| /* | 
 |  * drivers/i2c/chips/lm8323.c | 
 |  * | 
 |  * Copyright (C) 2007-2009 Nokia Corporation | 
 |  * | 
 |  * Written by Daniel Stone <daniel.stone@nokia.com> | 
 |  *            Timo O. Karjalainen <timo.o.karjalainen@nokia.com> | 
 |  * | 
 |  * Updated by Felipe Balbi <felipe.balbi@nokia.com> | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation (version 2 of the License only). | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/i2c.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/input.h> | 
 | #include <linux/leds.h> | 
 | #include <linux/i2c/lm8323.h> | 
 |  | 
 | /* Commands to send to the chip. */ | 
 | #define LM8323_CMD_READ_ID		0x80 /* Read chip ID. */ | 
 | #define LM8323_CMD_WRITE_CFG		0x81 /* Set configuration item. */ | 
 | #define LM8323_CMD_READ_INT		0x82 /* Get interrupt status. */ | 
 | #define LM8323_CMD_RESET		0x83 /* Reset, same as external one */ | 
 | #define LM8323_CMD_WRITE_PORT_SEL	0x85 /* Set GPIO in/out. */ | 
 | #define LM8323_CMD_WRITE_PORT_STATE	0x86 /* Set GPIO pullup. */ | 
 | #define LM8323_CMD_READ_PORT_SEL	0x87 /* Get GPIO in/out. */ | 
 | #define LM8323_CMD_READ_PORT_STATE	0x88 /* Get GPIO pullup. */ | 
 | #define LM8323_CMD_READ_FIFO		0x89 /* Read byte from FIFO. */ | 
 | #define LM8323_CMD_RPT_READ_FIFO	0x8a /* Read FIFO (no increment). */ | 
 | #define LM8323_CMD_SET_ACTIVE		0x8b /* Set active time. */ | 
 | #define LM8323_CMD_READ_ERR		0x8c /* Get error status. */ | 
 | #define LM8323_CMD_READ_ROTATOR		0x8e /* Read rotator status. */ | 
 | #define LM8323_CMD_SET_DEBOUNCE		0x8f /* Set debouncing time. */ | 
 | #define LM8323_CMD_SET_KEY_SIZE		0x90 /* Set keypad size. */ | 
 | #define LM8323_CMD_READ_KEY_SIZE	0x91 /* Get keypad size. */ | 
 | #define LM8323_CMD_READ_CFG		0x92 /* Get configuration item. */ | 
 | #define LM8323_CMD_WRITE_CLOCK		0x93 /* Set clock config. */ | 
 | #define LM8323_CMD_READ_CLOCK		0x94 /* Get clock config. */ | 
 | #define LM8323_CMD_PWM_WRITE		0x95 /* Write PWM script. */ | 
 | #define LM8323_CMD_START_PWM		0x96 /* Start PWM engine. */ | 
 | #define LM8323_CMD_STOP_PWM		0x97 /* Stop PWM engine. */ | 
 |  | 
 | /* Interrupt status. */ | 
 | #define INT_KEYPAD			0x01 /* Key event. */ | 
 | #define INT_ROTATOR			0x02 /* Rotator event. */ | 
 | #define INT_ERROR			0x08 /* Error: use CMD_READ_ERR. */ | 
 | #define INT_NOINIT			0x10 /* Lost configuration. */ | 
 | #define INT_PWM1			0x20 /* PWM1 stopped. */ | 
 | #define INT_PWM2			0x40 /* PWM2 stopped. */ | 
 | #define INT_PWM3			0x80 /* PWM3 stopped. */ | 
 |  | 
 | /* Errors (signalled by INT_ERROR, read with CMD_READ_ERR). */ | 
 | #define ERR_BADPAR			0x01 /* Bad parameter. */ | 
 | #define ERR_CMDUNK			0x02 /* Unknown command. */ | 
 | #define ERR_KEYOVR			0x04 /* Too many keys pressed. */ | 
 | #define ERR_FIFOOVER			0x40 /* FIFO overflow. */ | 
 |  | 
 | /* Configuration keys (CMD_{WRITE,READ}_CFG). */ | 
 | #define CFG_MUX1SEL			0x01 /* Select MUX1_OUT input. */ | 
 | #define CFG_MUX1EN			0x02 /* Enable MUX1_OUT. */ | 
 | #define CFG_MUX2SEL			0x04 /* Select MUX2_OUT input. */ | 
 | #define CFG_MUX2EN			0x08 /* Enable MUX2_OUT. */ | 
 | #define CFG_PSIZE			0x20 /* Package size (must be 0). */ | 
 | #define CFG_ROTEN			0x40 /* Enable rotator. */ | 
 |  | 
 | /* Clock settings (CMD_{WRITE,READ}_CLOCK). */ | 
 | #define CLK_RCPWM_INTERNAL		0x00 | 
 | #define CLK_RCPWM_EXTERNAL		0x03 | 
 | #define CLK_SLOWCLKEN			0x08 /* Enable 32.768kHz clock. */ | 
