| #include <linux/bootmem.h> | 
 | #include <linux/linkage.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/module.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/string.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/init.h> | 
 | #include <linux/kgdb.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/io.h> | 
 |  | 
 | #include <asm/stackprotector.h> | 
 | #include <asm/perf_event.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/hypervisor.h> | 
 | #include <asm/processor.h> | 
 | #include <asm/sections.h> | 
 | #include <linux/topology.h> | 
 | #include <linux/cpumask.h> | 
 | #include <asm/pgtable.h> | 
 | #include <linux/atomic.h> | 
 | #include <asm/proto.h> | 
 | #include <asm/setup.h> | 
 | #include <asm/apic.h> | 
 | #include <asm/desc.h> | 
 | #include <asm/i387.h> | 
 | #include <asm/mtrr.h> | 
 | #include <linux/numa.h> | 
 | #include <asm/asm.h> | 
 | #include <asm/cpu.h> | 
 | #include <asm/mce.h> | 
 | #include <asm/msr.h> | 
 | #include <asm/pat.h> | 
 |  | 
 | #ifdef CONFIG_X86_LOCAL_APIC | 
 | #include <asm/uv/uv.h> | 
 | #endif | 
 |  | 
 | #include "cpu.h" | 
 |  | 
 | /* all of these masks are initialized in setup_cpu_local_masks() */ | 
 | cpumask_var_t cpu_initialized_mask; | 
 | cpumask_var_t cpu_callout_mask; | 
 | cpumask_var_t cpu_callin_mask; | 
 |  | 
 | /* representing cpus for which sibling maps can be computed */ | 
 | cpumask_var_t cpu_sibling_setup_mask; | 
 |  | 
 | /* correctly size the local cpu masks */ | 
 | void __init setup_cpu_local_masks(void) | 
 | { | 
 | 	alloc_bootmem_cpumask_var(&cpu_initialized_mask); | 
 | 	alloc_bootmem_cpumask_var(&cpu_callin_mask); | 
 | 	alloc_bootmem_cpumask_var(&cpu_callout_mask); | 
 | 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask); | 
 | } | 
 |  | 
 | static void __cpuinit default_init(struct cpuinfo_x86 *c) | 
 | { | 
 | #ifdef CONFIG_X86_64 | 
 | 	cpu_detect_cache_sizes(c); | 
 | #else | 
 | 	/* Not much we can do here... */ | 
 | 	/* Check if at least it has cpuid */ | 
 | 	if (c->cpuid_level == -1) { | 
 | 		/* No cpuid. It must be an ancient CPU */ | 
 | 		if (c->x86 == 4) | 
 | 			strcpy(c->x86_model_id, "486"); | 
 | 		else if (c->x86 == 3) | 
 | 			strcpy(c->x86_model_id, "386"); | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | static const struct cpu_dev __cpuinitconst default_cpu = { | 
 | 	.c_init		= default_init, | 
 | 	.c_vendor	= "Unknown", | 
 | 	.c_x86_vendor	= X86_VENDOR_UNKNOWN, | 
 | }; | 
 |  | 
 | static const struct cpu_dev *this_cpu __cpuinitdata = &default_cpu; | 
 |  | 
 | DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = { | 
 | #ifdef CONFIG_X86_64 | 
 | 	/* | 
 | 	 * We need valid kernel segments for data and code in long mode too | 
 | 	 * IRET will check the segment types  kkeil 2000/10/28 | 
 | 	 * Also sysret mandates a special GDT layout | 
 | 	 * | 
 | 	 * TLS descriptors are currently at a different place compared to i386. | 
 | 	 * Hopefully nobody expects them at a fixed place (Wine?) | 
 | 	 */ | 
 | 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff), | 
 | 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff), | 
 | 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff), | 
 | 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff), | 
 | 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff), | 
 | 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff), | 
 | #else | 
 | 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff), | 
 | 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff), | 
 | 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff), | 
 | 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff), | 
 | 	/* | 
 | 	 * Segments used for calling PnP BIOS have byte granularity. | 
 | 	 * They code segments and data segments have fixed 64k limits, | 
 | 	 * the transfer segment sizes are set at run time. | 
 | 	 */ | 
 | 	/* 32-bit code */ | 
 | 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff), | 
 | 	/* 16-bit code */ | 
 | 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff), | 
 | 	/* 16-bit data */ | 
 | 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff), | 
 | 	/* 16-bit data */ | 
 | 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0), | 
 | 	/* 16-bit data */ | 
 | 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0), | 
 | 	/* | 
 | 	 * The APM segments have byte granularity and their bases | 
 | 	 * are set at run time.  All have 64k limits. | 
 | 	 */ | 
 | 	/* 32-bit code */ | 
 | 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff), | 
 | 	/* 16-bit code */ | 
 | 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff), | 
 | 	/* data */ | 
 | 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff), | 
 |  | 
 | 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff), | 
