|  | /* | 
|  | * Kernel-based Virtual Machine driver for Linux | 
|  | * | 
|  | * This module enables machines with Intel VT-x extensions to run virtual | 
|  | * machines without emulation or binary translation. | 
|  | * | 
|  | * MMU support | 
|  | * | 
|  | * Copyright (C) 2006 Qumranet, Inc. | 
|  | * | 
|  | * Authors: | 
|  | *   Yaniv Kamay  <yaniv@qumranet.com> | 
|  | *   Avi Kivity   <avi@qumranet.com> | 
|  | * | 
|  | * This work is licensed under the terms of the GNU GPL, version 2.  See | 
|  | * the COPYING file in the top-level directory. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include "vmx.h" | 
|  | #include "mmu.h" | 
|  |  | 
|  | #include <linux/kvm_host.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/compiler.h> | 
|  |  | 
|  | #include <asm/page.h> | 
|  | #include <asm/cmpxchg.h> | 
|  | #include <asm/io.h> | 
|  |  | 
|  | /* | 
|  | * When setting this variable to true it enables Two-Dimensional-Paging | 
|  | * where the hardware walks 2 page tables: | 
|  | * 1. the guest-virtual to guest-physical | 
|  | * 2. while doing 1. it walks guest-physical to host-physical | 
|  | * If the hardware supports that we don't need to do shadow paging. | 
|  | */ | 
|  | bool tdp_enabled = false; | 
|  |  | 
|  | #undef MMU_DEBUG | 
|  |  | 
|  | #undef AUDIT | 
|  |  | 
|  | #ifdef AUDIT | 
|  | static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg); | 
|  | #else | 
|  | static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {} | 
|  | #endif | 
|  |  | 
|  | #ifdef MMU_DEBUG | 
|  |  | 
|  | #define pgprintk(x...) do { if (dbg) printk(x); } while (0) | 
|  | #define rmap_printk(x...) do { if (dbg) printk(x); } while (0) | 
|  |  | 
|  | #else | 
|  |  | 
|  | #define pgprintk(x...) do { } while (0) | 
|  | #define rmap_printk(x...) do { } while (0) | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #if defined(MMU_DEBUG) || defined(AUDIT) | 
|  | static int dbg = 0; | 
|  | module_param(dbg, bool, 0644); | 
|  | #endif | 
|  |  | 
|  | #ifndef MMU_DEBUG | 
|  | #define ASSERT(x) do { } while (0) | 
|  | #else | 
|  | #define ASSERT(x)							\ | 
|  | if (!(x)) {							\ | 
|  | printk(KERN_WARNING "assertion failed %s:%d: %s\n",	\ | 
|  | __FILE__, __LINE__, #x);				\ | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #define PT_FIRST_AVAIL_BITS_SHIFT 9 | 
|  | #define PT64_SECOND_AVAIL_BITS_SHIFT 52 | 
|  |  | 
|  | #define VALID_PAGE(x) ((x) != INVALID_PAGE) | 
|  |  | 
|  | #define PT64_LEVEL_BITS 9 | 
|  |  | 
|  | #define PT64_LEVEL_SHIFT(level) \ | 
|  | (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS) | 
|  |  | 
|  | #define PT64_LEVEL_MASK(level) \ | 
|  | (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level)) | 
|  |  | 
|  | #define PT64_INDEX(address, level)\ | 
|  | (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1)) | 
|  |  | 
|  |  | 
|  | #define PT32_LEVEL_BITS 10 | 
|  |  | 
|  | #define PT32_LEVEL_SHIFT(level) \ | 
|  | (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS) | 
|  |  | 
|  | #define PT32_LEVEL_MASK(level) \ | 
|  | (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level)) | 
|  |  | 
|  | #define PT32_INDEX(address, level)\ | 
|  | (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) | 
|  |  | 
|  |  | 
|  | #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)) | 
|  | #define PT64_DIR_BASE_ADDR_MASK \ | 
|  | (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1)) | 
|  |  | 
|  | #define PT32_BASE_ADDR_MASK PAGE_MASK | 
|  | #define PT32_DIR_BASE_ADDR_MASK \ | 
|  | (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) | 
|  |  | 
|  | #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \ | 
|  | | PT64_NX_MASK) | 
|  |  | 
|  | #define PFERR_PRESENT_MASK (1U << 0) | 
|  | #define PFERR_WRITE_MASK (1U << 1) | 
|  | #define PFERR_USER_MASK (1U << 2) | 
|  | #define PFERR_FETCH_MASK (1U << 4) | 
|  |  | 
|  | #define PT_DIRECTORY_LEVEL 2 | 
|  | #define PT_PAGE_TABLE_LEVEL 1 | 
|  |  | 
|  | #define RMAP_EXT 4 | 
|  |  | 
|  | #define ACC_EXEC_MASK    1 | 
|  | #define ACC_WRITE_MASK   PT_WRITABLE_MASK | 
|  | #define ACC_USER_MASK    PT_USER_MASK | 
|  | #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK) | 
|  |  | 
|  | struct kvm_pv_mmu_op_buffer { | 
|  | void *ptr; | 
|  | unsigned len; | 
|  | unsigned processed; | 
|  | char buf[512] __aligned(sizeof(long)); | 
|  | }; | 
|  |  | 
|  | struct kvm_rmap_desc { | 
|  | u64 *shadow_ptes[RMAP_EXT]; | 
|  | struct kvm_rmap_desc *more; | 
|  | }; | 
|  |  | 
|  | static struct kmem_cache *pte_chain_cache; | 
|  | static struct kmem_cache *rmap_desc_cache; | 
|  | static struct kmem_cache *mmu_page_header_cache; | 
|  |  | 
|  | static u64 __read_mostly shadow_trap_nonpresent_pte; | 
|  | static u64 __read_mostly shadow_notrap_nonpresent_pte; | 
|  | static u64 __read_mostly shadow_base_present_pte; | 
|  | static u64 __read_mostly shadow_nx_mask; | 
|  | static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */ | 
|  | static u64 __read_mostly shadow_user_mask; | 
|  | static u64 __read_mostly shadow_accessed_mask; | 
|  | static u64 __read_mostly shadow_dirty_mask; | 
|  |  | 
|  | void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte) | 
|  | { | 
|  | shadow_trap_nonpresent_pte = trap_pte; | 
|  | shadow_notrap_nonpresent_pte = notrap_pte; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes); | 
|  |  | 
|  | void kvm_mmu_set_base_ptes(u64 base_pte) | 
|  | { | 
|  | shadow_base_present_pte = base_pte; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes); | 
|  |  | 
|  | void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask, | 
|  | u64 dirty_mask, u64 nx_mask, u64 x_mask) | 
|  | { | 
|  | shadow_user_mask = user_mask; | 
|  | shadow_accessed_mask = accessed_mask; | 
|  | shadow_dirty_mask = dirty_mask; | 
|  | shadow_nx_mask = nx_mask; | 
|  | shadow_x_mask = x_mask; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes); | 
|  |  | 
|  | static int is_write_protection(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return vcpu->arch.cr0 & X86_CR0_WP; | 
|  | } | 
|  |  | 
|  | static int is_cpuid_PSE36(void) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int is_nx(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return vcpu->arch.shadow_efer & EFER_NX; | 
|  | } | 
|  |  | 
|  | static int is_present_pte(unsigned long pte) | 
|  | { | 
|  | return pte & PT_PRESENT_MASK; | 
|  | } | 
|  |  | 
|  | static int is_shadow_present_pte(u64 pte) | 
|  | { | 
|  | return pte != shadow_trap_nonpresent_pte | 
|  | && pte != shadow_notrap_nonpresent_pte; | 
|  | } | 
|  |  | 
|  | static int is_large_pte(u64 pte) | 
|  | { | 
|  | return pte & PT_PAGE_SIZE_MASK; | 
|  | } | 
|  |  | 
|  | static int is_writeble_pte(unsigned long pte) | 
|  | { | 
|  | return pte & PT_WRITABLE_MASK; | 
|  | } | 
|  |  | 
|  | static int is_dirty_pte(unsigned long pte) | 
|  | { | 
|  | return pte & shadow_dirty_mask; | 
|  | } | 
|  |  | 
|  | static int is_rmap_pte(u64 pte) | 
|  | { | 
|  | return is_shadow_present_pte(pte); | 
|  | } | 
|  |  | 
|  | static pfn_t spte_to_pfn(u64 pte) | 
|  | { | 
|  | return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | static gfn_t pse36_gfn_delta(u32 gpte) | 
|  | { | 
|  | int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; | 
|  |  | 
|  | return (gpte & PT32_DIR_PSE36_MASK) << shift; | 
|  | } | 
|  |  | 
|  | static void set_shadow_pte(u64 *sptep, u64 spte) | 
|  | { | 
|  | #ifdef CONFIG_X86_64 | 
|  | set_64bit((unsigned long *)sptep, spte); | 
|  | #else | 
|  | set_64bit((unsigned long long *)sptep, spte); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache, | 
|  | struct kmem_cache *base_cache, int min) | 
|  | { | 
|  | void *obj; | 
|  |  | 
|  | if (cache->nobjs >= min) | 
|  | return 0; | 
|  | while (cache->nobjs < ARRAY_SIZE(cache->objects)) { | 
|  | obj = kmem_cache_zalloc(base_cache, GFP_KERNEL); | 
|  | if (!obj) | 
|  | return -ENOMEM; | 
|  | cache->objects[cache->nobjs++] = obj; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) | 
|  | { | 
|  | while (mc->nobjs) | 
|  | kfree(mc->objects[--mc->nobjs]); | 
|  | } | 
|  |  | 
|  | static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache, | 
|  | int min) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | if (cache->nobjs >= min) | 
|  | return 0; | 
|  | while (cache->nobjs < ARRAY_SIZE(cache->objects)) { | 
|  | page = alloc_page(GFP_KERNEL); | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  | set_page_private(page, 0); | 
|  | cache->objects[cache->nobjs++] = page_address(page); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc) | 
|  | { | 
|  | while (mc->nobjs) | 
|  | free_page((unsigned long)mc->objects[--mc->nobjs]); | 
|  | } | 
|  |  | 
|  | static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache, | 
|  | pte_chain_cache, 4); | 
|  | if (r) | 
|  | goto out; | 
|  | r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, | 
|  | rmap_desc_cache, 1); | 
|  | if (r) | 
|  | goto out; | 
|  | r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8); | 
|  | if (r) | 
|  | goto out; | 
|  | r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, | 
