| /* | 
 |  * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR | 
 |  * | 
 |  * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com> | 
 |  * Copyright (C) 2009 Nuvoton PS Team | 
 |  * | 
 |  * Special thanks to Nuvoton for providing hardware, spec sheets and | 
 |  * sample code upon which portions of this driver are based. Indirect | 
 |  * thanks also to Maxim Levitsky, whose ene_ir driver this driver is | 
 |  * modeled after. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public License as | 
 |  * published by the Free Software Foundation; either version 2 of the | 
 |  * License, or (at your option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, but | 
 |  * WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |  * General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 | 
 |  * USA | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/module.h> | 
 | #include <linux/pnp.h> | 
 | #include <linux/io.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/slab.h> | 
 | #include <media/rc-core.h> | 
 | #include <linux/pci_ids.h> | 
 |  | 
 | #include "nuvoton-cir.h" | 
 |  | 
 | static char *chip_id = "w836x7hg"; | 
 |  | 
 | /* write val to config reg */ | 
 | static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg) | 
 | { | 
 | 	outb(reg, nvt->cr_efir); | 
 | 	outb(val, nvt->cr_efdr); | 
 | } | 
 |  | 
 | /* read val from config reg */ | 
 | static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg) | 
 | { | 
 | 	outb(reg, nvt->cr_efir); | 
 | 	return inb(nvt->cr_efdr); | 
 | } | 
 |  | 
 | /* update config register bit without changing other bits */ | 
 | static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg) | 
 | { | 
 | 	u8 tmp = nvt_cr_read(nvt, reg) | val; | 
 | 	nvt_cr_write(nvt, tmp, reg); | 
 | } | 
 |  | 
 | /* clear config register bit without changing other bits */ | 
 | static inline void nvt_clear_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg) | 
 | { | 
 | 	u8 tmp = nvt_cr_read(nvt, reg) & ~val; | 
 | 	nvt_cr_write(nvt, tmp, reg); | 
 | } | 
 |  | 
 | /* enter extended function mode */ | 
 | static inline void nvt_efm_enable(struct nvt_dev *nvt) | 
 | { | 
 | 	/* Enabling Extended Function Mode explicitly requires writing 2x */ | 
 | 	outb(EFER_EFM_ENABLE, nvt->cr_efir); | 
 | 	outb(EFER_EFM_ENABLE, nvt->cr_efir); | 
 | } | 
 |  | 
 | /* exit extended function mode */ | 
 | static inline void nvt_efm_disable(struct nvt_dev *nvt) | 
 | { | 
 | 	outb(EFER_EFM_DISABLE, nvt->cr_efir); | 
 | } | 
 |  | 
 | /* | 
 |  * When you want to address a specific logical device, write its logical | 
 |  * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing | 
 |  * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN. | 
 |  */ | 
 | static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev) | 
 | { | 
 | 	outb(CR_LOGICAL_DEV_SEL, nvt->cr_efir); | 
 | 	outb(ldev, nvt->cr_efdr); | 
 | } | 
 |  | 
 | /* write val to cir config register */ | 
 | static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset) | 
 | { | 
 | 	outb(val, nvt->cir_addr + offset); | 
 | } | 
 |  | 
 | /* read val from cir config register */ | 
 | static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset) | 
 | { | 
 | 	u8 val; | 
 |  | 
 | 	val = inb(nvt->cir_addr + offset); | 
 |  | 
 | 	return val; | 
 | } | 
 |  | 
 | /* write val to cir wake register */ | 
 | static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt, | 
 | 					  u8 val, u8 offset) | 
 | { | 
 | 	outb(val, nvt->cir_wake_addr + offset); | 
 | } | 
 |  | 
 | /* read val from cir wake config register */ | 
 | static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset) | 
 | { | 
 | 	u8 val; | 
 |  | 
 | 	val = inb(nvt->cir_wake_addr + offset); | 
 |  | 
 | 	return val; | 
 | } | 
 |  | 
 | #define pr_reg(text, ...) \ | 
 | 	printk(KERN_INFO KBUILD_MODNAME ": " text, ## __VA_ARGS__) | 
 |  | 
 | /* dump current cir register contents */ | 
 | static void cir_dump_regs(struct nvt_dev *nvt) | 
 | { | 
 | 	nvt_efm_enable(nvt); | 
 | 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR); | 
 |  | 
 | 	pr_reg("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME); | 
 | 	pr_reg(" * CR CIR ACTIVE :   0x%x\n", | 
 | 	       nvt_cr_read(nvt, CR_LOGICAL_DEV_EN)); | 
 | 	pr_reg(" * CR CIR BASE ADDR: 0x%x\n", | 
 | 	       (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) | | 
 | 		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO)); | 
 | 	pr_reg(" * CR CIR IRQ NUM:   0x%x\n", | 
 | 	       nvt_cr_read(nvt, CR_CIR_IRQ_RSRC)); | 
 |  | 
 | 	nvt_efm_disable(nvt); | 
 |  | 
 | 	pr_reg("%s: Dump CIR registers:\n", NVT_DRIVER_NAME); | 
 | 	pr_reg(" * IRCON:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON)); | 
 | 	pr_reg(" * IRSTS:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS)); | 
 | 	pr_reg(" * IREN:      0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN)); | 
 | 	pr_reg(" * RXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT)); | 
 | 	pr_reg(" * CP:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CP)); | 
 | 	pr_reg(" * CC:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CC)); | 
 | 	pr_reg(" * SLCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH)); | 
 | 	pr_reg(" * SLCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL)); | 