 | #define CLK_SLOWCLKOUT			0x40 /* Enable slow pulse output. */ | 
 |  | 
 | /* The possible addresses corresponding to CONFIG1 and CONFIG2 pin wirings. */ | 
 | #define LM8323_I2C_ADDR00		(0x84 >> 1)	/* 1000 010x */ | 
 | #define LM8323_I2C_ADDR01		(0x86 >> 1)	/* 1000 011x */ | 
 | #define LM8323_I2C_ADDR10		(0x88 >> 1)	/* 1000 100x */ | 
 | #define LM8323_I2C_ADDR11		(0x8A >> 1)	/* 1000 101x */ | 
 |  | 
 | /* Key event fifo length */ | 
 | #define LM8323_FIFO_LEN			15 | 
 |  | 
 | /* Commands for PWM engine; feed in with PWM_WRITE. */ | 
 | /* Load ramp counter from duty cycle field (range 0 - 0xff). */ | 
 | #define PWM_SET(v)			(0x4000 | ((v) & 0xff)) | 
 | /* Go to start of script. */ | 
 | #define PWM_GOTOSTART			0x0000 | 
 | /* | 
 |  * Stop engine (generates interrupt).  If reset is 1, clear the program | 
 |  * counter, else leave it. | 
 |  */ | 
 | #define PWM_END(reset)			(0xc000 | (!!(reset) << 11)) | 
 | /* | 
 |  * Ramp.  If s is 1, divide clock by 512, else divide clock by 16. | 
 |  * Take t clock scales (up to 63) per step, for n steps (up to 126). | 
 |  * If u is set, ramp up, else ramp down. | 
 |  */ | 
 | #define PWM_RAMP(s, t, n, u)		((!!(s) << 14) | ((t) & 0x3f) << 8 | \ | 
 | 					 ((n) & 0x7f) | ((u) ? 0 : 0x80)) | 
 | /* | 
 |  * Loop (i.e. jump back to pos) for a given number of iterations (up to 63). | 
 |  * If cnt is zero, execute until PWM_END is encountered. | 
 |  */ | 
 | #define PWM_LOOP(cnt, pos)		(0xa000 | (((cnt) & 0x3f) << 7) | \ | 
 | 					 ((pos) & 0x3f)) | 
 | /* | 
 |  * Wait for trigger.  Argument is a mask of channels, shifted by the channel | 
 |  * number, e.g. 0xa for channels 3 and 1.  Note that channels are numbered | 
 |  * from 1, not 0. | 
 |  */ | 
 | #define PWM_WAIT_TRIG(chans)		(0xe000 | (((chans) & 0x7) << 6)) | 
 | /* Send trigger.  Argument is same as PWM_WAIT_TRIG. */ | 
 | #define PWM_SEND_TRIG(chans)		(0xe000 | ((chans) & 0x7)) | 
 |  | 
 | struct lm8323_pwm { | 
 | 	int			id; | 
 | 	int			fade_time; | 
 | 	int			brightness; | 
 | 	int			desired_brightness; | 
 | 	bool			enabled; | 
 | 	bool			running; | 
 | 	/* pwm lock */ | 
 | 	struct mutex		lock; | 
 | 	struct work_struct	work; | 
 | 	struct led_classdev	cdev; | 
 | 	struct lm8323_chip	*chip; | 
 | }; | 
 |  | 
 | struct lm8323_chip { | 
 | 	/* device lock */ | 
 | 	struct mutex		lock; | 
 | 	struct i2c_client	*client; | 
 | 	struct work_struct	work; | 
 | 	struct input_dev	*idev; | 
 | 	bool			kp_enabled; | 
 | 	bool			pm_suspend; | 
 | 	unsigned		keys_down; | 
 | 	char			phys[32]; | 
 | 	unsigned short		keymap[LM8323_KEYMAP_SIZE]; | 
 | 	int			size_x; | 
 | 	int			size_y; | 
 | 	int			debounce_time; | 
 | 	int			active_time; | 
 | 	struct lm8323_pwm	pwm[LM8323_NUM_PWMS]; | 
 | }; | 
 |  | 
 | #define client_to_lm8323(c)	container_of(c, struct lm8323_chip, client) | 
 | #define dev_to_lm8323(d)	container_of(d, struct lm8323_chip, client->dev) | 
 | #define work_to_lm8323(w)	container_of(w, struct lm8323_chip, work) | 
 | #define cdev_to_pwm(c)		container_of(c, struct lm8323_pwm, cdev) | 
 | #define work_to_pwm(w)		container_of(w, struct lm8323_pwm, work) | 
 |  | 
 | #define LM8323_MAX_DATA 8 | 
 |  | 
 | /* | 
 |  * To write, we just access the chip's address in write mode, and dump the | 
 |  * command and data out on the bus.  The command byte and data are taken as | 
 |  * sequential u8s out of varargs, to a maximum of LM8323_MAX_DATA. | 
 |  */ | 
 | static int lm8323_write(struct lm8323_chip *lm, int len, ...) | 
