| /***************************************************************************** | 
 | * Copyright 2004 - 2008 Broadcom Corporation.  All rights reserved. | 
 | * | 
 | * Unless you and Broadcom execute a separate written software license | 
 | * agreement governing use of this software, this software is licensed to you | 
 | * under the terms of the GNU General Public License version 2, available at | 
 | * http://www.broadcom.com/licenses/GPLv2.php (the "GPL"). | 
 | * | 
 | * Notwithstanding the above, under no circumstances may you combine this | 
 | * software in any way with any other Broadcom software provided under a | 
 | * license other than the GPL, without Broadcom's express prior written | 
 | * consent. | 
 | *****************************************************************************/ | 
 |  | 
 | /****************************************************************************/ | 
 | /** | 
 | *   @file   dma.c | 
 | * | 
 | *   @brief  Implements the DMA interface. | 
 | */ | 
 | /****************************************************************************/ | 
 |  | 
 | /* ---- Include Files ---------------------------------------------------- */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/device.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/irqreturn.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/slab.h> | 
 |  | 
 | #include <mach/timer.h> | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/pfn.h> | 
 | #include <linux/atomic.h> | 
 | #include <mach/dma.h> | 
 |  | 
 | /* I don't quite understand why dc4 fails when this is set to 1 and DMA is enabled */ | 
 | /* especially since dc4 doesn't use kmalloc'd memory. */ | 
 |  | 
 | #define ALLOW_MAP_OF_KMALLOC_MEMORY 0 | 
 |  | 
 | /* ---- Public Variables ------------------------------------------------- */ | 
 |  | 
 | /* ---- Private Constants and Types -------------------------------------- */ | 
 |  | 
 | #define MAKE_HANDLE(controllerIdx, channelIdx)    (((controllerIdx) << 4) | (channelIdx)) | 
 |  | 
 | #define CONTROLLER_FROM_HANDLE(handle)    (((handle) >> 4) & 0x0f) | 
 | #define CHANNEL_FROM_HANDLE(handle)       ((handle) & 0x0f) | 
 |  | 
 | #define DMA_MAP_DEBUG   0 | 
 |  | 
 | #if DMA_MAP_DEBUG | 
 | #   define  DMA_MAP_PRINT(fmt, args...)   printk("%s: " fmt, __func__,  ## args) | 
 | #else | 
 | #   define  DMA_MAP_PRINT(fmt, args...) | 
 | #endif | 
 |  | 
 | /* ---- Private Variables ------------------------------------------------ */ | 
 |  | 
 | static DMA_Global_t gDMA; | 
 | static struct proc_dir_entry *gDmaDir; | 
 |  | 
 | static atomic_t gDmaStatMemTypeKmalloc = ATOMIC_INIT(0); | 
 | static atomic_t gDmaStatMemTypeVmalloc = ATOMIC_INIT(0); | 
 | static atomic_t gDmaStatMemTypeUser = ATOMIC_INIT(0); | 
 | static atomic_t gDmaStatMemTypeCoherent = ATOMIC_INIT(0); | 
 |  | 
 | #include "dma_device.c" | 
 |  | 
 | /* ---- Private Function Prototypes -------------------------------------- */ | 
 |  | 
 | /* ---- Functions  ------------------------------------------------------- */ | 
 |  | 
 | /****************************************************************************/ | 
 | /** | 
 | *   Displays information for /proc/dma/mem-type | 
 | */ | 
 | /****************************************************************************/ | 
 |  | 
 | static int dma_proc_read_mem_type(char *buf, char **start, off_t offset, | 
 | 				  int count, int *eof, void *data) | 
 | { | 
 | 	int len = 0; | 
 |  | 
 | 	len += sprintf(buf + len, "dma_map_mem statistics\n"); | 
 | 	len += | 
 | 	    sprintf(buf + len, "coherent: %d\n", | 
 | 		    atomic_read(&gDmaStatMemTypeCoherent)); | 
 | 	len += | 
 | 	    sprintf(buf + len, "kmalloc:  %d\n", | 
 | 		    atomic_read(&gDmaStatMemTypeKmalloc)); | 
 | 	len += | 
 | 	    sprintf(buf + len, "vmalloc:  %d\n", | 
 | 		    atomic_read(&gDmaStatMemTypeVmalloc)); | 
 | 	len += | 
 | 	    sprintf(buf + len, "user:     %d\n", | 
 | 		    atomic_read(&gDmaStatMemTypeUser)); | 
 |  | 
 | 	return len; | 
 | } | 
 |  | 
 | /****************************************************************************/ | 
 | /** | 
 | *   Displays information for /proc/dma/channels | 
 | */ | 
 | /****************************************************************************/ | 
 |  | 
 | static int dma_proc_read_channels(char *buf, char **start, off_t offset, | 
 | 				  int count, int *eof, void *data) | 
 | { | 
 | 	int controllerIdx; | 
 | 	int channelIdx; | 
 | 	int limit = count - 200; | 
 | 	int len = 0; | 
 | 	DMA_Channel_t *channel; | 
 |  | 
 | 	if (down_interruptible(&gDMA.lock) < 0) { | 
 | 		return -ERESTARTSYS; | 
 | 	} | 
 |  | 
 | 	for (controllerIdx = 0; controllerIdx < DMA_NUM_CONTROLLERS; | 
 | 	     controllerIdx++) { | 
 | 		for (channelIdx = 0; channelIdx < DMA_NUM_CHANNELS; | 
 | 		     channelIdx++) { | 
 | 			if (len >= limit) { | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			channel = | 
 | 			    &gDMA.controller[controllerIdx].channel[channelIdx]; | 
 |  | 
 | 			len += | 
 | 			    sprintf(buf + len, "%d:%d ", controllerIdx, | 
 | 				    channelIdx); | 
 |  | 
 | 			if ((channel->flags & DMA_CHANNEL_FLAG_IS_DEDICATED) != | 
 | 			    0) { | 
 | 				len += | 
 | 				    sprintf(buf + len, "Dedicated for %s ", | 
 | 					    DMA_gDeviceAttribute[channel-> | 
 | 								 devType].name); | 
 | 			} else { | 
 | 				len += sprintf(buf + len, "Shared "); | 
 | 			} | 
 |  | 
 | 			if ((channel->flags & DMA_CHANNEL_FLAG_NO_ISR) != 0) { | 
 | 				len += sprintf(buf + len, "No ISR "); | 
 | 			} | 
 |  | 
 | 			if ((channel->flags & DMA_CHANNEL_FLAG_LARGE_FIFO) != 0) { | 
 | 				len += sprintf(buf + len, "Fifo: 128 "); | 
 | 			} else { | 
 | 				len += sprintf(buf + len, "Fifo: 64  "); | 
 | 			} | 
 |  | 
 | 			if ((channel->flags & DMA_CHANNEL_FLAG_IN_USE) != 0) { | 
 | 				len += | 
 | 				    sprintf(buf + len, "InUse by %s", | 
 | 					    DMA_gDeviceAttribute[channel-> | 
 | 								 devType].name); | 
 | #if (DMA_DEBUG_TRACK_RESERVATION) | 
 | 				len += | 
 | 				    sprintf(buf + len, " (%s:%d)", | 
 | 					    channel->fileName, | 
 | 					    channel->lineNum); | 
 | #endif | 
 | 			} else { | 
 | 				len += sprintf(buf + len, "Avail "); | 
 | 			} | 
 |  | 
 | 			if (channel->lastDevType != DMA_DEVICE_NONE) { | 
 | 				len += | 
 | 				    sprintf(buf + len, "Last use: %s ", | 
 | 					    DMA_gDeviceAttribute[channel-> | 
 | 								 lastDevType]. | 
 | 					    name); | 
 | 			} | 
 |  | 
 | 			len += sprintf(buf + len, "\n"); | 
 | 		} | 
 | 	} | 
 | 	up(&gDMA.lock); | 
 | 	*eof = 1; | 
 |  | 
 | 	return len; | 
 | } | 
 |  | 
 | /****************************************************************************/ | 
 | /** | 
 | *   Displays information for /proc/dma/devices | 
 | */ | 
 | /****************************************************************************/ | 
 |  | 
 | static int dma_proc_read_devices(char *buf, char **start, off_t offset, | 
 | 				 int count, int *eof, void *data) | 
 | { | 
 | 	int limit = count - 200; | 
 | 	int len = 0; | 
 | 	int devIdx; | 
 |  | 
 | 	if (down_interruptible(&gDMA.lock) < 0) { | 
 | 		return -ERESTARTSYS; | 
 | 	} | 
 |  | 
 | 	for (devIdx = 0; devIdx < DMA_NUM_DEVICE_ENTRIES; devIdx++) { | 
 | 		DMA_DeviceAttribute_t *devAttr = &DMA_gDeviceAttribute[devIdx]; | 
 |  | 
 | 		if (devAttr->name == NULL) { | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (len >= limit) { | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		len += sprintf(buf + len, "%-12s ", devAttr->name); | 
 |  | 
 | 		if ((devAttr->flags & DMA_DEVICE_FLAG_IS_DEDICATED) != 0) { | 
 | 			len += | 
 | 			    sprintf(buf + len, "Dedicated %d:%d ", | 
 | 				    devAttr->dedicatedController, | 
 | 				    devAttr->dedicatedChannel); | 
 | 		} else { | 
 | 			len += sprintf(buf + len, "Shared DMA:"); | 
 | 			if ((devAttr->flags & DMA_DEVICE_FLAG_ON_DMA0) != 0) { | 
 | 				len += sprintf(buf + len, "0"); | 
 | 			} | 
 | 			if ((devAttr->flags & DMA_DEVICE_FLAG_ON_DMA1) != 0) { | 
 | 				len += sprintf(buf + len, "1"); | 
 | 			} | 
 | 			len += sprintf(buf + len, " "); | 
 | 		} | 
 | 		if ((devAttr->flags & DMA_DEVICE_FLAG_NO_ISR) != 0) { | 
 | 			len += sprintf(buf + len, "NoISR "); | 
 | 		} | 
 | 		if ((devAttr->flags & DMA_DEVICE_FLAG_ALLOW_LARGE_FIFO) != 0) { | 
 | 			len += sprintf(buf + len, "Allow-128 "); | 
 | 		} | 
 |  | 
 | 		len += | 
 | 		    sprintf(buf + len, | 
 | 			    "Xfer #: %Lu Ticks: %Lu Bytes: %Lu DescLen: %u\n", | 
 | 			    devAttr->numTransfers, devAttr->transferTicks, | 
 | 			    devAttr->transferBytes, | 
 | 			    devAttr->ring.bytesAllocated); | 
 |  | 
 | 	} | 
 |  | 
 | 	up(&gDMA.lock); | 
 | 	*eof = 1; | 
 |  | 
 | 	return len; | 
 | } | 
 |  | 
 | /****************************************************************************/ | 
 | /** | 
 | *   Determines if a DMA_Device_t is "valid". | 
 | * | 
 | *   @return | 
 | *       TRUE        - dma device is valid | 
 | *       FALSE       - dma device isn't valid | 
 | */ | 
 | /****************************************************************************/ | 
 |  | 
 | static inline int IsDeviceValid(DMA_Device_t device) | 
 | { | 
 | 	return (device >= 0) && (device < DMA_NUM_DEVICE_ENTRIES); | 
 | } | 
 |  | 
 | /****************************************************************************/ | 
 | /** | 
 | *   Translates a DMA handle into a pointer to a channel. | 
 | * | 
 | *   @return | 
 | *       non-NULL    - pointer to DMA_Channel_t | 
 | *       NULL        - DMA Handle was invalid | 
 | */ | 
 | /****************************************************************************/ | 
 |  | 
 | static inline DMA_Channel_t *HandleToChannel(DMA_Handle_t handle) | 
 | { | 