 | 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff), | 
 | 	GDT_STACK_CANARY_INIT | 
 | #endif | 
 | } }; | 
 | EXPORT_PER_CPU_SYMBOL_GPL(gdt_page); | 
 |  | 
 | static int __init x86_xsave_setup(char *s) | 
 | { | 
 | 	setup_clear_cpu_cap(X86_FEATURE_XSAVE); | 
 | 	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT); | 
 | 	return 1; | 
 | } | 
 | __setup("noxsave", x86_xsave_setup); | 
 |  | 
 | static int __init x86_xsaveopt_setup(char *s) | 
 | { | 
 | 	setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT); | 
 | 	return 1; | 
 | } | 
 | __setup("noxsaveopt", x86_xsaveopt_setup); | 
 |  | 
 | #ifdef CONFIG_X86_32 | 
 | static int cachesize_override __cpuinitdata = -1; | 
 | static int disable_x86_serial_nr __cpuinitdata = 1; | 
 |  | 
 | static int __init cachesize_setup(char *str) | 
 | { | 
 | 	get_option(&str, &cachesize_override); | 
 | 	return 1; | 
 | } | 
 | __setup("cachesize=", cachesize_setup); | 
 |  | 
 | static int __init x86_fxsr_setup(char *s) | 
 | { | 
 | 	setup_clear_cpu_cap(X86_FEATURE_FXSR); | 
 | 	setup_clear_cpu_cap(X86_FEATURE_XMM); | 
 | 	return 1; | 
 | } | 
 | __setup("nofxsr", x86_fxsr_setup); | 
 |  | 
 | static int __init x86_sep_setup(char *s) | 
 | { | 
 | 	setup_clear_cpu_cap(X86_FEATURE_SEP); | 
 | 	return 1; | 
 | } | 
 | __setup("nosep", x86_sep_setup); | 
 |  | 
 | /* Standard macro to see if a specific flag is changeable */ | 
 | static inline int flag_is_changeable_p(u32 flag) | 
 | { | 
 | 	u32 f1, f2; | 
 |  | 
 | 	/* | 
 | 	 * Cyrix and IDT cpus allow disabling of CPUID | 
 | 	 * so the code below may return different results | 
 | 	 * when it is executed before and after enabling | 
 | 	 * the CPUID. Add "volatile" to not allow gcc to | 
 | 	 * optimize the subsequent calls to this function. | 
 | 	 */ | 
 | 	asm volatile ("pushfl		\n\t" | 
 | 		      "pushfl		\n\t" | 
 | 		      "popl %0		\n\t" | 
 | 		      "movl %0, %1	\n\t" | 
 | 		      "xorl %2, %0	\n\t" | 
 | 		      "pushl %0		\n\t" | 
 | 		      "popfl		\n\t" | 
 | 		      "pushfl		\n\t" | 
 | 		      "popl %0		\n\t" | 
 | 		      "popfl		\n\t" | 
 |  | 
 | 		      : "=&r" (f1), "=&r" (f2) | 
 | 		      : "ir" (flag)); | 
 |  | 
 | 	return ((f1^f2) & flag) != 0; | 
 | } | 
 |  | 
 | /* Probe for the CPUID instruction */ | 
 | static int __cpuinit have_cpuid_p(void) | 
 | { | 
 | 	return flag_is_changeable_p(X86_EFLAGS_ID); | 
 | } | 
 |  | 
 | static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c) | 
 | { | 
 | 	unsigned long lo, hi; | 
 |  | 
 | 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr) | 
 | 		return; | 
 |  | 
 | 	/* Disable processor serial number: */ | 
 |  | 
 | 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi); | 
 | 	lo |= 0x200000; | 
 | 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi); | 
 |  | 
 | 	printk(KERN_NOTICE "CPU serial number disabled.\n"); | 
 | 	clear_cpu_cap(c, X86_FEATURE_PN); | 
 |  | 
 | 	/* Disabling the serial number may affect the cpuid level */ | 
 | 	c->cpuid_level = cpuid_eax(0); | 
 | } | 
 |  | 
 | static int __init x86_serial_nr_setup(char *s) | 
 | { | 
 | 	disable_x86_serial_nr = 0; | 
 | 	return 1; | 
 | } | 
 | __setup("serialnumber", x86_serial_nr_setup); | 
 | #else | 
 | static inline int flag_is_changeable_p(u32 flag) | 
 | { | 
 | 	return 1; | 
 | } | 
 | /* Probe for the CPUID instruction */ | 
 | static inline int have_cpuid_p(void) | 
 | { | 
 | 	return 1; | 
 | } | 
 | static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | static int disable_smep __cpuinitdata; | 
 | static __init int setup_disable_smep(char *arg) | 
 | { | 
 | 	disable_smep = 1; | 
 | 	return 1; | 
 | } | 
 | __setup("nosmep", setup_disable_smep); | 
 |  | 
 | static __cpuinit void setup_smep(struct cpuinfo_x86 *c) | 
 | { | 
 | 	if (cpu_has(c, X86_FEATURE_SMEP)) { | 
 | 		if (unlikely(disable_smep)) { | 
 | 			setup_clear_cpu_cap(X86_FEATURE_SMEP); | 
 | 			clear_in_cr4(X86_CR4_SMEP); | 
 | 		} else | 
 | 			set_in_cr4(X86_CR4_SMEP); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Some CPU features depend on higher CPUID levels, which may not always | 
 |  * be available due to CPUID level capping or broken virtualization | 
 |  * software.  Add those features to this table to auto-disable them. | 
 |  */ | 
 | struct cpuid_dependent_feature { | 
 | 	u32 feature; | 
 | 	u32 level; | 
 | }; | 
 |  | 
 | static const struct cpuid_dependent_feature __cpuinitconst | 
 | cpuid_dependent_features[] = { | 
 | 	{ X86_FEATURE_MWAIT,		0x00000005 }, | 
 | 	{ X86_FEATURE_DCA,		0x00000009 }, | 
 | 	{ X86_FEATURE_XSAVE,		0x0000000d }, | 
 | 	{ 0, 0 } | 
 | }; | 
 |  | 
 | static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn) | 
 | { | 
 | 	const struct cpuid_dependent_feature *df; | 