 | { | 
 | 	int ret, i; | 
 | 	va_list ap; | 
 | 	u8 data[LM8323_MAX_DATA]; | 
 |  | 
 | 	va_start(ap, len); | 
 |  | 
 | 	if (unlikely(len > LM8323_MAX_DATA)) { | 
 | 		dev_err(&lm->client->dev, "tried to send %d bytes\n", len); | 
 | 		va_end(ap); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < len; i++) | 
 | 		data[i] = va_arg(ap, int); | 
 |  | 
 | 	va_end(ap); | 
 |  | 
 | 	/* | 
 | 	 * If the host is asleep while we send the data, we can get a NACK | 
 | 	 * back while it wakes up, so try again, once. | 
 | 	 */ | 
 | 	ret = i2c_master_send(lm->client, data, len); | 
 | 	if (unlikely(ret == -EREMOTEIO)) | 
 | 		ret = i2c_master_send(lm->client, data, len); | 
 | 	if (unlikely(ret != len)) | 
 | 		dev_err(&lm->client->dev, "sent %d bytes of %d total\n", | 
 | 			len, ret); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * To read, we first send the command byte to the chip and end the transaction, | 
 |  * then access the chip in read mode, at which point it will send the data. | 
 |  */ | 
 | static int lm8323_read(struct lm8323_chip *lm, u8 cmd, u8 *buf, int len) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * If the host is asleep while we send the byte, we can get a NACK | 
 | 	 * back while it wakes up, so try again, once. | 
 | 	 */ | 
 | 	ret = i2c_master_send(lm->client, &cmd, 1); | 
 | 	if (unlikely(ret == -EREMOTEIO)) | 
 | 		ret = i2c_master_send(lm->client, &cmd, 1); | 
 | 	if (unlikely(ret != 1)) { | 
 | 		dev_err(&lm->client->dev, "sending read cmd 0x%02x failed\n", | 
 | 			cmd); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	ret = i2c_master_recv(lm->client, buf, len); | 
 | 	if (unlikely(ret != len)) | 
 | 		dev_err(&lm->client->dev, "wanted %d bytes, got %d\n", | 
 | 			len, ret); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Set the chip active time (idle time before it enters halt). | 
 |  */ | 
 | static void lm8323_set_active_time(struct lm8323_chip *lm, int time) | 
 | { | 
 | 	lm8323_write(lm, 2, LM8323_CMD_SET_ACTIVE, time >> 2); | 
 | } | 
 |  | 
 | /* | 
 |  * The signals are AT-style: the low 7 bits are the keycode, and the top | 
 |  * bit indicates the state (1 for down, 0 for up). | 
 |  */ | 
 | static inline u8 lm8323_whichkey(u8 event) | 
 | { | 
 | 	return event & 0x7f; | 
 | } | 
 |  | 
 | static inline int lm8323_ispress(u8 event) | 
 | { | 
 | 	return (event & 0x80) ? 1 : 0; | 
 | } | 
 |  | 
 | static void process_keys(struct lm8323_chip *lm) | 
 | { | 
 | 	u8 event; | 
 | 	u8 key_fifo[LM8323_FIFO_LEN + 1]; | 
 | 	int old_keys_down = lm->keys_down; | 
 | 	int ret; | 
 | 	int i = 0; | 
 |  | 
 | 	/* | 
 | 	 * Read all key events from the FIFO at once. Next READ_FIFO clears the | 
 | 	 * FIFO even if we didn't read all events previously. | 
 | 	 */ | 
 | 	ret = lm8323_read(lm, LM8323_CMD_READ_FIFO, key_fifo, LM8323_FIFO_LEN); | 
 |  | 
 | 	if (ret < 0) { | 
 | 		dev_err(&lm->client->dev, "Failed reading fifo \n"); | 
 | 		return; | 
 | 	} | 
 | 	key_fifo[ret] = 0; | 
 |  | 
 | 	while ((event = key_fifo[i++])) { | 
 | 		u8 key = lm8323_whichkey(event); | 
 | 		int isdown = lm8323_ispress(event); | 
 | 		unsigned short keycode = lm->keymap[key]; | 
 |  | 
 | 		dev_vdbg(&lm->client->dev, "key 0x%02x %s\n", | 
 | 			 key, isdown ? "down" : "up"); | 
 |  | 
 | 		if (lm->kp_enabled) { | 
 | 			input_event(lm->idev, EV_MSC, MSC_SCAN, key); | 
 | 			input_report_key(lm->idev, keycode, isdown); | 
 | 			input_sync(lm->idev); | 