 | 	int controllerIdx; | 
 | 	int channelIdx; | 
 |  | 
 | 	controllerIdx = CONTROLLER_FROM_HANDLE(handle); | 
 | 	channelIdx = CHANNEL_FROM_HANDLE(handle); | 
 |  | 
 | 	if ((controllerIdx > DMA_NUM_CONTROLLERS) | 
 | 	    || (channelIdx > DMA_NUM_CHANNELS)) { | 
 | 		return NULL; | 
 | 	} | 
 | 	return &gDMA.controller[controllerIdx].channel[channelIdx]; | 
 | } | 
 |  | 
 | /****************************************************************************/ | 
 | /** | 
 | *   Interrupt handler which is called to process DMA interrupts. | 
 | */ | 
 | /****************************************************************************/ | 
 |  | 
 | static irqreturn_t dma_interrupt_handler(int irq, void *dev_id) | 
 | { | 
 | 	DMA_Channel_t *channel; | 
 | 	DMA_DeviceAttribute_t *devAttr; | 
 | 	int irqStatus; | 
 |  | 
 | 	channel = (DMA_Channel_t *) dev_id; | 
 |  | 
 | 	/* Figure out why we were called, and knock down the interrupt */ | 
 |  | 
 | 	irqStatus = dmacHw_getInterruptStatus(channel->dmacHwHandle); | 
 | 	dmacHw_clearInterrupt(channel->dmacHwHandle); | 
 |  | 
 | 	if ((channel->devType < 0) | 
 | 	    || (channel->devType > DMA_NUM_DEVICE_ENTRIES)) { | 
 | 		printk(KERN_ERR "dma_interrupt_handler: Invalid devType: %d\n", | 
 | 		       channel->devType); | 
 | 		return IRQ_NONE; | 
 | 	} | 
 | 	devAttr = &DMA_gDeviceAttribute[channel->devType]; | 
 |  | 
 | 	/* Update stats */ | 
 |  | 
 | 	if ((irqStatus & dmacHw_INTERRUPT_STATUS_TRANS) != 0) { | 
 | 		devAttr->transferTicks += | 
 | 		    (timer_get_tick_count() - devAttr->transferStartTime); | 
 | 	} | 
 |  | 
 | 	if ((irqStatus & dmacHw_INTERRUPT_STATUS_ERROR) != 0) { | 
 | 		printk(KERN_ERR | 
 | 		       "dma_interrupt_handler: devType :%d DMA error (%s)\n", | 
 | 		       channel->devType, devAttr->name); | 
 | 	} else { | 
 | 		devAttr->numTransfers++; | 
 | 		devAttr->transferBytes += devAttr->numBytes; | 
 | 	} | 
 |  | 
 | 	/* Call any installed handler */ | 
 |  | 
 | 	if (devAttr->devHandler != NULL) { | 
 | 		devAttr->devHandler(channel->devType, irqStatus, | 
 | 				    devAttr->userData); | 
 | 	} | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /****************************************************************************/ | 
 | /** | 
 | *   Allocates memory to hold a descriptor ring. The descriptor ring then | 
 | *   needs to be populated by making one or more calls to | 
 | *   dna_add_descriptors. | 
 | * | 
 | *   The returned descriptor ring will be automatically initialized. | 
 | * | 
 | *   @return | 
 | *       0           Descriptor ring was allocated successfully | 
 | *       -EINVAL     Invalid parameters passed in | 
 | *       -ENOMEM     Unable to allocate memory for the desired number of descriptors. | 
 | */ | 
 | /****************************************************************************/ | 
 |  | 
 | int dma_alloc_descriptor_ring(DMA_DescriptorRing_t *ring,	/* Descriptor ring to populate */ | 
 | 			      int numDescriptors	/* Number of descriptors that need to be allocated. */ | 
 |     ) { | 
 | 	size_t bytesToAlloc = dmacHw_descriptorLen(numDescriptors); | 
 |  | 
 | 	if ((ring == NULL) || (numDescriptors <= 0)) { | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	ring->physAddr = 0; | 
 | 	ring->descriptorsAllocated = 0; | 
 | 	ring->bytesAllocated = 0; | 
 |  | 
 | 	ring->virtAddr = dma_alloc_writecombine(NULL, | 
 | 						     bytesToAlloc, | 
 | 						     &ring->physAddr, | 
 | 						     GFP_KERNEL); | 
 | 	if (ring->virtAddr == NULL) { | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	ring->bytesAllocated = bytesToAlloc; | 
 | 	ring->descriptorsAllocated = numDescriptors; | 
 |  | 
 | 	return dma_init_descriptor_ring(ring, numDescriptors); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dma_alloc_descriptor_ring); | 
 |  | 
 | /****************************************************************************/ | 
 | /** | 
 | *   Releases the memory which was previously allocated for a descriptor ring. | 
 | */ | 
 | /****************************************************************************/ | 
 |  | 
 | void dma_free_descriptor_ring(DMA_DescriptorRing_t *ring	/* Descriptor to release */ | 
 |     ) { | 
 | 	if (ring->virtAddr != NULL) { | 
 | 		dma_free_writecombine(NULL, | 
 | 				      ring->bytesAllocated, | 
 | 				      ring->virtAddr, ring->physAddr); | 
 | 	} | 
 |  | 
 | 	ring->bytesAllocated = 0; | 
 | 	ring->descriptorsAllocated = 0; | 
 | 	ring->virtAddr = NULL; | 
 | 	ring->physAddr = 0; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dma_free_descriptor_ring); | 
 |  | 
 | /****************************************************************************/ | 
 | /** | 
 | *   Initializes a descriptor ring, so that descriptors can be added to it. | 
 | *   Once a descriptor ring has been allocated, it may be reinitialized for | 
 | *   use with additional/different regions of memory. | 
 | * | 
 | *   Note that if 7 descriptors are allocated, it's perfectly acceptable to | 
 | *   initialize the ring with a smaller number of descriptors. The amount | 
 | *   of memory allocated for the descriptor ring will not be reduced, and | 
 | *   the descriptor ring may be reinitialized later | 
 | * | 
 | *   @return | 
 | *       0           Descriptor ring was initialized successfully | 
 | *       -ENOMEM     The descriptor which was passed in has insufficient space | 
 | *                   to hold the desired number of descriptors. | 
 | */ | 
 | /****************************************************************************/ | 
 |  | 
 | int dma_init_descriptor_ring(DMA_DescriptorRing_t *ring,	/* Descriptor ring to initialize */ | 
 | 			     int numDescriptors	/* Number of descriptors to initialize. */ | 
 |     ) { | 
 | 	if (ring->virtAddr == NULL) { | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	if (dmacHw_initDescriptor(ring->virtAddr, | 
 | 				  ring->physAddr, | 
 | 				  ring->bytesAllocated, numDescriptors) < 0) { | 
 | 		printk(KERN_ERR | 
 | 		       "dma_init_descriptor_ring: dmacHw_initDescriptor failed\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dma_init_descriptor_ring); | 
 |  | 
 | /****************************************************************************/ | 
 | /** | 
 | *   Determines the number of descriptors which would be required for a | 
 | *   transfer of the indicated memory region. | 
 | * | 
 | *   This function also needs to know which DMA device this transfer will | 
 | *   be destined for, so that the appropriate DMA configuration can be retrieved. | 
 | *   DMA parameters such as transfer width, and whether this is a memory-to-memory | 
 | *   or memory-to-peripheral, etc can all affect the actual number of descriptors | 
 | *   required. | 
 | * | 
 | *   @return | 
 | *       > 0     Returns the number of descriptors required for the indicated transfer | 
 | *       -ENODEV - Device handed in is invalid. | 
 | *       -EINVAL Invalid parameters | 
 | *       -ENOMEM Memory exhausted | 
 | */ | 
 | /****************************************************************************/ | 
 |  | 
 | int dma_calculate_descriptor_count(DMA_Device_t device,	/* DMA Device that this will be associated with */ | 
 | 				   dma_addr_t srcData,	/* Place to get data to write to device */ | 
 | 				   dma_addr_t dstData,	/* Pointer to device data address */ | 
 | 				   size_t numBytes	/* Number of bytes to transfer to the device */ | 
 |     ) { | 
 | 	int numDescriptors; | 
 | 	DMA_DeviceAttribute_t *devAttr; | 
 |  | 
 | 	if (!IsDeviceValid(device)) { | 
 | 		return -ENODEV; | 
 | 	} | 
 | 	devAttr = &DMA_gDeviceAttribute[device]; | 
 |  | 
 | 	numDescriptors = dmacHw_calculateDescriptorCount(&devAttr->config, | 
 | 							      (void *)srcData, | 
 | 							      (void *)dstData, | 
 | 							      numBytes); | 
 | 	if (numDescriptors < 0) { | 
 | 		printk(KERN_ERR | 
 | 		       "dma_calculate_descriptor_count: dmacHw_calculateDescriptorCount failed\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return numDescriptors; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dma_calculate_descriptor_count); | 
 |  | 
 | /****************************************************************************/ | 
 | /** | 
 | *   Adds a region of memory to the descriptor ring. Note that it may take | 
 | *   multiple descriptors for each region of memory. It is the callers | 
 | *   responsibility to allocate a sufficiently large descriptor ring. | 
 | * | 
 | *   @return | 
 | *       0       Descriptors were added successfully | 
 | *       -ENODEV Device handed in is invalid. | 
 | *       -EINVAL Invalid parameters | 
 | *       -ENOMEM Memory exhausted | 
 | */ | 
 | /****************************************************************************/ | 
 |  | 
 | int dma_add_descriptors(DMA_DescriptorRing_t *ring,	/* Descriptor ring to add descriptors to */ | 
 | 			DMA_Device_t device,	/* DMA Device that descriptors are for */ | 
 | 			dma_addr_t srcData,	/* Place to get data (memory or device) */ | 
 | 			dma_addr_t dstData,	/* Place to put data (memory or device) */ | 
 | 			size_t numBytes	/* Number of bytes to transfer to the device */ | 
 |     ) { | 
 | 	int rc; | 
 | 	DMA_DeviceAttribute_t *devAttr; | 
 |  | 
 | 	if (!IsDeviceValid(device)) { | 
 | 		return -ENODEV; | 
 | 	} | 
 | 	devAttr = &DMA_gDeviceAttribute[device]; | 
 |  | 
 | 	rc = dmacHw_setDataDescriptor(&devAttr->config, | 
 | 				      ring->virtAddr, | 
 | 				      (void *)srcData, | 
 | 				      (void *)dstData, numBytes); | 
 | 	if (rc < 0) { | 
 | 		printk(KERN_ERR | 
 | 		       "dma_add_descriptors: dmacHw_setDataDescriptor failed with code: %d\n", | 
