|  | /* | 
|  | *  linux/arch/x86_64/mm/init.c | 
|  | * | 
|  | *  Copyright (C) 1995  Linus Torvalds | 
|  | *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz> | 
|  | *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de> | 
|  | */ | 
|  |  | 
|  | #include <linux/signal.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/initrd.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/pfn.h> | 
|  | #include <linux/poison.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/memory_hotplug.h> | 
|  | #include <linux/nmi.h> | 
|  |  | 
|  | #include <asm/processor.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/dma.h> | 
|  | #include <asm/fixmap.h> | 
|  | #include <asm/e820.h> | 
|  | #include <asm/apic.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/proto.h> | 
|  | #include <asm/smp.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/kdebug.h> | 
|  | #include <asm/numa.h> | 
|  | #include <asm/cacheflush.h> | 
|  |  | 
|  | /* | 
|  | * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries. | 
|  | * The direct mapping extends to max_pfn_mapped, so that we can directly access | 
|  | * apertures, ACPI and other tables without having to play with fixmaps. | 
|  | */ | 
|  | unsigned long max_low_pfn_mapped; | 
|  | unsigned long max_pfn_mapped; | 
|  |  | 
|  | static unsigned long dma_reserve __initdata; | 
|  |  | 
|  | DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); | 
|  |  | 
|  | int direct_gbpages | 
|  | #ifdef CONFIG_DIRECT_GBPAGES | 
|  | = 1 | 
|  | #endif | 
|  | ; | 
|  |  | 
|  | static int __init parse_direct_gbpages_off(char *arg) | 
|  | { | 
|  | direct_gbpages = 0; | 
|  | return 0; | 
|  | } | 
|  | early_param("nogbpages", parse_direct_gbpages_off); | 
|  |  | 
|  | static int __init parse_direct_gbpages_on(char *arg) | 
|  | { | 
|  | direct_gbpages = 1; | 
|  | return 0; | 
|  | } | 
|  | early_param("gbpages", parse_direct_gbpages_on); | 
|  |  | 
|  | /* | 
|  | * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the | 
|  | * physical space so we can cache the place of the first one and move | 
|  | * around without checking the pgd every time. | 
|  | */ | 
|  |  | 
|  | int after_bootmem; | 
|  |  | 
|  | /* | 
|  | * NOTE: This function is marked __ref because it calls __init function | 
|  | * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0. | 
|  | */ | 
|  | static __ref void *spp_getpage(void) | 
|  | { | 
|  | void *ptr; | 
|  |  | 
|  | if (after_bootmem) | 
|  | ptr = (void *) get_zeroed_page(GFP_ATOMIC); | 
|  | else | 
|  | ptr = alloc_bootmem_pages(PAGE_SIZE); | 
|  |  | 
|  | if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) { | 
|  | panic("set_pte_phys: cannot allocate page data %s\n", | 
|  | after_bootmem ? "after bootmem" : ""); | 
|  | } | 
|  |  | 
|  | pr_debug("spp_getpage %p\n", ptr); | 
|  |  | 
|  | return ptr; | 
|  | } | 
|  |  | 
|  | void | 
|  | set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte) | 
|  | { | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  |  | 
|  | pud = pud_page + pud_index(vaddr); | 
|  | if (pud_none(*pud)) { | 
|  | pmd = (pmd_t *) spp_getpage(); | 
|  | pud_populate(&init_mm, pud, pmd); | 
|  | if (pmd != pmd_offset(pud, 0)) { | 
|  | printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n", | 
|  | pmd, pmd_offset(pud, 0)); | 
|  | return; | 
|  | } | 
|  | } | 
|  | pmd = pmd_offset(pud, vaddr); | 
|  | if (pmd_none(*pmd)) { | 
|  | pte = (pte_t *) spp_getpage(); | 
|  | pmd_populate_kernel(&init_mm, pmd, pte); | 
|  | if (pte != pte_offset_kernel(pmd, 0)) { | 
|  | printk(KERN_ERR "PAGETABLE BUG #02!\n"); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | pte = pte_offset_kernel(pmd, vaddr); | 
|  | if (!pte_none(*pte) && pte_val(new_pte) && | 
|  | pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask)) | 
|  | pte_ERROR(*pte); | 
|  | set_pte(pte, new_pte); | 
|  |  | 
|  | /* | 
|  | * It's enough to flush this one mapping. | 
|  | * (PGE mappings get flushed as well) | 
|  | */ | 
|  | __flush_tlb_one(vaddr); | 
|  | } | 
|  |  | 
|  | void | 
|  | set_pte_vaddr(unsigned long vaddr, pte_t pteval) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | pud_t *pud_page; | 
|  |  | 
|  | pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval)); | 
|  |  | 
|  | pgd = pgd_offset_k(vaddr); | 
|  | if (pgd_none(*pgd)) { | 