 | 	pr_reg(" * FIFOCON:   0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON)); | 
 | 	pr_reg(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS)); | 
 | 	pr_reg(" * SRXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO)); | 
 | 	pr_reg(" * TXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT)); | 
 | 	pr_reg(" * STXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO)); | 
 | 	pr_reg(" * FCCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH)); | 
 | 	pr_reg(" * FCCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL)); | 
 | 	pr_reg(" * IRFSM:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM)); | 
 | } | 
 |  | 
 | /* dump current cir wake register contents */ | 
 | static void cir_wake_dump_regs(struct nvt_dev *nvt) | 
 | { | 
 | 	u8 i, fifo_len; | 
 |  | 
 | 	nvt_efm_enable(nvt); | 
 | 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE); | 
 |  | 
 | 	pr_reg("%s: Dump CIR WAKE logical device registers:\n", | 
 | 	       NVT_DRIVER_NAME); | 
 | 	pr_reg(" * CR CIR WAKE ACTIVE :   0x%x\n", | 
 | 	       nvt_cr_read(nvt, CR_LOGICAL_DEV_EN)); | 
 | 	pr_reg(" * CR CIR WAKE BASE ADDR: 0x%x\n", | 
 | 	       (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) | | 
 | 		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO)); | 
 | 	pr_reg(" * CR CIR WAKE IRQ NUM:   0x%x\n", | 
 | 	       nvt_cr_read(nvt, CR_CIR_IRQ_RSRC)); | 
 |  | 
 | 	nvt_efm_disable(nvt); | 
 |  | 
 | 	pr_reg("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME); | 
 | 	pr_reg(" * IRCON:          0x%x\n", | 
 | 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON)); | 
 | 	pr_reg(" * IRSTS:          0x%x\n", | 
 | 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS)); | 
 | 	pr_reg(" * IREN:           0x%x\n", | 
 | 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN)); | 
 | 	pr_reg(" * FIFO CMP DEEP:  0x%x\n", | 
 | 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP)); | 
 | 	pr_reg(" * FIFO CMP TOL:   0x%x\n", | 
 | 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL)); | 
 | 	pr_reg(" * FIFO COUNT:     0x%x\n", | 
 | 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT)); | 
 | 	pr_reg(" * SLCH:           0x%x\n", | 
 | 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH)); | 
 | 	pr_reg(" * SLCL:           0x%x\n", | 
 | 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL)); | 
 | 	pr_reg(" * FIFOCON:        0x%x\n", | 
 | 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON)); | 
 | 	pr_reg(" * SRXFSTS:        0x%x\n", | 
 | 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS)); | 
 | 	pr_reg(" * SAMPLE RX FIFO: 0x%x\n", | 
 | 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO)); | 
 | 	pr_reg(" * WR FIFO DATA:   0x%x\n", | 
 | 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA)); | 
 | 	pr_reg(" * RD FIFO ONLY:   0x%x\n", | 
 | 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY)); | 
 | 	pr_reg(" * RD FIFO ONLY IDX: 0x%x\n", | 
 | 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX)); | 
 | 	pr_reg(" * FIFO IGNORE:    0x%x\n", | 
 | 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE)); | 
 | 	pr_reg(" * IRFSM:          0x%x\n", | 
 | 	       nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM)); | 
 |  | 
 | 	fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT); | 
 | 	pr_reg("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len); | 
 | 	pr_reg("* Contents = "); | 
 | 	for (i = 0; i < fifo_len; i++) | 
 | 		printk(KERN_CONT "%02x ", | 
 | 		       nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY)); | 
 | 	printk(KERN_CONT "\n"); | 
 | } | 
 |  | 
 | /* detect hardware features */ | 
 | static int nvt_hw_detect(struct nvt_dev *nvt) | 
 | { | 
 | 	unsigned long flags; | 
 | 	u8 chip_major, chip_minor; | 
 | 	int ret = 0; | 
 |  | 
 | 	nvt_efm_enable(nvt); | 
 |  | 
 | 	/* Check if we're wired for the alternate EFER setup */ | 
 | 	chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI); | 
 | 	if (chip_major == 0xff) { | 
 | 		nvt->cr_efir = CR_EFIR2; | 
 | 		nvt->cr_efdr = CR_EFDR2; | 
 | 		nvt_efm_enable(nvt); | 
 | 		chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI); | 
 | 	} | 
 |  | 
 | 	chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO); | 
 | 	nvt_dbg("%s: chip id: 0x%02x 0x%02x", chip_id, chip_major, chip_minor); | 
 |  | 
 | 	if (chip_major != CHIP_ID_HIGH || | 
 | 	    (chip_minor != CHIP_ID_LOW && chip_minor != CHIP_ID_LOW2)) { | 
 | 		nvt_pr(KERN_ERR, "%s: unsupported chip, id: 0x%02x 0x%02x", | 
 | 		       chip_id, chip_major, chip_minor); | 
 | 		ret = -ENODEV; | 
 | 	} | 
 |  | 
 | 	nvt_efm_disable(nvt); | 
 |  | 
 | 	spin_lock_irqsave(&nvt->nvt_lock, flags); | 
 | 	nvt->chip_major = chip_major; | 
 | 	nvt->chip_minor = chip_minor; | 
 | 	spin_unlock_irqrestore(&nvt->nvt_lock, flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void nvt_cir_ldev_init(struct nvt_dev *nvt) | 
 | { | 
 | 	u8 val; | 
 |  | 
 | 	/* output pin selection (Pin95=CIRRX, Pin96=CIRTX1, WB enabled */ | 
 | 	val = nvt_cr_read(nvt, CR_OUTPUT_PIN_SEL); | 
 | 	val &= OUTPUT_PIN_SEL_MASK; | 
 | 	val |= (OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB); | 
 | 	nvt_cr_write(nvt, val, CR_OUTPUT_PIN_SEL); | 
 |  | 
 | 	/* Select CIR logical device and enable */ | 