 | 		       rc); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dma_add_descriptors); | 
 |  | 
 | /****************************************************************************/ | 
 | /** | 
 | *   Sets the descriptor ring associated with a device. | 
 | * | 
 | *   Once set, the descriptor ring will be associated with the device, even | 
 | *   across channel request/free calls. Passing in a NULL descriptor ring | 
 | *   will release any descriptor ring currently associated with the device. | 
 | * | 
 | *   Note: If you call dma_transfer, or one of the other dma_alloc_ functions | 
 | *         the descriptor ring may be released and reallocated. | 
 | * | 
 | *   Note: This function will release the descriptor memory for any current | 
 | *         descriptor ring associated with this device. | 
 | * | 
 | *   @return | 
 | *       0       Descriptors were added successfully | 
 | *       -ENODEV Device handed in is invalid. | 
 | */ | 
 | /****************************************************************************/ | 
 |  | 
 | int dma_set_device_descriptor_ring(DMA_Device_t device,	/* Device to update the descriptor ring for. */ | 
 | 				   DMA_DescriptorRing_t *ring	/* Descriptor ring to add descriptors to */ | 
 |     ) { | 
 | 	DMA_DeviceAttribute_t *devAttr; | 
 |  | 
 | 	if (!IsDeviceValid(device)) { | 
 | 		return -ENODEV; | 
 | 	} | 
 | 	devAttr = &DMA_gDeviceAttribute[device]; | 
 |  | 
 | 	/* Free the previously allocated descriptor ring */ | 
 |  | 
 | 	dma_free_descriptor_ring(&devAttr->ring); | 
 |  | 
 | 	if (ring != NULL) { | 
 | 		/* Copy in the new one */ | 
 |  | 
 | 		devAttr->ring = *ring; | 
 | 	} | 
 |  | 
 | 	/* Set things up so that if dma_transfer is called then this descriptor */ | 
 | 	/* ring will get freed. */ | 
 |  | 
 | 	devAttr->prevSrcData = 0; | 
 | 	devAttr->prevDstData = 0; | 
 | 	devAttr->prevNumBytes = 0; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dma_set_device_descriptor_ring); | 
 |  | 
 | /****************************************************************************/ | 
 | /** | 
 | *   Retrieves the descriptor ring associated with a device. | 
 | * | 
 | *   @return | 
 | *       0       Descriptors were added successfully | 
 | *       -ENODEV Device handed in is invalid. | 
 | */ | 
 | /****************************************************************************/ | 
 |  | 
 | int dma_get_device_descriptor_ring(DMA_Device_t device,	/* Device to retrieve the descriptor ring for. */ | 
 | 				   DMA_DescriptorRing_t *ring	/* Place to store retrieved ring */ | 
 |     ) { | 
 | 	DMA_DeviceAttribute_t *devAttr; | 
 |  | 
 | 	memset(ring, 0, sizeof(*ring)); | 
 |  | 
 | 	if (!IsDeviceValid(device)) { | 
 | 		return -ENODEV; | 
 | 	} | 
 | 	devAttr = &DMA_gDeviceAttribute[device]; | 
 |  | 
 | 	*ring = devAttr->ring; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dma_get_device_descriptor_ring); | 
 |  | 
 | /****************************************************************************/ | 
 | /** | 
 | *   Configures a DMA channel. | 
 | * | 
 | *   @return | 
 | *       >= 0    - Initialization was successful. | 
 | * | 
 | *       -EBUSY  - Device is currently being used. | 
 | *       -ENODEV - Device handed in is invalid. | 
 | */ | 
 | /****************************************************************************/ | 
 |  | 
 | static int ConfigChannel(DMA_Handle_t handle) | 
 | { | 
 | 	DMA_Channel_t *channel; | 
 | 	DMA_DeviceAttribute_t *devAttr; | 
 | 	int controllerIdx; | 
 |  | 
 | 	channel = HandleToChannel(handle); | 
 | 	if (channel == NULL) { | 
 | 		return -ENODEV; | 
 | 	} | 
 | 	devAttr = &DMA_gDeviceAttribute[channel->devType]; | 
 | 	controllerIdx = CONTROLLER_FROM_HANDLE(handle); | 
 |  | 
 | 	if ((devAttr->flags & DMA_DEVICE_FLAG_PORT_PER_DMAC) != 0) { | 
 | 		if (devAttr->config.transferType == | 
 | 		    dmacHw_TRANSFER_TYPE_MEM_TO_PERIPHERAL) { | 
 | 			devAttr->config.dstPeripheralPort = | 
 | 			    devAttr->dmacPort[controllerIdx]; | 
 | 		} else if (devAttr->config.transferType == | 
 | 			   dmacHw_TRANSFER_TYPE_PERIPHERAL_TO_MEM) { | 
 | 			devAttr->config.srcPeripheralPort = | 
 | 			    devAttr->dmacPort[controllerIdx]; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (dmacHw_configChannel(channel->dmacHwHandle, &devAttr->config) != 0) { | 
 | 		printk(KERN_ERR "ConfigChannel: dmacHw_configChannel failed\n"); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /****************************************************************************/ | 
 | /** | 
 | *   Initializes all of the data structures associated with the DMA. | 
 | *   @return | 
 | *       >= 0    - Initialization was successful. | 
 | * | 
 | *       -EBUSY  - Device is currently being used. | 
 | *       -ENODEV - Device handed in is invalid. | 
 | */ | 
 | /****************************************************************************/ | 
 |  | 
 | int dma_init(void) | 
 | { | 
 | 	int rc = 0; | 
 | 	int controllerIdx; | 
 | 	int channelIdx; | 
 | 	DMA_Device_t devIdx; | 
 | 	DMA_Channel_t *channel; | 
 | 	DMA_Handle_t dedicatedHandle; | 
 |  | 
 | 	memset(&gDMA, 0, sizeof(gDMA)); | 
 |  | 
 | 	sema_init(&gDMA.lock, 0); | 
 | 	init_waitqueue_head(&gDMA.freeChannelQ); | 
 |  | 
 | 	/* Initialize the Hardware */ | 
 |  | 
 | 	dmacHw_initDma(); | 
 |  | 
 | 	/* Start off by marking all of the DMA channels as shared. */ | 
 |  | 
 | 	for (controllerIdx = 0; controllerIdx < DMA_NUM_CONTROLLERS; | 
 | 	     controllerIdx++) { | 
 | 		for (channelIdx = 0; channelIdx < DMA_NUM_CHANNELS; | 
 | 		     channelIdx++) { | 
 | 			channel = | 
 | 			    &gDMA.controller[controllerIdx].channel[channelIdx]; | 
 |  | 
 | 			channel->flags = 0; | 
 | 			channel->devType = DMA_DEVICE_NONE; | 
 | 			channel->lastDevType = DMA_DEVICE_NONE; | 
 |  | 
 | #if (DMA_DEBUG_TRACK_RESERVATION) | 
 | 			channel->fileName = ""; | 
 | 			channel->lineNum = 0; | 
 | #endif | 
 |  | 
 | 			channel->dmacHwHandle = | 
 | 			    dmacHw_getChannelHandle(dmacHw_MAKE_CHANNEL_ID | 
 | 						    (controllerIdx, | 
 | 						     channelIdx)); | 
 | 			dmacHw_initChannel(channel->dmacHwHandle); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Record any special attributes that channels may have */ | 
 |  | 
 | 	gDMA.controller[0].channel[0].flags |= DMA_CHANNEL_FLAG_LARGE_FIFO; | 
 | 	gDMA.controller[0].channel[1].flags |= DMA_CHANNEL_FLAG_LARGE_FIFO; | 
 | 	gDMA.controller[1].channel[0].flags |= DMA_CHANNEL_FLAG_LARGE_FIFO; | 
 | 	gDMA.controller[1].channel[1].flags |= DMA_CHANNEL_FLAG_LARGE_FIFO; | 
 |  | 
 | 	/* Now walk through and record the dedicated channels. */ | 
 |  | 
 | 	for (devIdx = 0; devIdx < DMA_NUM_DEVICE_ENTRIES; devIdx++) { | 
 | 		DMA_DeviceAttribute_t *devAttr = &DMA_gDeviceAttribute[devIdx]; | 
 |  | 
 | 		if (((devAttr->flags & DMA_DEVICE_FLAG_NO_ISR) != 0) | 
 | 		    && ((devAttr->flags & DMA_DEVICE_FLAG_IS_DEDICATED) == 0)) { | 
 | 			printk(KERN_ERR | 
 | 			       "DMA Device: %s Can only request NO_ISR for dedicated devices\n", | 
 | 			       devAttr->name); | 
 | 			rc = -EINVAL; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		if ((devAttr->flags & DMA_DEVICE_FLAG_IS_DEDICATED) != 0) { | 
 | 			/* This is a dedicated device. Mark the channel as being reserved. */ | 
 |  | 
 | 			if (devAttr->dedicatedController >= DMA_NUM_CONTROLLERS) { | 
 | 				printk(KERN_ERR | 
 | 				       "DMA Device: %s DMA Controller %d is out of range\n", | 
 | 				       devAttr->name, | 
 | 				       devAttr->dedicatedController); | 
 | 				rc = -EINVAL; | 
 | 				goto out; | 
 | 			} | 
 |  | 
 | 			if (devAttr->dedicatedChannel >= DMA_NUM_CHANNELS) { | 
 | 				printk(KERN_ERR | 
 | 				       "DMA Device: %s DMA Channel %d is out of range\n", | 
 | 				       devAttr->name, | 
 | 				       devAttr->dedicatedChannel); | 
 | 				rc = -EINVAL; | 
 | 				goto out; | 
 | 			} | 
 |  | 
 | 			dedicatedHandle = | 
 | 			    MAKE_HANDLE(devAttr->dedicatedController, | 
 | 					devAttr->dedicatedChannel); | 
 | 			channel = HandleToChannel(dedicatedHandle); | 
 |  | 
 | 			if ((channel->flags & DMA_CHANNEL_FLAG_IS_DEDICATED) != | 
 | 			    0) { | 
 | 				printk | 
 | 				    ("DMA Device: %s attempting to use same DMA Controller:Channel (%d:%d) as %s\n", | 
 | 				     devAttr->name, | 
 | 				     devAttr->dedicatedController, | 
 | 				     devAttr->dedicatedChannel, | 
 | 				     DMA_gDeviceAttribute[channel->devType]. | 
 | 				     name); | 
 | 				rc = -EBUSY; | 
 | 				goto out; | 
 | 			} | 
 |  | 
 | 			channel->flags |= DMA_CHANNEL_FLAG_IS_DEDICATED; | 
 | 			channel->devType = devIdx; | 
 |  | 
 | 			if (devAttr->flags & DMA_DEVICE_FLAG_NO_ISR) { | 
 | 				channel->flags |= DMA_CHANNEL_FLAG_NO_ISR; | 
 | 			} | 
 |  | 
 | 			/* For dedicated channels, we can go ahead and configure the DMA channel now */ | 
 | 			/* as well. */ | 
 |  | 
 | 			ConfigChannel(dedicatedHandle); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Go through and register the interrupt handlers */ | 
 |  | 
 | 	for (controllerIdx = 0; controllerIdx < DMA_NUM_CONTROLLERS; | 
 | 	     controllerIdx++) { | 
 | 		for (channelIdx = 0; channelIdx < DMA_NUM_CHANNELS; | 
 | 		     channelIdx++) { | 
 | 			channel = | 
 | 			    &gDMA.controller[controllerIdx].channel[channelIdx]; | 
 |  | 
 | 			if ((channel->flags & DMA_CHANNEL_FLAG_NO_ISR) == 0) { | 
 | 				snprintf(channel->name, sizeof(channel->name), | 
 | 					 "dma %d:%d %s", controllerIdx, | 
 | 					 channelIdx, | 
 | 					 channel->devType == | 
 | 					 DMA_DEVICE_NONE ? "" : | 
 | 					 DMA_gDeviceAttribute[channel->devType]. | 
 | 					 name); | 
 |  | 
 | 				rc = | 
 | 				     request_irq(IRQ_DMA0C0 + | 
 | 						 (controllerIdx * | 
 | 						  DMA_NUM_CHANNELS) + | 