|  | printk(KERN_ERR | 
|  | "PGD FIXMAP MISSING, it should be setup in head.S!\n"); | 
|  | return; | 
|  | } | 
|  | pud_page = (pud_t*)pgd_page_vaddr(*pgd); | 
|  | set_pte_vaddr_pud(pud_page, vaddr, pteval); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create large page table mappings for a range of physical addresses. | 
|  | */ | 
|  | static void __init __init_extra_mapping(unsigned long phys, unsigned long size, | 
|  | pgprot_t prot) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  |  | 
|  | BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK)); | 
|  | for (; size; phys += PMD_SIZE, size -= PMD_SIZE) { | 
|  | pgd = pgd_offset_k((unsigned long)__va(phys)); | 
|  | if (pgd_none(*pgd)) { | 
|  | pud = (pud_t *) spp_getpage(); | 
|  | set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE | | 
|  | _PAGE_USER)); | 
|  | } | 
|  | pud = pud_offset(pgd, (unsigned long)__va(phys)); | 
|  | if (pud_none(*pud)) { | 
|  | pmd = (pmd_t *) spp_getpage(); | 
|  | set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | | 
|  | _PAGE_USER)); | 
|  | } | 
|  | pmd = pmd_offset(pud, phys); | 
|  | BUG_ON(!pmd_none(*pmd)); | 
|  | set_pmd(pmd, __pmd(phys | pgprot_val(prot))); | 
|  | } | 
|  | } | 
|  |  | 
|  | void __init init_extra_mapping_wb(unsigned long phys, unsigned long size) | 
|  | { | 
|  | __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE); | 
|  | } | 
|  |  | 
|  | void __init init_extra_mapping_uc(unsigned long phys, unsigned long size) | 
|  | { | 
|  | __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The head.S code sets up the kernel high mapping: | 
|  | * | 
|  | *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text) | 
|  | * | 
|  | * phys_addr holds the negative offset to the kernel, which is added | 
|  | * to the compile time generated pmds. This results in invalid pmds up | 
|  | * to the point where we hit the physaddr 0 mapping. | 
|  | * | 
|  | * We limit the mappings to the region from _text to _end.  _end is | 
|  | * rounded up to the 2MB boundary. This catches the invalid pmds as | 
|  | * well, as they are located before _text: | 
|  | */ | 
|  | void __init cleanup_highmap(void) | 
|  | { | 
|  | unsigned long vaddr = __START_KERNEL_map; | 
|  | unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1; | 
|  | pmd_t *pmd = level2_kernel_pgt; | 
|  | pmd_t *last_pmd = pmd + PTRS_PER_PMD; | 
|  |  | 
|  | for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) { | 
|  | if (pmd_none(*pmd)) | 
|  | continue; | 
|  | if (vaddr < (unsigned long) _text || vaddr > end) | 
|  | set_pmd(pmd, __pmd(0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned long __initdata table_start; | 
|  | static unsigned long __meminitdata table_end; | 
|  | static unsigned long __meminitdata table_top; | 
|  |  | 
|  | static __ref void *alloc_low_page(unsigned long *phys) | 
|  | { | 
|  | unsigned long pfn = table_end++; | 
|  | void *adr; | 
|  |  | 
|  | if (after_bootmem) { | 
|  | adr = (void *)get_zeroed_page(GFP_ATOMIC); | 
|  | *phys = __pa(adr); | 
|  |  | 
|  | return adr; | 
|  | } | 
|  |  | 
|  | if (pfn >= table_top) | 
|  | panic("alloc_low_page: ran out of memory"); | 
|  |  | 
|  | adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE); | 
|  | memset(adr, 0, PAGE_SIZE); | 
|  | *phys  = pfn * PAGE_SIZE; | 
|  | return adr; | 
|  | } | 
|  |  | 
|  | static __ref void unmap_low_page(void *adr) | 
|  | { | 
|  | if (after_bootmem) | 
|  | return; | 
|  |  | 
|  | early_iounmap(adr, PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | static unsigned long __meminit | 
|  | phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end) | 
|  | { | 
|  | unsigned pages = 0; | 
|  | unsigned long last_map_addr = end; | 
|  | int i; | 
|  |  | 
|  | pte_t *pte = pte_page + pte_index(addr); | 
|  |  | 
|  | for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) { | 
|  |  | 
|  | if (addr >= end) { | 
|  | if (!after_bootmem) { | 
|  | for(; i < PTRS_PER_PTE; i++, pte++) | 
|  | set_pte(pte, __pte(0)); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (pte_val(*pte)) | 
|  | continue; | 
|  |  | 
|  | if (0) | 
|  | printk("   pte=%p addr=%lx pte=%016lx\n", | 
|  | pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte); | 
|  | set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL)); | 