 | 		} | 
 |  | 
 | 		if (isdown) | 
 | 			lm->keys_down++; | 
 | 		else | 
 | 			lm->keys_down--; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Errata: We need to ensure that the chip never enters halt mode | 
 | 	 * during a keypress, so set active time to 0.  When it's released, | 
 | 	 * we can enter halt again, so set the active time back to normal. | 
 | 	 */ | 
 | 	if (!old_keys_down && lm->keys_down) | 
 | 		lm8323_set_active_time(lm, 0); | 
 | 	if (old_keys_down && !lm->keys_down) | 
 | 		lm8323_set_active_time(lm, lm->active_time); | 
 | } | 
 |  | 
 | static void lm8323_process_error(struct lm8323_chip *lm) | 
 | { | 
 | 	u8 error; | 
 |  | 
 | 	if (lm8323_read(lm, LM8323_CMD_READ_ERR, &error, 1) == 1) { | 
 | 		if (error & ERR_FIFOOVER) | 
 | 			dev_vdbg(&lm->client->dev, "fifo overflow!\n"); | 
 | 		if (error & ERR_KEYOVR) | 
 | 			dev_vdbg(&lm->client->dev, | 
 | 					"more than two keys pressed\n"); | 
 | 		if (error & ERR_CMDUNK) | 
 | 			dev_vdbg(&lm->client->dev, | 
 | 					"unknown command submitted\n"); | 
 | 		if (error & ERR_BADPAR) | 
 | 			dev_vdbg(&lm->client->dev, "bad command parameter\n"); | 
 | 	} | 
 | } | 
 |  | 
 | static void lm8323_reset(struct lm8323_chip *lm) | 
 | { | 
 | 	/* The docs say we must pass 0xAA as the data byte. */ | 
 | 	lm8323_write(lm, 2, LM8323_CMD_RESET, 0xAA); | 
 | } | 
 |  | 
 | static int lm8323_configure(struct lm8323_chip *lm) | 
 | { | 
 | 	int keysize = (lm->size_x << 4) | lm->size_y; | 
 | 	int clock = (CLK_SLOWCLKEN | CLK_RCPWM_EXTERNAL); | 
 | 	int debounce = lm->debounce_time >> 2; | 
 | 	int active = lm->active_time >> 2; | 
 |  | 
 | 	/* | 
 | 	 * Active time must be greater than the debounce time: if it's | 
 | 	 * a close-run thing, give ourselves a 12ms buffer. | 
 | 	 */ | 
 | 	if (debounce >= active) | 
 | 		active = debounce + 3; | 
 |  | 
 | 	lm8323_write(lm, 2, LM8323_CMD_WRITE_CFG, 0); | 
 | 	lm8323_write(lm, 2, LM8323_CMD_WRITE_CLOCK, clock); | 
 | 	lm8323_write(lm, 2, LM8323_CMD_SET_KEY_SIZE, keysize); | 
 | 	lm8323_set_active_time(lm, lm->active_time); | 
 | 	lm8323_write(lm, 2, LM8323_CMD_SET_DEBOUNCE, debounce); | 
 | 	lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_STATE, 0xff, 0xff); | 
 | 	lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_SEL, 0, 0); | 
 |  | 
 | 	/* | 
 | 	 * Not much we can do about errors at this point, so just hope | 
 | 	 * for the best. | 
 | 	 */ | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void pwm_done(struct lm8323_pwm *pwm) | 
 | { | 
 | 	mutex_lock(&pwm->lock); | 
 | 	pwm->running = false; | 
 | 	if (pwm->desired_brightness != pwm->brightness) | 
 | 		schedule_work(&pwm->work); | 
 | 	mutex_unlock(&pwm->lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Bottom half: handle the interrupt by posting key events, or dealing with | 
 |  * errors appropriately. | 
 |  */ | 
 | static void lm8323_work(struct work_struct *work) | 
 | { | 
 | 	struct lm8323_chip *lm = work_to_lm8323(work); | 
 | 	u8 ints; | 
 | 	int i; | 
 |  | 
 | 	mutex_lock(&lm->lock); | 
 |  | 
 | 	while ((lm8323_read(lm, LM8323_CMD_READ_INT, &ints, 1) == 1) && ints) { | 
 | 		if (likely(ints & INT_KEYPAD)) | 
 | 			process_keys(lm); | 
 | 		if (ints & INT_ROTATOR) { | 
 | 			/* We don't currently support the rotator. */ | 
 | 			dev_vdbg(&lm->client->dev, "rotator fired\n"); | 
 | 		} | 
 | 		if (ints & INT_ERROR) { | 
 | 			dev_vdbg(&lm->client->dev, "error!\n"); | 
 | 			lm8323_process_error(lm); | 
