type = get_hw_packet_type(skb); | 
|  |  | 
|  | INIT_LIST_HEAD(&bf_head); | 
|  | list_add_tail(&bf->list, &bf_head); | 
|  |  | 
|  | ds = bf->bf_desc; | 
|  | ds->ds_link = 0; | 
|  | ds->ds_data = bf->bf_buf_addr; | 
|  |  | 
|  | ath9k_hw_set11n_txdesc(ah, ds, bf->bf_frmlen, frm_type, MAX_RATE_POWER, | 
|  | bf->bf_keyix, bf->bf_keytype, bf->bf_flags); | 
|  |  | 
|  | ath9k_hw_filltxdesc(ah, ds, | 
|  | skb->len,	/* segment length */ | 
|  | true,	/* first segment */ | 
|  | true,	/* last segment */ | 
|  | ds);	/* first descriptor */ | 
|  |  | 
|  | spin_lock_bh(&txctl->txq->axq_lock); | 
|  |  | 
|  | if (bf_isht(bf) && (sc->sc_flags & SC_OP_TXAGGR) && | 
|  | tx_info->control.sta) { | 
|  | an = (struct ath_node *)tx_info->control.sta->drv_priv; | 
|  | tid = ATH_AN_2_TID(an, bf->bf_tidno); | 
|  |  | 
|  | if (ath_aggr_query(sc, an, bf->bf_tidno)) { | 
|  | /* | 
|  | * Try aggregation if it's a unicast data frame | 
|  | * and the destination is HT capable. | 
|  | */ | 
|  | ath_tx_send_ampdu(sc, tid, &bf_head, txctl); | 
|  | } else { | 
|  | /* | 
|  | * Send this frame as regular when ADDBA | 
|  | * exchange is neither complete nor pending. | 
|  | */ | 
|  | ath_tx_send_normal(sc, txctl->txq, | 
|  | tid, &bf_head); | 
|  | } | 
|  | } else { | 
|  | bf->bf_lastbf = bf; | 
|  | bf->bf_nframes = 1; | 
|  |  | 
|  | ath_buf_set_rate(sc, bf); | 
|  | ath_tx_txqaddbuf(sc, txctl->txq, &bf_head); | 
|  | } | 
|  |  | 
|  | spin_unlock_bh(&txctl->txq->axq_lock); | 
|  | } | 
|  |  | 
|  | /* Upon failure caller should free skb */ | 
|  | int ath_tx_start(struct ath_softc *sc, struct sk_buff *skb, | 
|  | struct ath_tx_control *txctl) | 
|  | { | 
|  | struct ath_buf *bf; | 
|  | int r; | 
|  |  | 
|  | bf = ath_tx_get_buffer(sc); | 
|  | if (!bf) { | 
|  | DPRINTF(sc, ATH_DBG_XMIT, "TX buffers are full\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | r = ath_tx_setup_buffer(sc, bf, skb, txctl); | 
|  | if (unlikely(r)) { | 
|  | struct ath_txq *txq = txctl->txq; | 
|  |  | 
|  | DPRINTF(sc, ATH_DBG_FATAL, "TX mem alloc failure\n"); | 
|  |  | 
|  | /* upon ath_tx_processq() this TX queue will be resumed, we | 
|  | * guarantee this will happen by knowing beforehand that | 
|  | * we will at least have to run TX completionon one buffer | 
|  | * on the queue */ | 
|  | spin_lock_bh(&txq->axq_lock); | 
|  | if (ath_txq_depth(sc, txq->axq_qnum) > 1) { | 
|  | ieee80211_stop_queue(sc->hw, | 
|  | skb_get_queue_mapping(skb)); | 
|  | txq->stopped = 1; | 
|  | } | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  |  | 
|  | spin_lock_bh(&sc->tx.txbuflock); | 
|  | list_add_tail(&bf->list, &sc->tx.txbuf); | 
|  | spin_unlock_bh(&sc->tx.txbuflock); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | ath_tx_start_dma(sc, bf, txctl); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void ath_tx_cabq(struct ath_softc *sc, struct sk_buff *skb) | 
|  | { | 
|  | int hdrlen, padsize; | 
|  | struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); | 
|  | struct ath_tx_control txctl; | 
|  |  | 
|  | memset(&txctl, 0, sizeof(struct ath_tx_control)); | 
|  |  | 
|  | /* | 
|  | * As a temporary workaround, assign seq# here; this will likely need | 
|  | * to be cleaned up to work better with Beacon transmission and virtual | 
|  | * BSSes. | 
|  | */ | 
|  | if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) { | 
|  | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; | 
|  | if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) | 