|  | mmu_page_header_cache, 4); | 
|  | out: | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache); | 
|  | mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache); | 
|  | mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache); | 
|  | mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); | 
|  | } | 
|  |  | 
|  | static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc, | 
|  | size_t size) | 
|  | { | 
|  | void *p; | 
|  |  | 
|  | BUG_ON(!mc->nobjs); | 
|  | p = mc->objects[--mc->nobjs]; | 
|  | memset(p, 0, size); | 
|  | return p; | 
|  | } | 
|  |  | 
|  | static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache, | 
|  | sizeof(struct kvm_pte_chain)); | 
|  | } | 
|  |  | 
|  | static void mmu_free_pte_chain(struct kvm_pte_chain *pc) | 
|  | { | 
|  | kfree(pc); | 
|  | } | 
|  |  | 
|  | static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache, | 
|  | sizeof(struct kvm_rmap_desc)); | 
|  | } | 
|  |  | 
|  | static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd) | 
|  | { | 
|  | kfree(rd); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the pointer to the largepage write count for a given | 
|  | * gfn, handling slots that are not large page aligned. | 
|  | */ | 
|  | static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot) | 
|  | { | 
|  | unsigned long idx; | 
|  |  | 
|  | idx = (gfn / KVM_PAGES_PER_HPAGE) - | 
|  | (slot->base_gfn / KVM_PAGES_PER_HPAGE); | 
|  | return &slot->lpage_info[idx].write_count; | 
|  | } | 
|  |  | 
|  | static void account_shadowed(struct kvm *kvm, gfn_t gfn) | 
|  | { | 
|  | int *write_count; | 
|  |  | 
|  | write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn)); | 
|  | *write_count += 1; | 
|  | } | 
|  |  | 
|  | static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn) | 
|  | { | 
|  | int *write_count; | 
|  |  | 
|  | write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn)); | 
|  | *write_count -= 1; | 
|  | WARN_ON(*write_count < 0); | 
|  | } | 
|  |  | 
|  | static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn) | 
|  | { | 
|  | struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); | 
|  | int *largepage_idx; | 
|  |  | 
|  | if (slot) { | 
|  | largepage_idx = slot_largepage_idx(gfn, slot); | 
|  | return *largepage_idx; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int host_largepage_backed(struct kvm *kvm, gfn_t gfn) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | unsigned long addr; | 
|  |  | 
|  | addr = gfn_to_hva(kvm, gfn); | 
|  | if (kvm_is_error_hva(addr)) | 
|  | return 0; | 
|  |  | 
|  | vma = find_vma(current->mm, addr); | 
|  | if (vma && is_vm_hugetlb_page(vma)) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn) | 
|  | { | 
|  | struct kvm_memory_slot *slot; | 
|  |  | 
|  | if (has_wrprotected_page(vcpu->kvm, large_gfn)) | 
|  | return 0; | 
|  |  | 
|  | if (!host_largepage_backed(vcpu->kvm, large_gfn)) | 
|  | return 0; | 
|  |  | 
|  | slot = gfn_to_memslot(vcpu->kvm, large_gfn); | 
|  | if (slot && slot->dirty_bitmap) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Take gfn and return the reverse mapping to it. | 
|  | * Note: gfn must be unaliased before this function get called | 
|  | */ | 
|  |  | 
|  | static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage) | 
|  | { | 
|  | struct kvm_memory_slot *slot; | 
|  | unsigned long idx; | 
|  |  | 
|  | slot = gfn_to_memslot(kvm, gfn); | 
|  | if (!lpage) | 
|  | return &slot->rmap[gfn - slot->base_gfn]; | 
|  |  | 
|  | idx = (gfn / KVM_PAGES_PER_HPAGE) - | 
|  | (slot->base_gfn / KVM_PAGES_PER_HPAGE); | 
|  |  | 
|  | return &slot->lpage_info[idx].rmap_pde; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reverse mapping data structures: | 
|  | * | 
|  | * If rmapp bit zero is zero, then rmapp point to the shadw page table entry | 
|  | * that points to page_address(page). | 
|  | * | 
|  | * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc | 
|  | * containing more mappings. | 
|  | */ | 
|  | static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  | struct kvm_rmap_desc *desc; | 
|  | unsigned long *rmapp; | 
|  | int i; | 
|  |  | 
|  | if (!is_rmap_pte(*spte)) | 
|  | return; | 
|  | gfn = unalias_gfn(vcpu->kvm, gfn); | 
|  | sp = page_header(__pa(spte)); | 
|  | sp->gfns[spte - sp->spt] = gfn; | 
|  | rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage); | 
|  | if (!*rmapp) { | 
|  | rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte); | 
|  | *rmapp = (unsigned long)spte; | 
|  | } else if (!(*rmapp & 1)) { | 
|  | rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte); | 
|  | desc = mmu_alloc_rmap_desc(vcpu); | 
|  | desc->shadow_ptes[0] = (u64 *)*rmapp; | 
|  | desc->shadow_ptes[1] = spte; | 
|  | *rmapp = (unsigned long)desc | 1; | 
|  | } else { | 
|  | rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte); | 
|  | desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul); | 
|  | while (desc->shadow_ptes[RMAP_EXT-1] && desc->more) | 
|  | desc = desc->more; | 
|  | if (desc->shadow_ptes[RMAP_EXT-1]) { | 
|  | desc->more = mmu_alloc_rmap_desc(vcpu); | 
|  | desc = desc->more; | 
|  | } | 
|  | for (i = 0; desc->shadow_ptes[i]; ++i) | 
|  | ; | 
|  | desc->shadow_ptes[i] = spte; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rmap_desc_remove_entry(unsigned long *rmapp, | 
|  | struct kvm_rmap_desc *desc, | 
|  | int i, | 
|  | struct kvm_rmap_desc *prev_desc) | 
|  | { | 
|  | int j; | 
|  |  | 
|  | for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j) | 
|  | ; | 
|  | desc->shadow_ptes[i] = desc->shadow_ptes[j]; | 
|  | desc->shadow_ptes[j] = NULL; | 
|  | if (j != 0) | 
|  | return; | 
|  | if (!prev_desc && !desc->more) | 
|  | *rmapp = (unsigned long)desc->shadow_ptes[0]; | 
|  | else | 
|  | if (prev_desc) | 
|  | prev_desc->more = desc->more; | 
|  | else | 
|  | *rmapp = (unsigned long)desc->more | 1; | 
|  | mmu_free_rmap_desc(desc); | 
|  | } | 
|  |  | 
|  | static void rmap_remove(struct kvm *kvm, u64 *spte) | 
|  | { | 
|  | struct kvm_rmap_desc *desc; | 
|  | struct kvm_rmap_desc *prev_desc; | 
|  | struct kvm_mmu_page *sp; | 
|  | pfn_t pfn; | 
|  | unsigned long *rmapp; | 
|  | int i; | 
|  |  | 
|  | if (!is_rmap_pte(*spte)) | 
|  | return; | 
|  | sp = page_header(__pa(spte)); | 
|  | pfn = spte_to_pfn(*spte); | 
|  | if (*spte & shadow_accessed_mask) | 
|  | kvm_set_pfn_accessed(pfn); | 
|  | if (is_writeble_pte(*spte)) | 
|  | kvm_release_pfn_dirty(pfn); | 
|  | else | 
|  | kvm_release_pfn_clean(pfn); | 
|  | rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte)); | 
|  | if (!*rmapp) { | 
|  | printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte); | 
|  | BUG(); | 
|  | } else if (!(*rmapp & 1)) { | 
|  | rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte); | 
|  | if ((u64 *)*rmapp != spte) { | 
|  | printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n", | 
|  | spte, *spte); | 
|  | BUG(); | 
|  | } | 
|  | *rmapp = 0; | 
|  | } else { | 
|  | rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte); | 
|  | desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul); | 
|  | prev_desc = NULL; | 
|  | while (desc) { | 
|  | for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) | 
|  | if (desc->shadow_ptes[i] == spte) { | 
|  | rmap_desc_remove_entry(rmapp, | 
|  | desc, i, | 
|  | prev_desc); | 
|  | return; | 
|  | } | 
|  | prev_desc = desc; | 
|  | desc = desc->more; | 
|  | } | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte) | 
|  | { | 
|  | struct kvm_rmap_desc *desc; | 
|  | struct kvm_rmap_desc *prev_desc; | 
|  | u64 *prev_spte; | 
|  | int i; | 
|  |  | 
|  | if (!*rmapp) | 
|  | return NULL; | 
|  | else if (!(*rmapp & 1)) { | 
|  | if (!spte) | 
|  | return (u64 *)*rmapp; | 
|  | return NULL; | 
|  | } | 
|  | desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul); | 
|  | prev_desc = NULL; | 
|  | prev_spte = NULL; | 
|  | while (desc) { | 
|  | for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) { | 
|  | if (prev_spte == spte) | 
|  | return desc->shadow_ptes[i]; | 
|  | prev_spte = desc->shadow_ptes[i]; | 
|  | } | 
|  | desc = desc->more; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void rmap_write_protect(struct kvm *kvm, u64 gfn) | 
|  | { | 
|  | unsigned long *rmapp; | 
|  | u64 *spte; | 
|  | int write_protected = 0; | 
|  |  | 
|  | gfn = unalias_gfn(kvm, gfn); | 
|  | rmapp = gfn_to_rmap(kvm, gfn, 0); | 
|  |  | 
|  | spte = rmap_next(kvm, rmapp, NULL); | 
|  | while (spte) { | 
|  | BUG_ON(!spte); | 
|  | BUG_ON(!(*spte & PT_PRESENT_MASK)); | 
|  | rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte); | 
|  | if (is_writeble_pte(*spte)) { | 
|  | set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK); | 
|  | write_protected = 1; | 
|  | } | 
|  | spte = rmap_next(kvm, rmapp, spte); | 
|  | } | 
|  | if (write_protected) { | 
|  | pfn_t pfn; | 
|  |  | 
|  | spte = rmap_next(kvm, rmapp, NULL); | 
|  | pfn = spte_to_pfn(*spte); | 
|  | kvm_set_pfn_dirty(pfn); | 
|  | } | 
|  |  | 
|  | /* check for huge page mappings */ | 
|  | rmapp = gfn_to_rmap(kvm, gfn, 1); | 
|  | spte = rmap_next(kvm, rmapp, NULL); | 