 |  | 
 | 	for (df = cpuid_dependent_features; df->feature; df++) { | 
 |  | 
 | 		if (!cpu_has(c, df->feature)) | 
 | 			continue; | 
 | 		/* | 
 | 		 * Note: cpuid_level is set to -1 if unavailable, but | 
 | 		 * extended_extended_level is set to 0 if unavailable | 
 | 		 * and the legitimate extended levels are all negative | 
 | 		 * when signed; hence the weird messing around with | 
 | 		 * signs here... | 
 | 		 */ | 
 | 		if (!((s32)df->level < 0 ? | 
 | 		     (u32)df->level > (u32)c->extended_cpuid_level : | 
 | 		     (s32)df->level > (s32)c->cpuid_level)) | 
 | 			continue; | 
 |  | 
 | 		clear_cpu_cap(c, df->feature); | 
 | 		if (!warn) | 
 | 			continue; | 
 |  | 
 | 		printk(KERN_WARNING | 
 | 		       "CPU: CPU feature %s disabled, no CPUID level 0x%x\n", | 
 | 				x86_cap_flags[df->feature], df->level); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Naming convention should be: <Name> [(<Codename>)] | 
 |  * This table only is used unless init_<vendor>() below doesn't set it; | 
 |  * in particular, if CPUID levels 0x80000002..4 are supported, this | 
 |  * isn't used | 
 |  */ | 
 |  | 
 | /* Look up CPU names by table lookup. */ | 
 | static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c) | 
 | { | 
 | 	const struct cpu_model_info *info; | 
 |  | 
 | 	if (c->x86_model >= 16) | 
 | 		return NULL;	/* Range check */ | 
 |  | 
 | 	if (!this_cpu) | 
 | 		return NULL; | 
 |  | 
 | 	info = this_cpu->c_models; | 
 |  | 
 | 	while (info && info->family) { | 
 | 		if (info->family == c->x86) | 
 | 			return info->model_names[c->x86_model]; | 
 | 		info++; | 
 | 	} | 
 | 	return NULL;		/* Not found */ | 
 | } | 
 |  | 
 | __u32 cpu_caps_cleared[NCAPINTS] __cpuinitdata; | 
 | __u32 cpu_caps_set[NCAPINTS] __cpuinitdata; | 
 |  | 
 | void load_percpu_segment(int cpu) | 
 | { | 
 | #ifdef CONFIG_X86_32 | 
 | 	loadsegment(fs, __KERNEL_PERCPU); | 
 | #else | 
 | 	loadsegment(gs, 0); | 
 | 	wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu)); | 
 | #endif | 
 | 	load_stack_canary_segment(); | 
 | } | 
 |  | 
 | /* | 
 |  * Current gdt points %fs at the "master" per-cpu area: after this, | 
 |  * it's on the real one. | 
 |  */ | 
 | void switch_to_new_gdt(int cpu) | 
 | { | 
 | 	struct desc_ptr gdt_descr; | 
 |  | 
 | 	gdt_descr.address = (long)get_cpu_gdt_table(cpu); | 
 | 	gdt_descr.size = GDT_SIZE - 1; | 
 | 	load_gdt(&gdt_descr); | 
 | 	/* Reload the per-cpu base */ | 
 |  | 
 | 	load_percpu_segment(cpu); | 
 | } | 
 |  | 
 | static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {}; | 
 |  | 
 | static void __cpuinit get_model_name(struct cpuinfo_x86 *c) | 
 | { | 
 | 	unsigned int *v; | 
 | 	char *p, *q; | 
 |  | 
 | 	if (c->extended_cpuid_level < 0x80000004) | 
 | 		return; | 
 |  | 
 | 	v = (unsigned int *)c->x86_model_id; | 
 | 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]); | 
 | 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]); | 
 | 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]); | 
 | 	c->x86_model_id[48] = 0; | 
 |  | 
 | 	/* | 
 | 	 * Intel chips right-justify this string for some dumb reason; | 
 | 	 * undo that brain damage: | 
 | 	 */ | 
 | 	p = q = &c->x86_model_id[0]; | 
 | 	while (*p == ' ') | 
 | 		p++; | 
 | 	if (p != q) { | 
 | 		while (*p) | 
 | 			*q++ = *p++; | 
 | 		while (q <= &c->x86_model_id[48]) | 
 | 			*q++ = '\0';	/* Zero-pad the rest */ | 
 | 	} | 
 | } | 
 |  | 
 | void __cpuinit cpu_detect_cache_sizes(struct cpuinfo_x86 *c) | 
 | { | 
 | 	unsigned int n, dummy, ebx, ecx, edx, l2size; | 
 |  | 
 | 	n = c->extended_cpuid_level; | 
 |  | 
 | 	if (n >= 0x80000005) { | 
 | 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx); | 
 | 		c->x86_cache_size = (ecx>>24) + (edx>>24); | 
 | #ifdef CONFIG_X86_64 | 
 | 		/* On K8 L1 TLB is inclusive, so don't count it */ | 
 | 		c->x86_tlbsize = 0; | 
 | #endif | 
 | 	} | 
 |  | 
 | 	if (n < 0x80000006)	/* Some chips just has a large L1. */ | 
 | 		return; | 
 |  | 
 | 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx); | 
 | 	l2size = ecx >> 16; | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff); | 
 | #else | 
 | 	/* do processor-specific cache resizing */ | 
 | 	if (this_cpu->c_size_cache) | 
 | 		l2size = this_cpu->c_size_cache(c, l2size); | 
 |  | 
 | 	/* Allow user to override all this if necessary. */ | 
 | 	if (cachesize_override != -1) | 
 | 		l2size = cachesize_override; | 
 |  | 
 | 	if (l2size == 0) | 
 | 		return;		/* Again, no L2 cache is possible */ | 
 | #endif | 
 |  | 
 | 	c->x86_cache_size = l2size; | 
 | } | 
 |  | 
 | void __cpuinit detect_ht(struct cpuinfo_x86 *c) | 
 | { | 
 | #ifdef CONFIG_X86_HT | 
 | 	u32 eax, ebx, ecx, edx; | 
 | 	int index_msb, core_bits; | 
 | 	static bool printed; | 
 |  | 
