| /* | 
 |  *  fs/partitions/msdos.c | 
 |  * | 
 |  *  Code extracted from drivers/block/genhd.c | 
 |  *  Copyright (C) 1991-1998  Linus Torvalds | 
 |  * | 
 |  *  Thanks to Branko Lankester, lankeste@fwi.uva.nl, who found a bug | 
 |  *  in the early extended-partition checks and added DM partitions | 
 |  * | 
 |  *  Support for DiskManager v6.0x added by Mark Lord, | 
 |  *  with information provided by OnTrack.  This now works for linux fdisk | 
 |  *  and LILO, as well as loadlin and bootln.  Note that disks other than | 
 |  *  /dev/hda *must* have a "DOS" type 0x51 partition in the first slot (hda1). | 
 |  * | 
 |  *  More flexible handling of extended partitions - aeb, 950831 | 
 |  * | 
 |  *  Check partition table on IDE disks for common CHS translations | 
 |  * | 
 |  *  Re-organised Feb 1998 Russell King | 
 |  */ | 
 |  | 
 |  | 
 | #include "check.h" | 
 | #include "msdos.h" | 
 | #include "efi.h" | 
 |  | 
 | /* | 
 |  * Many architectures don't like unaligned accesses, while | 
 |  * the nr_sects and start_sect partition table entries are | 
 |  * at a 2 (mod 4) address. | 
 |  */ | 
 | #include <asm/unaligned.h> | 
 |  | 
 | #define SYS_IND(p)	(get_unaligned(&p->sys_ind)) | 
 | #define NR_SECTS(p)	({ __le32 __a =	get_unaligned(&p->nr_sects);	\ | 
 | 				le32_to_cpu(__a); \ | 
 | 			}) | 
 |  | 
 | #define START_SECT(p)	({ __le32 __a =	get_unaligned(&p->start_sect);	\ | 
 | 				le32_to_cpu(__a); \ | 
 | 			}) | 
 |  | 
 | static inline int is_extended_partition(struct partition *p) | 
 | { | 
 | 	return (SYS_IND(p) == DOS_EXTENDED_PARTITION || | 
 | 		SYS_IND(p) == WIN98_EXTENDED_PARTITION || | 
 | 		SYS_IND(p) == LINUX_EXTENDED_PARTITION); | 
 | } | 
 |  | 
 | #define MSDOS_LABEL_MAGIC1	0x55 | 
 | #define MSDOS_LABEL_MAGIC2	0xAA | 
 |  | 
 | static inline int | 
 | msdos_magic_present(unsigned char *p) | 
 | { | 
 | 	return (p[0] == MSDOS_LABEL_MAGIC1 && p[1] == MSDOS_LABEL_MAGIC2); | 
 | } | 
 |  | 
 | /* Value is EBCDIC 'IBMA' */ | 
 | #define AIX_LABEL_MAGIC1	0xC9 | 
 | #define AIX_LABEL_MAGIC2	0xC2 | 
 | #define AIX_LABEL_MAGIC3	0xD4 | 
 | #define AIX_LABEL_MAGIC4	0xC1 | 
 | static int aix_magic_present(unsigned char *p, struct block_device *bdev) | 
 | { | 
 | 	struct partition *pt = (struct partition *) (p + 0x1be); | 
 | 	Sector sect; | 
 | 	unsigned char *d; | 
 | 	int slot, ret = 0; | 
 |  | 
 | 	if (!(p[0] == AIX_LABEL_MAGIC1 && | 
 | 		p[1] == AIX_LABEL_MAGIC2 && | 
 | 		p[2] == AIX_LABEL_MAGIC3 && | 
 | 		p[3] == AIX_LABEL_MAGIC4)) | 
 | 		return 0; | 
 | 	/* Assume the partition table is valid if Linux partitions exists */ | 
 | 	for (slot = 1; slot <= 4; slot++, pt++) { | 
 | 		if (pt->sys_ind == LINUX_SWAP_PARTITION || | 
 | 			pt->sys_ind == LINUX_RAID_PARTITION || | 
 | 			pt->sys_ind == LINUX_DATA_PARTITION || | 
 | 			pt->sys_ind == LINUX_LVM_PARTITION || | 
 | 			is_extended_partition(pt)) | 
 | 			return 0; | 
 | 	} | 
 | 	d = read_dev_sector(bdev, 7, §); | 
 | 	if (d) { | 
 | 		if (d[0] == '_' && d[1] == 'L' && d[2] == 'V' && d[3] == 'M') | 
 | 			ret = 1; | 
 | 		put_dev_sector(sect); | 
 | 	}; | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Create devices for each logical partition in an extended partition. | 
 |  * The logical partitions form a linked list, with each entry being | 
 |  * a partition table with two entries.  The first entry | 