|  | while (spte) { | 
|  | BUG_ON(!spte); | 
|  | BUG_ON(!(*spte & PT_PRESENT_MASK)); | 
|  | BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)); | 
|  | pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn); | 
|  | if (is_writeble_pte(*spte)) { | 
|  | rmap_remove(kvm, spte); | 
|  | --kvm->stat.lpages; | 
|  | set_shadow_pte(spte, shadow_trap_nonpresent_pte); | 
|  | spte = NULL; | 
|  | write_protected = 1; | 
|  | } | 
|  | spte = rmap_next(kvm, rmapp, spte); | 
|  | } | 
|  |  | 
|  | if (write_protected) | 
|  | kvm_flush_remote_tlbs(kvm); | 
|  |  | 
|  | account_shadowed(kvm, gfn); | 
|  | } | 
|  |  | 
|  | static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp) | 
|  | { | 
|  | u64 *spte; | 
|  | int need_tlb_flush = 0; | 
|  |  | 
|  | while ((spte = rmap_next(kvm, rmapp, NULL))) { | 
|  | BUG_ON(!(*spte & PT_PRESENT_MASK)); | 
|  | rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte); | 
|  | rmap_remove(kvm, spte); | 
|  | set_shadow_pte(spte, shadow_trap_nonpresent_pte); | 
|  | need_tlb_flush = 1; | 
|  | } | 
|  | return need_tlb_flush; | 
|  | } | 
|  |  | 
|  | static int kvm_handle_hva(struct kvm *kvm, unsigned long hva, | 
|  | int (*handler)(struct kvm *kvm, unsigned long *rmapp)) | 
|  | { | 
|  | int i; | 
|  | int retval = 0; | 
|  |  | 
|  | /* | 
|  | * If mmap_sem isn't taken, we can look the memslots with only | 
|  | * the mmu_lock by skipping over the slots with userspace_addr == 0. | 
|  | */ | 
|  | for (i = 0; i < kvm->nmemslots; i++) { | 
|  | struct kvm_memory_slot *memslot = &kvm->memslots[i]; | 
|  | unsigned long start = memslot->userspace_addr; | 
|  | unsigned long end; | 
|  |  | 
|  | /* mmu_lock protects userspace_addr */ | 
|  | if (!start) | 
|  | continue; | 
|  |  | 
|  | end = start + (memslot->npages << PAGE_SHIFT); | 
|  | if (hva >= start && hva < end) { | 
|  | gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT; | 
|  | retval |= handler(kvm, &memslot->rmap[gfn_offset]); | 
|  | retval |= handler(kvm, | 
|  | &memslot->lpage_info[ | 
|  | gfn_offset / | 
|  | KVM_PAGES_PER_HPAGE].rmap_pde); | 
|  | } | 
|  | } | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | int kvm_unmap_hva(struct kvm *kvm, unsigned long hva) | 
|  | { | 
|  | return kvm_handle_hva(kvm, hva, kvm_unmap_rmapp); | 
|  | } | 
|  |  | 
|  | static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp) | 
|  | { | 
|  | u64 *spte; | 
|  | int young = 0; | 
|  |  | 
|  | spte = rmap_next(kvm, rmapp, NULL); | 
|  | while (spte) { | 
|  | int _young; | 
|  | u64 _spte = *spte; | 
|  | BUG_ON(!(_spte & PT_PRESENT_MASK)); | 
|  | _young = _spte & PT_ACCESSED_MASK; | 
|  | if (_young) { | 
|  | young = 1; | 
|  | clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte); | 
|  | } | 
|  | spte = rmap_next(kvm, rmapp, spte); | 
|  | } | 
|  | return young; | 
|  | } | 
|  |  | 
|  | int kvm_age_hva(struct kvm *kvm, unsigned long hva) | 
|  | { | 
|  | return kvm_handle_hva(kvm, hva, kvm_age_rmapp); | 
|  | } | 
|  |  | 
|  | #ifdef MMU_DEBUG | 
|  | static int is_empty_shadow_page(u64 *spt) | 
|  | { | 
|  | u64 *pos; | 
|  | u64 *end; | 
|  |  | 
|  | for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) | 
|  | if (is_shadow_present_pte(*pos)) { | 
|  | printk(KERN_ERR "%s: %p %llx\n", __func__, | 
|  | pos, *pos); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp) | 
|  | { | 
|  | ASSERT(is_empty_shadow_page(sp->spt)); | 
|  | list_del(&sp->link); | 
|  | __free_page(virt_to_page(sp->spt)); | 
|  | __free_page(virt_to_page(sp->gfns)); | 
|  | kfree(sp); | 
|  | ++kvm->arch.n_free_mmu_pages; | 
|  | } | 
|  |  | 
|  | static unsigned kvm_page_table_hashfn(gfn_t gfn) | 
|  | { | 
|  | return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1); | 
|  | } | 
|  |  | 
|  | static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, | 
|  | u64 *parent_pte) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  |  | 
|  | sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp); | 
|  | sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE); | 
|  | sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE); | 
|  | set_page_private(virt_to_page(sp->spt), (unsigned long)sp); | 
|  | list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages); | 
|  | ASSERT(is_empty_shadow_page(sp->spt)); | 
|  | sp->slot_bitmap = 0; | 
|  | sp->multimapped = 0; | 
|  | sp->parent_pte = parent_pte; | 
|  | --vcpu->kvm->arch.n_free_mmu_pages; | 
|  | return sp; | 
|  | } | 
|  |  | 
|  | static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu_page *sp, u64 *parent_pte) | 
|  | { | 
|  | struct kvm_pte_chain *pte_chain; | 
|  | struct hlist_node *node; | 
|  | int i; | 
|  |  | 
|  | if (!parent_pte) | 
|  | return; | 
|  | if (!sp->multimapped) { | 
|  | u64 *old = sp->parent_pte; | 
|  |  | 
|  | if (!old) { | 
|  | sp->parent_pte = parent_pte; | 
|  | return; | 
|  | } | 
|  | sp->multimapped = 1; | 
|  | pte_chain = mmu_alloc_pte_chain(vcpu); | 
|  | INIT_HLIST_HEAD(&sp->parent_ptes); | 
|  | hlist_add_head(&pte_chain->link, &sp->parent_ptes); | 
|  | pte_chain->parent_ptes[0] = old; | 
|  | } | 
|  | hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) { | 
|  | if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1]) | 
|  | continue; | 
|  | for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) | 
|  | if (!pte_chain->parent_ptes[i]) { | 
|  | pte_chain->parent_ptes[i] = parent_pte; | 
|  | return; | 
|  | } | 
|  | } | 
|  | pte_chain = mmu_alloc_pte_chain(vcpu); | 
|  | BUG_ON(!pte_chain); | 
|  | hlist_add_head(&pte_chain->link, &sp->parent_ptes); | 
|  | pte_chain->parent_ptes[0] = parent_pte; | 
|  | } | 
|  |  | 
|  | static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, | 
|  | u64 *parent_pte) | 
|  | { | 
|  | struct kvm_pte_chain *pte_chain; | 
|  | struct hlist_node *node; | 
|  | int i; | 
|  |  | 
|  | if (!sp->multimapped) { | 
|  | BUG_ON(sp->parent_pte != parent_pte); | 
|  | sp->parent_pte = NULL; | 
|  | return; | 
|  | } | 
|  | hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) | 
|  | for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) { | 
|  | if (!pte_chain->parent_ptes[i]) | 
|  | break; | 
|  | if (pte_chain->parent_ptes[i] != parent_pte) | 
|  | continue; | 
|  | while (i + 1 < NR_PTE_CHAIN_ENTRIES | 
|  | && pte_chain->parent_ptes[i + 1]) { | 
|  | pte_chain->parent_ptes[i] | 
|  | = pte_chain->parent_ptes[i + 1]; | 
|  | ++i; | 
|  | } | 
|  | pte_chain->parent_ptes[i] = NULL; | 
|  | if (i == 0) { | 
|  | hlist_del(&pte_chain->link); | 
|  | mmu_free_pte_chain(pte_chain); | 
|  | if (hlist_empty(&sp->parent_ptes)) { | 
|  | sp->multimapped = 0; | 
|  | sp->parent_pte = NULL; | 
|  | } | 
|  | } | 
|  | return; | 
|  | } | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu_page *sp) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < PT64_ENT_PER_PAGE; ++i) | 
|  | sp->spt[i] = shadow_trap_nonpresent_pte; | 
|  | } | 
|  |  | 
|  | static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn) | 
|  | { | 
|  | unsigned index; | 
|  | struct hlist_head *bucket; | 
|  | struct kvm_mmu_page *sp; | 
|  | struct hlist_node *node; | 
|  |  | 
|  | pgprintk("%s: looking for gfn %lx\n", __func__, gfn); | 
|  | index = kvm_page_table_hashfn(gfn); | 
|  | bucket = &kvm->arch.mmu_page_hash[index]; | 
|  | hlist_for_each_entry(sp, node, bucket, hash_link) | 
|  | if (sp->gfn == gfn && !sp->role.metaphysical | 
|  | && !sp->role.invalid) { | 
|  | pgprintk("%s: found role %x\n", | 
|  | __func__, sp->role.word); | 
|  | return sp; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, | 
|  | gfn_t gfn, | 
|  | gva_t gaddr, | 
|  | unsigned level, | 
|  | int metaphysical, | 
|  | unsigned access, | 
|  | u64 *parent_pte) | 
|  | { | 
|  | union kvm_mmu_page_role role; | 
|  | unsigned index; | 
|  | unsigned quadrant; | 
|  | struct hlist_head *bucket; | 
|  | struct kvm_mmu_page *sp; | 
|  | struct hlist_node *node; | 
|  |  | 
|  | role.word = 0; | 
|  | role.glevels = vcpu->arch.mmu.root_level; | 
|  | role.level = level; | 
|  | role.metaphysical = metaphysical; | 
|  | role.access = access; | 
|  | if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) { | 
|  | quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); | 
|  | quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; | 
|  | role.quadrant = quadrant; | 
|  | } | 
|  | pgprintk("%s: looking gfn %lx role %x\n", __func__, | 
|  | gfn, role.word); | 
|  | index = kvm_page_table_hashfn(gfn); | 
|  | bucket = &vcpu->kvm->arch.mmu_page_hash[index]; | 
|  | hlist_for_each_entry(sp, node, bucket, hash_link) | 
|  | if (sp->gfn == gfn && sp->role.word == role.word) { | 
|  | mmu_page_add_parent_pte(vcpu, sp, parent_pte); | 
|  | pgprintk("%s: found\n", __func__); | 
|  | return sp; | 
|  | } | 
|  | ++vcpu->kvm->stat.mmu_cache_miss; | 
|  | sp = kvm_mmu_alloc_page(vcpu, parent_pte); | 
|  | if (!sp) | 
|  | return sp; | 
|  | pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word); | 
|  | sp->gfn = gfn; | 
|  | sp->role = role; | 
|  | hlist_add_head(&sp->hash_link, bucket); | 
|  | if (!metaphysical) | 
|  | rmap_write_protect(vcpu->kvm, gfn); | 