|  | sc->tx.seq_no += 0x10; | 
|  | hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); | 
|  | hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no); | 
|  | } | 
|  |  | 
|  | /* Add the padding after the header if this is not already done */ | 
|  | hdrlen = ieee80211_get_hdrlen_from_skb(skb); | 
|  | if (hdrlen & 3) { | 
|  | padsize = hdrlen % 4; | 
|  | if (skb_headroom(skb) < padsize) { | 
|  | DPRINTF(sc, ATH_DBG_XMIT, "TX CABQ padding failed\n"); | 
|  | dev_kfree_skb_any(skb); | 
|  | return; | 
|  | } | 
|  | skb_push(skb, padsize); | 
|  | memmove(skb->data, skb->data + padsize, hdrlen); | 
|  | } | 
|  |  | 
|  | txctl.txq = sc->beacon.cabq; | 
|  |  | 
|  | DPRINTF(sc, ATH_DBG_XMIT, "transmitting CABQ packet, skb: %p\n", skb); | 
|  |  | 
|  | if (ath_tx_start(sc, skb, &txctl) != 0) { | 
|  | DPRINTF(sc, ATH_DBG_XMIT, "CABQ TX failed\n"); | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | return; | 
|  | exit: | 
|  | dev_kfree_skb_any(skb); | 
|  | } | 
|  |  | 
|  | /*****************/ | 
|  | /* TX Completion */ | 
|  | /*****************/ | 
|  |  | 
|  | static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, | 
|  | struct ath_xmit_status *tx_status) | 
|  | { | 
|  | struct ieee80211_hw *hw = sc->hw; | 
|  | struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); | 
|  | struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info); | 
|  | int hdrlen, padsize; | 
|  |  | 
|  | DPRINTF(sc, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb); | 
|  |  | 
|  | if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK || | 
|  | tx_info->flags & IEEE80211_TX_STAT_TX_FILTERED) { | 
|  | kfree(tx_info_priv); | 
|  | tx_info->rate_driver_data[0] = NULL; | 
|  | } | 
|  |  | 
|  | if (tx_status->flags & ATH_TX_BAR) { | 
|  | tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK; | 
|  | tx_status->flags &= ~ATH_TX_BAR; | 
|  | } | 
|  |  | 
|  | if (!(tx_status->flags & (ATH_TX_ERROR | ATH_TX_XRETRY))) { | 
|  | /* Frame was ACKed */ | 
|  | tx_info->flags |= IEEE80211_TX_STAT_ACK; | 
|  | } | 
|  |  | 
|  | tx_info->status.rates[0].count = tx_status->retries + 1; | 
|  |  | 
|  | hdrlen = ieee80211_get_hdrlen_from_skb(skb); | 
|  | padsize = hdrlen & 3; | 
|  | if (padsize && hdrlen >= 24) { | 
|  | /* | 
|  | * Remove MAC header padding before giving the frame back to | 
|  | * mac80211. | 
|  | */ | 
|  | memmove(skb->data + padsize, skb->data, hdrlen); | 
|  | skb_pull(skb, padsize); | 
|  | } | 
|  |  | 
|  | ieee80211_tx_status(hw, skb); | 
|  | } | 
|  |  | 
|  | static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, | 
|  | struct list_head *bf_q, | 
|  | int txok, int sendbar) | 
|  | { | 
|  | struct sk_buff *skb = bf->bf_mpdu; | 
|  | struct ath_xmit_status tx_status; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * Set retry information. | 
|  | * NB: Don't use the information in the descriptor, because the frame | 
|  | * could be software retried. | 
|  | */ | 
|  | tx_status.retries = bf->bf_retries; | 
|  | tx_status.flags = 0; | 
|  |  | 
|  | if (sendbar) | 
|  | tx_status.flags = ATH_TX_BAR; | 
|  |  | 
|  | if (!txok) { | 
|  | tx_status.flags |= ATH_TX_ERROR; | 
|  |  | 
|  | if (bf_isxretried(bf)) | 
|  | tx_status.flags |= ATH_TX_XRETRY; | 
|  | } | 
|  |  | 
|  | dma_unmap_single(sc->dev, bf->bf_dmacontext, skb->len, DMA_TO_DEVICE); | 
|  | ath_tx_complete(sc, skb, &tx_status); | 
|  |  | 
|  | /* | 
|  | * Return the list of ath_buf of this mpdu to free queue | 