 | 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR); | 
 | 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN); | 
 |  | 
 | 	nvt_cr_write(nvt, nvt->cir_addr >> 8, CR_CIR_BASE_ADDR_HI); | 
 | 	nvt_cr_write(nvt, nvt->cir_addr & 0xff, CR_CIR_BASE_ADDR_LO); | 
 |  | 
 | 	nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC); | 
 |  | 
 | 	nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d", | 
 | 		nvt->cir_addr, nvt->cir_irq); | 
 | } | 
 |  | 
 | static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt) | 
 | { | 
 | 	/* Select ACPI logical device, enable it and CIR Wake */ | 
 | 	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI); | 
 | 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN); | 
 |  | 
 | 	/* Enable CIR Wake via PSOUT# (Pin60) */ | 
 | 	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE); | 
 |  | 
 | 	/* enable cir interrupt of mouse/keyboard IRQ event */ | 
 | 	nvt_set_reg_bit(nvt, CIR_INTR_MOUSE_IRQ_BIT, CR_ACPI_IRQ_EVENTS); | 
 |  | 
 | 	/* enable pme interrupt of cir wakeup event */ | 
 | 	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2); | 
 |  | 
 | 	/* Select CIR Wake logical device and enable */ | 
 | 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE); | 
 | 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN); | 
 |  | 
 | 	nvt_cr_write(nvt, nvt->cir_wake_addr >> 8, CR_CIR_BASE_ADDR_HI); | 
 | 	nvt_cr_write(nvt, nvt->cir_wake_addr & 0xff, CR_CIR_BASE_ADDR_LO); | 
 |  | 
 | 	nvt_cr_write(nvt, nvt->cir_wake_irq, CR_CIR_IRQ_RSRC); | 
 |  | 
 | 	nvt_dbg("CIR Wake initialized, base io port address: 0x%lx, irq: %d", | 
 | 		nvt->cir_wake_addr, nvt->cir_wake_irq); | 
 | } | 
 |  | 
 | /* clear out the hardware's cir rx fifo */ | 
 | static void nvt_clear_cir_fifo(struct nvt_dev *nvt) | 
 | { | 
 | 	u8 val; | 
 |  | 
 | 	val = nvt_cir_reg_read(nvt, CIR_FIFOCON); | 
 | 	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON); | 
 | } | 
 |  | 
 | /* clear out the hardware's cir wake rx fifo */ | 
 | static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt) | 
 | { | 
 | 	u8 val; | 
 |  | 
 | 	val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON); | 
 | 	nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR, | 
 | 			       CIR_WAKE_FIFOCON); | 
 | } | 
 |  | 
 | /* clear out the hardware's cir tx fifo */ | 
 | static void nvt_clear_tx_fifo(struct nvt_dev *nvt) | 
 | { | 
 | 	u8 val; | 
 |  | 
 | 	val = nvt_cir_reg_read(nvt, CIR_FIFOCON); | 
 | 	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON); | 
 | } | 
 |  | 
 | /* enable RX Trigger Level Reach and Packet End interrupts */ | 
 | static void nvt_set_cir_iren(struct nvt_dev *nvt) | 
 | { | 
 | 	u8 iren; | 
 |  | 
 | 	iren = CIR_IREN_RTR | CIR_IREN_PE; | 
 | 	nvt_cir_reg_write(nvt, iren, CIR_IREN); | 
 | } | 
 |  | 
 | static void nvt_cir_regs_init(struct nvt_dev *nvt) | 
 | { | 
 | 	/* set sample limit count (PE interrupt raised when reached) */ | 
 | 	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH); | 
 | 	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL); | 
 |  | 
 | 	/* set fifo irq trigger levels */ | 
 | 	nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV | | 
 | 			  CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON); | 
 |  | 
 | 	/* | 
 | 	 * Enable TX and RX, specify carrier on = low, off = high, and set | 
 | 	 * sample period (currently 50us) | 
 | 	 */ | 
 | 	nvt_cir_reg_write(nvt, | 
 | 			  CIR_IRCON_TXEN | CIR_IRCON_RXEN | | 
 | 			  CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL, | 
 | 			  CIR_IRCON); | 
 |  | 
 | 	/* clear hardware rx and tx fifos */ | 
 | 	nvt_clear_cir_fifo(nvt); | 
 | 	nvt_clear_tx_fifo(nvt); | 
 |  | 
 | 	/* clear any and all stray interrupts */ | 
 | 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS); | 
 |  | 
 | 	/* and finally, enable interrupts */ | 
 | 	nvt_set_cir_iren(nvt); | 
 | } | 
 |  | 
 | static void nvt_cir_wake_regs_init(struct nvt_dev *nvt) | 
 | { | 
 | 	/* set number of bytes needed for wake from s3 (default 65) */ | 
 | 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFO_CMP_BYTES, | 
 | 			       CIR_WAKE_FIFO_CMP_DEEP); | 
 |  | 
 | 	/* set tolerance/variance allowed per byte during wake compare */ | 
 | 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_CMP_TOLERANCE, | 
 | 			       CIR_WAKE_FIFO_CMP_TOL); | 
 |  | 
 | 	/* set sample limit count (PE interrupt raised when reached) */ | 
 | 	nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_WAKE_SLCH); | 
 | 	nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_WAKE_SLCL); | 
 |  | 
 | 	/* set cir wake fifo rx trigger level (currently 67) */ | 
 | 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFOCON_RX_TRIGGER_LEV, | 
 | 			       CIR_WAKE_FIFOCON); | 
 |  | 
 | 	/* | 
 | 	 * Enable TX and RX, specific carrier on = low, off = high, and set | 
 | 	 * sample period (currently 50us) | 
 | 	 */ | 
 | 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN | | 
 | 			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV | | 
 | 			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL, | 
 | 			       CIR_WAKE_IRCON); | 
 |  | 
 | 	/* clear cir wake rx fifo */ | 
 | 	nvt_clear_cir_wake_fifo(nvt); | 
 |  | 
 | 	/* clear any and all stray interrupts */ | 
 | 	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS); | 