 | 	if (!cpu_has(c, X86_FEATURE_HT)) | 
 | 		return; | 
 |  | 
 | 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY)) | 
 | 		goto out; | 
 |  | 
 | 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY)) | 
 | 		return; | 
 |  | 
 | 	cpuid(1, &eax, &ebx, &ecx, &edx); | 
 |  | 
 | 	smp_num_siblings = (ebx & 0xff0000) >> 16; | 
 |  | 
 | 	if (smp_num_siblings == 1) { | 
 | 		printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (smp_num_siblings <= 1) | 
 | 		goto out; | 
 |  | 
 | 	index_msb = get_count_order(smp_num_siblings); | 
 | 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb); | 
 |  | 
 | 	smp_num_siblings = smp_num_siblings / c->x86_max_cores; | 
 |  | 
 | 	index_msb = get_count_order(smp_num_siblings); | 
 |  | 
 | 	core_bits = get_count_order(c->x86_max_cores); | 
 |  | 
 | 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) & | 
 | 				       ((1 << core_bits) - 1); | 
 |  | 
 | out: | 
 | 	if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) { | 
 | 		printk(KERN_INFO  "CPU: Physical Processor ID: %d\n", | 
 | 		       c->phys_proc_id); | 
 | 		printk(KERN_INFO  "CPU: Processor Core ID: %d\n", | 
 | 		       c->cpu_core_id); | 
 | 		printed = 1; | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c) | 
 | { | 
 | 	char *v = c->x86_vendor_id; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < X86_VENDOR_NUM; i++) { | 
 | 		if (!cpu_devs[i]) | 
 | 			break; | 
 |  | 
 | 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) || | 
 | 		    (cpu_devs[i]->c_ident[1] && | 
 | 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) { | 
 |  | 
 | 			this_cpu = cpu_devs[i]; | 
 | 			c->x86_vendor = this_cpu->c_x86_vendor; | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	printk_once(KERN_ERR | 
 | 			"CPU: vendor_id '%s' unknown, using generic init.\n" \ | 
 | 			"CPU: Your system may be unstable.\n", v); | 
 |  | 
 | 	c->x86_vendor = X86_VENDOR_UNKNOWN; | 
 | 	this_cpu = &default_cpu; | 
 | } | 
 |  | 
 | void __cpuinit cpu_detect(struct cpuinfo_x86 *c) | 
 | { | 
 | 	/* Get vendor name */ | 
 | 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level, | 
 | 	      (unsigned int *)&c->x86_vendor_id[0], | 
 | 	      (unsigned int *)&c->x86_vendor_id[8], | 
 | 	      (unsigned int *)&c->x86_vendor_id[4]); | 
 |  | 
 | 	c->x86 = 4; | 
 | 	/* Intel-defined flags: level 0x00000001 */ | 
 | 	if (c->cpuid_level >= 0x00000001) { | 
 | 		u32 junk, tfms, cap0, misc; | 
 |  | 
 | 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0); | 
 | 		c->x86 = (tfms >> 8) & 0xf; | 
 | 		c->x86_model = (tfms >> 4) & 0xf; | 
 | 		c->x86_mask = tfms & 0xf; | 
 |  | 
 | 		if (c->x86 == 0xf) | 
 | 			c->x86 += (tfms >> 20) & 0xff; | 
 | 		if (c->x86 >= 0x6) | 
 | 			c->x86_model += ((tfms >> 16) & 0xf) << 4; | 
 |  | 
 | 		if (cap0 & (1<<19)) { | 
 | 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8; | 
 | 			c->x86_cache_alignment = c->x86_clflush_size; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c) | 
 | { | 
 | 	u32 tfms, xlvl; | 
 | 	u32 ebx; | 
 |  | 
 | 	/* Intel-defined flags: level 0x00000001 */ | 
 | 	if (c->cpuid_level >= 0x00000001) { | 
 | 		u32 capability, excap; | 
 |  | 
 | 		cpuid(0x00000001, &tfms, &ebx, &excap, &capability); | 
 | 		c->x86_capability[0] = capability; | 
 | 		c->x86_capability[4] = excap; | 
 | 	} | 
 |  | 
 | 	/* Additional Intel-defined flags: level 0x00000007 */ | 
 | 	if (c->cpuid_level >= 0x00000007) { | 
 | 		u32 eax, ebx, ecx, edx; | 
 |  | 
 | 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx); | 
 |  | 
 | 		c->x86_capability[9] = ebx; | 
 | 	} | 
 |  | 
 | 	/* AMD-defined flags: level 0x80000001 */ | 
 | 	xlvl = cpuid_eax(0x80000000); | 
 | 	c->extended_cpuid_level = xlvl; | 
 |  | 
 | 	if ((xlvl & 0xffff0000) == 0x80000000) { | 
 | 		if (xlvl >= 0x80000001) { | 
 | 			c->x86_capability[1] = cpuid_edx(0x80000001); | 
 | 			c->x86_capability[6] = cpuid_ecx(0x80000001); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (c->extended_cpuid_level >= 0x80000008) { | 
 | 		u32 eax = cpuid_eax(0x80000008); | 
 |  | 
 | 		c->x86_virt_bits = (eax >> 8) & 0xff; | 
 | 		c->x86_phys_bits = eax & 0xff; | 
 | 	} | 
 | #ifdef CONFIG_X86_32 | 
 | 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36)) | 
 | 		c->x86_phys_bits = 36; | 
 | #endif | 
 |  | 
 | 	if (c->extended_cpuid_level >= 0x80000007) | 
 | 		c->x86_power = cpuid_edx(0x80000007); | 
 |  | 
 | 	init_scattered_cpuid_features(c); | 
 | } | 
 |  | 
 | static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c) | 
 | { | 
 | #ifdef CONFIG_X86_32 | 
 | 	int i; | 
 |  | 
 | 	/* | 
 | 	 * First of all, decide if this is a 486 or higher | 
 | 	 * It's a 486 if we can modify the AC flag | 
 | 	 */ | 
 | 	if (flag_is_changeable_p(X86_EFLAGS_AC)) | 
 | 		c->x86 = 4; | 
 | 	else | 