 | 		} | 
 | 		if (ints & INT_NOINIT) { | 
 | 			dev_err(&lm->client->dev, "chip lost config; " | 
 | 						  "reinitialising\n"); | 
 | 			lm8323_configure(lm); | 
 | 		} | 
 | 		for (i = 0; i < LM8323_NUM_PWMS; i++) { | 
 | 			if (ints & (1 << (INT_PWM1 + i))) { | 
 | 				dev_vdbg(&lm->client->dev, | 
 | 					 "pwm%d engine completed\n", i); | 
 | 				pwm_done(&lm->pwm[i]); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&lm->lock); | 
 | } | 
 |  | 
 | /* | 
 |  * We cannot use I2C in interrupt context, so we just schedule work. | 
 |  */ | 
 | static irqreturn_t lm8323_irq(int irq, void *data) | 
 | { | 
 | 	struct lm8323_chip *lm = data; | 
 |  | 
 | 	schedule_work(&lm->work); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /* | 
 |  * Read the chip ID. | 
 |  */ | 
 | static int lm8323_read_id(struct lm8323_chip *lm, u8 *buf) | 
 | { | 
 | 	int bytes; | 
 |  | 
 | 	bytes = lm8323_read(lm, LM8323_CMD_READ_ID, buf, 2); | 
 | 	if (unlikely(bytes != 2)) | 
 | 		return -EIO; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void lm8323_write_pwm_one(struct lm8323_pwm *pwm, int pos, u16 cmd) | 
 | { | 
 | 	lm8323_write(pwm->chip, 4, LM8323_CMD_PWM_WRITE, (pos << 2) | pwm->id, | 
 | 		     (cmd & 0xff00) >> 8, cmd & 0x00ff); | 
 | } | 
 |  | 
 | /* | 
 |  * Write a script into a given PWM engine, concluding with PWM_END. | 
 |  * If 'kill' is nonzero, the engine will be shut down at the end | 
 |  * of the script, producing a zero output. Otherwise the engine | 
 |  * will be kept running at the final PWM level indefinitely. | 
 |  */ | 
 | static void lm8323_write_pwm(struct lm8323_pwm *pwm, int kill, | 
 | 			     int len, const u16 *cmds) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < len; i++) | 
 | 		lm8323_write_pwm_one(pwm, i, cmds[i]); | 
 |  | 
 | 	lm8323_write_pwm_one(pwm, i++, PWM_END(kill)); | 
 | 	lm8323_write(pwm->chip, 2, LM8323_CMD_START_PWM, pwm->id); | 
 | 	pwm->running = true; | 
 | } | 
 |  | 
 | static void lm8323_pwm_work(struct work_struct *work) | 
 | { | 
 | 	struct lm8323_pwm *pwm = work_to_pwm(work); | 
 | 	int div512, perstep, steps, hz, up, kill; | 
 | 	u16 pwm_cmds[3]; | 
 | 	int num_cmds = 0; | 
 |  | 
 | 	mutex_lock(&pwm->lock); | 
 |  | 
 | 	/* | 
 | 	 * Do nothing if we're already at the requested level, | 
 | 	 * or previous setting is not yet complete. In the latter | 
 | 	 * case we will be called again when the previous PWM script | 
 | 	 * finishes. | 
 | 	 */ | 
 | 	if (pwm->running || pwm->desired_brightness == pwm->brightness) | 
 | 		goto out; | 
 |  | 
 | 	kill = (pwm->desired_brightness == 0); | 
 | 	up = (pwm->desired_brightness > pwm->brightness); | 
 | 	steps = abs(pwm->desired_brightness - pwm->brightness); | 
 |  | 
 | 	/* | 
 | 	 * Convert time (in ms) into a divisor (512 or 16 on a refclk of | 
 | 	 * 32768Hz), and number of ticks per step. | 
 | 	 */ | 
 | 	if ((pwm->fade_time / steps) > (32768 / 512)) { | 
 | 		div512 = 1; | 
 | 		hz = 32768 / 512; | 
 | 	} else { | 
 | 		div512 = 0; | 
 | 		hz = 32768 / 16; | 
 | 	} | 
 |  | 
 | 	perstep = (hz * pwm->fade_time) / (steps * 1000); | 
 |  | 
 | 	if (perstep == 0) | 
 | 		perstep = 1; | 
 | 	else if (perstep > 63) | 
 | 		perstep = 63; | 
 |  | 
 | 	while (steps) { | 
 | 		int s; | 
 |  | 
 | 		s = min(126, steps); | 
 | 		pwm_cmds[num_cmds++] = PWM_RAMP(div512, perstep, s, up); | 
 | 		steps -= s; | 
 | 	} | 
 |  | 
 | 	lm8323_write_pwm(pwm, kill, num_cmds, pwm_cmds); | 