|  | last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE; | 
|  | pages++; | 
|  | } | 
|  | update_page_count(PG_LEVEL_4K, pages); | 
|  |  | 
|  | return last_map_addr; | 
|  | } | 
|  |  | 
|  | static unsigned long __meminit | 
|  | phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end) | 
|  | { | 
|  | pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd); | 
|  |  | 
|  | return phys_pte_init(pte, address, end); | 
|  | } | 
|  |  | 
|  | static unsigned long __meminit | 
|  | phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end, | 
|  | unsigned long page_size_mask) | 
|  | { | 
|  | unsigned long pages = 0; | 
|  | unsigned long last_map_addr = end; | 
|  | unsigned long start = address; | 
|  |  | 
|  | int i = pmd_index(address); | 
|  |  | 
|  | for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) { | 
|  | unsigned long pte_phys; | 
|  | pmd_t *pmd = pmd_page + pmd_index(address); | 
|  | pte_t *pte; | 
|  |  | 
|  | if (address >= end) { | 
|  | if (!after_bootmem) { | 
|  | for (; i < PTRS_PER_PMD; i++, pmd++) | 
|  | set_pmd(pmd, __pmd(0)); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (pmd_val(*pmd)) { | 
|  | if (!pmd_large(*pmd)) { | 
|  | spin_lock(&init_mm.page_table_lock); | 
|  | last_map_addr = phys_pte_update(pmd, address, | 
|  | end); | 
|  | spin_unlock(&init_mm.page_table_lock); | 
|  | } | 
|  | /* Count entries we're using from level2_ident_pgt */ | 
|  | if (start == 0) | 
|  | pages++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (page_size_mask & (1<<PG_LEVEL_2M)) { | 
|  | pages++; | 
|  | spin_lock(&init_mm.page_table_lock); | 
|  | set_pte((pte_t *)pmd, | 
|  | pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE)); | 
|  | spin_unlock(&init_mm.page_table_lock); | 
|  | last_map_addr = (address & PMD_MASK) + PMD_SIZE; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | pte = alloc_low_page(&pte_phys); | 
|  | last_map_addr = phys_pte_init(pte, address, end); | 
|  | unmap_low_page(pte); | 
|  |  | 
|  | spin_lock(&init_mm.page_table_lock); | 
|  | pmd_populate_kernel(&init_mm, pmd, __va(pte_phys)); | 
|  | spin_unlock(&init_mm.page_table_lock); | 
|  | } | 
|  | update_page_count(PG_LEVEL_2M, pages); | 
|  | return last_map_addr; | 
|  | } | 
|  |  | 
|  | static unsigned long __meminit | 
|  | phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end, | 
|  | unsigned long page_size_mask) | 
|  | { | 
|  | pmd_t *pmd = pmd_offset(pud, 0); | 
|  | unsigned long last_map_addr; | 
|  |  | 
|  | last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask); | 
|  | __flush_tlb_all(); | 
|  | return last_map_addr; | 
|  | } | 
|  |  | 
|  | static unsigned long __meminit | 
|  | phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end, | 
|  | unsigned long page_size_mask) | 
|  | { | 
|  | unsigned long pages = 0; | 
|  | unsigned long last_map_addr = end; | 
|  | int i = pud_index(addr); | 
|  |  | 
|  | for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) { | 
|  | unsigned long pmd_phys; | 
|  | pud_t *pud = pud_page + pud_index(addr); | 
|  | pmd_t *pmd; | 
|  |  | 
|  | if (addr >= end) | 
|  | break; | 
|  |  | 
|  | if (!after_bootmem && | 
|  | !e820_any_mapped(addr, addr+PUD_SIZE, 0)) { | 
|  | set_pud(pud, __pud(0)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (pud_val(*pud)) { | 
|  | if (!pud_large(*pud)) | 
|  | last_map_addr = phys_pmd_update(pud, addr, end, | 
|  | page_size_mask); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (page_size_mask & (1<<PG_LEVEL_1G)) { | 
|  | pages++; | 
|  | spin_lock(&init_mm.page_table_lock); | 
|  | set_pte((pte_t *)pud, | 
|  | pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE)); | 
|  | spin_unlock(&init_mm.page_table_lock); | 
|  | last_map_addr = (addr & PUD_MASK) + PUD_SIZE; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | pmd = alloc_low_page(&pmd_phys); | 
|  | last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask); | 
|  | unmap_low_page(pmd); | 
|  |  | 
|  | spin_lock(&init_mm.page_table_lock); | 
|  | pud_populate(&init_mm, pud, __va(pmd_phys)); | 
|  | spin_unlock(&init_mm.page_table_lock); | 
|  | } | 
|  | __flush_tlb_all(); | 
|  | update_page_count(PG_LEVEL_1G, pages); | 
|  |  | 
|  | return last_map_addr; | 
|  | } | 
|  |  | 
|  | static unsigned long __meminit | 