 | 						 channelIdx, | 
 | 						 dma_interrupt_handler, | 
 | 						 IRQF_DISABLED, channel->name, | 
 | 						 channel); | 
 | 				if (rc != 0) { | 
 | 					printk(KERN_ERR | 
 | 					       "request_irq for IRQ_DMA%dC%d failed\n", | 
 | 					       controllerIdx, channelIdx); | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Create /proc/dma/channels and /proc/dma/devices */ | 
 |  | 
 | 	gDmaDir = proc_mkdir("dma", NULL); | 
 |  | 
 | 	if (gDmaDir == NULL) { | 
 | 		printk(KERN_ERR "Unable to create /proc/dma\n"); | 
 | 	} else { | 
 | 		create_proc_read_entry("channels", 0, gDmaDir, | 
 | 				       dma_proc_read_channels, NULL); | 
 | 		create_proc_read_entry("devices", 0, gDmaDir, | 
 | 				       dma_proc_read_devices, NULL); | 
 | 		create_proc_read_entry("mem-type", 0, gDmaDir, | 
 | 				       dma_proc_read_mem_type, NULL); | 
 | 	} | 
 |  | 
 | out: | 
 |  | 
 | 	up(&gDMA.lock); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | /****************************************************************************/ | 
 | /** | 
 | *   Reserves a channel for use with @a dev. If the device is setup to use | 
 | *   a shared channel, then this function will block until a free channel | 
 | *   becomes available. | 
 | * | 
 | *   @return | 
 | *       >= 0    - A valid DMA Handle. | 
 | *       -EBUSY  - Device is currently being used. | 
 | *       -ENODEV - Device handed in is invalid. | 
 | */ | 
 | /****************************************************************************/ | 
 |  | 
 | #if (DMA_DEBUG_TRACK_RESERVATION) | 
 | DMA_Handle_t dma_request_channel_dbg | 
 |     (DMA_Device_t dev, const char *fileName, int lineNum) | 
 | #else | 
 | DMA_Handle_t dma_request_channel(DMA_Device_t dev) | 
 | #endif | 
 | { | 
 | 	DMA_Handle_t handle; | 
 | 	DMA_DeviceAttribute_t *devAttr; | 
 | 	DMA_Channel_t *channel; | 
 | 	int controllerIdx; | 
 | 	int controllerIdx2; | 
 | 	int channelIdx; | 
 |  | 
 | 	if (down_interruptible(&gDMA.lock) < 0) { | 
 | 		return -ERESTARTSYS; | 
 | 	} | 
 |  | 
 | 	if ((dev < 0) || (dev >= DMA_NUM_DEVICE_ENTRIES)) { | 
 | 		handle = -ENODEV; | 
 | 		goto out; | 
 | 	} | 
 | 	devAttr = &DMA_gDeviceAttribute[dev]; | 
 |  | 
 | #if (DMA_DEBUG_TRACK_RESERVATION) | 
 | 	{ | 
 | 		char *s; | 
 |  | 
 | 		s = strrchr(fileName, '/'); | 
 | 		if (s != NULL) { | 
 | 			fileName = s + 1; | 
 | 		} | 
 | 	} | 
 | #endif | 
 | 	if ((devAttr->flags & DMA_DEVICE_FLAG_IN_USE) != 0) { | 
 | 		/* This device has already been requested and not been freed */ | 
 |  | 
 | 		printk(KERN_ERR "%s: device %s is already requested\n", | 
 | 		       __func__, devAttr->name); | 
 | 		handle = -EBUSY; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if ((devAttr->flags & DMA_DEVICE_FLAG_IS_DEDICATED) != 0) { | 
 | 		/* This device has a dedicated channel. */ | 
 |  | 
 | 		channel = | 
 | 		    &gDMA.controller[devAttr->dedicatedController]. | 
 | 		    channel[devAttr->dedicatedChannel]; | 
 | 		if ((channel->flags & DMA_CHANNEL_FLAG_IN_USE) != 0) { | 
 | 			handle = -EBUSY; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		channel->flags |= DMA_CHANNEL_FLAG_IN_USE; | 
 | 		devAttr->flags |= DMA_DEVICE_FLAG_IN_USE; | 
 |  | 
 | #if (DMA_DEBUG_TRACK_RESERVATION) | 
 | 		channel->fileName = fileName; | 
 | 		channel->lineNum = lineNum; | 
 | #endif | 
 | 		handle = | 
 | 		    MAKE_HANDLE(devAttr->dedicatedController, | 
 | 				devAttr->dedicatedChannel); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* This device needs to use one of the shared channels. */ | 
 |  | 
 | 	handle = DMA_INVALID_HANDLE; | 
 | 	while (handle == DMA_INVALID_HANDLE) { | 
 | 		/* Scan through the shared channels and see if one is available */ | 
 |  | 
 | 		for (controllerIdx2 = 0; controllerIdx2 < DMA_NUM_CONTROLLERS; | 
 | 		     controllerIdx2++) { | 
 | 			/* Check to see if we should try on controller 1 first. */ | 
 |  | 
 | 			controllerIdx = controllerIdx2; | 
 | 			if ((devAttr-> | 
 | 			     flags & DMA_DEVICE_FLAG_ALLOC_DMA1_FIRST) != 0) { | 
 | 				controllerIdx = 1 - controllerIdx; | 
 | 			} | 
 |  | 
 | 			/* See if the device is available on the controller being tested */ | 
 |  | 
 | 			if ((devAttr-> | 
 | 			     flags & (DMA_DEVICE_FLAG_ON_DMA0 << controllerIdx)) | 
 | 			    != 0) { | 
 | 				for (channelIdx = 0; | 
 | 				     channelIdx < DMA_NUM_CHANNELS; | 
 | 				     channelIdx++) { | 
 | 					channel = | 
 | 					    &gDMA.controller[controllerIdx]. | 
 | 					    channel[channelIdx]; | 
 |  | 
 | 					if (((channel-> | 
 | 					      flags & | 
 | 					      DMA_CHANNEL_FLAG_IS_DEDICATED) == | 
 | 					     0) | 
 | 					    && | 
 | 					    ((channel-> | 
 | 					      flags & DMA_CHANNEL_FLAG_IN_USE) | 
 | 					     == 0)) { | 
 | 						if (((channel-> | 
 | 						      flags & | 
 | 						      DMA_CHANNEL_FLAG_LARGE_FIFO) | 
 | 						     != 0) | 
 | 						    && | 
 | 						    ((devAttr-> | 
 | 						      flags & | 
 | 						      DMA_DEVICE_FLAG_ALLOW_LARGE_FIFO) | 
 | 						     == 0)) { | 
 | 							/* This channel is a large fifo - don't tie it up */ | 
 | 							/* with devices that we don't want using it. */ | 
 |  | 
 | 							continue; | 
 | 						} | 
 |  | 
 | 						channel->flags |= | 
 | 						    DMA_CHANNEL_FLAG_IN_USE; | 
 | 						channel->devType = dev; | 
 | 						devAttr->flags |= | 
 | 						    DMA_DEVICE_FLAG_IN_USE; | 
 |  | 
 | #if (DMA_DEBUG_TRACK_RESERVATION) | 
 | 						channel->fileName = fileName; | 
 | 						channel->lineNum = lineNum; | 
 | #endif | 
 | 						handle = | 
 | 						    MAKE_HANDLE(controllerIdx, | 
 | 								channelIdx); | 
 |  | 
 | 						/* Now that we've reserved the channel - we can go ahead and configure it */ | 
 |  | 
 | 						if (ConfigChannel(handle) != 0) { | 
 | 							handle = -EIO; | 
 | 							printk(KERN_ERR | 
 | 							       "dma_request_channel: ConfigChannel failed\n"); | 
 | 						} | 
 | 						goto out; | 
 | 					} | 
 | 				} | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* No channels are currently available. Let's wait for one to free up. */ | 
 |  | 
 | 		{ | 
 | 			DEFINE_WAIT(wait); | 
 |  | 
 | 			prepare_to_wait(&gDMA.freeChannelQ, &wait, | 
 | 					TASK_INTERRUPTIBLE); | 
 | 			up(&gDMA.lock); | 
 | 			schedule(); | 
 | 			finish_wait(&gDMA.freeChannelQ, &wait); | 
 |  | 
 | 			if (signal_pending(current)) { | 
 | 				/* We don't currently hold gDMA.lock, so we return directly */ | 
 |  | 
 | 				return -ERESTARTSYS; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (down_interruptible(&gDMA.lock)) { | 
 | 			return -ERESTARTSYS; | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	up(&gDMA.lock); | 
 |  | 
 | 	return handle; | 
 | } | 
 |  | 
 | /* Create both _dbg and non _dbg functions for modules. */ | 
 |  | 
 | #if (DMA_DEBUG_TRACK_RESERVATION) | 
 | #undef dma_request_channel | 
 | DMA_Handle_t dma_request_channel(DMA_Device_t dev) | 
 | { | 
 | 	return dma_request_channel_dbg(dev, __FILE__, __LINE__); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dma_request_channel_dbg); | 
 | #endif | 
 | EXPORT_SYMBOL(dma_request_channel); | 
 |  | 
 | /****************************************************************************/ | 
 | /** | 
 | *   Frees a previously allocated DMA Handle. | 
 | */ | 
 | /****************************************************************************/ | 
 |  | 
 | int dma_free_channel(DMA_Handle_t handle	/* DMA handle. */ | 
 |     ) { | 
 | 	int rc = 0; | 
 | 	DMA_Channel_t *channel; | 
 | 	DMA_DeviceAttribute_t *devAttr; | 
 |  | 
 | 	if (down_interruptible(&gDMA.lock) < 0) { | 
 | 		return -ERESTARTSYS; | 
 | 	} | 
 |  | 
 | 	channel = HandleToChannel(handle); | 
 | 	if (channel == NULL) { | 
 | 		rc = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	devAttr = &DMA_gDeviceAttribute[channel->devType]; | 
 |  | 
 | 	if ((channel->flags & DMA_CHANNEL_FLAG_IS_DEDICATED) == 0) { | 
 | 		channel->lastDevType = channel->devType; | 
 | 		channel->devType = DMA_DEVICE_NONE; | 
 | 	} | 
 | 	channel->flags &= ~DMA_CHANNEL_FLAG_IN_USE; | 
 | 	devAttr->flags &= ~DMA_DEVICE_FLAG_IN_USE; | 
 |  | 
 | out: | 
 | 	up(&gDMA.lock); | 
 |  | 
 | 	wake_up_interruptible(&gDMA.freeChannelQ); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dma_free_channel); | 
 |  | 
 | /****************************************************************************/ | 
 | /** | 
 | *   Determines if a given device has been configured as using a shared | 
 | *   channel. | 
 | * | 
 | *   @return | 
 | *       0           Device uses a dedicated channel | 
 | *       > zero      Device uses a shared channel | 
 | *       < zero      Error code | 
 | */ | 
 | /****************************************************************************/ | 
 |  | 
 | int dma_device_is_channel_shared(DMA_Device_t device	/* Device to check. */ | 
 |     ) { | 
 | 	DMA_DeviceAttribute_t *devAttr; | 
 |  | 
 | 	if (!IsDeviceValid(device)) { | 
 | 		return -ENODEV; | 
 | 	} | 
 | 	devAttr = &DMA_gDeviceAttribute[device]; | 
 |  | 
 | 	return ((devAttr->flags & DMA_DEVICE_FLAG_IS_DEDICATED) == 0); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dma_device_is_channel_shared); | 
 |  | 
 | /****************************************************************************/ | 
 | /** | 
 | *   Allocates buffers for the descriptors. This is normally done automatically | 
 | *   but needs to be done explicitly when initiating a dma from interrupt | 
 | *   context. | 
 | * | 
 | *   @return | 
 | *       0       Descriptors were allocated successfully | 
 | *       -EINVAL Invalid device type for this kind of transfer | 
 | *               (i.e. the device is _MEM_TO_DEV and not _DEV_TO_MEM) | 
 | *       -ENOMEM Memory exhausted | 