 | } | 
 |  | 
 | static void nvt_enable_wake(struct nvt_dev *nvt) | 
 | { | 
 | 	nvt_efm_enable(nvt); | 
 |  | 
 | 	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI); | 
 | 	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE); | 
 | 	nvt_set_reg_bit(nvt, CIR_INTR_MOUSE_IRQ_BIT, CR_ACPI_IRQ_EVENTS); | 
 | 	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2); | 
 |  | 
 | 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE); | 
 | 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN); | 
 |  | 
 | 	nvt_efm_disable(nvt); | 
 |  | 
 | 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN | | 
 | 			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV | | 
 | 			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL, | 
 | 			       CIR_WAKE_IRCON); | 
 | 	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS); | 
 | 	nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN); | 
 | } | 
 |  | 
 | /* rx carrier detect only works in learning mode, must be called w/nvt_lock */ | 
 | static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt) | 
 | { | 
 | 	u32 count, carrier, duration = 0; | 
 | 	int i; | 
 |  | 
 | 	count = nvt_cir_reg_read(nvt, CIR_FCCL) | | 
 | 		nvt_cir_reg_read(nvt, CIR_FCCH) << 8; | 
 |  | 
 | 	for (i = 0; i < nvt->pkts; i++) { | 
 | 		if (nvt->buf[i] & BUF_PULSE_BIT) | 
 | 			duration += nvt->buf[i] & BUF_LEN_MASK; | 
 | 	} | 
 |  | 
 | 	duration *= SAMPLE_PERIOD; | 
 |  | 
 | 	if (!count || !duration) { | 
 | 		nvt_pr(KERN_NOTICE, "Unable to determine carrier! (c:%u, d:%u)", | 
 | 		       count, duration); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	carrier = MS_TO_NS(count) / duration; | 
 |  | 
 | 	if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER)) | 
 | 		nvt_dbg("WTF? Carrier frequency out of range!"); | 
 |  | 
 | 	nvt_dbg("Carrier frequency: %u (count %u, duration %u)", | 
 | 		carrier, count, duration); | 
 |  | 
 | 	return carrier; | 
 | } | 
 |  | 
 | /* | 
 |  * set carrier frequency | 
 |  * | 
 |  * set carrier on 2 registers: CP & CC | 
 |  * always set CP as 0x81 | 
 |  * set CC by SPEC, CC = 3MHz/carrier - 1 | 
 |  */ | 
 | static int nvt_set_tx_carrier(struct rc_dev *dev, u32 carrier) | 
 | { | 
 | 	struct nvt_dev *nvt = dev->priv; | 
 | 	u16 val; | 
 |  | 
 | 	nvt_cir_reg_write(nvt, 1, CIR_CP); | 
 | 	val = 3000000 / (carrier) - 1; | 
 | 	nvt_cir_reg_write(nvt, val & 0xff, CIR_CC); | 
 |  | 
 | 	nvt_dbg("cp: 0x%x cc: 0x%x\n", | 
 | 		nvt_cir_reg_read(nvt, CIR_CP), nvt_cir_reg_read(nvt, CIR_CC)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * nvt_tx_ir | 
 |  * | 
 |  * 1) clean TX fifo first (handled by AP) | 
 |  * 2) copy data from user space | 
 |  * 3) disable RX interrupts, enable TX interrupts: TTR & TFU | 
 |  * 4) send 9 packets to TX FIFO to open TTR | 
 |  * in interrupt_handler: | 
 |  * 5) send all data out | 
 |  * go back to write(): | 
 |  * 6) disable TX interrupts, re-enable RX interupts | 
 |  * | 
 |  * The key problem of this function is user space data may larger than | 
 |  * driver's data buf length. So nvt_tx_ir() will only copy TX_BUF_LEN data to | 
 |  * buf, and keep current copied data buf num in cur_buf_num. But driver's buf | 
 |  * number may larger than TXFCONT (0xff). So in interrupt_handler, it has to | 
 |  * set TXFCONT as 0xff, until buf_count less than 0xff. | 
 |  */ | 
 | static int nvt_tx_ir(struct rc_dev *dev, int *txbuf, u32 n) | 
 | { | 
 | 	struct nvt_dev *nvt = dev->priv; | 
 | 	unsigned long flags; | 
 | 	size_t cur_count; | 
 | 	unsigned int i; | 
 | 	u8 iren; | 
 | 	int ret; | 
 |  | 
 | 	spin_lock_irqsave(&nvt->tx.lock, flags); | 
 |  | 
 | 	if (n >= TX_BUF_LEN) { | 
 | 		nvt->tx.buf_count = cur_count = TX_BUF_LEN; | 
 | 		ret = TX_BUF_LEN; | 
 | 	} else { | 
 | 		nvt->tx.buf_count = cur_count = n; | 
 | 		ret = n; | 
 | 	} | 
 |  | 
 | 	memcpy(nvt->tx.buf, txbuf, nvt->tx.buf_count); | 
 |  | 
 | 	nvt->tx.cur_buf_num = 0; | 
 |  | 
 | 	/* save currently enabled interrupts */ | 
 | 	iren = nvt_cir_reg_read(nvt, CIR_IREN); | 
 |  | 
 | 	/* now disable all interrupts, save TFU & TTR */ | 
 | 	nvt_cir_reg_write(nvt, CIR_IREN_TFU | CIR_IREN_TTR, CIR_IREN); | 
 |  | 
 | 	nvt->tx.tx_state = ST_TX_REPLY; | 
 |  | 
 | 	nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV_8 | | 
 | 			  CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON); | 
 |  | 
 | 	/* trigger TTR interrupt by writing out ones, (yes, it's ugly) */ | 
 | 	for (i = 0; i < 9; i++) | 
 | 		nvt_cir_reg_write(nvt, 0x01, CIR_STXFIFO); | 
 |  | 
 | 	spin_unlock_irqrestore(&nvt->tx.lock, flags); | 
 |  | 
 | 	wait_event(nvt->tx.queue, nvt->tx.tx_state == ST_TX_REQUEST); | 
 |  | 
 | 	spin_lock_irqsave(&nvt->tx.lock, flags); | 
 | 	nvt->tx.tx_state = ST_TX_NONE; | 
 | 	spin_unlock_irqrestore(&nvt->tx.lock, flags); | 
 |  | 
 | 	/* restore enabled interrupts to prior state */ | 
 | 	nvt_cir_reg_write(nvt, iren, CIR_IREN); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* dump contents of the last rx buffer we got from the hw rx fifo */ | 
 | static void nvt_dump_rx_buf(struct nvt_dev *nvt) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts); | 
 | 	for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++) | 
 | 		printk(KERN_CONT "0x%02x ", nvt->buf[i]); | 