 | 		c->x86 = 3; | 
 |  | 
 | 	for (i = 0; i < X86_VENDOR_NUM; i++) | 
 | 		if (cpu_devs[i] && cpu_devs[i]->c_identify) { | 
 | 			c->x86_vendor_id[0] = 0; | 
 | 			cpu_devs[i]->c_identify(c); | 
 | 			if (c->x86_vendor_id[0]) { | 
 | 				get_cpu_vendor(c); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * Do minimum CPU detection early. | 
 |  * Fields really needed: vendor, cpuid_level, family, model, mask, | 
 |  * cache alignment. | 
 |  * The others are not touched to avoid unwanted side effects. | 
 |  * | 
 |  * WARNING: this function is only called on the BP.  Don't add code here | 
 |  * that is supposed to run on all CPUs. | 
 |  */ | 
 | static void __init early_identify_cpu(struct cpuinfo_x86 *c) | 
 | { | 
 | #ifdef CONFIG_X86_64 | 
 | 	c->x86_clflush_size = 64; | 
 | 	c->x86_phys_bits = 36; | 
 | 	c->x86_virt_bits = 48; | 
 | #else | 
 | 	c->x86_clflush_size = 32; | 
 | 	c->x86_phys_bits = 32; | 
 | 	c->x86_virt_bits = 32; | 
 | #endif | 
 | 	c->x86_cache_alignment = c->x86_clflush_size; | 
 |  | 
 | 	memset(&c->x86_capability, 0, sizeof c->x86_capability); | 
 | 	c->extended_cpuid_level = 0; | 
 |  | 
 | 	if (!have_cpuid_p()) | 
 | 		identify_cpu_without_cpuid(c); | 
 |  | 
 | 	/* cyrix could have cpuid enabled via c_identify()*/ | 
 | 	if (!have_cpuid_p()) | 
 | 		return; | 
 |  | 
 | 	cpu_detect(c); | 
 |  | 
 | 	get_cpu_vendor(c); | 
 |  | 
 | 	get_cpu_cap(c); | 
 |  | 
 | 	if (this_cpu->c_early_init) | 
 | 		this_cpu->c_early_init(c); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	c->cpu_index = 0; | 
 | #endif | 
 | 	filter_cpuid_features(c, false); | 
 |  | 
 | 	setup_smep(c); | 
 | } | 
 |  | 
 | void __init early_cpu_init(void) | 
 | { | 
 | 	const struct cpu_dev *const *cdev; | 
 | 	int count = 0; | 
 |  | 
 | #ifdef CONFIG_PROCESSOR_SELECT | 
 | 	printk(KERN_INFO "KERNEL supported cpus:\n"); | 
 | #endif | 
 |  | 
 | 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) { | 
 | 		const struct cpu_dev *cpudev = *cdev; | 
 |  | 
 | 		if (count >= X86_VENDOR_NUM) | 
 | 			break; | 
 | 		cpu_devs[count] = cpudev; | 
 | 		count++; | 
 |  | 
 | #ifdef CONFIG_PROCESSOR_SELECT | 
 | 		{ | 
 | 			unsigned int j; | 
 |  | 
 | 			for (j = 0; j < 2; j++) { | 
 | 				if (!cpudev->c_ident[j]) | 
 | 					continue; | 
 | 				printk(KERN_INFO "  %s %s\n", cpudev->c_vendor, | 
 | 					cpudev->c_ident[j]); | 
 | 			} | 
 | 		} | 
 | #endif | 
 | 	} | 
 | 	early_identify_cpu(&boot_cpu_data); | 
 | } | 
 |  | 
 | /* | 
 |  * The NOPL instruction is supposed to exist on all CPUs of family >= 6; | 
 |  * unfortunately, that's not true in practice because of early VIA | 
 |  * chips and (more importantly) broken virtualizers that are not easy | 
 |  * to detect. In the latter case it doesn't even *fail* reliably, so | 
 |  * probing for it doesn't even work. Disable it completely on 32-bit | 
 |  * unless we can find a reliable way to detect all the broken cases. | 
 |  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has(). | 
 |  */ | 
 | static void __cpuinit detect_nopl(struct cpuinfo_x86 *c) | 
 | { | 
 | #ifdef CONFIG_X86_32 | 
 | 	clear_cpu_cap(c, X86_FEATURE_NOPL); | 
 | #else | 
 | 	set_cpu_cap(c, X86_FEATURE_NOPL); | 
 | #endif | 
 | } | 
 |  | 
 | static void __cpuinit generic_identify(struct cpuinfo_x86 *c) | 
 | { | 
 | 	c->extended_cpuid_level = 0; | 
 |  | 
 | 	if (!have_cpuid_p()) | 
 | 		identify_cpu_without_cpuid(c); | 
 |  | 
 | 	/* cyrix could have cpuid enabled via c_identify()*/ | 
 | 	if (!have_cpuid_p()) | 
 | 		return; | 
 |  | 
 | 	cpu_detect(c); | 
 |  | 
 | 	get_cpu_vendor(c); | 
 |  | 
 | 	get_cpu_cap(c); | 
 |  | 
 | 	if (c->cpuid_level >= 0x00000001) { | 
 | 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF; | 
 | #ifdef CONFIG_X86_32 | 
 | # ifdef CONFIG_X86_HT | 
 | 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0); | 
 | # else | 
 | 		c->apicid = c->initial_apicid; | 
 | # endif | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_X86_HT | 
 | 		c->phys_proc_id = c->initial_apicid; | 
 | #endif | 
 | 	} | 
 |  | 
 | 	setup_smep(c); | 
 |  | 
 | 	get_model_name(c); /* Default name */ | 
 |  | 
 | 	detect_nopl(c); | 
 | } | 
 |  | 
 | /* | 
 |  * This does the hard work of actually picking apart the CPU stuff... | 
 |  */ | 
 | static void __cpuinit identify_cpu(struct cpuinfo_x86 *c) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	c->loops_per_jiffy = loops_per_jiffy; | 
 | 	c->x86_cache_size = -1; | 
 | 	c->x86_vendor = X86_VENDOR_UNKNOWN; | 
 | 	c->x86_model = c->x86_mask = 0;	/* So far unknown... */ | 
 | 	c->x86_vendor_id[0] = '\0'; /* Unset */ | 
 | 	c->x86_model_id[0] = '\0';  /* Unset */ | 
 | 	c->x86_max_cores = 1; | 
 | 	c->x86_coreid_bits = 0; | 
 | #ifdef CONFIG_X86_64 | 
 | 	c->x86_clflush_size = 64; | 