 | */ | 
 | /****************************************************************************/ | 
 |  | 
 | int dma_alloc_descriptors(DMA_Handle_t handle,	/* DMA Handle */ | 
 | 			  dmacHw_TRANSFER_TYPE_e transferType,	/* Type of transfer being performed */ | 
 | 			  dma_addr_t srcData,	/* Place to get data to write to device */ | 
 | 			  dma_addr_t dstData,	/* Pointer to device data address */ | 
 | 			  size_t numBytes	/* Number of bytes to transfer to the device */ | 
 |     ) { | 
 | 	DMA_Channel_t *channel; | 
 | 	DMA_DeviceAttribute_t *devAttr; | 
 | 	int numDescriptors; | 
 | 	size_t ringBytesRequired; | 
 | 	int rc = 0; | 
 |  | 
 | 	channel = HandleToChannel(handle); | 
 | 	if (channel == NULL) { | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	devAttr = &DMA_gDeviceAttribute[channel->devType]; | 
 |  | 
 | 	if (devAttr->config.transferType != transferType) { | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Figure out how many descriptors we need. */ | 
 |  | 
 | 	/* printk("srcData: 0x%08x dstData: 0x%08x, numBytes: %d\n", */ | 
 | 	/*        srcData, dstData, numBytes); */ | 
 |  | 
 | 	numDescriptors = dmacHw_calculateDescriptorCount(&devAttr->config, | 
 | 							      (void *)srcData, | 
 | 							      (void *)dstData, | 
 | 							      numBytes); | 
 | 	if (numDescriptors < 0) { | 
 | 		printk(KERN_ERR "%s: dmacHw_calculateDescriptorCount failed\n", | 
 | 		       __func__); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Check to see if we can reuse the existing descriptor ring, or if we need to allocate */ | 
 | 	/* a new one. */ | 
 |  | 
 | 	ringBytesRequired = dmacHw_descriptorLen(numDescriptors); | 
 |  | 
 | 	/* printk("ringBytesRequired: %d\n", ringBytesRequired); */ | 
 |  | 
 | 	if (ringBytesRequired > devAttr->ring.bytesAllocated) { | 
 | 		/* Make sure that this code path is never taken from interrupt context. */ | 
 | 		/* It's OK for an interrupt to initiate a DMA transfer, but the descriptor */ | 
 | 		/* allocation needs to have already been done. */ | 
 |  | 
 | 		might_sleep(); | 
 |  | 
 | 		/* Free the old descriptor ring and allocate a new one. */ | 
 |  | 
 | 		dma_free_descriptor_ring(&devAttr->ring); | 
 |  | 
 | 		/* And allocate a new one. */ | 
 |  | 
 | 		rc = | 
 | 		     dma_alloc_descriptor_ring(&devAttr->ring, | 
 | 					       numDescriptors); | 
 | 		if (rc < 0) { | 
 | 			printk(KERN_ERR | 
 | 			       "%s: dma_alloc_descriptor_ring(%d) failed\n", | 
 | 			       __func__, numDescriptors); | 
 | 			return rc; | 
 | 		} | 
 | 		/* Setup the descriptor for this transfer */ | 
 |  | 
 | 		if (dmacHw_initDescriptor(devAttr->ring.virtAddr, | 
 | 					  devAttr->ring.physAddr, | 
 | 					  devAttr->ring.bytesAllocated, | 
 | 					  numDescriptors) < 0) { | 
 | 			printk(KERN_ERR "%s: dmacHw_initDescriptor failed\n", | 
 | 			       __func__); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} else { | 
 | 		/* We've already got enough ring buffer allocated. All we need to do is reset */ | 
 | 		/* any control information, just in case the previous DMA was stopped. */ | 
 |  | 
 | 		dmacHw_resetDescriptorControl(devAttr->ring.virtAddr); | 
 | 	} | 
 |  | 
 | 	/* dma_alloc/free both set the prevSrc/DstData to 0. If they happen to be the same */ | 
 | 	/* as last time, then we don't need to call setDataDescriptor again. */ | 
 |  | 
 | 	if (dmacHw_setDataDescriptor(&devAttr->config, | 
 | 				     devAttr->ring.virtAddr, | 
 | 				     (void *)srcData, | 
 | 				     (void *)dstData, numBytes) < 0) { | 
 | 		printk(KERN_ERR "%s: dmacHw_setDataDescriptor failed\n", | 
 | 		       __func__); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Remember the critical information for this transfer so that we can eliminate */ | 
 | 	/* another call to dma_alloc_descriptors if the caller reuses the same buffers */ | 
 |  | 
 | 	devAttr->prevSrcData = srcData; | 
 | 	devAttr->prevDstData = dstData; | 
 | 	devAttr->prevNumBytes = numBytes; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dma_alloc_descriptors); | 
 |  | 
 | /****************************************************************************/ | 
 | /** | 
 | *   Allocates and sets up descriptors for a double buffered circular buffer. | 
 | * | 
 | *   This is primarily intended to be used for things like the ingress samples | 
 | *   from a microphone. | 
 | * | 
 | *   @return | 
 | *       > 0     Number of descriptors actually allocated. | 
 | *       -EINVAL Invalid device type for this kind of transfer | 
 | *               (i.e. the device is _MEM_TO_DEV and not _DEV_TO_MEM) | 
 | *       -ENOMEM Memory exhausted | 
 | */ | 
 | /****************************************************************************/ | 
 |  | 
 | int dma_alloc_double_dst_descriptors(DMA_Handle_t handle,	/* DMA Handle */ | 
 | 				     dma_addr_t srcData,	/* Physical address of source data */ | 
 | 				     dma_addr_t dstData1,	/* Physical address of first destination buffer */ | 
 | 				     dma_addr_t dstData2,	/* Physical address of second destination buffer */ | 
 | 				     size_t numBytes	/* Number of bytes in each destination buffer */ | 
 |     ) { | 
 | 	DMA_Channel_t *channel; | 
 | 	DMA_DeviceAttribute_t *devAttr; | 
 | 	int numDst1Descriptors; | 
 | 	int numDst2Descriptors; | 
 | 	int numDescriptors; | 
 | 	size_t ringBytesRequired; | 
 | 	int rc = 0; | 
 |  | 
 | 	channel = HandleToChannel(handle); | 
 | 	if (channel == NULL) { | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	devAttr = &DMA_gDeviceAttribute[channel->devType]; | 
 |  | 
 | 	/* Figure out how many descriptors we need. */ | 
 |  | 
 | 	/* printk("srcData: 0x%08x dstData: 0x%08x, numBytes: %d\n", */ | 
 | 	/*        srcData, dstData, numBytes); */ | 
 |  | 
 | 	numDst1Descriptors = | 
 | 	     dmacHw_calculateDescriptorCount(&devAttr->config, (void *)srcData, | 
 | 					     (void *)dstData1, numBytes); | 
 | 	if (numDst1Descriptors < 0) { | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	numDst2Descriptors = | 
 | 	     dmacHw_calculateDescriptorCount(&devAttr->config, (void *)srcData, | 
 | 					     (void *)dstData2, numBytes); | 
 | 	if (numDst2Descriptors < 0) { | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	numDescriptors = numDst1Descriptors + numDst2Descriptors; | 
 | 	/* printk("numDescriptors: %d\n", numDescriptors); */ | 
 |  | 
 | 	/* Check to see if we can reuse the existing descriptor ring, or if we need to allocate */ | 
 | 	/* a new one. */ | 
 |  | 
 | 	ringBytesRequired = dmacHw_descriptorLen(numDescriptors); | 
 |  | 
 | 	/* printk("ringBytesRequired: %d\n", ringBytesRequired); */ | 
 |  | 
 | 	if (ringBytesRequired > devAttr->ring.bytesAllocated) { | 
 | 		/* Make sure that this code path is never taken from interrupt context. */ | 
 | 		/* It's OK for an interrupt to initiate a DMA transfer, but the descriptor */ | 
 | 		/* allocation needs to have already been done. */ | 
 |  | 
 | 		might_sleep(); | 
 |  | 
 | 		/* Free the old descriptor ring and allocate a new one. */ | 
 |  | 
 | 		dma_free_descriptor_ring(&devAttr->ring); | 
 |  | 
 | 		/* And allocate a new one. */ | 
 |  | 
 | 		rc = | 
 | 		     dma_alloc_descriptor_ring(&devAttr->ring, | 
 | 					       numDescriptors); | 
 | 		if (rc < 0) { | 
 | 			printk(KERN_ERR | 
 | 			       "%s: dma_alloc_descriptor_ring(%d) failed\n", | 
 | 			       __func__, ringBytesRequired); | 
 | 			return rc; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Setup the descriptor for this transfer. Since this function is used with */ | 
 | 	/* CONTINUOUS DMA operations, we need to reinitialize every time, otherwise */ | 
 | 	/* setDataDescriptor will keep trying to append onto the end. */ | 
 |  | 
 | 	if (dmacHw_initDescriptor(devAttr->ring.virtAddr, | 
 | 				  devAttr->ring.physAddr, | 
 | 				  devAttr->ring.bytesAllocated, | 
 | 				  numDescriptors) < 0) { | 
 | 		printk(KERN_ERR "%s: dmacHw_initDescriptor failed\n", __func__); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* dma_alloc/free both set the prevSrc/DstData to 0. If they happen to be the same */ | 
 | 	/* as last time, then we don't need to call setDataDescriptor again. */ | 
 |  | 
 | 	if (dmacHw_setDataDescriptor(&devAttr->config, | 
 | 				     devAttr->ring.virtAddr, | 
 | 				     (void *)srcData, | 
 | 				     (void *)dstData1, numBytes) < 0) { | 
 | 		printk(KERN_ERR "%s: dmacHw_setDataDescriptor 1 failed\n", | 
 | 		       __func__); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	if (dmacHw_setDataDescriptor(&devAttr->config, | 
 | 				     devAttr->ring.virtAddr, | 
 | 				     (void *)srcData, | 
 | 				     (void *)dstData2, numBytes) < 0) { | 
 | 		printk(KERN_ERR "%s: dmacHw_setDataDescriptor 2 failed\n", | 
 | 		       __func__); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* You should use dma_start_transfer rather than dma_transfer_xxx so we don't */ | 
 | 	/* try to make the 'prev' variables right. */ | 
 |  | 
 | 	devAttr->prevSrcData = 0; | 
 | 	devAttr->prevDstData = 0; | 
 | 	devAttr->prevNumBytes = 0; | 
 |  | 
 | 	return numDescriptors; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dma_alloc_double_dst_descriptors); | 
 |  | 
 | /****************************************************************************/ | 
 | /** | 
 | *   Initiates a transfer when the descriptors have already been setup. | 
 | * | 
 | *   This is a special case, and normally, the dma_transfer_xxx functions should | 
 | *   be used. | 
 | * | 
 | *   @return | 
 | *       0       Transfer was started successfully | 
 | *       -ENODEV Invalid handle | 
 | */ | 
 | /****************************************************************************/ | 
 |  | 