|  | phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end, | 
|  | unsigned long page_size_mask) | 
|  | { | 
|  | pud_t *pud; | 
|  |  | 
|  | pud = (pud_t *)pgd_page_vaddr(*pgd); | 
|  |  | 
|  | return phys_pud_init(pud, addr, end, page_size_mask); | 
|  | } | 
|  |  | 
|  | static void __init find_early_table_space(unsigned long end) | 
|  | { | 
|  | unsigned long puds, pmds, ptes, tables, start; | 
|  |  | 
|  | puds = (end + PUD_SIZE - 1) >> PUD_SHIFT; | 
|  | tables = round_up(puds * sizeof(pud_t), PAGE_SIZE); | 
|  | if (direct_gbpages) { | 
|  | unsigned long extra; | 
|  | extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT); | 
|  | pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT; | 
|  | } else | 
|  | pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT; | 
|  | tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE); | 
|  |  | 
|  | if (cpu_has_pse) { | 
|  | unsigned long extra; | 
|  | extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT); | 
|  | ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  | } else | 
|  | ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  | tables += round_up(ptes * sizeof(pte_t), PAGE_SIZE); | 
|  |  | 
|  | /* | 
|  | * RED-PEN putting page tables only on node 0 could | 
|  | * cause a hotspot and fill up ZONE_DMA. The page tables | 
|  | * need roughly 0.5KB per GB. | 
|  | */ | 
|  | start = 0x8000; | 
|  | table_start = find_e820_area(start, end, tables, PAGE_SIZE); | 
|  | if (table_start == -1UL) | 
|  | panic("Cannot find space for the kernel page tables"); | 
|  |  | 
|  | table_start >>= PAGE_SHIFT; | 
|  | table_end = table_start; | 
|  | table_top = table_start + (tables >> PAGE_SHIFT); | 
|  |  | 
|  | printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n", | 
|  | end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | static void __init init_gbpages(void) | 
|  | { | 
|  | if (direct_gbpages && cpu_has_gbpages) | 
|  | printk(KERN_INFO "Using GB pages for direct mapping\n"); | 
|  | else | 
|  | direct_gbpages = 0; | 
|  | } | 
|  |  | 
|  | static unsigned long __init kernel_physical_mapping_init(unsigned long start, | 
|  | unsigned long end, | 
|  | unsigned long page_size_mask) | 
|  | { | 
|  |  | 
|  | unsigned long next, last_map_addr = end; | 
|  |  | 
|  | start = (unsigned long)__va(start); | 
|  | end = (unsigned long)__va(end); | 
|  |  | 
|  | for (; start < end; start = next) { | 
|  | pgd_t *pgd = pgd_offset_k(start); | 
|  | unsigned long pud_phys; | 
|  | pud_t *pud; | 
|  |  | 
|  | next = (start + PGDIR_SIZE) & PGDIR_MASK; | 
|  | if (next > end) | 
|  | next = end; | 
|  |  | 
|  | if (pgd_val(*pgd)) { | 
|  | last_map_addr = phys_pud_update(pgd, __pa(start), | 
|  | __pa(end), page_size_mask); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | pud = alloc_low_page(&pud_phys); | 
|  | last_map_addr = phys_pud_init(pud, __pa(start), __pa(next), | 
|  | page_size_mask); | 
|  | unmap_low_page(pud); | 
|  |  | 
|  | spin_lock(&init_mm.page_table_lock); | 
|  | pgd_populate(&init_mm, pgd, __va(pud_phys)); | 
|  | spin_unlock(&init_mm.page_table_lock); | 
|  | } | 
|  |  | 
|  | return last_map_addr; | 
|  | } | 
|  |  | 
|  | struct map_range { | 
|  | unsigned long start; | 
|  | unsigned long end; | 
|  | unsigned page_size_mask; | 
|  | }; | 
|  |  | 
|  | #define NR_RANGE_MR 5 | 
|  |  | 
|  | static int save_mr(struct map_range *mr, int nr_range, | 
|  | unsigned long start_pfn, unsigned long end_pfn, | 
|  | unsigned long page_size_mask) | 
|  | { | 
|  |  | 
|  | if (start_pfn < end_pfn) { | 
|  | if (nr_range >= NR_RANGE_MR) | 
|  | panic("run out of range for init_memory_mapping\n"); | 
|  | mr[nr_range].start = start_pfn<<PAGE_SHIFT; | 
|  | mr[nr_range].end   = end_pfn<<PAGE_SHIFT; | 
|  | mr[nr_range].page_size_mask = page_size_mask; | 
|  | nr_range++; | 
|  | } | 
|  |  | 
|  | return nr_range; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Setup the direct mapping of the physical memory at PAGE_OFFSET. | 
|  | * This runs before bootmem is initialized and gets pages directly from | 
|  | * the physical memory. To access them they are temporarily mapped. | 
|  | */ | 
|  | unsigned long __init_refok init_memory_mapping(unsigned long start, | 
|  | unsigned long end) | 
|  | { | 
|  | unsigned long last_map_addr = 0; | 
|  | unsigned long page_size_mask = 0; | 