 | 	c->x86_phys_bits = 36; | 
 | 	c->x86_virt_bits = 48; | 
 | #else | 
 | 	c->cpuid_level = -1;	/* CPUID not detected */ | 
 | 	c->x86_clflush_size = 32; | 
 | 	c->x86_phys_bits = 32; | 
 | 	c->x86_virt_bits = 32; | 
 | #endif | 
 | 	c->x86_cache_alignment = c->x86_clflush_size; | 
 | 	memset(&c->x86_capability, 0, sizeof c->x86_capability); | 
 |  | 
 | 	generic_identify(c); | 
 |  | 
 | 	if (this_cpu->c_identify) | 
 | 		this_cpu->c_identify(c); | 
 |  | 
 | 	/* Clear/Set all flags overriden by options, after probe */ | 
 | 	for (i = 0; i < NCAPINTS; i++) { | 
 | 		c->x86_capability[i] &= ~cpu_caps_cleared[i]; | 
 | 		c->x86_capability[i] |= cpu_caps_set[i]; | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Vendor-specific initialization.  In this section we | 
 | 	 * canonicalize the feature flags, meaning if there are | 
 | 	 * features a certain CPU supports which CPUID doesn't | 
 | 	 * tell us, CPUID claiming incorrect flags, or other bugs, | 
 | 	 * we handle them here. | 
 | 	 * | 
 | 	 * At the end of this section, c->x86_capability better | 
 | 	 * indicate the features this CPU genuinely supports! | 
 | 	 */ | 
 | 	if (this_cpu->c_init) | 
 | 		this_cpu->c_init(c); | 
 |  | 
 | 	/* Disable the PN if appropriate */ | 
 | 	squash_the_stupid_serial_number(c); | 
 |  | 
 | 	/* | 
 | 	 * The vendor-specific functions might have changed features. | 
 | 	 * Now we do "generic changes." | 
 | 	 */ | 
 |  | 
 | 	/* Filter out anything that depends on CPUID levels we don't have */ | 
 | 	filter_cpuid_features(c, true); | 
 |  | 
 | 	/* If the model name is still unset, do table lookup. */ | 
 | 	if (!c->x86_model_id[0]) { | 
 | 		const char *p; | 
 | 		p = table_lookup_model(c); | 
 | 		if (p) | 
 | 			strcpy(c->x86_model_id, p); | 
 | 		else | 
 | 			/* Last resort... */ | 
 | 			sprintf(c->x86_model_id, "%02x/%02x", | 
 | 				c->x86, c->x86_model); | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	detect_ht(c); | 
 | #endif | 
 |  | 
 | 	init_hypervisor(c); | 
 |  | 
 | 	/* | 
 | 	 * Clear/Set all flags overriden by options, need do it | 
 | 	 * before following smp all cpus cap AND. | 
 | 	 */ | 
 | 	for (i = 0; i < NCAPINTS; i++) { | 
 | 		c->x86_capability[i] &= ~cpu_caps_cleared[i]; | 
 | 		c->x86_capability[i] |= cpu_caps_set[i]; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * On SMP, boot_cpu_data holds the common feature set between | 
 | 	 * all CPUs; so make sure that we indicate which features are | 
 | 	 * common between the CPUs.  The first time this routine gets | 
 | 	 * executed, c == &boot_cpu_data. | 
 | 	 */ | 
 | 	if (c != &boot_cpu_data) { | 
 | 		/* AND the already accumulated flags with these */ | 
 | 		for (i = 0; i < NCAPINTS; i++) | 
 | 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i]; | 
 | 	} | 
 |  | 
 | 	/* Init Machine Check Exception if available. */ | 
 | 	mcheck_cpu_init(c); | 
 |  | 
 | 	select_idle_routine(c); | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | 	numa_add_cpu(smp_processor_id()); | 
 | #endif | 
 | } | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | static void vgetcpu_set_mode(void) | 
 | { | 
 | 	if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP)) | 
 | 		vgetcpu_mode = VGETCPU_RDTSCP; | 
 | 	else | 
 | 		vgetcpu_mode = VGETCPU_LSL; | 
 | } | 
 | #endif | 
 |  | 
 | void __init identify_boot_cpu(void) | 
 | { | 
 | 	identify_cpu(&boot_cpu_data); | 
 | 	init_amd_e400_c1e_mask(); | 
 | #ifdef CONFIG_X86_32 | 
 | 	sysenter_setup(); | 
 | 	enable_sep_cpu(); | 
 | #else | 
 | 	vgetcpu_set_mode(); | 
 | #endif | 
 | } | 
 |  | 
 | void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c) | 
 | { | 
 | 	BUG_ON(c == &boot_cpu_data); | 
 | 	identify_cpu(c); | 
 | #ifdef CONFIG_X86_32 | 
 | 	enable_sep_cpu(); | 
 | #endif | 
 | 	mtrr_ap_init(); | 
 | } | 
 |  | 
 | struct msr_range { | 
 | 	unsigned	min; | 
 | 	unsigned	max; | 
 | }; | 
 |  | 
 | static const struct msr_range msr_range_array[] __cpuinitconst = { | 
 | 	{ 0x00000000, 0x00000418}, | 
 | 	{ 0xc0000000, 0xc000040b}, | 
 | 	{ 0xc0010000, 0xc0010142}, | 
 | 	{ 0xc0011000, 0xc001103b}, | 
 | }; | 
 |  | 
 | static void __cpuinit print_cpu_msr(void) | 
 | { | 
 | 	unsigned index_min, index_max; | 
 | 	unsigned index; | 
 | 	u64 val; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) { | 
 | 		index_min = msr_range_array[i].min; | 
 | 		index_max = msr_range_array[i].max; | 
 |  | 
 | 		for (index = index_min; index < index_max; index++) { | 
 | 			if (rdmsrl_amd_safe(index, &val)) | 
 | 				continue; | 
 | 			printk(KERN_INFO " MSR%08x: %016llx\n", index, val); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static int show_msr __cpuinitdata; | 
 |  | 
 | static __init int setup_show_msr(char *arg) | 
 | { | 