|  | if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte) | 
|  | vcpu->arch.mmu.prefetch_page(vcpu, sp); | 
|  | else | 
|  | nonpaging_prefetch_page(vcpu, sp); | 
|  | return sp; | 
|  | } | 
|  |  | 
|  | static void kvm_mmu_page_unlink_children(struct kvm *kvm, | 
|  | struct kvm_mmu_page *sp) | 
|  | { | 
|  | unsigned i; | 
|  | u64 *pt; | 
|  | u64 ent; | 
|  |  | 
|  | pt = sp->spt; | 
|  |  | 
|  | if (sp->role.level == PT_PAGE_TABLE_LEVEL) { | 
|  | for (i = 0; i < PT64_ENT_PER_PAGE; ++i) { | 
|  | if (is_shadow_present_pte(pt[i])) | 
|  | rmap_remove(kvm, &pt[i]); | 
|  | pt[i] = shadow_trap_nonpresent_pte; | 
|  | } | 
|  | kvm_flush_remote_tlbs(kvm); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < PT64_ENT_PER_PAGE; ++i) { | 
|  | ent = pt[i]; | 
|  |  | 
|  | if (is_shadow_present_pte(ent)) { | 
|  | if (!is_large_pte(ent)) { | 
|  | ent &= PT64_BASE_ADDR_MASK; | 
|  | mmu_page_remove_parent_pte(page_header(ent), | 
|  | &pt[i]); | 
|  | } else { | 
|  | --kvm->stat.lpages; | 
|  | rmap_remove(kvm, &pt[i]); | 
|  | } | 
|  | } | 
|  | pt[i] = shadow_trap_nonpresent_pte; | 
|  | } | 
|  | kvm_flush_remote_tlbs(kvm); | 
|  | } | 
|  |  | 
|  | static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte) | 
|  | { | 
|  | mmu_page_remove_parent_pte(sp, parent_pte); | 
|  | } | 
|  |  | 
|  | static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < KVM_MAX_VCPUS; ++i) | 
|  | if (kvm->vcpus[i]) | 
|  | kvm->vcpus[i]->arch.last_pte_updated = NULL; | 
|  | } | 
|  |  | 
|  | static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp) | 
|  | { | 
|  | u64 *parent_pte; | 
|  |  | 
|  | ++kvm->stat.mmu_shadow_zapped; | 
|  | while (sp->multimapped || sp->parent_pte) { | 
|  | if (!sp->multimapped) | 
|  | parent_pte = sp->parent_pte; | 
|  | else { | 
|  | struct kvm_pte_chain *chain; | 
|  |  | 
|  | chain = container_of(sp->parent_ptes.first, | 
|  | struct kvm_pte_chain, link); | 
|  | parent_pte = chain->parent_ptes[0]; | 
|  | } | 
|  | BUG_ON(!parent_pte); | 
|  | kvm_mmu_put_page(sp, parent_pte); | 
|  | set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte); | 
|  | } | 
|  | kvm_mmu_page_unlink_children(kvm, sp); | 
|  | if (!sp->root_count) { | 
|  | if (!sp->role.metaphysical && !sp->role.invalid) | 
|  | unaccount_shadowed(kvm, sp->gfn); | 
|  | hlist_del(&sp->hash_link); | 
|  | kvm_mmu_free_page(kvm, sp); | 
|  | } else { | 
|  | int invalid = sp->role.invalid; | 
|  | list_move(&sp->link, &kvm->arch.active_mmu_pages); | 
|  | sp->role.invalid = 1; | 
|  | kvm_reload_remote_mmus(kvm); | 
|  | if (!sp->role.metaphysical && !invalid) | 
|  | unaccount_shadowed(kvm, sp->gfn); | 
|  | } | 
|  | kvm_mmu_reset_last_pte_updated(kvm); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Changing the number of mmu pages allocated to the vm | 
|  | * Note: if kvm_nr_mmu_pages is too small, you will get dead lock | 
|  | */ | 
|  | void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages) | 
|  | { | 
|  | /* | 
|  | * If we set the number of mmu pages to be smaller be than the | 
|  | * number of actived pages , we must to free some mmu pages before we | 
|  | * change the value | 
|  | */ | 
|  |  | 
|  | if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) > | 
|  | kvm_nr_mmu_pages) { | 
|  | int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages | 
|  | - kvm->arch.n_free_mmu_pages; | 
|  |  | 
|  | while (n_used_mmu_pages > kvm_nr_mmu_pages) { | 
|  | struct kvm_mmu_page *page; | 
|  |  | 
|  | page = container_of(kvm->arch.active_mmu_pages.prev, | 
|  | struct kvm_mmu_page, link); | 
|  | kvm_mmu_zap_page(kvm, page); | 
|  | n_used_mmu_pages--; | 
|  | } | 
|  | kvm->arch.n_free_mmu_pages = 0; | 
|  | } | 
|  | else | 
|  | kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages | 
|  | - kvm->arch.n_alloc_mmu_pages; | 
|  |  | 
|  | kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages; | 
|  | } | 
|  |  | 
|  | static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) | 
|  | { | 
|  | unsigned index; | 
|  | struct hlist_head *bucket; | 
|  | struct kvm_mmu_page *sp; | 
|  | struct hlist_node *node, *n; | 
|  | int r; | 
|  |  | 
|  | pgprintk("%s: looking for gfn %lx\n", __func__, gfn); | 
|  | r = 0; | 
|  | index = kvm_page_table_hashfn(gfn); | 
|  | bucket = &kvm->arch.mmu_page_hash[index]; | 
|  | hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) | 
|  | if (sp->gfn == gfn && !sp->role.metaphysical) { | 
|  | pgprintk("%s: gfn %lx role %x\n", __func__, gfn, | 
|  | sp->role.word); | 
|  | kvm_mmu_zap_page(kvm, sp); | 
|  | r = 1; | 
|  | } | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void mmu_unshadow(struct kvm *kvm, gfn_t gfn) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  |  | 
|  | while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) { | 
|  | pgprintk("%s: zap %lx %x\n", __func__, gfn, sp->role.word); | 
|  | kvm_mmu_zap_page(kvm, sp); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn) | 
|  | { | 
|  | int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn)); | 
|  | struct kvm_mmu_page *sp = page_header(__pa(pte)); | 
|  |  | 
|  | __set_bit(slot, &sp->slot_bitmap); | 
|  | } | 
|  |  | 
|  | struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva); | 
|  |  | 
|  | if (gpa == UNMAPPED_GVA) | 
|  | return NULL; | 
|  |  | 
|  | down_read(¤t->mm->mmap_sem); | 
|  | page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); | 
|  | up_read(¤t->mm->mmap_sem); | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte, | 
|  | unsigned pt_access, unsigned pte_access, | 
|  | int user_fault, int write_fault, int dirty, | 
|  | int *ptwrite, int largepage, gfn_t gfn, | 
|  | pfn_t pfn, bool speculative) | 
|  | { | 
|  | u64 spte; | 
|  | int was_rmapped = 0; | 
|  | int was_writeble = is_writeble_pte(*shadow_pte); | 
|  |  | 
|  | pgprintk("%s: spte %llx access %x write_fault %d" | 
|  | " user_fault %d gfn %lx\n", | 
|  | __func__, *shadow_pte, pt_access, | 
|  | write_fault, user_fault, gfn); | 
|  |  | 
|  | if (is_rmap_pte(*shadow_pte)) { | 
|  | /* | 
|  | * If we overwrite a PTE page pointer with a 2MB PMD, unlink | 
|  | * the parent of the now unreachable PTE. | 
|  | */ | 
|  | if (largepage && !is_large_pte(*shadow_pte)) { | 
|  | struct kvm_mmu_page *child; | 
|  | u64 pte = *shadow_pte; | 
|  |  | 
|  | child = page_header(pte & PT64_BASE_ADDR_MASK); | 
|  | mmu_page_remove_parent_pte(child, shadow_pte); | 
|  | } else if (pfn != spte_to_pfn(*shadow_pte)) { | 
|  | pgprintk("hfn old %lx new %lx\n", | 
|  | spte_to_pfn(*shadow_pte), pfn); | 
|  | rmap_remove(vcpu->kvm, shadow_pte); | 
|  | } else { | 
|  | if (largepage) | 
|  | was_rmapped = is_large_pte(*shadow_pte); | 
|  | else | 
|  | was_rmapped = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We don't set the accessed bit, since we sometimes want to see | 
|  | * whether the guest actually used the pte (in order to detect | 
|  | * demand paging). | 
|  | */ | 
|  | spte = shadow_base_present_pte | shadow_dirty_mask; | 
|  | if (!speculative) | 
|  | pte_access |= PT_ACCESSED_MASK; | 
|  | if (!dirty) | 
|  | pte_access &= ~ACC_WRITE_MASK; | 
|  | if (pte_access & ACC_EXEC_MASK) | 
|  | spte |= shadow_x_mask; | 
|  | else | 
|  | spte |= shadow_nx_mask; | 
|  | if (pte_access & ACC_USER_MASK) | 
|  | spte |= shadow_user_mask; | 
|  | if (largepage) | 
|  | spte |= PT_PAGE_SIZE_MASK; | 
|  |  | 
|  | spte |= (u64)pfn << PAGE_SHIFT; | 
|  |  | 
|  | if ((pte_access & ACC_WRITE_MASK) | 
|  | || (write_fault && !is_write_protection(vcpu) && !user_fault)) { | 
|  | struct kvm_mmu_page *shadow; | 
|  |  | 
|  | spte |= PT_WRITABLE_MASK; | 
|  |  | 
|  | shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn); | 
|  | if (shadow || | 
|  | (largepage && has_wrprotected_page(vcpu->kvm, gfn))) { | 
|  | pgprintk("%s: found shadow page for %lx, marking ro\n", | 
|  | __func__, gfn); | 
|  | pte_access &= ~ACC_WRITE_MASK; | 
|  | if (is_writeble_pte(spte)) { | 
|  | spte &= ~PT_WRITABLE_MASK; | 
|  | kvm_x86_ops->tlb_flush(vcpu); | 
|  | } | 
|  | if (write_fault) | 
|  | *ptwrite = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (pte_access & ACC_WRITE_MASK) | 
|  | mark_page_dirty(vcpu->kvm, gfn); | 
|  |  | 
|  | pgprintk("%s: setting spte %llx\n", __func__, spte); | 
|  | pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n", | 
|  | (spte&PT_PAGE_SIZE_MASK)? "2MB" : "4kB", | 
|  | (spte&PT_WRITABLE_MASK)?"RW":"R", gfn, spte, shadow_pte); | 
|  | set_shadow_pte(shadow_pte, spte); | 
|  | if (!was_rmapped && (spte & PT_PAGE_SIZE_MASK) | 
|  | && (spte & PT_PRESENT_MASK)) | 
|  | ++vcpu->kvm->stat.lpages; | 
|  |  | 
|  | page_header_update_slot(vcpu->kvm, shadow_pte, gfn); | 
|  | if (!was_rmapped) { | 
|  | rmap_add(vcpu, shadow_pte, gfn, largepage); | 
|  | if (!is_rmap_pte(*shadow_pte)) | 
|  | kvm_release_pfn_clean(pfn); | 
|  | } else { | 
|  | if (was_writeble) | 
|  | kvm_release_pfn_dirty(pfn); | 
|  | else | 
|  | kvm_release_pfn_clean(pfn); | 
|  | } | 
|  | if (speculative) { | 
|  | vcpu->arch.last_pte_updated = shadow_pte; | 
|  | vcpu->arch.last_pte_gfn = gfn; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void nonpaging_new_cr3(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | } | 