|  | unsigned long start_pfn, end_pfn; | 
|  |  | 
|  | struct map_range mr[NR_RANGE_MR]; | 
|  | int nr_range, i; | 
|  |  | 
|  | printk(KERN_INFO "init_memory_mapping\n"); | 
|  |  | 
|  | /* | 
|  | * Find space for the kernel direct mapping tables. | 
|  | * | 
|  | * Later we should allocate these tables in the local node of the | 
|  | * memory mapped. Unfortunately this is done currently before the | 
|  | * nodes are discovered. | 
|  | */ | 
|  | if (!after_bootmem) | 
|  | init_gbpages(); | 
|  |  | 
|  | if (direct_gbpages) | 
|  | page_size_mask |= 1 << PG_LEVEL_1G; | 
|  | if (cpu_has_pse) | 
|  | page_size_mask |= 1 << PG_LEVEL_2M; | 
|  |  | 
|  | memset(mr, 0, sizeof(mr)); | 
|  | nr_range = 0; | 
|  |  | 
|  | /* head if not big page alignment ?*/ | 
|  | start_pfn = start >> PAGE_SHIFT; | 
|  | end_pfn = ((start + (PMD_SIZE - 1)) >> PMD_SHIFT) | 
|  | << (PMD_SHIFT - PAGE_SHIFT); | 
|  | nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); | 
|  |  | 
|  | /* big page (2M) range*/ | 
|  | start_pfn = ((start + (PMD_SIZE - 1))>>PMD_SHIFT) | 
|  | << (PMD_SHIFT - PAGE_SHIFT); | 
|  | end_pfn = ((start + (PUD_SIZE - 1))>>PUD_SHIFT) | 
|  | << (PUD_SHIFT - PAGE_SHIFT); | 
|  | if (end_pfn > ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT))) | 
|  | end_pfn = ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT)); | 
|  | nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, | 
|  | page_size_mask & (1<<PG_LEVEL_2M)); | 
|  |  | 
|  | /* big page (1G) range */ | 
|  | start_pfn = end_pfn; | 
|  | end_pfn = (end>>PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT); | 
|  | nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, | 
|  | page_size_mask & | 
|  | ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G))); | 
|  |  | 
|  | /* tail is not big page (1G) alignment */ | 
|  | start_pfn = end_pfn; | 
|  | end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT); | 
|  | nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, | 
|  | page_size_mask & (1<<PG_LEVEL_2M)); | 
|  |  | 
|  | /* tail is not big page (2M) alignment */ | 
|  | start_pfn = end_pfn; | 
|  | end_pfn = end>>PAGE_SHIFT; | 
|  | nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); | 
|  |  | 
|  | /* try to merge same page size and continuous */ | 
|  | for (i = 0; nr_range > 1 && i < nr_range - 1; i++) { | 
|  | unsigned long old_start; | 
|  | if (mr[i].end != mr[i+1].start || | 
|  | mr[i].page_size_mask != mr[i+1].page_size_mask) | 
|  | continue; | 
|  | /* move it */ | 
|  | old_start = mr[i].start; | 
|  | memmove(&mr[i], &mr[i+1], | 
|  | (nr_range - 1 - i) * sizeof (struct map_range)); | 
|  | mr[i].start = old_start; | 
|  | nr_range--; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < nr_range; i++) | 
|  | printk(KERN_DEBUG " %010lx - %010lx page %s\n", | 
|  | mr[i].start, mr[i].end, | 
|  | (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":( | 
|  | (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k")); | 
|  |  | 
|  | if (!after_bootmem) | 
|  | find_early_table_space(end); | 
|  |  | 
|  | for (i = 0; i < nr_range; i++) | 
|  | last_map_addr = kernel_physical_mapping_init( | 
|  | mr[i].start, mr[i].end, | 
|  | mr[i].page_size_mask); | 
|  |  | 
|  | if (!after_bootmem) | 
|  | mmu_cr4_features = read_cr4(); | 
|  | __flush_tlb_all(); | 
|  |  | 
|  | if (!after_bootmem && table_end > table_start) | 
|  | reserve_early(table_start << PAGE_SHIFT, | 
|  | table_end << PAGE_SHIFT, "PGTABLE"); | 
|  |  | 
|  | printk(KERN_INFO "last_map_addr: %lx end: %lx\n", | 
|  | last_map_addr, end); | 
|  |  | 
|  | if (!after_bootmem) | 
|  | early_memtest(start, end); | 
|  |  | 
|  | return last_map_addr >> PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_NUMA | 
|  | void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn) | 
|  | { | 
|  | unsigned long bootmap_size, bootmap; | 
|  |  | 
|  | bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT; | 
|  | bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size, | 
|  | PAGE_SIZE); | 
|  | if (bootmap == -1L) | 
|  | panic("Cannot find bootmem map of size %ld\n", bootmap_size); | 
|  | /* don't touch min_low_pfn */ | 
|  | bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT, | 
|  | 0, end_pfn); | 
|  | e820_register_active_regions(0, start_pfn, end_pfn); | 