|  | */ | 
|  | spin_lock_irqsave(&sc->tx.txbuflock, flags); | 
|  | list_splice_tail_init(bf_q, &sc->tx.txbuf); | 
|  | spin_unlock_irqrestore(&sc->tx.txbuflock, flags); | 
|  | } | 
|  |  | 
|  | static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf, | 
|  | int txok) | 
|  | { | 
|  | struct ath_buf *bf_last = bf->bf_lastbf; | 
|  | struct ath_desc *ds = bf_last->bf_desc; | 
|  | u16 seq_st = 0; | 
|  | u32 ba[WME_BA_BMP_SIZE >> 5]; | 
|  | int ba_index; | 
|  | int nbad = 0; | 
|  | int isaggr = 0; | 
|  |  | 
|  | if (ds->ds_txstat.ts_flags == ATH9K_TX_SW_ABORTED) | 
|  | return 0; | 
|  |  | 
|  | isaggr = bf_isaggr(bf); | 
|  | if (isaggr) { | 
|  | seq_st = ATH_DS_BA_SEQ(ds); | 
|  | memcpy(ba, ATH_DS_BA_BITMAP(ds), WME_BA_BMP_SIZE >> 3); | 
|  | } | 
|  |  | 
|  | while (bf) { | 
|  | ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno); | 
|  | if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index))) | 
|  | nbad++; | 
|  |  | 
|  | bf = bf->bf_next; | 
|  | } | 
|  |  | 
|  | return nbad; | 
|  | } | 
|  |  | 
|  | static void ath_tx_rc_status(struct ath_buf *bf, struct ath_desc *ds, int nbad) | 
|  | { | 
|  | struct sk_buff *skb = (struct sk_buff *)bf->bf_mpdu; | 
|  | struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); | 
|  | struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info); | 
|  |  | 
|  | tx_info_priv->update_rc = false; | 
|  | if (ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) | 
|  | tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; | 
|  |  | 
|  | if ((ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) == 0 && | 
|  | (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) { | 
|  | if (bf_isdata(bf)) { | 
|  | memcpy(&tx_info_priv->tx, &ds->ds_txstat, | 
|  | sizeof(tx_info_priv->tx)); | 
|  | tx_info_priv->n_frames = bf->bf_nframes; | 
|  | tx_info_priv->n_bad_frames = nbad; | 
|  | tx_info_priv->update_rc = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ath_wake_mac80211_queue(struct ath_softc *sc, struct ath_txq *txq) | 
|  | { | 
|  | int qnum; | 
|  |  | 
|  | spin_lock_bh(&txq->axq_lock); | 
|  | if (txq->stopped && | 
|  | ath_txq_depth(sc, txq->axq_qnum) <= (ATH_TXBUF - 20)) { | 
|  | qnum = ath_get_mac80211_qnum(txq->axq_qnum, sc); | 
|  | if (qnum != -1) { | 
|  | ieee80211_wake_queue(sc->hw, qnum); | 
|  | txq->stopped = 0; | 
|  | } | 
|  | } | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  | } | 
|  |  | 
|  | static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) | 
|  | { | 
|  | struct ath_hal *ah = sc->sc_ah; | 
|  | struct ath_buf *bf, *lastbf, *bf_held = NULL; | 
|  | struct list_head bf_head; | 
|  | struct ath_desc *ds; | 
|  | int txok, nbad = 0; | 
|  | int status; | 
|  |  | 
|  | DPRINTF(sc, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n", | 
|  | txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum), | 
|  | txq->axq_link); | 
|  |  | 
|  | for (;;) { | 
|  | spin_lock_bh(&txq->axq_lock); | 
|  | if (list_empty(&txq->axq_q)) { | 
|  | txq->axq_link = NULL; | 
|  | txq->axq_linkbuf = NULL; | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  | break; | 
|  | } | 
|  | bf = list_first_entry(&txq->axq_q, struct ath_buf, list); | 
|  |  | 
|  | /* | 
|  | * There is a race condition that a BH gets scheduled | 
|  | * after sw writes TxE and before hw re-load the last | 
|  | * descriptor to get the newly chained one. | 
|  | * Software must keep the last DONE descriptor as a | 
|  | * holding descriptor - software does so by marking | 