|  |  | 
|  | static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write, | 
|  | int largepage, gfn_t gfn, pfn_t pfn, | 
|  | int level) | 
|  | { | 
|  | hpa_t table_addr = vcpu->arch.mmu.root_hpa; | 
|  | int pt_write = 0; | 
|  |  | 
|  | for (; ; level--) { | 
|  | u32 index = PT64_INDEX(v, level); | 
|  | u64 *table; | 
|  |  | 
|  | ASSERT(VALID_PAGE(table_addr)); | 
|  | table = __va(table_addr); | 
|  |  | 
|  | if (level == 1) { | 
|  | mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL, | 
|  | 0, write, 1, &pt_write, 0, gfn, pfn, false); | 
|  | return pt_write; | 
|  | } | 
|  |  | 
|  | if (largepage && level == 2) { | 
|  | mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL, | 
|  | 0, write, 1, &pt_write, 1, gfn, pfn, false); | 
|  | return pt_write; | 
|  | } | 
|  |  | 
|  | if (table[index] == shadow_trap_nonpresent_pte) { | 
|  | struct kvm_mmu_page *new_table; | 
|  | gfn_t pseudo_gfn; | 
|  |  | 
|  | pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK) | 
|  | >> PAGE_SHIFT; | 
|  | new_table = kvm_mmu_get_page(vcpu, pseudo_gfn, | 
|  | v, level - 1, | 
|  | 1, ACC_ALL, &table[index]); | 
|  | if (!new_table) { | 
|  | pgprintk("nonpaging_map: ENOMEM\n"); | 
|  | kvm_release_pfn_clean(pfn); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | set_shadow_pte(&table[index], | 
|  | __pa(new_table->spt) | 
|  | | PT_PRESENT_MASK | PT_WRITABLE_MASK | 
|  | | shadow_user_mask | shadow_x_mask); | 
|  | } | 
|  | table_addr = table[index] & PT64_BASE_ADDR_MASK; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn) | 
|  | { | 
|  | int r; | 
|  | int largepage = 0; | 
|  | pfn_t pfn; | 
|  | unsigned long mmu_seq; | 
|  |  | 
|  | down_read(¤t->mm->mmap_sem); | 
|  | if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) { | 
|  | gfn &= ~(KVM_PAGES_PER_HPAGE-1); | 
|  | largepage = 1; | 
|  | } | 
|  |  | 
|  | mmu_seq = vcpu->kvm->mmu_notifier_seq; | 
|  | /* implicit mb(), we'll read before PT lock is unlocked */ | 
|  | pfn = gfn_to_pfn(vcpu->kvm, gfn); | 
|  | up_read(¤t->mm->mmap_sem); | 
|  |  | 
|  | /* mmio */ | 
|  | if (is_error_pfn(pfn)) { | 
|  | kvm_release_pfn_clean(pfn); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | if (mmu_notifier_retry(vcpu, mmu_seq)) | 
|  | goto out_unlock; | 
|  | kvm_mmu_free_some_pages(vcpu); | 
|  | r = __direct_map(vcpu, v, write, largepage, gfn, pfn, | 
|  | PT32E_ROOT_LEVEL); | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  |  | 
|  |  | 
|  | return r; | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | kvm_release_pfn_clean(pfn); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void mmu_free_roots(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int i; | 
|  | struct kvm_mmu_page *sp; | 
|  |  | 
|  | if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) | 
|  | return; | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) { | 
|  | hpa_t root = vcpu->arch.mmu.root_hpa; | 
|  |  | 
|  | sp = page_header(root); | 
|  | --sp->root_count; | 
|  | if (!sp->root_count && sp->role.invalid) | 
|  | kvm_mmu_zap_page(vcpu->kvm, sp); | 
|  | vcpu->arch.mmu.root_hpa = INVALID_PAGE; | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | return; | 
|  | } | 
|  | for (i = 0; i < 4; ++i) { | 
|  | hpa_t root = vcpu->arch.mmu.pae_root[i]; | 
|  |  | 
|  | if (root) { | 
|  | root &= PT64_BASE_ADDR_MASK; | 
|  | sp = page_header(root); | 
|  | --sp->root_count; | 
|  | if (!sp->root_count && sp->role.invalid) | 
|  | kvm_mmu_zap_page(vcpu->kvm, sp); | 
|  | } | 
|  | vcpu->arch.mmu.pae_root[i] = INVALID_PAGE; | 
|  | } | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | vcpu->arch.mmu.root_hpa = INVALID_PAGE; | 
|  | } | 
|  |  | 
|  | static void mmu_alloc_roots(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int i; | 
|  | gfn_t root_gfn; | 
|  | struct kvm_mmu_page *sp; | 
|  | int metaphysical = 0; | 
|  |  | 
|  | root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT; | 
|  |  | 
|  | if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) { | 
|  | hpa_t root = vcpu->arch.mmu.root_hpa; | 
|  |  | 
|  | ASSERT(!VALID_PAGE(root)); | 
|  | if (tdp_enabled) | 
|  | metaphysical = 1; | 
|  | sp = kvm_mmu_get_page(vcpu, root_gfn, 0, | 
|  | PT64_ROOT_LEVEL, metaphysical, | 
|  | ACC_ALL, NULL); | 
|  | root = __pa(sp->spt); | 
|  | ++sp->root_count; | 
|  | vcpu->arch.mmu.root_hpa = root; | 
|  | return; | 
|  | } | 
|  | metaphysical = !is_paging(vcpu); | 
|  | if (tdp_enabled) | 
|  | metaphysical = 1; | 
|  | for (i = 0; i < 4; ++i) { | 
|  | hpa_t root = vcpu->arch.mmu.pae_root[i]; | 
|  |  | 
|  | ASSERT(!VALID_PAGE(root)); | 
|  | if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) { | 
|  | if (!is_present_pte(vcpu->arch.pdptrs[i])) { | 
|  | vcpu->arch.mmu.pae_root[i] = 0; | 
|  | continue; | 
|  | } | 
|  | root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT; | 
|  | } else if (vcpu->arch.mmu.root_level == 0) | 
|  | root_gfn = 0; | 
|  | sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, | 
|  | PT32_ROOT_LEVEL, metaphysical, | 
|  | ACC_ALL, NULL); | 
|  | root = __pa(sp->spt); | 
|  | ++sp->root_count; | 
|  | vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK; | 
|  | } | 
|  | vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root); | 
|  | } | 
|  |  | 
|  | static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr) | 
|  | { | 
|  | return vaddr; | 
|  | } | 
|  |  | 
|  | static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva, | 
|  | u32 error_code) | 
|  | { | 
|  | gfn_t gfn; | 
|  | int r; | 
|  |  | 
|  | pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code); | 
|  | r = mmu_topup_memory_caches(vcpu); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | ASSERT(vcpu); | 
|  | ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa)); | 
|  |  | 
|  | gfn = gva >> PAGE_SHIFT; | 
|  |  | 
|  | return nonpaging_map(vcpu, gva & PAGE_MASK, | 
|  | error_code & PFERR_WRITE_MASK, gfn); | 
|  | } | 
|  |  | 
|  | static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, | 
|  | u32 error_code) | 
|  | { | 
|  | pfn_t pfn; | 
|  | int r; | 
|  | int largepage = 0; | 
|  | gfn_t gfn = gpa >> PAGE_SHIFT; | 
|  | unsigned long mmu_seq; | 
|  |  | 
|  | ASSERT(vcpu); | 
|  | ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa)); | 
|  |  | 
|  | r = mmu_topup_memory_caches(vcpu); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | down_read(¤t->mm->mmap_sem); | 
|  | if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) { | 
|  | gfn &= ~(KVM_PAGES_PER_HPAGE-1); | 
|  | largepage = 1; | 
|  | } | 
|  | mmu_seq = vcpu->kvm->mmu_notifier_seq; | 
|  | /* implicit mb(), we'll read before PT lock is unlocked */ | 
|  | pfn = gfn_to_pfn(vcpu->kvm, gfn); | 
|  | up_read(¤t->mm->mmap_sem); | 
|  | if (is_error_pfn(pfn)) { | 
|  | kvm_release_pfn_clean(pfn); | 
|  | return 1; | 
|  | } | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | if (mmu_notifier_retry(vcpu, mmu_seq)) | 
|  | goto out_unlock; | 
|  | kvm_mmu_free_some_pages(vcpu); | 
|  | r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK, | 
|  | largepage, gfn, pfn, kvm_x86_ops->get_tdp_level()); | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  |  | 
|  | return r; | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | kvm_release_pfn_clean(pfn); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void nonpaging_free(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | mmu_free_roots(vcpu); | 
|  | } | 
|  |  | 
|  | static int nonpaging_init_context(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_mmu *context = &vcpu->arch.mmu; | 
|  |  | 
|  | context->new_cr3 = nonpaging_new_cr3; | 
|  | context->page_fault = nonpaging_page_fault; | 
|  | context->gva_to_gpa = nonpaging_gva_to_gpa; | 
|  | context->free = nonpaging_free; | 
|  | context->prefetch_page = nonpaging_prefetch_page; | 
|  | context->root_level = 0; | 
|  | context->shadow_root_level = PT32E_ROOT_LEVEL; | 
|  | context->root_hpa = INVALID_PAGE; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | ++vcpu->stat.tlb_flush; | 
|  | kvm_x86_ops->tlb_flush(vcpu); | 
|  | } | 
|  |  | 
|  | static void paging_new_cr3(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3); | 
|  | mmu_free_roots(vcpu); | 
|  | } | 
|  |  | 
|  | static void inject_page_fault(struct kvm_vcpu *vcpu, | 
|  | u64 addr, | 
|  | u32 err_code) | 
|  | { | 
|  | kvm_inject_page_fault(vcpu, addr, err_code); | 
|  | } | 
|  |  | 
|  | static void paging_free(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | nonpaging_free(vcpu); | 
|  | } | 
|  |  | 
|  | #define PTTYPE 64 | 
|  | #include "paging_tmpl.h" | 
|  | #undef PTTYPE | 
|  |  | 
|  | #define PTTYPE 32 | 
|  | #include "paging_tmpl.h" | 
|  | #undef PTTYPE | 
|  |  | 
|  | static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level) | 
|  | { | 
|  | struct kvm_mmu *context = &vcpu->arch.mmu; | 
|  |  | 
|  | ASSERT(is_pae(vcpu)); | 
|  | context->new_cr3 = paging_new_cr3; | 
|  | context->page_fault = paging64_page_fault; | 
|  | context->gva_to_gpa = paging64_gva_to_gpa; | 