 | 	int num; | 
 |  | 
 | 	get_option(&arg, &num); | 
 |  | 
 | 	if (num > 0) | 
 | 		show_msr = num; | 
 | 	return 1; | 
 | } | 
 | __setup("show_msr=", setup_show_msr); | 
 |  | 
 | static __init int setup_noclflush(char *arg) | 
 | { | 
 | 	setup_clear_cpu_cap(X86_FEATURE_CLFLSH); | 
 | 	return 1; | 
 | } | 
 | __setup("noclflush", setup_noclflush); | 
 |  | 
 | void __cpuinit print_cpu_info(struct cpuinfo_x86 *c) | 
 | { | 
 | 	const char *vendor = NULL; | 
 |  | 
 | 	if (c->x86_vendor < X86_VENDOR_NUM) { | 
 | 		vendor = this_cpu->c_vendor; | 
 | 	} else { | 
 | 		if (c->cpuid_level >= 0) | 
 | 			vendor = c->x86_vendor_id; | 
 | 	} | 
 |  | 
 | 	if (vendor && !strstr(c->x86_model_id, vendor)) | 
 | 		printk(KERN_CONT "%s ", vendor); | 
 |  | 
 | 	if (c->x86_model_id[0]) | 
 | 		printk(KERN_CONT "%s", c->x86_model_id); | 
 | 	else | 
 | 		printk(KERN_CONT "%d86", c->x86); | 
 |  | 
 | 	if (c->x86_mask || c->cpuid_level >= 0) | 
 | 		printk(KERN_CONT " stepping %02x\n", c->x86_mask); | 
 | 	else | 
 | 		printk(KERN_CONT "\n"); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	if (c->cpu_index < show_msr) | 
 | 		print_cpu_msr(); | 
 | #else | 
 | 	if (show_msr) | 
 | 		print_cpu_msr(); | 
 | #endif | 
 | } | 
 |  | 
 | static __init int setup_disablecpuid(char *arg) | 
 | { | 
 | 	int bit; | 
 |  | 
 | 	if (get_option(&arg, &bit) && bit < NCAPINTS*32) | 
 | 		setup_clear_cpu_cap(bit); | 
 | 	else | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 | __setup("clearcpuid=", setup_disablecpuid); | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table }; | 
 |  | 
 | DEFINE_PER_CPU_FIRST(union irq_stack_union, | 
 | 		     irq_stack_union) __aligned(PAGE_SIZE); | 
 |  | 
 | /* | 
 |  * The following four percpu variables are hot.  Align current_task to | 
 |  * cacheline size such that all four fall in the same cacheline. | 
 |  */ | 
 | DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned = | 
 | 	&init_task; | 
 | EXPORT_PER_CPU_SYMBOL(current_task); | 
 |  | 
 | DEFINE_PER_CPU(unsigned long, kernel_stack) = | 
 | 	(unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE; | 
 | EXPORT_PER_CPU_SYMBOL(kernel_stack); | 
 |  | 
 | DEFINE_PER_CPU(char *, irq_stack_ptr) = | 
 | 	init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64; | 
 |  | 
 | DEFINE_PER_CPU(unsigned int, irq_count) = -1; | 
 |  | 
 | /* | 
 |  * Special IST stacks which the CPU switches to when it calls | 
 |  * an IST-marked descriptor entry. Up to 7 stacks (hardware | 
 |  * limit), all of them are 4K, except the debug stack which | 
 |  * is 8K. | 
 |  */ | 
 | static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = { | 
 | 	  [0 ... N_EXCEPTION_STACKS - 1]	= EXCEPTION_STKSZ, | 
 | 	  [DEBUG_STACK - 1]			= DEBUG_STKSZ | 
 | }; | 
 |  | 
 | static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks | 
 | 	[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]); | 
 |  | 
 | /* May not be marked __init: used by software suspend */ | 
 | void syscall_init(void) | 
 | { | 
 | 	/* | 
 | 	 * LSTAR and STAR live in a bit strange symbiosis. | 
 | 	 * They both write to the same internal register. STAR allows to | 
 | 	 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip. | 
 | 	 */ | 
 | 	wrmsrl(MSR_STAR,  ((u64)__USER32_CS)<<48  | ((u64)__KERNEL_CS)<<32); | 
 | 	wrmsrl(MSR_LSTAR, system_call); | 
 | 	wrmsrl(MSR_CSTAR, ignore_sysret); | 
 |  | 
 | #ifdef CONFIG_IA32_EMULATION | 
 | 	syscall32_cpu_init(); | 
 | #endif | 
 |  | 
 | 	/* Flags to clear on syscall */ | 
 | 	wrmsrl(MSR_SYSCALL_MASK, | 
 | 	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL); | 
 | } | 
 |  | 
 | unsigned long kernel_eflags; | 
 |  | 
 | /* | 
 |  * Copies of the original ist values from the tss are only accessed during | 
 |  * debugging, no special alignment required. | 
 |  */ | 
 | DEFINE_PER_CPU(struct orig_ist, orig_ist); | 
 |  | 
 | #else	/* CONFIG_X86_64 */ | 
 |  | 
 | DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task; | 
 | EXPORT_PER_CPU_SYMBOL(current_task); | 
 |  | 
 | #ifdef CONFIG_CC_STACKPROTECTOR | 
 | DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary); | 
 | #endif | 
 |  | 
 | /* Make sure %fs and %gs are initialized properly in idle threads */ | 
 | struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs) | 
 | { | 
 | 	memset(regs, 0, sizeof(struct pt_regs)); | 
 | 	regs->fs = __KERNEL_PERCPU; | 
 | 	regs->gs = __KERNEL_STACK_CANARY; | 
 |  | 
 | 	return regs; | 
 | } | 
 | #endif	/* CONFIG_X86_64 */ | 
 |  | 
 | /* | 
 |  * Clear all 6 debug registers: | 
 |  */ | 
 | static void clear_all_debug_regs(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < 8; i++) { | 
 | 		/* Ignore db4, db5 */ | 
 | 		if ((i == 4) || (i == 5)) | 
 | 			continue; | 
 |  | 