 |  * is the real data partition (with a start relative to the partition | 
 |  * table start).  The second is a pointer to the next logical partition | 
 |  * (with a start relative to the entire extended partition). | 
 |  * We do not create a Linux partition for the partition tables, but | 
 |  * only for the actual data partitions. | 
 |  */ | 
 |  | 
 | static void | 
 | parse_extended(struct parsed_partitions *state, struct block_device *bdev, | 
 | 			u32 first_sector, u32 first_size) | 
 | { | 
 | 	struct partition *p; | 
 | 	Sector sect; | 
 | 	unsigned char *data; | 
 | 	u32 this_sector, this_size; | 
 | 	int sector_size = bdev_hardsect_size(bdev) / 512; | 
 | 	int loopct = 0;		/* number of links followed | 
 | 				   without finding a data partition */ | 
 | 	int i; | 
 |  | 
 | 	this_sector = first_sector; | 
 | 	this_size = first_size; | 
 |  | 
 | 	while (1) { | 
 | 		if (++loopct > 100) | 
 | 			return; | 
 | 		if (state->next == state->limit) | 
 | 			return; | 
 | 		data = read_dev_sector(bdev, this_sector, §); | 
 | 		if (!data) | 
 | 			return; | 
 |  | 
 | 		if (!msdos_magic_present(data + 510)) | 
 | 			goto done;  | 
 |  | 
 | 		p = (struct partition *) (data + 0x1be); | 
 |  | 
 | 		/* | 
 | 		 * Usually, the first entry is the real data partition, | 
 | 		 * the 2nd entry is the next extended partition, or empty, | 
 | 		 * and the 3rd and 4th entries are unused. | 
 | 		 * However, DRDOS sometimes has the extended partition as | 
 | 		 * the first entry (when the data partition is empty), | 
 | 		 * and OS/2 seems to use all four entries. | 
 | 		 */ | 
 |  | 
 | 		/*  | 
 | 		 * First process the data partition(s) | 
 | 		 */ | 
 | 		for (i=0; i<4; i++, p++) { | 
 | 			u32 offs, size, next; | 
 | 			if (!NR_SECTS(p) || is_extended_partition(p)) | 
 | 				continue; | 
 |  | 
 | 			/* Check the 3rd and 4th entries - | 
 | 			   these sometimes contain random garbage */ | 
 | 			offs = START_SECT(p)*sector_size; | 
 | 			size = NR_SECTS(p)*sector_size; | 
 | 			next = this_sector + offs; | 
 | 			if (i >= 2) { | 
 | 				if (offs + size > this_size) | 
 | 					continue; | 
 | 				if (next < first_sector) | 
 | 					continue; | 
 | 				if (next + size > first_sector + first_size) | 
 | 					continue; | 
 | 			} | 
 |  | 
 | 			put_partition(state, state->next, next, size); | 
 | 			if (SYS_IND(p) == LINUX_RAID_PARTITION) | 
 | 				state->parts[state->next].flags = ADDPART_FLAG_RAID; | 
 | 			loopct = 0; | 
 | 			if (++state->next == state->limit) | 
 | 				goto done; | 
 | 		} | 
 | 		/* | 
 | 		 * Next, process the (first) extended partition, if present. | 
 | 		 * (So far, there seems to be no reason to make | 
 | 		 *  parse_extended()  recursive and allow a tree | 
 | 		 *  of extended partitions.) | 
 | 		 * It should be a link to the next logical partition. | 
 | 		 */ | 
 | 		p -= 4; | 
 | 		for (i=0; i<4; i++, p++) | 
 | 			if (NR_SECTS(p) && is_extended_partition(p)) | 
 | 				break; | 
 | 		if (i == 4) | 
 | 			goto done;	 /* nothing left to do */ | 
 |  | 
 | 		this_sector = first_sector + START_SECT(p) * sector_size; | 
 | 		this_size = NR_SECTS(p) * sector_size; | 
 | 		put_dev_sector(sect); | 
 | 	} | 
 | done: | 
 | 	put_dev_sector(sect); | 
 | } | 
 |  | 
 | /* james@bpgc.com: Solaris has a nasty indicator: 0x82 which also | 
 |    indicates linux swap.  Be careful before believing this is Solaris. */ | 
 |  | 
 | static void | 