|  | free_bootmem_with_active_regions(0, end_pfn); | 
|  | early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT); | 
|  | reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT); | 
|  | } | 
|  |  | 
|  | void __init paging_init(void) | 
|  | { | 
|  | unsigned long max_zone_pfns[MAX_NR_ZONES]; | 
|  |  | 
|  | memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); | 
|  | max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN; | 
|  | max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN; | 
|  | max_zone_pfns[ZONE_NORMAL] = max_pfn; | 
|  |  | 
|  | memory_present(0, 0, max_pfn); | 
|  | sparse_init(); | 
|  | free_area_init_nodes(max_zone_pfns); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Memory hotplug specific functions | 
|  | */ | 
|  | #ifdef CONFIG_MEMORY_HOTPLUG | 
|  | /* | 
|  | * Memory is added always to NORMAL zone. This means you will never get | 
|  | * additional DMA/DMA32 memory. | 
|  | */ | 
|  | int arch_add_memory(int nid, u64 start, u64 size) | 
|  | { | 
|  | struct pglist_data *pgdat = NODE_DATA(nid); | 
|  | struct zone *zone = pgdat->node_zones + ZONE_NORMAL; | 
|  | unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT; | 
|  | unsigned long nr_pages = size >> PAGE_SHIFT; | 
|  | int ret; | 
|  |  | 
|  | last_mapped_pfn = init_memory_mapping(start, start + size-1); | 
|  | if (last_mapped_pfn > max_pfn_mapped) | 
|  | max_pfn_mapped = last_mapped_pfn; | 
|  |  | 
|  | ret = __add_pages(zone, start_pfn, nr_pages); | 
|  | WARN_ON(1); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(arch_add_memory); | 
|  |  | 
|  | #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA) | 
|  | int memory_add_physaddr_to_nid(u64 start) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); | 
|  | #endif | 
|  |  | 
|  | #endif /* CONFIG_MEMORY_HOTPLUG */ | 
|  |  | 
|  | /* | 
|  | * devmem_is_allowed() checks to see if /dev/mem access to a certain address | 
|  | * is valid. The argument is a physical page number. | 
|  | * | 
|  | * | 
|  | * On x86, access has to be given to the first megabyte of ram because that area | 
|  | * contains bios code and data regions used by X and dosemu and similar apps. | 
|  | * Access has to be given to non-kernel-ram areas as well, these contain the PCI | 
|  | * mmio resources as well as potential bios/acpi data regions. | 
|  | */ | 
|  | int devmem_is_allowed(unsigned long pagenr) | 
|  | { | 
|  | if (pagenr <= 256) | 
|  | return 1; | 
|  | if (!page_is_ram(pagenr)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel, | 
|  | kcore_modules, kcore_vsyscall; | 
|  |  | 
|  | void __init mem_init(void) | 
|  | { | 
|  | long codesize, reservedpages, datasize, initsize; | 
|  |  | 
|  | pci_iommu_alloc(); | 
|  |  | 
|  | /* clear_bss() already clear the empty_zero_page */ | 
|  |  | 
|  | reservedpages = 0; | 
|  |  | 
|  | /* this will put all low memory onto the freelists */ | 
|  | #ifdef CONFIG_NUMA | 
|  | totalram_pages = numa_free_all_bootmem(); | 
|  | #else | 
|  | totalram_pages = free_all_bootmem(); | 
|  | #endif | 
|  | reservedpages = max_pfn - totalram_pages - | 
|  | absent_pages_in_range(0, max_pfn); | 
|  | after_bootmem = 1; | 
|  |  | 
|  | codesize =  (unsigned long) &_etext - (unsigned long) &_text; | 
|  | datasize =  (unsigned long) &_edata - (unsigned long) &_etext; | 
|  | initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin; | 
|  |  | 
|  | /* Register memory areas for /proc/kcore */ | 
|  | kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT); | 
|  | kclist_add(&kcore_vmalloc, (void *)VMALLOC_START, | 
|  | VMALLOC_END-VMALLOC_START); | 
|  | kclist_add(&kcore_kernel, &_stext, _end - _stext); | 
|  | kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN); | 
|  | kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START, | 
|  | VSYSCALL_END - VSYSCALL_START); | 
|  |  | 
|  | printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, " | 
|  | "%ldk reserved, %ldk data, %ldk init)\n", | 
|  | (unsigned long) nr_free_pages() << (PAGE_SHIFT-10), | 
|  | max_pfn << (PAGE_SHIFT-10), | 
|  | codesize >> 10, | 
|  | reservedpages << (PAGE_SHIFT-10), | 
|  | datasize >> 10, | 
|  | initsize >> 10); | 
|  |  | 
|  | cpa_init(); | 
|  | } | 
|  |  | 
|  | void free_init_pages(char *what, unsigned long begin, unsigned long end) | 
|  | { | 
|  | unsigned long addr = begin; | 