 | 	pwm->brightness = pwm->desired_brightness; | 
 |  | 
 |  out: | 
 | 	mutex_unlock(&pwm->lock); | 
 | } | 
 |  | 
 | static void lm8323_pwm_set_brightness(struct led_classdev *led_cdev, | 
 | 				      enum led_brightness brightness) | 
 | { | 
 | 	struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev); | 
 | 	struct lm8323_chip *lm = pwm->chip; | 
 |  | 
 | 	mutex_lock(&pwm->lock); | 
 | 	pwm->desired_brightness = brightness; | 
 | 	mutex_unlock(&pwm->lock); | 
 |  | 
 | 	if (in_interrupt()) { | 
 | 		schedule_work(&pwm->work); | 
 | 	} else { | 
 | 		/* | 
 | 		 * Schedule PWM work as usual unless we are going into suspend | 
 | 		 */ | 
 | 		mutex_lock(&lm->lock); | 
 | 		if (likely(!lm->pm_suspend)) | 
 | 			schedule_work(&pwm->work); | 
 | 		else | 
 | 			lm8323_pwm_work(&pwm->work); | 
 | 		mutex_unlock(&lm->lock); | 
 | 	} | 
 | } | 
 |  | 
 | static ssize_t lm8323_pwm_show_time(struct device *dev, | 
 | 		struct device_attribute *attr, char *buf) | 
 | { | 
 | 	struct led_classdev *led_cdev = dev_get_drvdata(dev); | 
 | 	struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev); | 
 |  | 
 | 	return sprintf(buf, "%d\n", pwm->fade_time); | 
 | } | 
 |  | 
 | static ssize_t lm8323_pwm_store_time(struct device *dev, | 
 | 		struct device_attribute *attr, const char *buf, size_t len) | 
 | { | 
 | 	struct led_classdev *led_cdev = dev_get_drvdata(dev); | 
 | 	struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev); | 
 | 	int ret; | 
 | 	unsigned long time; | 
 |  | 
 | 	ret = strict_strtoul(buf, 10, &time); | 
 | 	/* Numbers only, please. */ | 
 | 	if (ret) | 
 | 		return -EINVAL; | 
 |  | 
 | 	pwm->fade_time = time; | 
 |  | 
 | 	return strlen(buf); | 
 | } | 
 | static DEVICE_ATTR(time, 0644, lm8323_pwm_show_time, lm8323_pwm_store_time); | 
 |  | 
 | static int init_pwm(struct lm8323_chip *lm, int id, struct device *dev, | 
 | 		    const char *name) | 
 | { | 
 | 	struct lm8323_pwm *pwm; | 
 |  | 
 | 	BUG_ON(id > 3); | 
 |  | 
 | 	pwm = &lm->pwm[id - 1]; | 
 |  | 
 | 	pwm->id = id; | 
 | 	pwm->fade_time = 0; | 
 | 	pwm->brightness = 0; | 
 | 	pwm->desired_brightness = 0; | 
 | 	pwm->running = false; | 
 | 	pwm->enabled = false; | 
 | 	INIT_WORK(&pwm->work, lm8323_pwm_work); | 
 | 	mutex_init(&pwm->lock); | 
 | 	pwm->chip = lm; | 
 |  | 
 | 	if (name) { | 
 | 		pwm->cdev.name = name; | 
 | 		pwm->cdev.brightness_set = lm8323_pwm_set_brightness; | 
 | 		if (led_classdev_register(dev, &pwm->cdev) < 0) { | 
 | 			dev_err(dev, "couldn't register PWM %d\n", id); | 
 | 			return -1; | 
 | 		} | 
 | 		if (device_create_file(pwm->cdev.dev, | 
 | 					&dev_attr_time) < 0) { | 
 | 			dev_err(dev, "couldn't register time attribute\n"); | 
 | 			led_classdev_unregister(&pwm->cdev); | 
 | 			return -1; | 
 | 		} | 
 | 		pwm->enabled = true; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct i2c_driver lm8323_i2c_driver; | 
 |  | 
 | static ssize_t lm8323_show_disable(struct device *dev, | 
 | 				   struct device_attribute *attr, char *buf) | 
 | { | 
 | 	struct lm8323_chip *lm = dev_get_drvdata(dev); | 
 |  | 
 | 	return sprintf(buf, "%u\n", !lm->kp_enabled); | 
 | } | 
 |  | 
 | static ssize_t lm8323_set_disable(struct device *dev, | 
 | 				  struct device_attribute *attr, | 
 | 				  const char *buf, size_t count) | 
 | { | 
 | 	struct lm8323_chip *lm = dev_get_drvdata(dev); | 
 | 	int ret; | 
 | 	unsigned long i; | 
 |  | 
 | 	ret = strict_strtoul(buf, 10, &i); | 
 |  | 
 | 	mutex_lock(&lm->lock); | 
