| /* | 
 |  * This file is subject to the terms and conditions of the GNU General Public | 
 |  * License.  See the file "COPYING" in the main directory of this archive | 
 |  * for more details. | 
 |  * | 
 |  * Copyright (C) 1998-2003 Hewlett-Packard Co | 
 |  *	David Mosberger-Tang <davidm@hpl.hp.com> | 
 |  *	Stephane Eranian <eranian@hpl.hp.com> | 
 |  * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com> | 
 |  * Copyright (C) 1999 VA Linux Systems | 
 |  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> | 
 |  * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved. | 
 |  * | 
 |  * Routines used by ia64 machines with contiguous (or virtually contiguous) | 
 |  * memory. | 
 |  */ | 
 | #include <linux/bootmem.h> | 
 | #include <linux/efi.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/nmi.h> | 
 | #include <linux/swap.h> | 
 |  | 
 | #include <asm/meminit.h> | 
 | #include <asm/pgalloc.h> | 
 | #include <asm/pgtable.h> | 
 | #include <asm/sections.h> | 
 | #include <asm/mca.h> | 
 |  | 
 | #ifdef CONFIG_VIRTUAL_MEM_MAP | 
 | static unsigned long max_gap; | 
 | #endif | 
 |  | 
 | /** | 
 |  * show_mem - give short summary of memory stats | 
 |  * | 
 |  * Shows a simple page count of reserved and used pages in the system. | 
 |  * For discontig machines, it does this on a per-pgdat basis. | 
 |  */ | 
 | void show_mem(unsigned int filter) | 
 | { | 
 | 	int i, total_reserved = 0; | 
 | 	int total_shared = 0, total_cached = 0; | 
 | 	unsigned long total_present = 0; | 
 | 	pg_data_t *pgdat; | 
 |  | 
 | 	printk(KERN_INFO "Mem-info:\n"); | 
 | 	show_free_areas(); | 
 | 	printk(KERN_INFO "Node memory in pages:\n"); | 
 | 	for_each_online_pgdat(pgdat) { | 
 | 		unsigned long present; | 
 | 		unsigned long flags; | 
 | 		int shared = 0, cached = 0, reserved = 0; | 
 |  | 
 | 		pgdat_resize_lock(pgdat, &flags); | 
 | 		present = pgdat->node_present_pages; | 
 | 		for(i = 0; i < pgdat->node_spanned_pages; i++) { | 
 | 			struct page *page; | 
 | 			if (unlikely(i % MAX_ORDER_NR_PAGES == 0)) | 
 | 				touch_nmi_watchdog(); | 
 | 			if (pfn_valid(pgdat->node_start_pfn + i)) | 
 | 				page = pfn_to_page(pgdat->node_start_pfn + i); | 
 | 			else { | 
 | #ifdef CONFIG_VIRTUAL_MEM_MAP | 
 | 				if (max_gap < LARGE_GAP) | 
 | 					continue; | 
 | #endif | 
 | 				i = vmemmap_find_next_valid_pfn(pgdat->node_id, | 
 | 					 i) - 1; | 
 | 				continue; | 
 | 			} | 
 | 			if (PageReserved(page)) | 
 | 				reserved++; | 
 | 			else if (PageSwapCache(page)) | 
 | 				cached++; | 
 | 			else if (page_count(page)) | 
 | 				shared += page_count(page)-1; | 
 | 		} | 
 | 		pgdat_resize_unlock(pgdat, &flags); | 
 | 		total_present += present; | 
 | 		total_reserved += reserved; | 
 | 		total_cached += cached; | 
 | 		total_shared += shared; | 
 | 		printk(KERN_INFO "Node %4d:  RAM: %11ld, rsvd: %8d, " | 
 | 		       "shrd: %10d, swpd: %10d\n", pgdat->node_id, | 
 | 		       present, reserved, shared, cached); | 
 | 	} | 
 | 	printk(KERN_INFO "%ld pages of RAM\n", total_present); | 
 | 	printk(KERN_INFO "%d reserved pages\n", total_reserved); | 
 | 	printk(KERN_INFO "%d pages shared\n", total_shared); | 
 | 	printk(KERN_INFO "%d pages swap cached\n", total_cached); | 
 | 	printk(KERN_INFO "Total of %ld pages in page table cache\n", | 
 | 	       quicklist_total_size()); | 
 | 	printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages()); | 
 | } | 
 |  | 
 |  | 
 | /* physical address where the bootmem map is located */ | 
 | unsigned long bootmap_start; | 
 |  | 
 | /** | 
 |  * find_bootmap_location - callback to find a memory area for the bootmap | 
 |  * @start: start of region | 
 |  * @end: end of region | 
 |  * @arg: unused callback data | 
 |  * | 
 |  * Find a place to put the bootmap and return its starting address in | 
 |  * bootmap_start.  This address must be page-aligned. | 
 |  */ | 
 | static int __init | 