 | 	printk(KERN_CONT "\n"); | 
 | } | 
 |  | 
 | /* | 
 |  * Process raw data in rx driver buffer, store it in raw IR event kfifo, | 
 |  * trigger decode when appropriate. | 
 |  * | 
 |  * We get IR data samples one byte at a time. If the msb is set, its a pulse, | 
 |  * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD | 
 |  * (default 50us) intervals for that pulse/space. A discrete signal is | 
 |  * followed by a series of 0x7f packets, then either 0x7<something> or 0x80 | 
 |  * to signal more IR coming (repeats) or end of IR, respectively. We store | 
 |  * sample data in the raw event kfifo until we see 0x7<something> (except f) | 
 |  * or 0x80, at which time, we trigger a decode operation. | 
 |  */ | 
 | static void nvt_process_rx_ir_data(struct nvt_dev *nvt) | 
 | { | 
 | 	DEFINE_IR_RAW_EVENT(rawir); | 
 | 	unsigned int count; | 
 | 	u32 carrier; | 
 | 	u8 sample; | 
 | 	int i; | 
 |  | 
 | 	nvt_dbg_verbose("%s firing", __func__); | 
 |  | 
 | 	if (debug) | 
 | 		nvt_dump_rx_buf(nvt); | 
 |  | 
 | 	if (nvt->carrier_detect_enabled) | 
 | 		carrier = nvt_rx_carrier_detect(nvt); | 
 |  | 
 | 	count = nvt->pkts; | 
 | 	nvt_dbg_verbose("Processing buffer of len %d", count); | 
 |  | 
 | 	init_ir_raw_event(&rawir); | 
 |  | 
 | 	for (i = 0; i < count; i++) { | 
 | 		nvt->pkts--; | 
 | 		sample = nvt->buf[i]; | 
 |  | 
 | 		rawir.pulse = ((sample & BUF_PULSE_BIT) != 0); | 
 | 		rawir.duration = US_TO_NS((sample & BUF_LEN_MASK) | 
 | 					  * SAMPLE_PERIOD); | 
 |  | 
 | 		if ((sample & BUF_LEN_MASK) == BUF_LEN_MASK) { | 
 | 			if (nvt->rawir.pulse == rawir.pulse) | 
 | 				nvt->rawir.duration += rawir.duration; | 
 | 			else { | 
 | 				nvt->rawir.duration = rawir.duration; | 
 | 				nvt->rawir.pulse = rawir.pulse; | 
 | 			} | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		rawir.duration += nvt->rawir.duration; | 
 |  | 
 | 		init_ir_raw_event(&nvt->rawir); | 
 | 		nvt->rawir.duration = 0; | 
 | 		nvt->rawir.pulse = rawir.pulse; | 
 |  | 
 | 		if (sample == BUF_PULSE_BIT) | 
 | 			rawir.pulse = false; | 
 |  | 
 | 		if (rawir.duration) { | 
 | 			nvt_dbg("Storing %s with duration %d", | 
 | 				rawir.pulse ? "pulse" : "space", | 
 | 				rawir.duration); | 
 |  | 
 | 			ir_raw_event_store(nvt->rdev, &rawir); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * BUF_PULSE_BIT indicates end of IR data, BUF_REPEAT_BYTE | 
 | 		 * indicates end of IR signal, but new data incoming. In both | 
 | 		 * cases, it means we're ready to call ir_raw_event_handle | 
 | 		 */ | 
 | 		if ((sample == BUF_PULSE_BIT) && nvt->pkts) { | 
 | 			nvt_dbg("Calling ir_raw_event_handle (signal end)\n"); | 
 | 			ir_raw_event_handle(nvt->rdev); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	nvt_dbg("Calling ir_raw_event_handle (buffer empty)\n"); | 
 | 	ir_raw_event_handle(nvt->rdev); | 
 |  | 
 | 	if (nvt->pkts) { | 
 | 		nvt_dbg("Odd, pkts should be 0 now... (its %u)", nvt->pkts); | 
 | 		nvt->pkts = 0; | 
 | 	} | 
 |  | 
 | 	nvt_dbg_verbose("%s done", __func__); | 
 | } | 
 |  | 
 | static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt) | 
 | { | 
 | 	nvt_pr(KERN_WARNING, "RX FIFO overrun detected, flushing data!"); | 
 |  | 
 | 	nvt->pkts = 0; | 
 | 	nvt_clear_cir_fifo(nvt); | 
 | 	ir_raw_event_reset(nvt->rdev); | 
 | } | 
 |  | 
 | /* copy data from hardware rx fifo into driver buffer */ | 
 | static void nvt_get_rx_ir_data(struct nvt_dev *nvt) | 
 | { | 
 | 	unsigned long flags; | 
 | 	u8 fifocount, val; | 
 | 	unsigned int b_idx; | 
 | 	bool overrun = false; | 
 | 	int i; | 
 |  | 
 | 	/* Get count of how many bytes to read from RX FIFO */ | 
 | 	fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT); | 
 | 	/* if we get 0xff, probably means the logical dev is disabled */ | 
 | 	if (fifocount == 0xff) | 
 | 		return; | 
 | 	/* watch out for a fifo overrun condition */ | 
 | 	else if (fifocount > RX_BUF_LEN) { | 
 | 		overrun = true; | 
 | 		fifocount = RX_BUF_LEN; | 
 | 	} | 
 |  | 
 | 	nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount); | 
 |  | 
 | 	spin_lock_irqsave(&nvt->nvt_lock, flags); | 
 |  | 
 | 	b_idx = nvt->pkts; | 
 |  | 
 | 	/* This should never happen, but lets check anyway... */ | 
 | 	if (b_idx + fifocount > RX_BUF_LEN) { | 
 | 		nvt_process_rx_ir_data(nvt); | 
 | 		b_idx = 0; | 
 | 	} | 
 |  | 
 | 	/* Read fifocount bytes from CIR Sample RX FIFO register */ | 
 | 	for (i = 0; i < fifocount; i++) { | 
 | 		val = nvt_cir_reg_read(nvt, CIR_SRXFIFO); | 
 | 		nvt->buf[b_idx + i] = val; | 
 | 	} | 
 |  | 
 | 	nvt->pkts += fifocount; | 
 | 	nvt_dbg("%s: pkts now %d", __func__, nvt->pkts); | 
 |  | 
 | 	nvt_process_rx_ir_data(nvt); | 
 |  | 
 | 	if (overrun) | 
 | 		nvt_handle_rx_fifo_overrun(nvt); | 
 |  | 
 | 	spin_unlock_irqrestore(&nvt->nvt_lock, flags); | 
 | } | 
 |  | 
 | static void nvt_cir_log_irqs(u8 status, u8 iren) | 
 | { | 
 | 	nvt_pr(KERN_INFO, "IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s", | 
 | 		status, iren, | 
 | 		status & CIR_IRSTS_RDR	? " RDR"	: "", | 
 | 		status & CIR_IRSTS_RTR	? " RTR"	: "", | 
 | 		status & CIR_IRSTS_PE	? " PE"		: "", | 
 | 		status & CIR_IRSTS_RFO	? " RFO"	: "", | 
 | 		status & CIR_IRSTS_TE	? " TE"		: "", | 
 | 		status & CIR_IRSTS_TTR	? " TTR"	: "", | 
 | 		status & CIR_IRSTS_TFU	? " TFU"	: "", | 