|  | * it with the STALE flag. | 
|  | */ | 
|  | bf_held = NULL; | 
|  | if (bf->bf_status & ATH_BUFSTATUS_STALE) { | 
|  | bf_held = bf; | 
|  | if (list_is_last(&bf_held->list, &txq->axq_q)) { | 
|  | txq->axq_link = NULL; | 
|  | txq->axq_linkbuf = NULL; | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  |  | 
|  | /* | 
|  | * The holding descriptor is the last | 
|  | * descriptor in queue. It's safe to remove | 
|  | * the last holding descriptor in BH context. | 
|  | */ | 
|  | spin_lock_bh(&sc->tx.txbuflock); | 
|  | list_move_tail(&bf_held->list, &sc->tx.txbuf); | 
|  | spin_unlock_bh(&sc->tx.txbuflock); | 
|  |  | 
|  | break; | 
|  | } else { | 
|  | bf = list_entry(bf_held->list.next, | 
|  | struct ath_buf, list); | 
|  | } | 
|  | } | 
|  |  | 
|  | lastbf = bf->bf_lastbf; | 
|  | ds = lastbf->bf_desc; | 
|  |  | 
|  | status = ath9k_hw_txprocdesc(ah, ds); | 
|  | if (status == -EINPROGRESS) { | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  | break; | 
|  | } | 
|  | if (bf->bf_desc == txq->axq_lastdsWithCTS) | 
|  | txq->axq_lastdsWithCTS = NULL; | 
|  | if (ds == txq->axq_gatingds) | 
|  | txq->axq_gatingds = NULL; | 
|  |  | 
|  | /* | 
|  | * Remove ath_buf's of the same transmit unit from txq, | 
|  | * however leave the last descriptor back as the holding | 
|  | * descriptor for hw. | 
|  | */ | 
|  | lastbf->bf_status |= ATH_BUFSTATUS_STALE; | 
|  | INIT_LIST_HEAD(&bf_head); | 
|  | if (!list_is_singular(&lastbf->list)) | 
|  | list_cut_position(&bf_head, | 
|  | &txq->axq_q, lastbf->list.prev); | 
|  |  | 
|  | txq->axq_depth--; | 
|  | if (bf_isaggr(bf)) | 
|  | txq->axq_aggr_depth--; | 
|  |  | 
|  | txok = (ds->ds_txstat.ts_status == 0); | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  |  | 
|  | if (bf_held) { | 
|  | spin_lock_bh(&sc->tx.txbuflock); | 
|  | list_move_tail(&bf_held->list, &sc->tx.txbuf); | 
|  | spin_unlock_bh(&sc->tx.txbuflock); | 
|  | } | 
|  |  | 
|  | if (!bf_isampdu(bf)) { | 
|  | /* | 
|  | * This frame is sent out as a single frame. | 
|  | * Use hardware retry status for this frame. | 
|  | */ | 
|  | bf->bf_retries = ds->ds_txstat.ts_longretry; | 
|  | if (ds->ds_txstat.ts_status & ATH9K_TXERR_XRETRY) | 
|  | bf->bf_state.bf_type |= BUF_XRETRY; | 
|  | nbad = 0; | 
|  | } else { | 
|  | nbad = ath_tx_num_badfrms(sc, bf, txok); | 
|  | } | 
|  |  | 
|  | ath_tx_rc_status(bf, ds, nbad); | 
|  |  | 
|  | if (bf_isampdu(bf)) | 
|  | ath_tx_complete_aggr(sc, txq, bf, &bf_head, txok); | 
|  | else | 
|  | ath_tx_complete_buf(sc, bf, &bf_head, txok, 0); | 
|  |  | 
|  | ath_wake_mac80211_queue(sc, txq); | 
|  |  | 
|  | spin_lock_bh(&txq->axq_lock); | 
|  | if (sc->sc_flags & SC_OP_TXAGGR) | 
|  | ath_txq_schedule(sc, txq); | 
|  | spin_unlock_bh(&txq->axq_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void ath_tx_tasklet(struct ath_softc *sc) | 
|  | { | 
|  | int i; | 
|  | u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1); | 
|  |  | 
|  | ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask); | 
|  |  | 
|  | for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { | 
|  | if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i))) | 
|  | ath_tx_processq(sc, &sc->tx.txq[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /*****************/ | 
|  | /* Init, Cleanup */ | 
|  | /*****************/ | 
|  |  | 
|  | int ath_tx_init(struct ath_softc *sc, int nbufs) | 
|  | { | 
|  | int error = 0; | 
|  |  | 
|  | do { | 
|  | spin_lock_init(&sc->tx.txbuflock); | 