|  | context->prefetch_page = paging64_prefetch_page; | 
|  | context->free = paging_free; | 
|  | context->root_level = level; | 
|  | context->shadow_root_level = level; | 
|  | context->root_hpa = INVALID_PAGE; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int paging64_init_context(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL); | 
|  | } | 
|  |  | 
|  | static int paging32_init_context(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_mmu *context = &vcpu->arch.mmu; | 
|  |  | 
|  | context->new_cr3 = paging_new_cr3; | 
|  | context->page_fault = paging32_page_fault; | 
|  | context->gva_to_gpa = paging32_gva_to_gpa; | 
|  | context->free = paging_free; | 
|  | context->prefetch_page = paging32_prefetch_page; | 
|  | context->root_level = PT32_ROOT_LEVEL; | 
|  | context->shadow_root_level = PT32E_ROOT_LEVEL; | 
|  | context->root_hpa = INVALID_PAGE; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int paging32E_init_context(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL); | 
|  | } | 
|  |  | 
|  | static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_mmu *context = &vcpu->arch.mmu; | 
|  |  | 
|  | context->new_cr3 = nonpaging_new_cr3; | 
|  | context->page_fault = tdp_page_fault; | 
|  | context->free = nonpaging_free; | 
|  | context->prefetch_page = nonpaging_prefetch_page; | 
|  | context->shadow_root_level = kvm_x86_ops->get_tdp_level(); | 
|  | context->root_hpa = INVALID_PAGE; | 
|  |  | 
|  | if (!is_paging(vcpu)) { | 
|  | context->gva_to_gpa = nonpaging_gva_to_gpa; | 
|  | context->root_level = 0; | 
|  | } else if (is_long_mode(vcpu)) { | 
|  | context->gva_to_gpa = paging64_gva_to_gpa; | 
|  | context->root_level = PT64_ROOT_LEVEL; | 
|  | } else if (is_pae(vcpu)) { | 
|  | context->gva_to_gpa = paging64_gva_to_gpa; | 
|  | context->root_level = PT32E_ROOT_LEVEL; | 
|  | } else { | 
|  | context->gva_to_gpa = paging32_gva_to_gpa; | 
|  | context->root_level = PT32_ROOT_LEVEL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int init_kvm_softmmu(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | ASSERT(vcpu); | 
|  | ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa)); | 
|  |  | 
|  | if (!is_paging(vcpu)) | 
|  | return nonpaging_init_context(vcpu); | 
|  | else if (is_long_mode(vcpu)) | 
|  | return paging64_init_context(vcpu); | 
|  | else if (is_pae(vcpu)) | 
|  | return paging32E_init_context(vcpu); | 
|  | else | 
|  | return paging32_init_context(vcpu); | 
|  | } | 
|  |  | 
|  | static int init_kvm_mmu(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | vcpu->arch.update_pte.pfn = bad_pfn; | 
|  |  | 
|  | if (tdp_enabled) | 
|  | return init_kvm_tdp_mmu(vcpu); | 
|  | else | 
|  | return init_kvm_softmmu(vcpu); | 
|  | } | 
|  |  | 
|  | static void destroy_kvm_mmu(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | ASSERT(vcpu); | 
|  | if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) { | 
|  | vcpu->arch.mmu.free(vcpu); | 
|  | vcpu->arch.mmu.root_hpa = INVALID_PAGE; | 
|  | } | 
|  | } | 
|  |  | 
|  | int kvm_mmu_reset_context(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | destroy_kvm_mmu(vcpu); | 
|  | return init_kvm_mmu(vcpu); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); | 
|  |  | 
|  | int kvm_mmu_load(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | r = mmu_topup_memory_caches(vcpu); | 
|  | if (r) | 
|  | goto out; | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | kvm_mmu_free_some_pages(vcpu); | 
|  | mmu_alloc_roots(vcpu); | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa); | 
|  | kvm_mmu_flush_tlb(vcpu); | 
|  | out: | 
|  | return r; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_load); | 
|  |  | 
|  | void kvm_mmu_unload(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | mmu_free_roots(vcpu); | 
|  | } | 
|  |  | 
|  | static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu_page *sp, | 
|  | u64 *spte) | 
|  | { | 
|  | u64 pte; | 
|  | struct kvm_mmu_page *child; | 
|  |  | 
|  | pte = *spte; | 
|  | if (is_shadow_present_pte(pte)) { | 
|  | if (sp->role.level == PT_PAGE_TABLE_LEVEL || | 
|  | is_large_pte(pte)) | 
|  | rmap_remove(vcpu->kvm, spte); | 
|  | else { | 
|  | child = page_header(pte & PT64_BASE_ADDR_MASK); | 
|  | mmu_page_remove_parent_pte(child, spte); | 
|  | } | 
|  | } | 
|  | set_shadow_pte(spte, shadow_trap_nonpresent_pte); | 
|  | if (is_large_pte(pte)) | 
|  | --vcpu->kvm->stat.lpages; | 
|  | } | 
|  |  | 
|  | static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu_page *sp, | 
|  | u64 *spte, | 
|  | const void *new) | 
|  | { | 
|  | if (sp->role.level != PT_PAGE_TABLE_LEVEL) { | 
|  | if (!vcpu->arch.update_pte.largepage || | 
|  | sp->role.glevels == PT32_ROOT_LEVEL) { | 
|  | ++vcpu->kvm->stat.mmu_pde_zapped; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | ++vcpu->kvm->stat.mmu_pte_updated; | 
|  | if (sp->role.glevels == PT32_ROOT_LEVEL) | 
|  | paging32_update_pte(vcpu, sp, spte, new); | 
|  | else | 
|  | paging64_update_pte(vcpu, sp, spte, new); | 
|  | } | 
|  |  | 
|  | static bool need_remote_flush(u64 old, u64 new) | 
|  | { | 
|  | if (!is_shadow_present_pte(old)) | 
|  | return false; | 
|  | if (!is_shadow_present_pte(new)) | 
|  | return true; | 
|  | if ((old ^ new) & PT64_BASE_ADDR_MASK) | 
|  | return true; | 
|  | old ^= PT64_NX_MASK; | 
|  | new ^= PT64_NX_MASK; | 
|  | return (old & ~new & PT64_PERM_MASK) != 0; | 
|  | } | 
|  |  | 
|  | static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new) | 
|  | { | 
|  | if (need_remote_flush(old, new)) | 
|  | kvm_flush_remote_tlbs(vcpu->kvm); | 
|  | else | 
|  | kvm_mmu_flush_tlb(vcpu); | 
|  | } | 
|  |  | 
|  | static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u64 *spte = vcpu->arch.last_pte_updated; | 
|  |  | 
|  | return !!(spte && (*spte & shadow_accessed_mask)); | 
|  | } | 
|  |  | 
|  | static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, | 
|  | const u8 *new, int bytes) | 
|  | { | 
|  | gfn_t gfn; | 
|  | int r; | 
|  | u64 gpte = 0; | 
|  | pfn_t pfn; | 
|  |  | 
|  | vcpu->arch.update_pte.largepage = 0; | 
|  |  | 
|  | if (bytes != 4 && bytes != 8) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Assume that the pte write on a page table of the same type | 
|  | * as the current vcpu paging mode.  This is nearly always true | 
|  | * (might be false while changing modes).  Note it is verified later | 
|  | * by update_pte(). | 
|  | */ | 
|  | if (is_pae(vcpu)) { | 
|  | /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ | 
|  | if ((bytes == 4) && (gpa % 4 == 0)) { | 
|  | r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8); | 
|  | if (r) | 
|  | return; | 
|  | memcpy((void *)&gpte + (gpa % 8), new, 4); | 
|  | } else if ((bytes == 8) && (gpa % 8 == 0)) { | 
|  | memcpy((void *)&gpte, new, 8); | 
|  | } | 
|  | } else { | 
|  | if ((bytes == 4) && (gpa % 4 == 0)) | 
|  | memcpy((void *)&gpte, new, 4); | 
|  | } | 
|  | if (!is_present_pte(gpte)) | 
|  | return; | 
|  | gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT; | 
|  |  | 
|  | down_read(¤t->mm->mmap_sem); | 
|  | if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) { | 
|  | gfn &= ~(KVM_PAGES_PER_HPAGE-1); | 
|  | vcpu->arch.update_pte.largepage = 1; | 
|  | } | 
|  | vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq; | 
|  | /* implicit mb(), we'll read before PT lock is unlocked */ | 
|  | pfn = gfn_to_pfn(vcpu->kvm, gfn); | 
|  | up_read(¤t->mm->mmap_sem); | 
|  |  | 
|  | if (is_error_pfn(pfn)) { | 
|  | kvm_release_pfn_clean(pfn); | 
|  | return; | 
|  | } | 
|  | vcpu->arch.update_pte.gfn = gfn; | 
|  | vcpu->arch.update_pte.pfn = pfn; | 
|  | } | 
|  |  | 
|  | static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn) | 
|  | { | 
|  | u64 *spte = vcpu->arch.last_pte_updated; | 
|  |  | 
|  | if (spte | 
|  | && vcpu->arch.last_pte_gfn == gfn | 
|  | && shadow_accessed_mask | 
|  | && !(*spte & shadow_accessed_mask) | 
|  | && is_shadow_present_pte(*spte)) | 
|  | set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte); | 
|  | } | 
|  |  | 
|  | void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, | 
|  | const u8 *new, int bytes) | 
|  | { | 
|  | gfn_t gfn = gpa >> PAGE_SHIFT; | 
|  | struct kvm_mmu_page *sp; | 
|  | struct hlist_node *node, *n; | 
|  | struct hlist_head *bucket; | 
|  | unsigned index; | 
|  | u64 entry, gentry; | 
|  | u64 *spte; | 
|  | unsigned offset = offset_in_page(gpa); | 
|  | unsigned pte_size; | 
|  | unsigned page_offset; | 
|  | unsigned misaligned; | 
|  | unsigned quadrant; | 
|  | int level; | 
|  | int flooded = 0; | 
|  | int npte; | 
|  | int r; | 
|  |  | 
|  | pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); | 
|  | mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes); | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | kvm_mmu_access_page(vcpu, gfn); | 
|  | kvm_mmu_free_some_pages(vcpu); | 
|  | ++vcpu->kvm->stat.mmu_pte_write; | 
|  | kvm_mmu_audit(vcpu, "pre pte write"); | 
|  | if (gfn == vcpu->arch.last_pt_write_gfn | 
|  | && !last_updated_pte_accessed(vcpu)) { | 
|  | ++vcpu->arch.last_pt_write_count; | 
|  | if (vcpu->arch.last_pt_write_count >= 3) | 