 | 		status & CIR_IRSTS_GH	? " GH"		: "", | 
 | 		status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE | | 
 | 			   CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR | | 
 | 			   CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : ""); | 
 | } | 
 |  | 
 | static bool nvt_cir_tx_inactive(struct nvt_dev *nvt) | 
 | { | 
 | 	unsigned long flags; | 
 | 	bool tx_inactive; | 
 | 	u8 tx_state; | 
 |  | 
 | 	spin_lock_irqsave(&nvt->tx.lock, flags); | 
 | 	tx_state = nvt->tx.tx_state; | 
 | 	spin_unlock_irqrestore(&nvt->tx.lock, flags); | 
 |  | 
 | 	tx_inactive = (tx_state == ST_TX_NONE); | 
 |  | 
 | 	return tx_inactive; | 
 | } | 
 |  | 
 | /* interrupt service routine for incoming and outgoing CIR data */ | 
 | static irqreturn_t nvt_cir_isr(int irq, void *data) | 
 | { | 
 | 	struct nvt_dev *nvt = data; | 
 | 	u8 status, iren, cur_state; | 
 | 	unsigned long flags; | 
 |  | 
 | 	nvt_dbg_verbose("%s firing", __func__); | 
 |  | 
 | 	nvt_efm_enable(nvt); | 
 | 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR); | 
 | 	nvt_efm_disable(nvt); | 
 |  | 
 | 	/* | 
 | 	 * Get IR Status register contents. Write 1 to ack/clear | 
 | 	 * | 
 | 	 * bit: reg name      - description | 
 | 	 *   7: CIR_IRSTS_RDR - RX Data Ready | 
 | 	 *   6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach | 
 | 	 *   5: CIR_IRSTS_PE  - Packet End | 
 | 	 *   4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set) | 
 | 	 *   3: CIR_IRSTS_TE  - TX FIFO Empty | 
 | 	 *   2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach | 
 | 	 *   1: CIR_IRSTS_TFU - TX FIFO Underrun | 
 | 	 *   0: CIR_IRSTS_GH  - Min Length Detected | 
 | 	 */ | 
 | 	status = nvt_cir_reg_read(nvt, CIR_IRSTS); | 
 | 	if (!status) { | 
 | 		nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__); | 
 | 		nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS); | 
 | 		return IRQ_RETVAL(IRQ_NONE); | 
 | 	} | 
 |  | 
 | 	/* ack/clear all irq flags we've got */ | 
 | 	nvt_cir_reg_write(nvt, status, CIR_IRSTS); | 
 | 	nvt_cir_reg_write(nvt, 0, CIR_IRSTS); | 
 |  | 
 | 	/* Interrupt may be shared with CIR Wake, bail if CIR not enabled */ | 
 | 	iren = nvt_cir_reg_read(nvt, CIR_IREN); | 
 | 	if (!iren) { | 
 | 		nvt_dbg_verbose("%s exiting, CIR not enabled", __func__); | 
 | 		return IRQ_RETVAL(IRQ_NONE); | 
 | 	} | 
 |  | 
 | 	if (debug) | 
 | 		nvt_cir_log_irqs(status, iren); | 
 |  | 
 | 	if (status & CIR_IRSTS_RTR) { | 
 | 		/* FIXME: add code for study/learn mode */ | 
 | 		/* We only do rx if not tx'ing */ | 
 | 		if (nvt_cir_tx_inactive(nvt)) | 
 | 			nvt_get_rx_ir_data(nvt); | 
 | 	} | 
 |  | 
 | 	if (status & CIR_IRSTS_PE) { | 
 | 		if (nvt_cir_tx_inactive(nvt)) | 
 | 			nvt_get_rx_ir_data(nvt); | 
 |  | 
 | 		spin_lock_irqsave(&nvt->nvt_lock, flags); | 
 |  | 
 | 		cur_state = nvt->study_state; | 
 |  | 
 | 		spin_unlock_irqrestore(&nvt->nvt_lock, flags); | 
 |  | 
 | 		if (cur_state == ST_STUDY_NONE) | 
 | 			nvt_clear_cir_fifo(nvt); | 
 | 	} | 
 |  | 
 | 	if (status & CIR_IRSTS_TE) | 
 | 		nvt_clear_tx_fifo(nvt); | 
 |  | 
 | 	if (status & CIR_IRSTS_TTR) { | 
 | 		unsigned int pos, count; | 
 | 		u8 tmp; | 
 |  | 
 | 		spin_lock_irqsave(&nvt->tx.lock, flags); | 
 |  | 
 | 		pos = nvt->tx.cur_buf_num; | 
 | 		count = nvt->tx.buf_count; | 
 |  | 
 | 		/* Write data into the hardware tx fifo while pos < count */ | 
 | 		if (pos < count) { | 
 | 			nvt_cir_reg_write(nvt, nvt->tx.buf[pos], CIR_STXFIFO); | 
 | 			nvt->tx.cur_buf_num++; | 
 | 		/* Disable TX FIFO Trigger Level Reach (TTR) interrupt */ | 
 | 		} else { | 
 | 			tmp = nvt_cir_reg_read(nvt, CIR_IREN); | 
 | 			nvt_cir_reg_write(nvt, tmp & ~CIR_IREN_TTR, CIR_IREN); | 
 | 		} | 
 |  | 
 | 		spin_unlock_irqrestore(&nvt->tx.lock, flags); | 
 |  | 
 | 	} | 
 |  | 
 | 	if (status & CIR_IRSTS_TFU) { | 
 | 		spin_lock_irqsave(&nvt->tx.lock, flags); | 
 | 		if (nvt->tx.tx_state == ST_TX_REPLY) { | 
 | 			nvt->tx.tx_state = ST_TX_REQUEST; | 
 | 			wake_up(&nvt->tx.queue); | 
 | 		} | 
 | 		spin_unlock_irqrestore(&nvt->tx.lock, flags); | 
 | 	} | 
 |  | 
 | 	nvt_dbg_verbose("%s done", __func__); | 
 | 	return IRQ_RETVAL(IRQ_HANDLED); | 
 | } | 
 |  | 
 | /* Interrupt service routine for CIR Wake */ | 
 | static irqreturn_t nvt_cir_wake_isr(int irq, void *data) | 
 | { | 
 | 	u8 status, iren, val; | 
 | 	struct nvt_dev *nvt = data; | 
 | 	unsigned long flags; | 
 |  | 
 | 	nvt_dbg_wake("%s firing", __func__); | 
 |  | 
 | 	status = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS); | 
 | 	if (!status) | 
 | 		return IRQ_RETVAL(IRQ_NONE); | 
 |  | 
 | 	if (status & CIR_WAKE_IRSTS_IR_PENDING) | 
 | 		nvt_clear_cir_wake_fifo(nvt); | 
 |  | 
 | 	nvt_cir_wake_reg_write(nvt, status, CIR_WAKE_IRSTS); | 
 | 	nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IRSTS); | 
 |  | 
 | 	/* Interrupt may be shared with CIR, bail if Wake not enabled */ | 
 | 	iren = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN); | 
 | 	if (!iren) { | 
 | 		nvt_dbg_wake("%s exiting, wake not enabled", __func__); | 
 | 		return IRQ_RETVAL(IRQ_HANDLED); | 
 | 	} | 
 |  | 
 | 	if ((status & CIR_WAKE_IRSTS_PE) && | 
 | 	    (nvt->wake_state == ST_WAKE_START)) { | 
 | 		while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX)) { | 