 | int dma_start_transfer(DMA_Handle_t handle) | 
 | { | 
 | 	DMA_Channel_t *channel; | 
 | 	DMA_DeviceAttribute_t *devAttr; | 
 |  | 
 | 	channel = HandleToChannel(handle); | 
 | 	if (channel == NULL) { | 
 | 		return -ENODEV; | 
 | 	} | 
 | 	devAttr = &DMA_gDeviceAttribute[channel->devType]; | 
 |  | 
 | 	dmacHw_initiateTransfer(channel->dmacHwHandle, &devAttr->config, | 
 | 				devAttr->ring.virtAddr); | 
 |  | 
 | 	/* Since we got this far, everything went successfully */ | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dma_start_transfer); | 
 |  | 
 | /****************************************************************************/ | 
 | /** | 
 | *   Stops a previously started DMA transfer. | 
 | * | 
 | *   @return | 
 | *       0       Transfer was stopped successfully | 
 | *       -ENODEV Invalid handle | 
 | */ | 
 | /****************************************************************************/ | 
 |  | 
 | int dma_stop_transfer(DMA_Handle_t handle) | 
 | { | 
 | 	DMA_Channel_t *channel; | 
 |  | 
 | 	channel = HandleToChannel(handle); | 
 | 	if (channel == NULL) { | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	dmacHw_stopTransfer(channel->dmacHwHandle); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dma_stop_transfer); | 
 |  | 
 | /****************************************************************************/ | 
 | /** | 
 | *   Waits for a DMA to complete by polling. This function is only intended | 
 | *   to be used for testing. Interrupts should be used for most DMA operations. | 
 | */ | 
 | /****************************************************************************/ | 
 |  | 
 | int dma_wait_transfer_done(DMA_Handle_t handle) | 
 | { | 
 | 	DMA_Channel_t *channel; | 
 | 	dmacHw_TRANSFER_STATUS_e status; | 
 |  | 
 | 	channel = HandleToChannel(handle); | 
 | 	if (channel == NULL) { | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	while ((status = | 
 | 		dmacHw_transferCompleted(channel->dmacHwHandle)) == | 
 | 	       dmacHw_TRANSFER_STATUS_BUSY) { | 
 | 		; | 
 | 	} | 
 |  | 
 | 	if (status == dmacHw_TRANSFER_STATUS_ERROR) { | 
 | 		printk(KERN_ERR "%s: DMA transfer failed\n", __func__); | 
 | 		return -EIO; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dma_wait_transfer_done); | 
 |  | 
 | /****************************************************************************/ | 
 | /** | 
 | *   Initiates a DMA, allocating the descriptors as required. | 
 | * | 
 | *   @return | 
 | *       0       Transfer was started successfully | 
 | *       -EINVAL Invalid device type for this kind of transfer | 
 | *               (i.e. the device is _DEV_TO_MEM and not _MEM_TO_DEV) | 
 | */ | 
 | /****************************************************************************/ | 
 |  | 
 | int dma_transfer(DMA_Handle_t handle,	/* DMA Handle */ | 
 | 		 dmacHw_TRANSFER_TYPE_e transferType,	/* Type of transfer being performed */ | 
 | 		 dma_addr_t srcData,	/* Place to get data to write to device */ | 
 | 		 dma_addr_t dstData,	/* Pointer to device data address */ | 
 | 		 size_t numBytes	/* Number of bytes to transfer to the device */ | 
 |     ) { | 
 | 	DMA_Channel_t *channel; | 
 | 	DMA_DeviceAttribute_t *devAttr; | 
 | 	int rc = 0; | 
 |  | 
 | 	channel = HandleToChannel(handle); | 
 | 	if (channel == NULL) { | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	devAttr = &DMA_gDeviceAttribute[channel->devType]; | 
 |  | 
 | 	if (devAttr->config.transferType != transferType) { | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* We keep track of the information about the previous request for this */ | 
 | 	/* device, and if the attributes match, then we can use the descriptors we setup */ | 
 | 	/* the last time, and not have to reinitialize everything. */ | 
 |  | 
 | 	{ | 
 | 		rc = | 
 | 		     dma_alloc_descriptors(handle, transferType, srcData, | 
 | 					   dstData, numBytes); | 
 | 		if (rc != 0) { | 
 | 			return rc; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* And kick off the transfer */ | 
 |  | 
 | 	devAttr->numBytes = numBytes; | 
 | 	devAttr->transferStartTime = timer_get_tick_count(); | 
 |  | 
 | 	dmacHw_initiateTransfer(channel->dmacHwHandle, &devAttr->config, | 
 | 				devAttr->ring.virtAddr); | 
 |  | 
 | 	/* Since we got this far, everything went successfully */ | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dma_transfer); | 
 |  | 
 | /****************************************************************************/ | 
 | /** | 
 | *   Set the callback function which will be called when a transfer completes. | 
 | *   If a NULL callback function is set, then no callback will occur. | 
 | * | 
 | *   @note   @a devHandler will be called from IRQ context. | 
 | * | 
 | *   @return | 
 | *       0       - Success | 
 | *       -ENODEV - Device handed in is invalid. | 
 | */ | 
 | /****************************************************************************/ | 
 |  | 
 | int dma_set_device_handler(DMA_Device_t dev,	/* Device to set the callback for. */ | 
 | 			   DMA_DeviceHandler_t devHandler,	/* Function to call when the DMA completes */ | 
 | 			   void *userData	/* Pointer which will be passed to devHandler. */ | 
 |     ) { | 
 | 	DMA_DeviceAttribute_t *devAttr; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!IsDeviceValid(dev)) { | 
 | 		return -ENODEV; | 
 | 	} | 
 | 	devAttr = &DMA_gDeviceAttribute[dev]; | 
 |  | 
 | 	local_irq_save(flags); | 
 |  | 
 | 	devAttr->userData = userData; | 
 | 	devAttr->devHandler = devHandler; | 
 |  | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dma_set_device_handler); | 
 |  | 
 | /****************************************************************************/ | 
 | /** | 
 | *   Initializes a memory mapping structure | 
 | */ | 
 | /****************************************************************************/ | 
 |  | 
 | int dma_init_mem_map(DMA_MemMap_t *memMap) | 
 | { | 
 | 	memset(memMap, 0, sizeof(*memMap)); | 
 |  | 
 | 	sema_init(&memMap->lock, 1); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dma_init_mem_map); | 
 |  | 
 | /****************************************************************************/ | 
 | /** | 
 | *   Releases any memory currently being held by a memory mapping structure. | 
 | */ | 
 | /****************************************************************************/ | 
 |  | 
 | int dma_term_mem_map(DMA_MemMap_t *memMap) | 
 | { | 
 | 	down(&memMap->lock);	/* Just being paranoid */ | 
 |  | 
 | 	/* Free up any allocated memory */ | 
 |  | 
 | 	up(&memMap->lock); | 
 | 	memset(memMap, 0, sizeof(*memMap)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dma_term_mem_map); | 
 |  | 
 | /****************************************************************************/ | 
 | /** | 
 | *   Looks at a memory address and categorizes it. | 
 | * | 
 | *   @return One of the values from the DMA_MemType_t enumeration. | 
 | */ | 
 | /****************************************************************************/ | 
 |  | 
 | DMA_MemType_t dma_mem_type(void *addr) | 
 | { | 
 | 	unsigned long addrVal = (unsigned long)addr; | 
 |  | 
 | 	if (addrVal >= VMALLOC_END) { | 
 | 		/* NOTE: DMA virtual memory space starts at 0xFFxxxxxx */ | 
 |  | 
 | 		/* dma_alloc_xxx pages are physically and virtually contiguous */ | 
 |  | 
 | 		return DMA_MEM_TYPE_DMA; | 
 | 	} | 
 |  | 
 | 	/* Technically, we could add one more classification. Addresses between VMALLOC_END */ | 
 | 	/* and the beginning of the DMA virtual address could be considered to be I/O space. */ | 
 | 	/* Right now, nobody cares about this particular classification, so we ignore it. */ | 
 |  | 
 | 	if (is_vmalloc_addr(addr)) { | 
 | 		/* Address comes from the vmalloc'd region. Pages are virtually */ | 
 | 		/* contiguous but NOT physically contiguous */ | 
 |  | 
 | 		return DMA_MEM_TYPE_VMALLOC; | 
 | 	} | 
 |  | 
 | 	if (addrVal >= PAGE_OFFSET) { | 
 | 		/* PAGE_OFFSET is typically 0xC0000000 */ | 
 |  | 
 | 		/* kmalloc'd pages are physically contiguous */ | 
 |  | 
 | 		return DMA_MEM_TYPE_KMALLOC; | 
 | 	} | 
 |  | 
 | 	return DMA_MEM_TYPE_USER; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dma_mem_type); | 
 |  | 
 | /****************************************************************************/ | 
 | /** | 
 | *   Looks at a memory address and determines if we support DMA'ing to/from | 
 | *   that type of memory. | 
 | * | 
 | *   @return boolean - | 
 | *               return value != 0 means dma supported | 
 | *               return value == 0 means dma not supported | 
 | */ | 
 | /****************************************************************************/ | 
 |  | 
 | int dma_mem_supports_dma(void *addr) | 
 | { | 
 | 	DMA_MemType_t memType = dma_mem_type(addr); | 
 |  | 
 | 	return (memType == DMA_MEM_TYPE_DMA) | 
 | #if ALLOW_MAP_OF_KMALLOC_MEMORY | 
 | 	    || (memType == DMA_MEM_TYPE_KMALLOC) | 
 | #endif | 
 | 	    || (memType == DMA_MEM_TYPE_USER); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dma_mem_supports_dma); | 
 |  | 
 | /****************************************************************************/ | 
 | /** | 
 | *   Maps in a memory region such that it can be used for performing a DMA. | 
 | * | 
 | *   @return | 
 | */ | 
 | /****************************************************************************/ | 
 |  | 
 | int dma_map_start(DMA_MemMap_t *memMap,	/* Stores state information about the map */ | 
 | 		  enum dma_data_direction dir	/* Direction that the mapping will be going */ | 
 |     ) { | 
 | 	int rc; | 
 |  | 
 | 	down(&memMap->lock); | 
 |  | 
 | 	DMA_MAP_PRINT("memMap: %p\n", memMap); | 
 |  | 
 | 	if (memMap->inUse) { | 
 | 		printk(KERN_ERR "%s: memory map %p is already being used\n", | 