|  |  | 
|  | error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf, | 
|  | "tx", nbufs, 1); | 
|  | if (error != 0) { | 
|  | DPRINTF(sc, ATH_DBG_FATAL, | 
|  | "Failed to allocate tx descriptors: %d\n", | 
|  | error); | 
|  | break; | 
|  | } | 
|  |  | 
|  | error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf, | 
|  | "beacon", ATH_BCBUF, 1); | 
|  | if (error != 0) { | 
|  | DPRINTF(sc, ATH_DBG_FATAL, | 
|  | "Failed to allocate beacon descriptors: %d\n", | 
|  | error); | 
|  | break; | 
|  | } | 
|  |  | 
|  | } while (0); | 
|  |  | 
|  | if (error != 0) | 
|  | ath_tx_cleanup(sc); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | int ath_tx_cleanup(struct ath_softc *sc) | 
|  | { | 
|  | if (sc->beacon.bdma.dd_desc_len != 0) | 
|  | ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf); | 
|  |  | 
|  | if (sc->tx.txdma.dd_desc_len != 0) | 
|  | ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an) | 
|  | { | 
|  | struct ath_atx_tid *tid; | 
|  | struct ath_atx_ac *ac; | 
|  | int tidno, acno; | 
|  |  | 
|  | for (tidno = 0, tid = &an->tid[tidno]; | 
|  | tidno < WME_NUM_TID; | 
|  | tidno++, tid++) { | 
|  | tid->an        = an; | 
|  | tid->tidno     = tidno; | 
|  | tid->seq_start = tid->seq_next = 0; | 
|  | tid->baw_size  = WME_MAX_BA; | 
|  | tid->baw_head  = tid->baw_tail = 0; | 
|  | tid->sched     = false; | 
|  | tid->paused    = false; | 
|  | tid->state &= ~AGGR_CLEANUP; | 
|  | INIT_LIST_HEAD(&tid->buf_q); | 
|  | acno = TID_TO_WME_AC(tidno); | 
|  | tid->ac = &an->ac[acno]; | 
|  | tid->state &= ~AGGR_ADDBA_COMPLETE; | 
|  | tid->state &= ~AGGR_ADDBA_PROGRESS; | 
|  | tid->addba_exchangeattempts = 0; | 
|  | } | 
|  |  | 
|  | for (acno = 0, ac = &an->ac[acno]; | 
|  | acno < WME_NUM_AC; acno++, ac++) { | 
|  | ac->sched    = false; | 
|  | INIT_LIST_HEAD(&ac->tid_q); | 
|  |  | 
|  | switch (acno) { | 
|  | case WME_AC_BE: | 
|  | ac->qnum = ath_tx_get_qnum(sc, | 
|  | ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE); | 
|  | break; | 
|  | case WME_AC_BK: | 
|  | ac->qnum = ath_tx_get_qnum(sc, | 
|  | ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BK); | 
|  | break; | 
|  | case WME_AC_VI: | 
|  | ac->qnum = ath_tx_get_qnum(sc, | 
|  | ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VI); | 
|  | break; | 
|  | case WME_AC_VO: | 
|  | ac->qnum = ath_tx_get_qnum(sc, | 
|  | ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VO); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an) | 
|  | { | 
|  | int i; | 
|  | struct ath_atx_ac *ac, *ac_tmp; | 
|  | struct ath_atx_tid *tid, *tid_tmp; | 
|  | struct ath_txq *txq; | 
|  |  | 
|  | for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { | 
|  | if (ATH_TXQ_SETUP(sc, i)) { | 
|  | txq = &sc->tx.txq[i]; | 
|  |  | 
|  | spin_lock(&txq->axq_lock); | 
|  |  | 
|  | list_for_each_entry_safe(ac, | 
|  | ac_tmp, &txq->axq_acq, list) { | 
|  | tid = list_first_entry(&ac->tid_q, | 
|  | struct ath_atx_tid, list); | 
|  | if (tid && tid->an != an) | 
|  | continue; | 
|  | list_del(&ac->list); | 
|  | ac->sched = false; | 
|  |  | 
|  | list_for_each_entry_safe(tid, | 
|  | tid_tmp, &ac->tid_q, list) { | 
|  | list_del(&tid->list); | 
|  | tid->sched = false; | 
|  | ath_tid_drain(sc, txq, tid); | 
|  | tid->state &= ~AGGR_ADDBA_COMPLETE; | 
|  | tid->addba_exchangeattempts = 0; | 
|  | tid->state &= ~AGGR_CLEANUP; | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock(&txq->axq_lock); | 
|  | } | 
|  | } | 
|  | } |