 | 			val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY); | 
 | 			nvt_dbg("setting wake up key: 0x%x", val); | 
 | 		} | 
 |  | 
 | 		nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN); | 
 | 		spin_lock_irqsave(&nvt->nvt_lock, flags); | 
 | 		nvt->wake_state = ST_WAKE_FINISH; | 
 | 		spin_unlock_irqrestore(&nvt->nvt_lock, flags); | 
 | 	} | 
 |  | 
 | 	nvt_dbg_wake("%s done", __func__); | 
 | 	return IRQ_RETVAL(IRQ_HANDLED); | 
 | } | 
 |  | 
 | static void nvt_enable_cir(struct nvt_dev *nvt) | 
 | { | 
 | 	/* set function enable flags */ | 
 | 	nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN | | 
 | 			  CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL, | 
 | 			  CIR_IRCON); | 
 |  | 
 | 	nvt_efm_enable(nvt); | 
 |  | 
 | 	/* enable the CIR logical device */ | 
 | 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR); | 
 | 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN); | 
 |  | 
 | 	nvt_efm_disable(nvt); | 
 |  | 
 | 	/* clear all pending interrupts */ | 
 | 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS); | 
 |  | 
 | 	/* enable interrupts */ | 
 | 	nvt_set_cir_iren(nvt); | 
 | } | 
 |  | 
 | static void nvt_disable_cir(struct nvt_dev *nvt) | 
 | { | 
 | 	/* disable CIR interrupts */ | 
 | 	nvt_cir_reg_write(nvt, 0, CIR_IREN); | 
 |  | 
 | 	/* clear any and all pending interrupts */ | 
 | 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS); | 
 |  | 
 | 	/* clear all function enable flags */ | 
 | 	nvt_cir_reg_write(nvt, 0, CIR_IRCON); | 
 |  | 
 | 	/* clear hardware rx and tx fifos */ | 
 | 	nvt_clear_cir_fifo(nvt); | 
 | 	nvt_clear_tx_fifo(nvt); | 
 |  | 
 | 	nvt_efm_enable(nvt); | 
 |  | 
 | 	/* disable the CIR logical device */ | 
 | 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR); | 
 | 	nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN); | 
 |  | 
 | 	nvt_efm_disable(nvt); | 
 | } | 
 |  | 
 | static int nvt_open(struct rc_dev *dev) | 
 | { | 
 | 	struct nvt_dev *nvt = dev->priv; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&nvt->nvt_lock, flags); | 
 | 	nvt->in_use = true; | 
 | 	nvt_enable_cir(nvt); | 
 | 	spin_unlock_irqrestore(&nvt->nvt_lock, flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void nvt_close(struct rc_dev *dev) | 
 | { | 
 | 	struct nvt_dev *nvt = dev->priv; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&nvt->nvt_lock, flags); | 
 | 	nvt->in_use = false; | 
 | 	nvt_disable_cir(nvt); | 
 | 	spin_unlock_irqrestore(&nvt->nvt_lock, flags); | 
 | } | 
 |  | 
 | /* Allocate memory, probe hardware, and initialize everything */ | 
 | static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id) | 
 | { | 
 | 	struct nvt_dev *nvt; | 
 | 	struct rc_dev *rdev; | 
 | 	int ret = -ENOMEM; | 
 |  | 
 | 	nvt = kzalloc(sizeof(struct nvt_dev), GFP_KERNEL); | 
 | 	if (!nvt) | 
 | 		return ret; | 
 |  | 
 | 	/* input device for IR remote (and tx) */ | 
 | 	rdev = rc_allocate_device(); | 
 | 	if (!rdev) | 
 | 		goto failure; | 
 |  | 
 | 	ret = -ENODEV; | 
 | 	/* validate pnp resources */ | 
 | 	if (!pnp_port_valid(pdev, 0) || | 
 | 	    pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) { | 
 | 		dev_err(&pdev->dev, "IR PNP Port not valid!\n"); | 
 | 		goto failure; | 
 | 	} | 
 |  | 
 | 	if (!pnp_irq_valid(pdev, 0)) { | 
 | 		dev_err(&pdev->dev, "PNP IRQ not valid!\n"); | 
 | 		goto failure; | 
 | 	} | 
 |  | 
 | 	if (!pnp_port_valid(pdev, 1) || | 
 | 	    pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) { | 
 | 		dev_err(&pdev->dev, "Wake PNP Port not valid!\n"); | 
 | 		goto failure; | 
 | 	} | 
 |  | 
 | 	nvt->cir_addr = pnp_port_start(pdev, 0); | 
 | 	nvt->cir_irq  = pnp_irq(pdev, 0); | 
 |  | 
 | 	nvt->cir_wake_addr = pnp_port_start(pdev, 1); | 
 | 	/* irq is always shared between cir and cir wake */ | 
 | 	nvt->cir_wake_irq  = nvt->cir_irq; | 
 |  | 
 | 	nvt->cr_efir = CR_EFIR; | 
 | 	nvt->cr_efdr = CR_EFDR; | 
 |  | 
 | 	spin_lock_init(&nvt->nvt_lock); | 
 | 	spin_lock_init(&nvt->tx.lock); | 
 | 	init_ir_raw_event(&nvt->rawir); | 
 |  | 
 | 	ret = -EBUSY; | 
 | 	/* now claim resources */ | 
 | 	if (!request_region(nvt->cir_addr, | 
 | 			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME)) | 
 | 		goto failure; | 
 |  | 
 | 	if (request_irq(nvt->cir_irq, nvt_cir_isr, IRQF_SHARED, | 
 | 			NVT_DRIVER_NAME, (void *)nvt)) | 
 | 		goto failure; | 
 |  | 
 | 	if (!request_region(nvt->cir_wake_addr, | 
 | 			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME)) | 
 | 		goto failure; | 
 |  | 
 | 	if (request_irq(nvt->cir_wake_irq, nvt_cir_wake_isr, IRQF_SHARED, | 
 | 			NVT_DRIVER_NAME, (void *)nvt)) | 
 | 		goto failure; | 
 |  | 
 | 	pnp_set_drvdata(pdev, nvt); | 
 | 	nvt->pdev = pdev; | 
 |  | 
 | 	init_waitqueue_head(&nvt->tx.queue); | 
 |  | 
 | 	ret = nvt_hw_detect(nvt); | 
 | 	if (ret) | 
 | 		goto failure; | 
 |  | 
 | 	/* Initialize CIR & CIR Wake Logical Devices */ | 
 | 	nvt_efm_enable(nvt); | 
 | 	nvt_cir_ldev_init(nvt); | 
 | 	nvt_cir_wake_ldev_init(nvt); | 
 | 	nvt_efm_disable(nvt); | 
 |  | 
 | 	/* Initialize CIR & CIR Wake Config Registers */ | 
 | 	nvt_cir_regs_init(nvt); | 
 | 	nvt_cir_wake_regs_init(nvt); | 
 |  | 
 | 	/* Set up the rc device */ | 
 | 	rdev->priv = nvt; | 
 | 	rdev->driver_type = RC_DRIVER_IR_RAW; | 
 | 	rdev->allowed_protos = RC_TYPE_ALL; | 