 | 		set_debugreg(0, i); | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_KGDB | 
 | /* | 
 |  * Restore debug regs if using kgdbwait and you have a kernel debugger | 
 |  * connection established. | 
 |  */ | 
 | static void dbg_restore_debug_regs(void) | 
 | { | 
 | 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break)) | 
 | 		arch_kgdb_ops.correct_hw_break(); | 
 | } | 
 | #else /* ! CONFIG_KGDB */ | 
 | #define dbg_restore_debug_regs() | 
 | #endif /* ! CONFIG_KGDB */ | 
 |  | 
 | /* | 
 |  * cpu_init() initializes state that is per-CPU. Some data is already | 
 |  * initialized (naturally) in the bootstrap process, such as the GDT | 
 |  * and IDT. We reload them nevertheless, this function acts as a | 
 |  * 'CPU state barrier', nothing should get across. | 
 |  * A lot of state is already set up in PDA init for 64 bit | 
 |  */ | 
 | #ifdef CONFIG_X86_64 | 
 |  | 
 | void __cpuinit cpu_init(void) | 
 | { | 
 | 	struct orig_ist *oist; | 
 | 	struct task_struct *me; | 
 | 	struct tss_struct *t; | 
 | 	unsigned long v; | 
 | 	int cpu; | 
 | 	int i; | 
 |  | 
 | 	cpu = stack_smp_processor_id(); | 
 | 	t = &per_cpu(init_tss, cpu); | 
 | 	oist = &per_cpu(orig_ist, cpu); | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | 	if (cpu != 0 && percpu_read(numa_node) == 0 && | 
 | 	    early_cpu_to_node(cpu) != NUMA_NO_NODE) | 
 | 		set_numa_node(early_cpu_to_node(cpu)); | 
 | #endif | 
 |  | 
 | 	me = current; | 
 |  | 
 | 	if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) | 
 | 		panic("CPU#%d already initialized!\n", cpu); | 
 |  | 
 | 	pr_debug("Initializing CPU#%d\n", cpu); | 
 |  | 
 | 	clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE); | 
 |  | 
 | 	/* | 
 | 	 * Initialize the per-CPU GDT with the boot GDT, | 
 | 	 * and set up the GDT descriptor: | 
 | 	 */ | 
 |  | 
 | 	switch_to_new_gdt(cpu); | 
 | 	loadsegment(fs, 0); | 
 |  | 
 | 	load_idt((const struct desc_ptr *)&idt_descr); | 
 |  | 
 | 	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8); | 
 | 	syscall_init(); | 
 |  | 
 | 	wrmsrl(MSR_FS_BASE, 0); | 
 | 	wrmsrl(MSR_KERNEL_GS_BASE, 0); | 
 | 	barrier(); | 
 |  | 
 | 	x86_configure_nx(); | 
 | 	if (cpu != 0) | 
 | 		enable_x2apic(); | 
 |  | 
 | 	/* | 
 | 	 * set up and load the per-CPU TSS | 
 | 	 */ | 
 | 	if (!oist->ist[0]) { | 
 | 		char *estacks = per_cpu(exception_stacks, cpu); | 
 |  | 
 | 		for (v = 0; v < N_EXCEPTION_STACKS; v++) { | 
 | 			estacks += exception_stack_sizes[v]; | 
 | 			oist->ist[v] = t->x86_tss.ist[v] = | 
 | 					(unsigned long)estacks; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap); | 
 |  | 
 | 	/* | 
 | 	 * <= is required because the CPU will access up to | 
 | 	 * 8 bits beyond the end of the IO permission bitmap. | 
 | 	 */ | 
 | 	for (i = 0; i <= IO_BITMAP_LONGS; i++) | 
 | 		t->io_bitmap[i] = ~0UL; | 
 |  | 
 | 	atomic_inc(&init_mm.mm_count); | 
 | 	me->active_mm = &init_mm; | 
 | 	BUG_ON(me->mm); | 
 | 	enter_lazy_tlb(&init_mm, me); | 
 |  | 
 | 	load_sp0(t, ¤t->thread); | 
 | 	set_tss_desc(cpu, t); | 
 | 	load_TR_desc(); | 
 | 	load_LDT(&init_mm.context); | 
 |  | 
 | 	clear_all_debug_regs(); | 
 | 	dbg_restore_debug_regs(); | 
 |  | 
 | 	fpu_init(); | 
 | 	xsave_init(); | 
 |  | 
 | 	raw_local_save_flags(kernel_eflags); | 
 |  | 
 | 	if (is_uv_system()) | 
 | 		uv_cpu_init(); | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | void __cpuinit cpu_init(void) | 
 | { | 
 | 	int cpu = smp_processor_id(); | 
 | 	struct task_struct *curr = current; | 
 | 	struct tss_struct *t = &per_cpu(init_tss, cpu); | 
 | 	struct thread_struct *thread = &curr->thread; | 
 |  | 
 | 	if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) { | 
 | 		printk(KERN_WARNING "CPU#%d already initialized!\n", cpu); | 
 | 		for (;;) | 
 | 			local_irq_enable(); | 
 | 	} | 
 |  | 
 | 	printk(KERN_INFO "Initializing CPU#%d\n", cpu); | 
 |  | 
 | 	if (cpu_has_vme || cpu_has_tsc || cpu_has_de) | 
 | 		clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE); | 
 |  | 
 | 	load_idt(&idt_descr); | 
 | 	switch_to_new_gdt(cpu); | 
 |  | 
 | 	/* | 
 | 	 * Set up and load the per-CPU TSS and LDT | 
 | 	 */ | 
 | 	atomic_inc(&init_mm.mm_count); | 
 | 	curr->active_mm = &init_mm; | 
 | 	BUG_ON(curr->mm); | 
 | 	enter_lazy_tlb(&init_mm, curr); | 
 |  | 
 | 	load_sp0(t, thread); | 
 | 	set_tss_desc(cpu, t); | 
 | 	load_TR_desc(); | 
 | 	load_LDT(&init_mm.context); | 
 |  | 
 | 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap); | 
 |  | 
 | #ifdef CONFIG_DOUBLEFAULT | 
 | 	/* Set up doublefault TSS pointer in the GDT */ | 
 | 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss); | 
 | #endif | 
 |  | 
 | 	clear_all_debug_regs(); | 
 | 	dbg_restore_debug_regs(); | 
 |  | 
 | 	fpu_init(); | 
 | 	xsave_init(); | 
 | } | 
 | #endif |