 | 	lm->kp_enabled = !i; | 
 | 	mutex_unlock(&lm->lock); | 
 |  | 
 | 	return count; | 
 | } | 
 | static DEVICE_ATTR(disable_kp, 0644, lm8323_show_disable, lm8323_set_disable); | 
 |  | 
 | static int __devinit lm8323_probe(struct i2c_client *client, | 
 | 				  const struct i2c_device_id *id) | 
 | { | 
 | 	struct lm8323_platform_data *pdata = client->dev.platform_data; | 
 | 	struct input_dev *idev; | 
 | 	struct lm8323_chip *lm; | 
 | 	int i, err; | 
 | 	unsigned long tmo; | 
 | 	u8 data[2]; | 
 |  | 
 | 	if (!pdata || !pdata->size_x || !pdata->size_y) { | 
 | 		dev_err(&client->dev, "missing platform_data\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (pdata->size_x > 8) { | 
 | 		dev_err(&client->dev, "invalid x size %d specified\n", | 
 | 			pdata->size_x); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (pdata->size_y > 12) { | 
 | 		dev_err(&client->dev, "invalid y size %d specified\n", | 
 | 			pdata->size_y); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	lm = kzalloc(sizeof *lm, GFP_KERNEL); | 
 | 	idev = input_allocate_device(); | 
 | 	if (!lm || !idev) { | 
 | 		err = -ENOMEM; | 
 | 		goto fail1; | 
 | 	} | 
 |  | 
 | 	i2c_set_clientdata(client, lm); | 
 |  | 
 | 	lm->client = client; | 
 | 	lm->idev = idev; | 
 | 	mutex_init(&lm->lock); | 
 | 	INIT_WORK(&lm->work, lm8323_work); | 
 |  | 
 | 	lm->size_x = pdata->size_x; | 
 | 	lm->size_y = pdata->size_y; | 
 | 	dev_vdbg(&client->dev, "Keypad size: %d x %d\n", | 
 | 		 lm->size_x, lm->size_y); | 
 |  | 
 | 	lm->debounce_time = pdata->debounce_time; | 
 | 	lm->active_time = pdata->active_time; | 
 |  | 
 | 	lm8323_reset(lm); | 
 |  | 
 | 	/* Nothing's set up to service the IRQ yet, so just spin for max. | 
 | 	 * 100ms until we can configure. */ | 
 | 	tmo = jiffies + msecs_to_jiffies(100); | 
 | 	while (lm8323_read(lm, LM8323_CMD_READ_INT, data, 1) == 1) { | 
 | 		if (data[0] & INT_NOINIT) | 
 | 			break; | 
 |  | 
 | 		if (time_after(jiffies, tmo)) { | 
 | 			dev_err(&client->dev, | 
 | 				"timeout waiting for initialisation\n"); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		msleep(1); | 
 | 	} | 
 |  | 
 | 	lm8323_configure(lm); | 
 |  | 
 | 	/* If a true probe check the device */ | 
 | 	if (lm8323_read_id(lm, data) != 0) { | 
 | 		dev_err(&client->dev, "device not found\n"); | 
 | 		err = -ENODEV; | 
 | 		goto fail1; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < LM8323_NUM_PWMS; i++) { | 
 | 		err = init_pwm(lm, i + 1, &client->dev, pdata->pwm_names[i]); | 
 | 		if (err < 0) | 
 | 			goto fail2; | 
 | 	} | 
 |  | 
 | 	lm->kp_enabled = true; | 
 | 	err = device_create_file(&client->dev, &dev_attr_disable_kp); | 
 | 	if (err < 0) | 
 | 		goto fail2; | 
 |  | 
 | 	idev->name = pdata->name ? : "LM8323 keypad"; | 
 | 	snprintf(lm->phys, sizeof(lm->phys), | 
 | 		 "%s/input-kp", dev_name(&client->dev)); | 
 | 	idev->phys = lm->phys; | 
 |  | 
 | 	idev->evbit[0] = BIT(EV_KEY) | BIT(EV_MSC); | 
 | 	__set_bit(MSC_SCAN, idev->mscbit); | 
 | 	for (i = 0; i < LM8323_KEYMAP_SIZE; i++) { | 
 | 		__set_bit(pdata->keymap[i], idev->keybit); | 
 | 		lm->keymap[i] = pdata->keymap[i]; | 
 | 	} | 
 | 	__clear_bit(KEY_RESERVED, idev->keybit); | 
 |  | 
 | 	if (pdata->repeat) | 
 | 		__set_bit(EV_REP, idev->evbit); | 
 |  | 
 | 	err = input_register_device(idev); | 
 | 	if (err) { | 
 | 		dev_dbg(&client->dev, "error registering input device\n"); | 
 | 		goto fail3; | 
 | 	} | 
 |  | 
 | 	err = request_irq(client->irq, lm8323_irq, | 