 | 	rdev->open = nvt_open; | 
 | 	rdev->close = nvt_close; | 
 | 	rdev->tx_ir = nvt_tx_ir; | 
 | 	rdev->s_tx_carrier = nvt_set_tx_carrier; | 
 | 	rdev->input_name = "Nuvoton w836x7hg Infrared Remote Transceiver"; | 
 | 	rdev->input_id.bustype = BUS_HOST; | 
 | 	rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2; | 
 | 	rdev->input_id.product = nvt->chip_major; | 
 | 	rdev->input_id.version = nvt->chip_minor; | 
 | 	rdev->driver_name = NVT_DRIVER_NAME; | 
 | 	rdev->map_name = RC_MAP_RC6_MCE; | 
 | #if 0 | 
 | 	rdev->min_timeout = XYZ; | 
 | 	rdev->max_timeout = XYZ; | 
 | 	rdev->timeout = XYZ; | 
 | 	/* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */ | 
 | 	rdev->rx_resolution = XYZ; | 
 | 	/* tx bits */ | 
 | 	rdev->tx_resolution = XYZ; | 
 | #endif | 
 |  | 
 | 	ret = rc_register_device(rdev); | 
 | 	if (ret) | 
 | 		goto failure; | 
 |  | 
 | 	device_set_wakeup_capable(&pdev->dev, 1); | 
 | 	device_set_wakeup_enable(&pdev->dev, 1); | 
 | 	nvt->rdev = rdev; | 
 | 	nvt_pr(KERN_NOTICE, "driver has been successfully loaded\n"); | 
 | 	if (debug) { | 
 | 		cir_dump_regs(nvt); | 
 | 		cir_wake_dump_regs(nvt); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | failure: | 
 | 	if (nvt->cir_irq) | 
 | 		free_irq(nvt->cir_irq, nvt); | 
 | 	if (nvt->cir_addr) | 
 | 		release_region(nvt->cir_addr, CIR_IOREG_LENGTH); | 
 |  | 
 | 	if (nvt->cir_wake_irq) | 
 | 		free_irq(nvt->cir_wake_irq, nvt); | 
 | 	if (nvt->cir_wake_addr) | 
 | 		release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH); | 
 |  | 
 | 	rc_free_device(rdev); | 
 | 	kfree(nvt); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void __devexit nvt_remove(struct pnp_dev *pdev) | 
 | { | 
 | 	struct nvt_dev *nvt = pnp_get_drvdata(pdev); | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&nvt->nvt_lock, flags); | 
 | 	/* disable CIR */ | 
 | 	nvt_cir_reg_write(nvt, 0, CIR_IREN); | 
 | 	nvt_disable_cir(nvt); | 
 | 	/* enable CIR Wake (for IR power-on) */ | 
 | 	nvt_enable_wake(nvt); | 
 | 	spin_unlock_irqrestore(&nvt->nvt_lock, flags); | 
 |  | 
 | 	/* free resources */ | 
 | 	free_irq(nvt->cir_irq, nvt); | 
 | 	free_irq(nvt->cir_wake_irq, nvt); | 
 | 	release_region(nvt->cir_addr, CIR_IOREG_LENGTH); | 
 | 	release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH); | 
 |  | 
 | 	rc_unregister_device(nvt->rdev); | 
 |  | 
 | 	kfree(nvt); | 
 | } | 
 |  | 
 | static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state) | 
 | { | 
 | 	struct nvt_dev *nvt = pnp_get_drvdata(pdev); | 
 | 	unsigned long flags; | 
 |  | 
 | 	nvt_dbg("%s called", __func__); | 
 |  | 
 | 	/* zero out misc state tracking */ | 
 | 	spin_lock_irqsave(&nvt->nvt_lock, flags); | 
 | 	nvt->study_state = ST_STUDY_NONE; | 
 | 	nvt->wake_state = ST_WAKE_NONE; | 
 | 	spin_unlock_irqrestore(&nvt->nvt_lock, flags); | 
 |  | 
 | 	spin_lock_irqsave(&nvt->tx.lock, flags); | 
 | 	nvt->tx.tx_state = ST_TX_NONE; | 
 | 	spin_unlock_irqrestore(&nvt->tx.lock, flags); | 
 |  | 
 | 	/* disable all CIR interrupts */ | 
 | 	nvt_cir_reg_write(nvt, 0, CIR_IREN); | 
 |  | 
 | 	nvt_efm_enable(nvt); | 
 |  | 
 | 	/* disable cir logical dev */ | 
 | 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR); | 
 | 	nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN); | 
 |  | 
 | 	nvt_efm_disable(nvt); | 
 |  | 
 | 	/* make sure wake is enabled */ | 
 | 	nvt_enable_wake(nvt); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nvt_resume(struct pnp_dev *pdev) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct nvt_dev *nvt = pnp_get_drvdata(pdev); | 
 |  | 
 | 	nvt_dbg("%s called", __func__); | 
 |  | 
 | 	/* open interrupt */ | 
 | 	nvt_set_cir_iren(nvt); | 
 |  | 
 | 	/* Enable CIR logical device */ | 
 | 	nvt_efm_enable(nvt); | 
 | 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR); | 
 | 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN); | 
 |  | 
 | 	nvt_efm_disable(nvt); | 
 |  | 
 | 	nvt_cir_regs_init(nvt); | 
 | 	nvt_cir_wake_regs_init(nvt); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void nvt_shutdown(struct pnp_dev *pdev) | 
 | { | 
 | 	struct nvt_dev *nvt = pnp_get_drvdata(pdev); | 
 | 	nvt_enable_wake(nvt); | 
 | } | 
 |  | 
 | static const struct pnp_device_id nvt_ids[] = { | 
 | 	{ "WEC0530", 0 },   /* CIR */ | 
 | 	{ "NTN0530", 0 },   /* CIR for new chip's pnp id*/ | 
 | 	{ "", 0 }, | 
 | }; | 
 |  | 
 | static struct pnp_driver nvt_driver = { | 
 | 	.name		= NVT_DRIVER_NAME, | 
 | 	.id_table	= nvt_ids, | 
 | 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE, | 
 | 	.probe		= nvt_probe, | 
 | 	.remove		= __devexit_p(nvt_remove), | 
 | 	.suspend	= nvt_suspend, | 
 | 	.resume		= nvt_resume, | 
 | 	.shutdown	= nvt_shutdown, | 
 | }; | 
 |  | 
 | int nvt_init(void) | 
 | { | 
 | 	return pnp_register_driver(&nvt_driver); | 
 | } | 
 |  | 
 | void nvt_exit(void) | 
 | { | 
 | 	pnp_unregister_driver(&nvt_driver); | 
 | } | 
 |  | 
 | module_param(debug, int, S_IRUGO | S_IWUSR); | 
 | MODULE_PARM_DESC(debug, "Enable debugging output"); | 
 |  | 
 | MODULE_DEVICE_TABLE(pnp, nvt_ids); | 
 | MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver"); | 
 |  | 
 | MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>"); | 
 | MODULE_LICENSE("GPL"); | 
 |  | 
 | module_init(nvt_init); | 
 | module_exit(nvt_exit); |