|  | flooded = 1; | 
|  | } else { | 
|  | vcpu->arch.last_pt_write_gfn = gfn; | 
|  | vcpu->arch.last_pt_write_count = 1; | 
|  | vcpu->arch.last_pte_updated = NULL; | 
|  | } | 
|  | index = kvm_page_table_hashfn(gfn); | 
|  | bucket = &vcpu->kvm->arch.mmu_page_hash[index]; | 
|  | hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) { | 
|  | if (sp->gfn != gfn || sp->role.metaphysical) | 
|  | continue; | 
|  | pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8; | 
|  | misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); | 
|  | misaligned |= bytes < 4; | 
|  | if (misaligned || flooded) { | 
|  | /* | 
|  | * Misaligned accesses are too much trouble to fix | 
|  | * up; also, they usually indicate a page is not used | 
|  | * as a page table. | 
|  | * | 
|  | * If we're seeing too many writes to a page, | 
|  | * it may no longer be a page table, or we may be | 
|  | * forking, in which case it is better to unmap the | 
|  | * page. | 
|  | */ | 
|  | pgprintk("misaligned: gpa %llx bytes %d role %x\n", | 
|  | gpa, bytes, sp->role.word); | 
|  | kvm_mmu_zap_page(vcpu->kvm, sp); | 
|  | ++vcpu->kvm->stat.mmu_flooded; | 
|  | continue; | 
|  | } | 
|  | page_offset = offset; | 
|  | level = sp->role.level; | 
|  | npte = 1; | 
|  | if (sp->role.glevels == PT32_ROOT_LEVEL) { | 
|  | page_offset <<= 1;	/* 32->64 */ | 
|  | /* | 
|  | * A 32-bit pde maps 4MB while the shadow pdes map | 
|  | * only 2MB.  So we need to double the offset again | 
|  | * and zap two pdes instead of one. | 
|  | */ | 
|  | if (level == PT32_ROOT_LEVEL) { | 
|  | page_offset &= ~7; /* kill rounding error */ | 
|  | page_offset <<= 1; | 
|  | npte = 2; | 
|  | } | 
|  | quadrant = page_offset >> PAGE_SHIFT; | 
|  | page_offset &= ~PAGE_MASK; | 
|  | if (quadrant != sp->role.quadrant) | 
|  | continue; | 
|  | } | 
|  | spte = &sp->spt[page_offset / sizeof(*spte)]; | 
|  | if ((gpa & (pte_size - 1)) || (bytes < pte_size)) { | 
|  | gentry = 0; | 
|  | r = kvm_read_guest_atomic(vcpu->kvm, | 
|  | gpa & ~(u64)(pte_size - 1), | 
|  | &gentry, pte_size); | 
|  | new = (const void *)&gentry; | 
|  | if (r < 0) | 
|  | new = NULL; | 
|  | } | 
|  | while (npte--) { | 
|  | entry = *spte; | 
|  | mmu_pte_write_zap_pte(vcpu, sp, spte); | 
|  | if (new) | 
|  | mmu_pte_write_new_pte(vcpu, sp, spte, new); | 
|  | mmu_pte_write_flush_tlb(vcpu, entry, *spte); | 
|  | ++spte; | 
|  | } | 
|  | } | 
|  | kvm_mmu_audit(vcpu, "post pte write"); | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | if (!is_error_pfn(vcpu->arch.update_pte.pfn)) { | 
|  | kvm_release_pfn_clean(vcpu->arch.update_pte.pfn); | 
|  | vcpu->arch.update_pte.pfn = bad_pfn; | 
|  | } | 
|  | } | 
|  |  | 
|  | int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) | 
|  | { | 
|  | gpa_t gpa; | 
|  | int r; | 
|  |  | 
|  | gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva); | 
|  |  | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | return r; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt); | 
|  |  | 
|  | void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) { | 
|  | struct kvm_mmu_page *sp; | 
|  |  | 
|  | sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev, | 
|  | struct kvm_mmu_page, link); | 
|  | kvm_mmu_zap_page(vcpu->kvm, sp); | 
|  | ++vcpu->kvm->stat.mmu_recycled; | 
|  | } | 
|  | } | 
|  |  | 
|  | int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code) | 
|  | { | 
|  | int r; | 
|  | enum emulation_result er; | 
|  |  | 
|  | r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code); | 
|  | if (r < 0) | 
|  | goto out; | 
|  |  | 
|  | if (!r) { | 
|  | r = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | r = mmu_topup_memory_caches(vcpu); | 
|  | if (r) | 
|  | goto out; | 
|  |  | 
|  | er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0); | 
|  |  | 
|  | switch (er) { | 
|  | case EMULATE_DONE: | 
|  | return 1; | 
|  | case EMULATE_DO_MMIO: | 
|  | ++vcpu->stat.mmio_exits; | 
|  | return 0; | 
|  | case EMULATE_FAIL: | 
|  | kvm_report_emulation_failure(vcpu, "pagetable"); | 
|  | return 1; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | out: | 
|  | return r; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); | 
|  |  | 
|  | void kvm_enable_tdp(void) | 
|  | { | 
|  | tdp_enabled = true; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_enable_tdp); | 
|  |  | 
|  | void kvm_disable_tdp(void) | 
|  | { | 
|  | tdp_enabled = false; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvm_disable_tdp); | 
|  |  | 
|  | static void free_mmu_pages(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  |  | 
|  | while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) { | 
|  | sp = container_of(vcpu->kvm->arch.active_mmu_pages.next, | 
|  | struct kvm_mmu_page, link); | 
|  | kvm_mmu_zap_page(vcpu->kvm, sp); | 
|  | cond_resched(); | 
|  | } | 
|  | free_page((unsigned long)vcpu->arch.mmu.pae_root); | 
|  | } | 
|  |  | 
|  | static int alloc_mmu_pages(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct page *page; | 
|  | int i; | 
|  |  | 
|  | ASSERT(vcpu); | 
|  |  | 
|  | if (vcpu->kvm->arch.n_requested_mmu_pages) | 
|  | vcpu->kvm->arch.n_free_mmu_pages = | 
|  | vcpu->kvm->arch.n_requested_mmu_pages; | 
|  | else | 
|  | vcpu->kvm->arch.n_free_mmu_pages = | 
|  | vcpu->kvm->arch.n_alloc_mmu_pages; | 
|  | /* | 
|  | * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64. | 
|  | * Therefore we need to allocate shadow page tables in the first | 
|  | * 4GB of memory, which happens to fit the DMA32 zone. | 
|  | */ | 
|  | page = alloc_page(GFP_KERNEL | __GFP_DMA32); | 
|  | if (!page) | 
|  | goto error_1; | 
|  | vcpu->arch.mmu.pae_root = page_address(page); | 
|  | for (i = 0; i < 4; ++i) | 
|  | vcpu->arch.mmu.pae_root[i] = INVALID_PAGE; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | error_1: | 
|  | free_mmu_pages(vcpu); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | int kvm_mmu_create(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | ASSERT(vcpu); | 
|  | ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa)); | 
|  |  | 
|  | return alloc_mmu_pages(vcpu); | 
|  | } | 
|  |  | 
|  | int kvm_mmu_setup(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | ASSERT(vcpu); | 
|  | ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa)); | 
|  |  | 
|  | return init_kvm_mmu(vcpu); | 
|  | } | 
|  |  | 
|  | void kvm_mmu_destroy(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | ASSERT(vcpu); | 
|  |  | 
|  | destroy_kvm_mmu(vcpu); | 
|  | free_mmu_pages(vcpu); | 
|  | mmu_free_memory_caches(vcpu); | 
|  | } | 
|  |  | 
|  | void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  |  | 
|  | list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) { | 
|  | int i; | 
|  | u64 *pt; | 
|  |  | 
|  | if (!test_bit(slot, &sp->slot_bitmap)) | 
|  | continue; | 
|  |  | 
|  | pt = sp->spt; | 
|  | for (i = 0; i < PT64_ENT_PER_PAGE; ++i) | 
|  | /* avoid RMW */ | 
|  | if (pt[i] & PT_WRITABLE_MASK) | 
|  | pt[i] &= ~PT_WRITABLE_MASK; | 
|  | } | 
|  | } | 
|  |  | 
|  | void kvm_mmu_zap_all(struct kvm *kvm) | 
|  | { | 
|  | struct kvm_mmu_page *sp, *node; | 
|  |  | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) | 
|  | kvm_mmu_zap_page(kvm, sp); | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  |  | 
|  | kvm_flush_remote_tlbs(kvm); | 
|  | } | 
|  |  | 
|  | static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm) | 
|  | { | 
|  | struct kvm_mmu_page *page; | 
|  |  | 
|  | page = container_of(kvm->arch.active_mmu_pages.prev, | 
|  | struct kvm_mmu_page, link); | 
|  | kvm_mmu_zap_page(kvm, page); | 
|  | } | 
|  |  | 
|  | static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask) | 
|  | { | 
|  | struct kvm *kvm; | 
|  | struct kvm *kvm_freed = NULL; | 
|  | int cache_count = 0; | 
|  |  | 
|  | spin_lock(&kvm_lock); | 
|  |  | 
|  | list_for_each_entry(kvm, &vm_list, vm_list) { | 
|  | int npages; | 
|  |  | 
|  | if (!down_read_trylock(&kvm->slots_lock)) | 
|  | continue; | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | npages = kvm->arch.n_alloc_mmu_pages - | 
|  | kvm->arch.n_free_mmu_pages; | 
|  | cache_count += npages; | 
|  | if (!kvm_freed && nr_to_scan > 0 && npages > 0) { | 
|  | kvm_mmu_remove_one_alloc_mmu_page(kvm); | 
|  | cache_count--; | 
|  | kvm_freed = kvm; | 
|  | } | 
|  | nr_to_scan--; | 
|  |  | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | up_read(&kvm->slots_lock); | 
|  | } | 
|  | if (kvm_freed) | 
|  | list_move_tail(&kvm_freed->vm_list, &vm_list); | 
|  |  | 
|  | spin_unlock(&kvm_lock); | 
|  |  | 
|  | return cache_count; | 
|  | } | 
|  |  | 
|  | static struct shrinker mmu_shrinker = { | 
|  | .shrink = mmu_shrink, | 
|  | .seeks = DEFAULT_SEEKS * 10, | 
|  | }; | 
|  |  | 
|  | static void mmu_destroy_caches(void) | 
|  | { | 
|  | if (pte_chain_cache) | 
|  | kmem_cache_destroy(pte_chain_cache); | 
|  | if (rmap_desc_cache) | 
|  | kmem_cache_destroy(rmap_desc_cache); | 
|  | if (mmu_page_header_cache) | 
|  | kmem_cache_destroy(mmu_page_header_cache); | 
|  | } | 
|  |  | 
|  | void kvm_mmu_module_exit(void) | 
|  | { | 
|  | mmu_destroy_caches(); | 