 | parse_solaris_x86(struct parsed_partitions *state, struct block_device *bdev, | 
 | 			u32 offset, u32 size, int origin) | 
 | { | 
 | #ifdef CONFIG_SOLARIS_X86_PARTITION | 
 | 	Sector sect; | 
 | 	struct solaris_x86_vtoc *v; | 
 | 	int i; | 
 | 	short max_nparts; | 
 |  | 
 | 	v = (struct solaris_x86_vtoc *)read_dev_sector(bdev, offset+1, §); | 
 | 	if (!v) | 
 | 		return; | 
 | 	if (le32_to_cpu(v->v_sanity) != SOLARIS_X86_VTOC_SANE) { | 
 | 		put_dev_sector(sect); | 
 | 		return; | 
 | 	} | 
 | 	printk(" %s%d: <solaris:", state->name, origin); | 
 | 	if (le32_to_cpu(v->v_version) != 1) { | 
 | 		printk("  cannot handle version %d vtoc>\n", | 
 | 			le32_to_cpu(v->v_version)); | 
 | 		put_dev_sector(sect); | 
 | 		return; | 
 | 	} | 
 | 	/* Ensure we can handle previous case of VTOC with 8 entries gracefully */ | 
 | 	max_nparts = le16_to_cpu (v->v_nparts) > 8 ? SOLARIS_X86_NUMSLICE : 8; | 
 | 	for (i=0; i<max_nparts && state->next<state->limit; i++) { | 
 | 		struct solaris_x86_slice *s = &v->v_slice[i]; | 
 | 		if (s->s_size == 0) | 
 | 			continue; | 
 | 		printk(" [s%d]", i); | 
 | 		/* solaris partitions are relative to current MS-DOS | 
 | 		 * one; must add the offset of the current partition */ | 
 | 		put_partition(state, state->next++, | 
 | 				 le32_to_cpu(s->s_start)+offset, | 
 | 				 le32_to_cpu(s->s_size)); | 
 | 	} | 
 | 	put_dev_sector(sect); | 
 | 	printk(" >\n"); | 
 | #endif | 
 | } | 
 |  | 
 | #if defined(CONFIG_BSD_DISKLABEL) | 
 | /*  | 
 |  * Create devices for BSD partitions listed in a disklabel, under a | 
 |  * dos-like partition. See parse_extended() for more information. | 
 |  */ | 
 | static void | 
 | parse_bsd(struct parsed_partitions *state, struct block_device *bdev, | 
 | 		u32 offset, u32 size, int origin, char *flavour, | 
 | 		int max_partitions) | 
 | { | 
 | 	Sector sect; | 
 | 	struct bsd_disklabel *l; | 
 | 	struct bsd_partition *p; | 
 |  | 
 | 	l = (struct bsd_disklabel *)read_dev_sector(bdev, offset+1, §); | 
 | 	if (!l) | 
 | 		return; | 
 | 	if (le32_to_cpu(l->d_magic) != BSD_DISKMAGIC) { | 
 | 		put_dev_sector(sect); | 
 | 		return; | 
 | 	} | 
 | 	printk(" %s%d: <%s:", state->name, origin, flavour); | 
 |  | 
 | 	if (le16_to_cpu(l->d_npartitions) < max_partitions) | 
 | 		max_partitions = le16_to_cpu(l->d_npartitions); | 
 | 	for (p = l->d_partitions; p - l->d_partitions < max_partitions; p++) { | 
 | 		u32 bsd_start, bsd_size; | 
 |  | 
 | 		if (state->next == state->limit) | 
 | 			break; | 
 | 		if (p->p_fstype == BSD_FS_UNUSED)  | 
 | 			continue; | 
 | 		bsd_start = le32_to_cpu(p->p_offset); | 
 | 		bsd_size = le32_to_cpu(p->p_size); | 
 | 		if (offset == bsd_start && size == bsd_size) | 
 | 			/* full parent partition, we have it already */ | 
 | 			continue; | 
 | 		if (offset > bsd_start || offset+size < bsd_start+bsd_size) { | 
 | 			printk("bad subpartition - ignored\n"); | 
 | 			continue; | 
 | 		} | 
 | 		put_partition(state, state->next++, bsd_start, bsd_size); | 
 | 	} | 
 | 	put_dev_sector(sect); | 
 | 	if (le16_to_cpu(l->d_npartitions) > max_partitions) | 
 | 		printk(" (ignored %d more)", | 
 | 		       le16_to_cpu(l->d_npartitions) - max_partitions); | 
 | 	printk(" >\n"); | 
 | } | 
 | #endif | 
 |  | 
 | static void | 
 | parse_freebsd(struct parsed_partitions *state, struct block_device *bdev, | 
 | 		u32 offset, u32 size, int origin) | 
 | { | 