 | find_bootmap_location (u64 start, u64 end, void *arg) | 
 | { | 
 | 	u64 needed = *(unsigned long *)arg; | 
 | 	u64 range_start, range_end, free_start; | 
 | 	int i; | 
 |  | 
 | #if IGNORE_PFN0 | 
 | 	if (start == PAGE_OFFSET) { | 
 | 		start += PAGE_SIZE; | 
 | 		if (start >= end) | 
 | 			return 0; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	free_start = PAGE_OFFSET; | 
 |  | 
 | 	for (i = 0; i < num_rsvd_regions; i++) { | 
 | 		range_start = max(start, free_start); | 
 | 		range_end   = min(end, rsvd_region[i].start & PAGE_MASK); | 
 |  | 
 | 		free_start = PAGE_ALIGN(rsvd_region[i].end); | 
 |  | 
 | 		if (range_end <= range_start) | 
 | 			continue; /* skip over empty range */ | 
 |  | 
 | 		if (range_end - range_start >= needed) { | 
 | 			bootmap_start = __pa(range_start); | 
 | 			return -1;	/* done */ | 
 | 		} | 
 |  | 
 | 		/* nothing more available in this segment */ | 
 | 		if (range_end == end) | 
 | 			return 0; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | static void *cpu_data; | 
 | /** | 
 |  * per_cpu_init - setup per-cpu variables | 
 |  * | 
 |  * Allocate and setup per-cpu data areas. | 
 |  */ | 
 | void * __cpuinit | 
 | per_cpu_init (void) | 
 | { | 
 | 	static bool first_time = true; | 
 | 	void *cpu0_data = __cpu0_per_cpu; | 
 | 	unsigned int cpu; | 
 |  | 
 | 	if (!first_time) | 
 | 		goto skip; | 
 | 	first_time = false; | 
 |  | 
 | 	/* | 
 | 	 * get_free_pages() cannot be used before cpu_init() done. | 
 | 	 * BSP allocates PERCPU_PAGE_SIZE bytes for all possible CPUs | 
 | 	 * to avoid that AP calls get_zeroed_page(). | 
 | 	 */ | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		void *src = cpu == 0 ? cpu0_data : __phys_per_cpu_start; | 
 |  | 
 | 		memcpy(cpu_data, src, __per_cpu_end - __per_cpu_start); | 
 | 		__per_cpu_offset[cpu] = (char *)cpu_data - __per_cpu_start; | 
 | 		per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu]; | 
 |  | 
 | 		/* | 
 | 		 * percpu area for cpu0 is moved from the __init area | 
 | 		 * which is setup by head.S and used till this point. | 
 | 		 * Update ar.k3.  This move is ensures that percpu | 
 | 		 * area for cpu0 is on the correct node and its | 
 | 		 * virtual address isn't insanely far from other | 
 | 		 * percpu areas which is important for congruent | 
 | 		 * percpu allocator. | 
 | 		 */ | 
 | 		if (cpu == 0) | 
 | 			ia64_set_kr(IA64_KR_PER_CPU_DATA, __pa(cpu_data) - | 
 | 				    (unsigned long)__per_cpu_start); | 
 |  | 
 | 		cpu_data += PERCPU_PAGE_SIZE; | 
 | 	} | 
 | skip: | 
 | 	return __per_cpu_start + __per_cpu_offset[smp_processor_id()]; | 
 | } | 
 |  | 
 | static inline void | 
 | alloc_per_cpu_data(void) | 
 | { | 
 | 	cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * num_possible_cpus(), | 
 | 				   PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); | 
 | } | 
 |  | 
 | /** | 
 |  * setup_per_cpu_areas - setup percpu areas | 
 |  * | 
 |  * Arch code has already allocated and initialized percpu areas.  All | 
 |  * this function has to do is to teach the determined layout to the | 
 |  * dynamic percpu allocator, which happens to be more complex than | 
 |  * creating whole new ones using helpers. | 
 |  */ | 
 | void __init | 
 | setup_per_cpu_areas(void) | 
 | { | 
 | 	struct pcpu_alloc_info *ai; | 
 | 	struct pcpu_group_info *gi; | 
 | 	unsigned int cpu; | 
 | 	ssize_t static_size, reserved_size, dyn_size; | 
 | 	int rc; | 
 |  | 
 | 	ai = pcpu_alloc_alloc_info(1, num_possible_cpus()); | 
 | 	if (!ai) | 
 | 		panic("failed to allocate pcpu_alloc_info"); | 
 | 	gi = &ai->groups[0]; | 
 |  | 
 | 	/* units are assigned consecutively to possible cpus */ | 
 | 	for_each_possible_cpu(cpu) | 
 | 		gi->cpu_map[gi->nr_units++] = cpu; | 
 |  | 
 | 	/* set parameters */ | 
 | 	static_size = __per_cpu_end - __per_cpu_start; | 
 | 	reserved_size = PERCPU_MODULE_RESERVE; | 
 | 	dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size; | 