|  |  | 
|  | if (addr >= end) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * If debugging page accesses then do not free this memory but | 
|  | * mark them not present - any buggy init-section access will | 
|  | * create a kernel page fault: | 
|  | */ | 
|  | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n", | 
|  | begin, PAGE_ALIGN(end)); | 
|  | set_memory_np(begin, (end - begin) >> PAGE_SHIFT); | 
|  | #else | 
|  | printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10); | 
|  |  | 
|  | for (; addr < end; addr += PAGE_SIZE) { | 
|  | ClearPageReserved(virt_to_page(addr)); | 
|  | init_page_count(virt_to_page(addr)); | 
|  | memset((void *)(addr & ~(PAGE_SIZE-1)), | 
|  | POISON_FREE_INITMEM, PAGE_SIZE); | 
|  | free_page(addr); | 
|  | totalram_pages++; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void free_initmem(void) | 
|  | { | 
|  | free_init_pages("unused kernel memory", | 
|  | (unsigned long)(&__init_begin), | 
|  | (unsigned long)(&__init_end)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_RODATA | 
|  | const int rodata_test_data = 0xC3; | 
|  | EXPORT_SYMBOL_GPL(rodata_test_data); | 
|  |  | 
|  | void mark_rodata_ro(void) | 
|  | { | 
|  | unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata); | 
|  | unsigned long rodata_start = | 
|  | ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK; | 
|  |  | 
|  | #ifdef CONFIG_DYNAMIC_FTRACE | 
|  | /* Dynamic tracing modifies the kernel text section */ | 
|  | start = rodata_start; | 
|  | #endif | 
|  |  | 
|  | printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n", | 
|  | (end - start) >> 10); | 
|  | set_memory_ro(start, (end - start) >> PAGE_SHIFT); | 
|  |  | 
|  | /* | 
|  | * The rodata section (but not the kernel text!) should also be | 
|  | * not-executable. | 
|  | */ | 
|  | set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT); | 
|  |  | 
|  | rodata_test(); | 
|  |  | 
|  | #ifdef CONFIG_CPA_DEBUG | 
|  | printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end); | 
|  | set_memory_rw(start, (end-start) >> PAGE_SHIFT); | 
|  |  | 
|  | printk(KERN_INFO "Testing CPA: again\n"); | 
|  | set_memory_ro(start, (end-start) >> PAGE_SHIFT); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_BLK_DEV_INITRD | 
|  | void free_initrd_mem(unsigned long start, unsigned long end) | 
|  | { | 
|  | free_init_pages("initrd memory", start, end); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | int __init reserve_bootmem_generic(unsigned long phys, unsigned long len, | 
|  | int flags) | 
|  | { | 
|  | #ifdef CONFIG_NUMA | 
|  | int nid, next_nid; | 
|  | int ret; | 
|  | #endif | 
|  | unsigned long pfn = phys >> PAGE_SHIFT; | 
|  |  | 
|  | if (pfn >= max_pfn) { | 
|  | /* | 
|  | * This can happen with kdump kernels when accessing | 
|  | * firmware tables: | 
|  | */ | 
|  | if (pfn < max_pfn_mapped) | 
|  | return -EFAULT; | 
|  |  | 
|  | printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n", | 
|  | phys, len); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | /* Should check here against the e820 map to avoid double free */ | 
|  | #ifdef CONFIG_NUMA | 
|  | nid = phys_to_nid(phys); | 
|  | next_nid = phys_to_nid(phys + len - 1); | 
|  | if (nid == next_nid) | 
|  | ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags); | 
|  | else | 
|  | ret = reserve_bootmem(phys, len, flags); | 
|  |  | 
|  | if (ret != 0) | 
|  | return ret; | 
|  |  | 
|  | #else | 
|  | reserve_bootmem(phys, len, BOOTMEM_DEFAULT); | 
|  | #endif | 
|  |  | 
|  | if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) { | 
|  | dma_reserve += len / PAGE_SIZE; | 
|  | set_dma_reserve(dma_reserve); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kern_addr_valid(unsigned long addr) | 
|  | { | 
|  | unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT; | 
|  | pgd_t *pgd; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  |  | 
|  | if (above != 0 && above != -1UL) | 
|  | return 0; | 
|  |  | 
|  | pgd = pgd_offset_k(addr); | 
|  | if (pgd_none(*pgd)) | 
|  | return 0; | 
|  |  | 
|  | pud = pud_offset(pgd, addr); | 
|  | if (pud_none(*pud)) | 
|  | return 0; | 
|  |  | 
|  | pmd = pmd_offset(pud, addr); | 
|  | if (pmd_none(*pmd)) | 
|  | return 0; | 
|  |  | 
|  | if (pmd_large(*pmd)) | 
|  | return pfn_valid(pmd_pfn(*pmd)); | 