 | 		       __func__, memMap); | 
 | 		rc = -EBUSY; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	memMap->inUse = 1; | 
 | 	memMap->dir = dir; | 
 | 	memMap->numRegionsUsed = 0; | 
 |  | 
 | 	rc = 0; | 
 |  | 
 | out: | 
 |  | 
 | 	DMA_MAP_PRINT("returning %d", rc); | 
 |  | 
 | 	up(&memMap->lock); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dma_map_start); | 
 |  | 
 | /****************************************************************************/ | 
 | /** | 
 | *   Adds a segment of memory to a memory map. Each segment is both | 
 | *   physically and virtually contiguous. | 
 | * | 
 | *   @return     0 on success, error code otherwise. | 
 | */ | 
 | /****************************************************************************/ | 
 |  | 
 | static int dma_map_add_segment(DMA_MemMap_t *memMap,	/* Stores state information about the map */ | 
 | 			       DMA_Region_t *region,	/* Region that the segment belongs to */ | 
 | 			       void *virtAddr,	/* Virtual address of the segment being added */ | 
 | 			       dma_addr_t physAddr,	/* Physical address of the segment being added */ | 
 | 			       size_t numBytes	/* Number of bytes of the segment being added */ | 
 |     ) { | 
 | 	DMA_Segment_t *segment; | 
 |  | 
 | 	DMA_MAP_PRINT("memMap:%p va:%p pa:0x%x #:%d\n", memMap, virtAddr, | 
 | 		      physAddr, numBytes); | 
 |  | 
 | 	/* Sanity check */ | 
 |  | 
 | 	if (((unsigned long)virtAddr < (unsigned long)region->virtAddr) | 
 | 	    || (((unsigned long)virtAddr + numBytes)) > | 
 | 	    ((unsigned long)region->virtAddr + region->numBytes)) { | 
 | 		printk(KERN_ERR | 
 | 		       "%s: virtAddr %p is outside region @ %p len: %d\n", | 
 | 		       __func__, virtAddr, region->virtAddr, region->numBytes); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (region->numSegmentsUsed > 0) { | 
 | 		/* Check to see if this segment is physically contiguous with the previous one */ | 
 |  | 
 | 		segment = ®ion->segment[region->numSegmentsUsed - 1]; | 
 |  | 
 | 		if ((segment->physAddr + segment->numBytes) == physAddr) { | 
 | 			/* It is - just add on to the end */ | 
 |  | 
 | 			DMA_MAP_PRINT("appending %d bytes to last segment\n", | 
 | 				      numBytes); | 
 |  | 
 | 			segment->numBytes += numBytes; | 
 |  | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Reallocate to hold more segments, if required. */ | 
 |  | 
 | 	if (region->numSegmentsUsed >= region->numSegmentsAllocated) { | 
 | 		DMA_Segment_t *newSegment; | 
 | 		size_t oldSize = | 
 | 		    region->numSegmentsAllocated * sizeof(*newSegment); | 
 | 		int newAlloc = region->numSegmentsAllocated + 4; | 
 | 		size_t newSize = newAlloc * sizeof(*newSegment); | 
 |  | 
 | 		newSegment = kmalloc(newSize, GFP_KERNEL); | 
 | 		if (newSegment == NULL) { | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		memcpy(newSegment, region->segment, oldSize); | 
 | 		memset(&((uint8_t *) newSegment)[oldSize], 0, | 
 | 		       newSize - oldSize); | 
 | 		kfree(region->segment); | 
 |  | 
 | 		region->numSegmentsAllocated = newAlloc; | 
 | 		region->segment = newSegment; | 
 | 	} | 
 |  | 
 | 	segment = ®ion->segment[region->numSegmentsUsed]; | 
 | 	region->numSegmentsUsed++; | 
 |  | 
 | 	segment->virtAddr = virtAddr; | 
 | 	segment->physAddr = physAddr; | 
 | 	segment->numBytes = numBytes; | 
 |  | 
 | 	DMA_MAP_PRINT("returning success\n"); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /****************************************************************************/ | 
 | /** | 
 | *   Adds a region of memory to a memory map. Each region is virtually | 
 | *   contiguous, but not necessarily physically contiguous. | 
 | * | 
 | *   @return     0 on success, error code otherwise. | 
 | */ | 
 | /****************************************************************************/ | 
 |  | 
 | int dma_map_add_region(DMA_MemMap_t *memMap,	/* Stores state information about the map */ | 
 | 		       void *mem,	/* Virtual address that we want to get a map of */ | 
 | 		       size_t numBytes	/* Number of bytes being mapped */ | 
 |     ) { | 
 | 	unsigned long addr = (unsigned long)mem; | 
 | 	unsigned int offset; | 
 | 	int rc = 0; | 
 | 	DMA_Region_t *region; | 
 | 	dma_addr_t physAddr; | 
 |  | 
 | 	down(&memMap->lock); | 
 |  | 
 | 	DMA_MAP_PRINT("memMap:%p va:%p #:%d\n", memMap, mem, numBytes); | 
 |  | 
 | 	if (!memMap->inUse) { | 
 | 		printk(KERN_ERR "%s: Make sure you call dma_map_start first\n", | 
 | 		       __func__); | 
 | 		rc = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Reallocate to hold more regions. */ | 
 |  | 
 | 	if (memMap->numRegionsUsed >= memMap->numRegionsAllocated) { | 
 | 		DMA_Region_t *newRegion; | 
 | 		size_t oldSize = | 
 | 		    memMap->numRegionsAllocated * sizeof(*newRegion); | 
 | 		int newAlloc = memMap->numRegionsAllocated + 4; | 
 | 		size_t newSize = newAlloc * sizeof(*newRegion); | 
 |  | 
 | 		newRegion = kmalloc(newSize, GFP_KERNEL); | 
 | 		if (newRegion == NULL) { | 
 | 			rc = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 | 		memcpy(newRegion, memMap->region, oldSize); | 
 | 		memset(&((uint8_t *) newRegion)[oldSize], 0, newSize - oldSize); | 
 |  | 
 | 		kfree(memMap->region); | 
 |  | 
 | 		memMap->numRegionsAllocated = newAlloc; | 
 | 		memMap->region = newRegion; | 
 | 	} | 
 |  | 
 | 	region = &memMap->region[memMap->numRegionsUsed]; | 
 | 	memMap->numRegionsUsed++; | 
 |  | 
 | 	offset = addr & ~PAGE_MASK; | 
 |  | 
 | 	region->memType = dma_mem_type(mem); | 
 | 	region->virtAddr = mem; | 
 | 	region->numBytes = numBytes; | 
 | 	region->numSegmentsUsed = 0; | 
 | 	region->numLockedPages = 0; | 
 | 	region->lockedPages = NULL; | 
 |  | 
 | 	switch (region->memType) { | 
 | 	case DMA_MEM_TYPE_VMALLOC: | 
 | 		{ | 
 | 			atomic_inc(&gDmaStatMemTypeVmalloc); | 
 |  | 
 | 			/* printk(KERN_ERR "%s: vmalloc'd pages are not supported\n", __func__); */ | 
 |  | 
 | 			/* vmalloc'd pages are not physically contiguous */ | 
 |  | 
 | 			rc = -EINVAL; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 	case DMA_MEM_TYPE_KMALLOC: | 
 | 		{ | 
 | 			atomic_inc(&gDmaStatMemTypeKmalloc); | 
 |  | 
 | 			/* kmalloc'd pages are physically contiguous, so they'll have exactly */ | 
 | 			/* one segment */ | 
 |  | 
 | #if ALLOW_MAP_OF_KMALLOC_MEMORY | 
 | 			physAddr = | 
 | 			    dma_map_single(NULL, mem, numBytes, memMap->dir); | 
 | 			rc = dma_map_add_segment(memMap, region, mem, physAddr, | 
 | 						 numBytes); | 
 | #else | 
 | 			rc = -EINVAL; | 
 | #endif | 
 | 			break; | 
 | 		} | 
 |  | 
 | 	case DMA_MEM_TYPE_DMA: | 
 | 		{ | 
 | 			/* dma_alloc_xxx pages are physically contiguous */ | 
 |  | 
 | 			atomic_inc(&gDmaStatMemTypeCoherent); | 
 |  | 
 | 			physAddr = (vmalloc_to_pfn(mem) << PAGE_SHIFT) + offset; | 
 |  | 
 | 			dma_sync_single_for_cpu(NULL, physAddr, numBytes, | 
 | 						memMap->dir); | 
 | 			rc = dma_map_add_segment(memMap, region, mem, physAddr, | 
 | 						 numBytes); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 	case DMA_MEM_TYPE_USER: | 
 | 		{ | 
 | 			size_t firstPageOffset; | 
 | 			size_t firstPageSize; | 
 | 			struct page **pages; | 
 | 			struct task_struct *userTask; | 
 |  | 
 | 			atomic_inc(&gDmaStatMemTypeUser); | 
 |  | 
 | #if 1 | 
 | 			/* If the pages are user pages, then the dma_mem_map_set_user_task function */ | 
 | 			/* must have been previously called. */ | 
 |  | 
 | 			if (memMap->userTask == NULL) { | 
 | 				printk(KERN_ERR | 
 | 				       "%s: must call dma_mem_map_set_user_task when using user-mode memory\n", | 
 | 				       __func__); | 
 | 				return -EINVAL; | 
 | 			} | 
 |  | 
 | 			/* User pages need to be locked. */ | 
 |  | 
 | 			firstPageOffset = | 
 | 			    (unsigned long)region->virtAddr & (PAGE_SIZE - 1); | 
 | 			firstPageSize = PAGE_SIZE - firstPageOffset; | 
 |  | 
 | 			region->numLockedPages = (firstPageOffset | 
 | 						  + region->numBytes + | 
 | 						  PAGE_SIZE - 1) / PAGE_SIZE; | 
 | 			pages = | 
 | 			    kmalloc(region->numLockedPages * | 
 | 				    sizeof(struct page *), GFP_KERNEL); | 
 |  | 
 | 			if (pages == NULL) { | 
 | 				region->numLockedPages = 0; | 
 | 				return -ENOMEM; | 
 | 			} | 
 |  | 
 | 			userTask = memMap->userTask; | 
 |  | 
 | 			down_read(&userTask->mm->mmap_sem); | 
 | 			rc = get_user_pages(userTask,	/* task */ | 
 | 					    userTask->mm,	/* mm */ | 
 | 					    (unsigned long)region->virtAddr,	/* start */ | 
 | 					    region->numLockedPages,	/* len */ | 
 | 					    memMap->dir == DMA_FROM_DEVICE,	/* write */ | 
 | 					    0,	/* force */ | 
 | 					    pages,	/* pages (array of pointers to page) */ | 
 | 					    NULL);	/* vmas */ | 
 | 			up_read(&userTask->mm->mmap_sem); | 
 |  | 
 | 			if (rc != region->numLockedPages) { | 
 | 				kfree(pages); | 
 | 				region->numLockedPages = 0; | 
 |  | 
 | 				if (rc >= 0) { | 
 | 					rc = -EINVAL; | 
 | 				} | 
 | 			} else { | 
 | 				uint8_t *virtAddr = region->virtAddr; | 
 | 				size_t bytesRemaining; | 
 | 				int pageIdx; | 
 |  | 
 | 				rc = 0;	/* Since get_user_pages returns +ve number */ | 
 |  | 
 | 				region->lockedPages = pages; | 
 |  | 
 | 				/* We've locked the user pages. Now we need to walk them and figure */ | 
 | 				/* out the physical addresses. */ | 
 |  | 
 | 				/* The first page may be partial */ | 
 |  | 
 | 				dma_map_add_segment(memMap, | 
 | 						    region, | 
 | 						    virtAddr, | 
 | 						    PFN_PHYS(page_to_pfn | 
 | 							     (pages[0])) + | 
 | 						    firstPageOffset, | 
 | 						    firstPageSize); | 
 |  | 
 | 				virtAddr += firstPageSize; | 
 | 				bytesRemaining = | 
 | 				    region->numBytes - firstPageSize; | 
 |  | 
 | 				for (pageIdx = 1; | 