|  | unregister_shrinker(&mmu_shrinker); | 
|  | } | 
|  |  | 
|  | int kvm_mmu_module_init(void) | 
|  | { | 
|  | pte_chain_cache = kmem_cache_create("kvm_pte_chain", | 
|  | sizeof(struct kvm_pte_chain), | 
|  | 0, 0, NULL); | 
|  | if (!pte_chain_cache) | 
|  | goto nomem; | 
|  | rmap_desc_cache = kmem_cache_create("kvm_rmap_desc", | 
|  | sizeof(struct kvm_rmap_desc), | 
|  | 0, 0, NULL); | 
|  | if (!rmap_desc_cache) | 
|  | goto nomem; | 
|  |  | 
|  | mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", | 
|  | sizeof(struct kvm_mmu_page), | 
|  | 0, 0, NULL); | 
|  | if (!mmu_page_header_cache) | 
|  | goto nomem; | 
|  |  | 
|  | register_shrinker(&mmu_shrinker); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | nomem: | 
|  | mmu_destroy_caches(); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Caculate mmu pages needed for kvm. | 
|  | */ | 
|  | unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm) | 
|  | { | 
|  | int i; | 
|  | unsigned int nr_mmu_pages; | 
|  | unsigned int  nr_pages = 0; | 
|  |  | 
|  | for (i = 0; i < kvm->nmemslots; i++) | 
|  | nr_pages += kvm->memslots[i].npages; | 
|  |  | 
|  | nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000; | 
|  | nr_mmu_pages = max(nr_mmu_pages, | 
|  | (unsigned int) KVM_MIN_ALLOC_MMU_PAGES); | 
|  |  | 
|  | return nr_mmu_pages; | 
|  | } | 
|  |  | 
|  | static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer, | 
|  | unsigned len) | 
|  | { | 
|  | if (len > buffer->len) | 
|  | return NULL; | 
|  | return buffer->ptr; | 
|  | } | 
|  |  | 
|  | static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer, | 
|  | unsigned len) | 
|  | { | 
|  | void *ret; | 
|  |  | 
|  | ret = pv_mmu_peek_buffer(buffer, len); | 
|  | if (!ret) | 
|  | return ret; | 
|  | buffer->ptr += len; | 
|  | buffer->len -= len; | 
|  | buffer->processed += len; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu, | 
|  | gpa_t addr, gpa_t value) | 
|  | { | 
|  | int bytes = 8; | 
|  | int r; | 
|  |  | 
|  | if (!is_long_mode(vcpu) && !is_pae(vcpu)) | 
|  | bytes = 4; | 
|  |  | 
|  | r = mmu_topup_memory_caches(vcpu); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | if (!emulator_write_phys(vcpu, addr, &value, bytes)) | 
|  | return -EFAULT; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | kvm_x86_ops->tlb_flush(vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr) | 
|  | { | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT); | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu, | 
|  | struct kvm_pv_mmu_op_buffer *buffer) | 
|  | { | 
|  | struct kvm_mmu_op_header *header; | 
|  |  | 
|  | header = pv_mmu_peek_buffer(buffer, sizeof *header); | 
|  | if (!header) | 
|  | return 0; | 
|  | switch (header->op) { | 
|  | case KVM_MMU_OP_WRITE_PTE: { | 
|  | struct kvm_mmu_op_write_pte *wpte; | 
|  |  | 
|  | wpte = pv_mmu_read_buffer(buffer, sizeof *wpte); | 
|  | if (!wpte) | 
|  | return 0; | 
|  | return kvm_pv_mmu_write(vcpu, wpte->pte_phys, | 
|  | wpte->pte_val); | 
|  | } | 
|  | case KVM_MMU_OP_FLUSH_TLB: { | 
|  | struct kvm_mmu_op_flush_tlb *ftlb; | 
|  |  | 
|  | ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb); | 
|  | if (!ftlb) | 
|  | return 0; | 
|  | return kvm_pv_mmu_flush_tlb(vcpu); | 
|  | } | 
|  | case KVM_MMU_OP_RELEASE_PT: { | 
|  | struct kvm_mmu_op_release_pt *rpt; | 
|  |  | 
|  | rpt = pv_mmu_read_buffer(buffer, sizeof *rpt); | 
|  | if (!rpt) | 
|  | return 0; | 
|  | return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys); | 
|  | } | 
|  | default: return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes, | 
|  | gpa_t addr, unsigned long *ret) | 
|  | { | 
|  | int r; | 
|  | struct kvm_pv_mmu_op_buffer buffer; | 
|  |  | 
|  | buffer.ptr = buffer.buf; | 
|  | buffer.len = min_t(unsigned long, bytes, sizeof buffer.buf); | 
|  | buffer.processed = 0; | 
|  |  | 
|  | r = kvm_read_guest(vcpu->kvm, addr, buffer.buf, buffer.len); | 
|  | if (r) | 
|  | goto out; | 
|  |  | 
|  | while (buffer.len) { | 
|  | r = kvm_pv_mmu_op_one(vcpu, &buffer); | 
|  | if (r < 0) | 
|  | goto out; | 
|  | if (r == 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | r = 1; | 
|  | out: | 
|  | *ret = buffer.processed; | 
|  | return r; | 
|  | } | 
|  |  | 
|  | #ifdef AUDIT | 
|  |  | 
|  | static const char *audit_msg; | 
|  |  | 
|  | static gva_t canonicalize(gva_t gva) | 
|  | { | 
|  | #ifdef CONFIG_X86_64 | 
|  | gva = (long long)(gva << 16) >> 16; | 
|  | #endif | 
|  | return gva; | 
|  | } | 
|  |  | 
|  | static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte, | 
|  | gva_t va, int level) | 
|  | { | 
|  | u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK); | 
|  | int i; | 
|  | gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1)); | 
|  |  | 
|  | for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) { | 
|  | u64 ent = pt[i]; | 
|  |  | 
|  | if (ent == shadow_trap_nonpresent_pte) | 
|  | continue; | 
|  |  | 
|  | va = canonicalize(va); | 
|  | if (level > 1) { | 
|  | if (ent == shadow_notrap_nonpresent_pte) | 
|  | printk(KERN_ERR "audit: (%s) nontrapping pte" | 
|  | " in nonleaf level: levels %d gva %lx" | 
|  | " level %d pte %llx\n", audit_msg, | 
|  | vcpu->arch.mmu.root_level, va, level, ent); | 
|  |  | 
|  | audit_mappings_page(vcpu, ent, va, level - 1); | 
|  | } else { | 
|  | gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va); | 
|  | hpa_t hpa = (hpa_t)gpa_to_pfn(vcpu, gpa) << PAGE_SHIFT; | 
|  |  | 
|  | if (is_shadow_present_pte(ent) | 
|  | && (ent & PT64_BASE_ADDR_MASK) != hpa) | 
|  | printk(KERN_ERR "xx audit error: (%s) levels %d" | 
|  | " gva %lx gpa %llx hpa %llx ent %llx %d\n", | 
|  | audit_msg, vcpu->arch.mmu.root_level, | 
|  | va, gpa, hpa, ent, | 
|  | is_shadow_present_pte(ent)); | 
|  | else if (ent == shadow_notrap_nonpresent_pte | 
|  | && !is_error_hpa(hpa)) | 
|  | printk(KERN_ERR "audit: (%s) notrap shadow," | 
|  | " valid guest gva %lx\n", audit_msg, va); | 
|  | kvm_release_pfn_clean(pfn); | 
|  |  | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void audit_mappings(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | unsigned i; | 
|  |  | 
|  | if (vcpu->arch.mmu.root_level == 4) | 
|  | audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4); | 
|  | else | 
|  | for (i = 0; i < 4; ++i) | 
|  | if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK) | 
|  | audit_mappings_page(vcpu, | 
|  | vcpu->arch.mmu.pae_root[i], | 
|  | i << 30, | 
|  | 2); | 
|  | } | 
|  |  | 
|  | static int count_rmaps(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int nmaps = 0; | 
|  | int i, j, k; | 
|  |  | 
|  | for (i = 0; i < KVM_MEMORY_SLOTS; ++i) { | 
|  | struct kvm_memory_slot *m = &vcpu->kvm->memslots[i]; | 
|  | struct kvm_rmap_desc *d; | 
|  |  | 
|  | for (j = 0; j < m->npages; ++j) { | 
|  | unsigned long *rmapp = &m->rmap[j]; | 
|  |  | 
|  | if (!*rmapp) | 
|  | continue; | 
|  | if (!(*rmapp & 1)) { | 
|  | ++nmaps; | 
|  | continue; | 
|  | } | 
|  | d = (struct kvm_rmap_desc *)(*rmapp & ~1ul); | 
|  | while (d) { | 
|  | for (k = 0; k < RMAP_EXT; ++k) | 
|  | if (d->shadow_ptes[k]) | 
|  | ++nmaps; | 
|  | else | 
|  | break; | 
|  | d = d->more; | 
|  | } | 
|  | } | 
|  | } | 
|  | return nmaps; | 
|  | } | 
|  |  | 
|  | static int count_writable_mappings(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int nmaps = 0; | 
|  | struct kvm_mmu_page *sp; | 
|  | int i; | 
|  |  | 
|  | list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) { | 
|  | u64 *pt = sp->spt; | 
|  |  | 
|  | if (sp->role.level != PT_PAGE_TABLE_LEVEL) | 
|  | continue; | 
|  |  | 
|  | for (i = 0; i < PT64_ENT_PER_PAGE; ++i) { | 
|  | u64 ent = pt[i]; | 
|  |  | 
|  | if (!(ent & PT_PRESENT_MASK)) | 
|  | continue; | 
|  | if (!(ent & PT_WRITABLE_MASK)) | 
|  | continue; | 
|  | ++nmaps; | 
|  | } | 
|  | } | 
|  | return nmaps; | 
|  | } | 
|  |  | 
|  | static void audit_rmap(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int n_rmap = count_rmaps(vcpu); | 
|  | int n_actual = count_writable_mappings(vcpu); | 
|  |  | 
|  | if (n_rmap != n_actual) | 
|  | printk(KERN_ERR "%s: (%s) rmap %d actual %d\n", | 
|  | __func__, audit_msg, n_rmap, n_actual); | 
|  | } | 
|  |  | 
|  | static void audit_write_protection(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_mmu_page *sp; | 
|  | struct kvm_memory_slot *slot; | 
|  | unsigned long *rmapp; | 
|  | gfn_t gfn; | 
|  |  | 
|  | list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) { | 
|  | if (sp->role.metaphysical) | 
|  | continue; | 
|  |  | 
|  | slot = gfn_to_memslot(vcpu->kvm, sp->gfn); | 
|  | gfn = unalias_gfn(vcpu->kvm, sp->gfn); | 
|  | rmapp = &slot->rmap[gfn - slot->base_gfn]; | 
|  | if (*rmapp) | 
|  | printk(KERN_ERR "%s: (%s) shadow page has writable" | 
|  | " mappings: gfn %lx role %x\n", | 
|  | __func__, audit_msg, sp->gfn, | 
|  | sp->role.word); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) | 
|  | { | 
|  | int olddbg = dbg; | 
|  |  | 
|  | dbg = 0; | 
|  | audit_msg = msg; | 
|  | audit_rmap(vcpu); | 
|  | audit_write_protection(vcpu); | 
|  | audit_mappings(vcpu); | 
|  | dbg = olddbg; | 
|  | } | 
|  |  | 
|  | #endif |