|  |  | 
|  | pte = pte_offset_kernel(pmd, addr); | 
|  | if (pte_none(*pte)) | 
|  | return 0; | 
|  |  | 
|  | return pfn_valid(pte_pfn(*pte)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A pseudo VMA to allow ptrace access for the vsyscall page.  This only | 
|  | * covers the 64bit vsyscall page now. 32bit has a real VMA now and does | 
|  | * not need special handling anymore: | 
|  | */ | 
|  | static struct vm_area_struct gate_vma = { | 
|  | .vm_start	= VSYSCALL_START, | 
|  | .vm_end		= VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE), | 
|  | .vm_page_prot	= PAGE_READONLY_EXEC, | 
|  | .vm_flags	= VM_READ | VM_EXEC | 
|  | }; | 
|  |  | 
|  | struct vm_area_struct *get_gate_vma(struct task_struct *tsk) | 
|  | { | 
|  | #ifdef CONFIG_IA32_EMULATION | 
|  | if (test_tsk_thread_flag(tsk, TIF_IA32)) | 
|  | return NULL; | 
|  | #endif | 
|  | return &gate_vma; | 
|  | } | 
|  |  | 
|  | int in_gate_area(struct task_struct *task, unsigned long addr) | 
|  | { | 
|  | struct vm_area_struct *vma = get_gate_vma(task); | 
|  |  | 
|  | if (!vma) | 
|  | return 0; | 
|  |  | 
|  | return (addr >= vma->vm_start) && (addr < vma->vm_end); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Use this when you have no reliable task/vma, typically from interrupt | 
|  | * context. It is less reliable than using the task's vma and may give | 
|  | * false positives: | 
|  | */ | 
|  | int in_gate_area_no_task(unsigned long addr) | 
|  | { | 
|  | return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END); | 
|  | } | 
|  |  | 
|  | const char *arch_vma_name(struct vm_area_struct *vma) | 
|  | { | 
|  | if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso) | 
|  | return "[vdso]"; | 
|  | if (vma == &gate_vma) | 
|  | return "[vsyscall]"; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
|  | /* | 
|  | * Initialise the sparsemem vmemmap using huge-pages at the PMD level. | 
|  | */ | 
|  | static long __meminitdata addr_start, addr_end; | 
|  | static void __meminitdata *p_start, *p_end; | 
|  | static int __meminitdata node_start; | 
|  |  | 
|  | int __meminit | 
|  | vmemmap_populate(struct page *start_page, unsigned long size, int node) | 
|  | { | 
|  | unsigned long addr = (unsigned long)start_page; | 
|  | unsigned long end = (unsigned long)(start_page + size); | 
|  | unsigned long next; | 
|  | pgd_t *pgd; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  |  | 
|  | for (; addr < end; addr = next) { | 
|  | void *p = NULL; | 
|  |  | 
|  | pgd = vmemmap_pgd_populate(addr, node); | 
|  | if (!pgd) | 
|  | return -ENOMEM; | 
|  |  | 
|  | pud = vmemmap_pud_populate(pgd, addr, node); | 
|  | if (!pud) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (!cpu_has_pse) { | 
|  | next = (addr + PAGE_SIZE) & PAGE_MASK; | 
|  | pmd = vmemmap_pmd_populate(pud, addr, node); | 
|  |  | 
|  | if (!pmd) | 
|  | return -ENOMEM; | 
|  |  | 
|  | p = vmemmap_pte_populate(pmd, addr, node); | 
|  |  | 
|  | if (!p) | 
|  | return -ENOMEM; | 
|  |  | 
|  | addr_end = addr + PAGE_SIZE; | 
|  | p_end = p + PAGE_SIZE; | 
|  | } else { | 
|  | next = pmd_addr_end(addr, end); | 
|  |  | 
|  | pmd = pmd_offset(pud, addr); | 
|  | if (pmd_none(*pmd)) { | 
|  | pte_t entry; | 
|  |  | 
|  | p = vmemmap_alloc_block(PMD_SIZE, node); | 
|  | if (!p) | 
|  | return -ENOMEM; | 
|  |  | 
|  | entry = pfn_pte(__pa(p) >> PAGE_SHIFT, | 
|  | PAGE_KERNEL_LARGE); | 
|  | set_pmd(pmd, __pmd(pte_val(entry))); | 
|  |  | 
|  | /* check to see if we have contiguous blocks */ | 
|  | if (p_end != p || node_start != node) { | 
|  | if (p_start) | 
|  | printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n", | 
|  | addr_start, addr_end-1, p_start, p_end-1, node_start); | 
|  | addr_start = addr; | 
|  | node_start = node; | 
|  | p_start = p; | 
|  | } | 
|  |  | 
|  | addr_end = addr + PMD_SIZE; | 
|  | p_end = p + PMD_SIZE; | 
|  | } else | 
|  | vmemmap_verify((pte_t *)pmd, node, addr, next); | 
|  | } | 
|  |  | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __meminit vmemmap_populate_print_last(void) | 
|  | { | 
|  | if (p_start) { | 
|  | printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n", | 
|  | addr_start, addr_end-1, p_start, p_end-1, node_start); | 
|  | p_start = NULL; | 
|  | p_end = NULL; | 
|  | node_start = 0; | 
|  | } | 
|  | } | 
|  | #endif |