 | 				     pageIdx < region->numLockedPages; | 
 | 				     pageIdx++) { | 
 | 					size_t bytesThisPage = | 
 | 					    (bytesRemaining > | 
 | 					     PAGE_SIZE ? PAGE_SIZE : | 
 | 					     bytesRemaining); | 
 |  | 
 | 					DMA_MAP_PRINT | 
 | 					    ("pageIdx:%d pages[pageIdx]=%p pfn=%u phys=%u\n", | 
 | 					     pageIdx, pages[pageIdx], | 
 | 					     page_to_pfn(pages[pageIdx]), | 
 | 					     PFN_PHYS(page_to_pfn | 
 | 						      (pages[pageIdx]))); | 
 |  | 
 | 					dma_map_add_segment(memMap, | 
 | 							    region, | 
 | 							    virtAddr, | 
 | 							    PFN_PHYS(page_to_pfn | 
 | 								     (pages | 
 | 								      [pageIdx])), | 
 | 							    bytesThisPage); | 
 |  | 
 | 					virtAddr += bytesThisPage; | 
 | 					bytesRemaining -= bytesThisPage; | 
 | 				} | 
 | 			} | 
 | #else | 
 | 			printk(KERN_ERR | 
 | 			       "%s: User mode pages are not yet supported\n", | 
 | 			       __func__); | 
 |  | 
 | 			/* user pages are not physically contiguous */ | 
 |  | 
 | 			rc = -EINVAL; | 
 | #endif | 
 | 			break; | 
 | 		} | 
 |  | 
 | 	default: | 
 | 		{ | 
 | 			printk(KERN_ERR "%s: Unsupported memory type: %d\n", | 
 | 			       __func__, region->memType); | 
 |  | 
 | 			rc = -EINVAL; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (rc != 0) { | 
 | 		memMap->numRegionsUsed--; | 
 | 	} | 
 |  | 
 | out: | 
 |  | 
 | 	DMA_MAP_PRINT("returning %d\n", rc); | 
 |  | 
 | 	up(&memMap->lock); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dma_map_add_segment); | 
 |  | 
 | /****************************************************************************/ | 
 | /** | 
 | *   Maps in a memory region such that it can be used for performing a DMA. | 
 | * | 
 | *   @return     0 on success, error code otherwise. | 
 | */ | 
 | /****************************************************************************/ | 
 |  | 
 | int dma_map_mem(DMA_MemMap_t *memMap,	/* Stores state information about the map */ | 
 | 		void *mem,	/* Virtual address that we want to get a map of */ | 
 | 		size_t numBytes,	/* Number of bytes being mapped */ | 
 | 		enum dma_data_direction dir	/* Direction that the mapping will be going */ | 
 |     ) { | 
 | 	int rc; | 
 |  | 
 | 	rc = dma_map_start(memMap, dir); | 
 | 	if (rc == 0) { | 
 | 		rc = dma_map_add_region(memMap, mem, numBytes); | 
 | 		if (rc < 0) { | 
 | 			/* Since the add fails, this function will fail, and the caller won't */ | 
 | 			/* call unmap, so we need to do it here. */ | 
 |  | 
 | 			dma_unmap(memMap, 0); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dma_map_mem); | 
 |  | 
 | /****************************************************************************/ | 
 | /** | 
 | *   Setup a descriptor ring for a given memory map. | 
 | * | 
 | *   It is assumed that the descriptor ring has already been initialized, and | 
 | *   this routine will only reallocate a new descriptor ring if the existing | 
 | *   one is too small. | 
 | * | 
 | *   @return     0 on success, error code otherwise. | 
 | */ | 
 | /****************************************************************************/ | 
 |  | 
 | int dma_map_create_descriptor_ring(DMA_Device_t dev,	/* DMA device (where the ring is stored) */ | 
 | 				   DMA_MemMap_t *memMap,	/* Memory map that will be used */ | 
 | 				   dma_addr_t devPhysAddr	/* Physical address of device */ | 
 |     ) { | 
 | 	int rc; | 
 | 	int numDescriptors; | 
 | 	DMA_DeviceAttribute_t *devAttr; | 
 | 	DMA_Region_t *region; | 
 | 	DMA_Segment_t *segment; | 
 | 	dma_addr_t srcPhysAddr; | 
 | 	dma_addr_t dstPhysAddr; | 
 | 	int regionIdx; | 
 | 	int segmentIdx; | 
 |  | 
 | 	devAttr = &DMA_gDeviceAttribute[dev]; | 
 |  | 
 | 	down(&memMap->lock); | 
 |  | 
 | 	/* Figure out how many descriptors we need */ | 
 |  | 
 | 	numDescriptors = 0; | 
 | 	for (regionIdx = 0; regionIdx < memMap->numRegionsUsed; regionIdx++) { | 
 | 		region = &memMap->region[regionIdx]; | 
 |  | 
 | 		for (segmentIdx = 0; segmentIdx < region->numSegmentsUsed; | 
 | 		     segmentIdx++) { | 
 | 			segment = ®ion->segment[segmentIdx]; | 
 |  | 
 | 			if (memMap->dir == DMA_TO_DEVICE) { | 
 | 				srcPhysAddr = segment->physAddr; | 
 | 				dstPhysAddr = devPhysAddr; | 
 | 			} else { | 
 | 				srcPhysAddr = devPhysAddr; | 
 | 				dstPhysAddr = segment->physAddr; | 
 | 			} | 
 |  | 
 | 			rc = | 
 | 			     dma_calculate_descriptor_count(dev, srcPhysAddr, | 
 | 							    dstPhysAddr, | 
 | 							    segment-> | 
 | 							    numBytes); | 
 | 			if (rc < 0) { | 
 | 				printk(KERN_ERR | 
 | 				       "%s: dma_calculate_descriptor_count failed: %d\n", | 
 | 				       __func__, rc); | 
 | 				goto out; | 
 | 			} | 
 | 			numDescriptors += rc; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Adjust the size of the ring, if it isn't big enough */ | 
 |  | 
 | 	if (numDescriptors > devAttr->ring.descriptorsAllocated) { | 
 | 		dma_free_descriptor_ring(&devAttr->ring); | 
 | 		rc = | 
 | 		     dma_alloc_descriptor_ring(&devAttr->ring, | 
 | 					       numDescriptors); | 
 | 		if (rc < 0) { | 
 | 			printk(KERN_ERR | 
 | 			       "%s: dma_alloc_descriptor_ring failed: %d\n", | 
 | 			       __func__, rc); | 
 | 			goto out; | 
 | 		} | 
 | 	} else { | 
 | 		rc = | 
 | 		     dma_init_descriptor_ring(&devAttr->ring, | 
 | 					      numDescriptors); | 
 | 		if (rc < 0) { | 
 | 			printk(KERN_ERR | 
 | 			       "%s: dma_init_descriptor_ring failed: %d\n", | 
 | 			       __func__, rc); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Populate the descriptors */ | 
 |  | 
 | 	for (regionIdx = 0; regionIdx < memMap->numRegionsUsed; regionIdx++) { | 
 | 		region = &memMap->region[regionIdx]; | 
 |  | 
 | 		for (segmentIdx = 0; segmentIdx < region->numSegmentsUsed; | 
 | 		     segmentIdx++) { | 
 | 			segment = ®ion->segment[segmentIdx]; | 
 |  | 
 | 			if (memMap->dir == DMA_TO_DEVICE) { | 
 | 				srcPhysAddr = segment->physAddr; | 
 | 				dstPhysAddr = devPhysAddr; | 
 | 			} else { | 
 | 				srcPhysAddr = devPhysAddr; | 
 | 				dstPhysAddr = segment->physAddr; | 
 | 			} | 
 |  | 
 | 			rc = | 
 | 			     dma_add_descriptors(&devAttr->ring, dev, | 
 | 						 srcPhysAddr, dstPhysAddr, | 
 | 						 segment->numBytes); | 
 | 			if (rc < 0) { | 
 | 				printk(KERN_ERR | 
 | 				       "%s: dma_add_descriptors failed: %d\n", | 
 | 				       __func__, rc); | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rc = 0; | 
 |  | 
 | out: | 
 |  | 
 | 	up(&memMap->lock); | 
 | 	return rc; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dma_map_create_descriptor_ring); | 
 |  | 
 | /****************************************************************************/ | 
 | /** | 
 | *   Maps in a memory region such that it can be used for performing a DMA. | 
 | * | 
 | *   @return | 
 | */ | 
 | /****************************************************************************/ | 
 |  | 
 | int dma_unmap(DMA_MemMap_t *memMap,	/* Stores state information about the map */ | 
 | 	      int dirtied	/* non-zero if any of the pages were modified */ | 
 |     ) { | 
 |  | 
 | 	int rc = 0; | 
 | 	int regionIdx; | 
 | 	int segmentIdx; | 
 | 	DMA_Region_t *region; | 
 | 	DMA_Segment_t *segment; | 
 |  | 
 | 	down(&memMap->lock); | 
 |  | 
 | 	for (regionIdx = 0; regionIdx < memMap->numRegionsUsed; regionIdx++) { | 
 | 		region = &memMap->region[regionIdx]; | 
 |  | 
 | 		for (segmentIdx = 0; segmentIdx < region->numSegmentsUsed; | 
 | 		     segmentIdx++) { | 
 | 			segment = ®ion->segment[segmentIdx]; | 
 |  | 
 | 			switch (region->memType) { | 
 | 			case DMA_MEM_TYPE_VMALLOC: | 
 | 				{ | 
 | 					printk(KERN_ERR | 
 | 					       "%s: vmalloc'd pages are not yet supported\n", | 
 | 					       __func__); | 
 | 					rc = -EINVAL; | 
 | 					goto out; | 
 | 				} | 
 |  | 
 | 			case DMA_MEM_TYPE_KMALLOC: | 
 | 				{ | 
 | #if ALLOW_MAP_OF_KMALLOC_MEMORY | 
 | 					dma_unmap_single(NULL, | 
 | 							 segment->physAddr, | 
 | 							 segment->numBytes, | 
 | 							 memMap->dir); | 
 | #endif | 
 | 					break; | 
 | 				} | 
 |  | 
 | 			case DMA_MEM_TYPE_DMA: | 
 | 				{ | 
 | 					dma_sync_single_for_cpu(NULL, | 
 | 								segment-> | 
 | 								physAddr, | 
 | 								segment-> | 
 | 								numBytes, | 
 | 								memMap->dir); | 
 | 					break; | 
 | 				} | 
 |  | 
 | 			case DMA_MEM_TYPE_USER: | 
 | 				{ | 
 | 					/* Nothing to do here. */ | 
 |  | 
 | 					break; | 
 | 				} | 
 |  | 
 | 			default: | 
 | 				{ | 
 | 					printk(KERN_ERR | 
 | 					       "%s: Unsupported memory type: %d\n", | 
 | 					       __func__, region->memType); | 
 | 					rc = -EINVAL; | 
 | 					goto out; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			segment->virtAddr = NULL; | 
 | 			segment->physAddr = 0; | 
 | 			segment->numBytes = 0; | 
 | 		} | 
 |  | 
 | 		if (region->numLockedPages > 0) { | 
 | 			int pageIdx; | 
 |  | 
 | 			/* Some user pages were locked. We need to go and unlock them now. */ | 
 |  | 
 | 			for (pageIdx = 0; pageIdx < region->numLockedPages; | 
 | 			     pageIdx++) { | 
 | 				struct page *page = | 
 | 				    region->lockedPages[pageIdx]; | 
 |  | 
 | 				if (memMap->dir == DMA_FROM_DEVICE) { | 
 | 					SetPageDirty(page); | 
 | 				} | 
 | 				page_cache_release(page); | 
 | 			} | 
 | 			kfree(region->lockedPages); | 
 | 			region->numLockedPages = 0; | 
 | 			region->lockedPages = NULL; | 
 | 		} | 
 |  | 
 | 		region->memType = DMA_MEM_TYPE_NONE; | 
 | 		region->virtAddr = NULL; | 
 | 		region->numBytes = 0; | 
 | 		region->numSegmentsUsed = 0; | 
 | 	} | 
 | 	memMap->userTask = NULL; | 
 | 	memMap->numRegionsUsed = 0; | 
 | 	memMap->inUse = 0; | 
 |  | 
 | out: | 
 | 	up(&memMap->lock); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dma_unmap); |