 | 	if (dyn_size < 0) | 
 | 		panic("percpu area overflow static=%zd reserved=%zd\n", | 
 | 		      static_size, reserved_size); | 
 |  | 
 | 	ai->static_size		= static_size; | 
 | 	ai->reserved_size	= reserved_size; | 
 | 	ai->dyn_size		= dyn_size; | 
 | 	ai->unit_size		= PERCPU_PAGE_SIZE; | 
 | 	ai->atom_size		= PAGE_SIZE; | 
 | 	ai->alloc_size		= PERCPU_PAGE_SIZE; | 
 |  | 
 | 	rc = pcpu_setup_first_chunk(ai, __per_cpu_start + __per_cpu_offset[0]); | 
 | 	if (rc) | 
 | 		panic("failed to setup percpu area (err=%d)", rc); | 
 |  | 
 | 	pcpu_free_alloc_info(ai); | 
 | } | 
 | #else | 
 | #define alloc_per_cpu_data() do { } while (0) | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | /** | 
 |  * find_memory - setup memory map | 
 |  * | 
 |  * Walk the EFI memory map and find usable memory for the system, taking | 
 |  * into account reserved areas. | 
 |  */ | 
 | void __init | 
 | find_memory (void) | 
 | { | 
 | 	unsigned long bootmap_size; | 
 |  | 
 | 	reserve_memory(); | 
 |  | 
 | 	/* first find highest page frame number */ | 
 | 	min_low_pfn = ~0UL; | 
 | 	max_low_pfn = 0; | 
 | 	efi_memmap_walk(find_max_min_low_pfn, NULL); | 
 | 	max_pfn = max_low_pfn; | 
 | 	/* how many bytes to cover all the pages */ | 
 | 	bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT; | 
 |  | 
 | 	/* look for a location to hold the bootmap */ | 
 | 	bootmap_start = ~0UL; | 
 | 	efi_memmap_walk(find_bootmap_location, &bootmap_size); | 
 | 	if (bootmap_start == ~0UL) | 
 | 		panic("Cannot find %ld bytes for bootmap\n", bootmap_size); | 
 |  | 
 | 	bootmap_size = init_bootmem_node(NODE_DATA(0), | 
 | 			(bootmap_start >> PAGE_SHIFT), 0, max_pfn); | 
 |  | 
 | 	/* Free all available memory, then mark bootmem-map as being in use. */ | 
 | 	efi_memmap_walk(filter_rsvd_memory, free_bootmem); | 
 | 	reserve_bootmem(bootmap_start, bootmap_size, BOOTMEM_DEFAULT); | 
 |  | 
 | 	find_initrd(); | 
 |  | 
 | 	alloc_per_cpu_data(); | 
 | } | 
 |  | 
 | static int count_pages(u64 start, u64 end, void *arg) | 
 | { | 
 | 	unsigned long *count = arg; | 
 |  | 
 | 	*count += (end - start) >> PAGE_SHIFT; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Set up the page tables. | 
 |  */ | 
 |  | 
 | void __init | 
 | paging_init (void) | 
 | { | 
 | 	unsigned long max_dma; | 
 | 	unsigned long max_zone_pfns[MAX_NR_ZONES]; | 
 |  | 
 | 	num_physpages = 0; | 
 | 	efi_memmap_walk(count_pages, &num_physpages); | 
 |  | 
 | 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); | 
 | #ifdef CONFIG_ZONE_DMA | 
 | 	max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT; | 
 | 	max_zone_pfns[ZONE_DMA] = max_dma; | 
 | #endif | 
 | 	max_zone_pfns[ZONE_NORMAL] = max_low_pfn; | 
 |  | 
 | #ifdef CONFIG_VIRTUAL_MEM_MAP | 
 | 	efi_memmap_walk(filter_memory, register_active_ranges); | 
 | 	efi_memmap_walk(find_largest_hole, (u64 *)&max_gap); | 
 | 	if (max_gap < LARGE_GAP) { | 
 | 		vmem_map = (struct page *) 0; | 
 | 		free_area_init_nodes(max_zone_pfns); | 
 | 	} else { | 
 | 		unsigned long map_size; | 
 |  | 
 | 		/* allocate virtual_mem_map */ | 
 |  | 
 | 		map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) * | 
 | 			sizeof(struct page)); | 
 | 		VMALLOC_END -= map_size; | 
 | 		vmem_map = (struct page *) VMALLOC_END; | 
 | 		efi_memmap_walk(create_mem_map_page_table, NULL); | 
 |  | 
 | 		/* | 
 | 		 * alloc_node_mem_map makes an adjustment for mem_map | 
 | 		 * which isn't compatible with vmem_map. | 
 | 		 */ | 
 | 		NODE_DATA(0)->node_mem_map = vmem_map + | 
 | 			find_min_pfn_with_active_regions(); | 
 | 		free_area_init_nodes(max_zone_pfns); | 
 |  | 
 | 		printk("Virtual mem_map starts at 0x%p\n", mem_map); | 
 | 	} | 
 | #else /* !CONFIG_VIRTUAL_MEM_MAP */ | 
 | 	add_active_range(0, 0, max_low_pfn); | 
 | 	free_area_init_nodes(max_zone_pfns); | 
 | #endif /* !CONFIG_VIRTUAL_MEM_MAP */ | 
 | 	zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page)); | 
 | } |