 | 			  IRQF_TRIGGER_FALLING | IRQF_DISABLED, | 
 | 			  "lm8323", lm); | 
 | 	if (err) { | 
 | 		dev_err(&client->dev, "could not get IRQ %d\n", client->irq); | 
 | 		goto fail4; | 
 | 	} | 
 |  | 
 | 	device_init_wakeup(&client->dev, 1); | 
 | 	enable_irq_wake(client->irq); | 
 |  | 
 | 	return 0; | 
 |  | 
 | fail4: | 
 | 	input_unregister_device(idev); | 
 | 	idev = NULL; | 
 | fail3: | 
 | 	device_remove_file(&client->dev, &dev_attr_disable_kp); | 
 | fail2: | 
 | 	while (--i >= 0) | 
 | 		if (lm->pwm[i].enabled) | 
 | 			led_classdev_unregister(&lm->pwm[i].cdev); | 
 | fail1: | 
 | 	input_free_device(idev); | 
 | 	kfree(lm); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int __devexit lm8323_remove(struct i2c_client *client) | 
 | { | 
 | 	struct lm8323_chip *lm = i2c_get_clientdata(client); | 
 | 	int i; | 
 |  | 
 | 	disable_irq_wake(client->irq); | 
 | 	free_irq(client->irq, lm); | 
 | 	cancel_work_sync(&lm->work); | 
 |  | 
 | 	input_unregister_device(lm->idev); | 
 |  | 
 | 	device_remove_file(&lm->client->dev, &dev_attr_disable_kp); | 
 |  | 
 | 	for (i = 0; i < 3; i++) | 
 | 		if (lm->pwm[i].enabled) | 
 | 			led_classdev_unregister(&lm->pwm[i].cdev); | 
 |  | 
 | 	kfree(lm); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PM | 
 | /* | 
 |  * We don't need to explicitly suspend the chip, as it already switches off | 
 |  * when there's no activity. | 
 |  */ | 
 | static int lm8323_suspend(struct i2c_client *client, pm_message_t mesg) | 
 | { | 
 | 	struct lm8323_chip *lm = i2c_get_clientdata(client); | 
 | 	int i; | 
 |  | 
 | 	set_irq_wake(client->irq, 0); | 
 | 	disable_irq(client->irq); | 
 |  | 
 | 	mutex_lock(&lm->lock); | 
 | 	lm->pm_suspend = true; | 
 | 	mutex_unlock(&lm->lock); | 
 |  | 
 | 	for (i = 0; i < 3; i++) | 
 | 		if (lm->pwm[i].enabled) | 
 | 			led_classdev_suspend(&lm->pwm[i].cdev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int lm8323_resume(struct i2c_client *client) | 
 | { | 
 | 	struct lm8323_chip *lm = i2c_get_clientdata(client); | 
 | 	int i; | 
 |  | 
 | 	mutex_lock(&lm->lock); | 
 | 	lm->pm_suspend = false; | 
 | 	mutex_unlock(&lm->lock); | 
 |  | 
 | 	for (i = 0; i < 3; i++) | 
 | 		if (lm->pwm[i].enabled) | 
 | 			led_classdev_resume(&lm->pwm[i].cdev); | 
 |  | 
 | 	enable_irq(client->irq); | 
 | 	set_irq_wake(client->irq, 1); | 
 |  | 
 | 	return 0; | 
 | } | 
 | #else | 
 | #define lm8323_suspend	NULL | 
 | #define lm8323_resume	NULL | 
 | #endif | 
 |  | 
 | static const struct i2c_device_id lm8323_id[] = { | 
 | 	{ "lm8323", 0 }, | 
 | 	{ } | 
 | }; | 
 |  | 
 | static struct i2c_driver lm8323_i2c_driver = { | 
 | 	.driver = { | 
 | 		.name	= "lm8323", | 
 | 	}, | 
 | 	.probe		= lm8323_probe, | 
 | 	.remove		= __devexit_p(lm8323_remove), | 
 | 	.suspend	= lm8323_suspend, | 
 | 	.resume		= lm8323_resume, | 
 | 	.id_table	= lm8323_id, | 
 | }; | 
 | MODULE_DEVICE_TABLE(i2c, lm8323_id); | 
 |  | 
 | static int __init lm8323_init(void) | 
 | { | 
 | 	return i2c_add_driver(&lm8323_i2c_driver); | 
 | } | 
 | module_init(lm8323_init); | 
 |  | 
 | static void __exit lm8323_exit(void) | 
 | { | 
 | 	i2c_del_driver(&lm8323_i2c_driver); | 
 | } | 
 | module_exit(lm8323_exit); | 
 |  | 
 | MODULE_AUTHOR("Timo O. Karjalainen <timo.o.karjalainen@nokia.com>"); | 
 | MODULE_AUTHOR("Daniel Stone"); | 
 | MODULE_AUTHOR("Felipe Balbi <felipe.balbi@nokia.com>"); | 
 | MODULE_DESCRIPTION("LM8323 keypad driver"); | 
 | MODULE_LICENSE("GPL"); | 
 |  |