 | #ifdef CONFIG_BSD_DISKLABEL | 
 | 	parse_bsd(state, bdev, offset, size, origin, | 
 | 			"bsd", BSD_MAXPARTITIONS); | 
 | #endif | 
 | } | 
 |  | 
 | static void | 
 | parse_netbsd(struct parsed_partitions *state, struct block_device *bdev, | 
 | 		u32 offset, u32 size, int origin) | 
 | { | 
 | #ifdef CONFIG_BSD_DISKLABEL | 
 | 	parse_bsd(state, bdev, offset, size, origin, | 
 | 			"netbsd", BSD_MAXPARTITIONS); | 
 | #endif | 
 | } | 
 |  | 
 | static void | 
 | parse_openbsd(struct parsed_partitions *state, struct block_device *bdev, | 
 | 		u32 offset, u32 size, int origin) | 
 | { | 
 | #ifdef CONFIG_BSD_DISKLABEL | 
 | 	parse_bsd(state, bdev, offset, size, origin, | 
 | 			"openbsd", OPENBSD_MAXPARTITIONS); | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * Create devices for Unixware partitions listed in a disklabel, under a | 
 |  * dos-like partition. See parse_extended() for more information. | 
 |  */ | 
 | static void | 
 | parse_unixware(struct parsed_partitions *state, struct block_device *bdev, | 
 | 		u32 offset, u32 size, int origin) | 
 | { | 
 | #ifdef CONFIG_UNIXWARE_DISKLABEL | 
 | 	Sector sect; | 
 | 	struct unixware_disklabel *l; | 
 | 	struct unixware_slice *p; | 
 |  | 
 | 	l = (struct unixware_disklabel *)read_dev_sector(bdev, offset+29, §); | 
 | 	if (!l) | 
 | 		return; | 
 | 	if (le32_to_cpu(l->d_magic) != UNIXWARE_DISKMAGIC || | 
 | 	    le32_to_cpu(l->vtoc.v_magic) != UNIXWARE_DISKMAGIC2) { | 
 | 		put_dev_sector(sect); | 
 | 		return; | 
 | 	} | 
 | 	printk(" %s%d: <unixware:", state->name, origin); | 
 | 	p = &l->vtoc.v_slice[1]; | 
 | 	/* I omit the 0th slice as it is the same as whole disk. */ | 
 | 	while (p - &l->vtoc.v_slice[0] < UNIXWARE_NUMSLICE) { | 
 | 		if (state->next == state->limit) | 
 | 			break; | 
 |  | 
 | 		if (p->s_label != UNIXWARE_FS_UNUSED) | 
 | 			put_partition(state, state->next++, | 
 | 						START_SECT(p), NR_SECTS(p)); | 
 | 		p++; | 
 | 	} | 
 | 	put_dev_sector(sect); | 
 | 	printk(" >\n"); | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * Minix 2.0.0/2.0.2 subpartition support. | 
 |  * Anand Krishnamurthy <anandk@wiproge.med.ge.com> | 
 |  * Rajeev V. Pillai    <rajeevvp@yahoo.com> | 
 |  */ | 
 | static void | 
 | parse_minix(struct parsed_partitions *state, struct block_device *bdev, | 
 | 		u32 offset, u32 size, int origin) | 
 | { | 
 | #ifdef CONFIG_MINIX_SUBPARTITION | 
 | 	Sector sect; | 
 | 	unsigned char *data; | 
 | 	struct partition *p; | 
 | 	int i; | 
 |  | 
 | 	data = read_dev_sector(bdev, offset, §); | 
 | 	if (!data) | 
 | 		return; | 
 |  | 
 | 	p = (struct partition *)(data + 0x1be); | 
 |  | 
 | 	/* The first sector of a Minix partition can have either | 
 | 	 * a secondary MBR describing its subpartitions, or | 
 | 	 * the normal boot sector. */ | 
 | 	if (msdos_magic_present (data + 510) && | 
 | 	    SYS_IND(p) == MINIX_PARTITION) { /* subpartition table present */ | 
 |  | 
 | 		printk(" %s%d: <minix:", state->name, origin); | 
 | 		for (i = 0; i < MINIX_NR_SUBPARTITIONS; i++, p++) { | 
 | 			if (state->next == state->limit) | 
 | 				break; | 
 | 			/* add each partition in use */ | 
 | 			if (SYS_IND(p) == MINIX_PARTITION) | 
 | 				put_partition(state, state->next++, | 
 | 					      START_SECT(p), NR_SECTS(p)); | 
 | 		} | 
 | 		printk(" >\n"); | 
 | 	} | 
 | 	put_dev_sector(sect); | 
 | #endif /* CONFIG_MINIX_SUBPARTITION */ | 
 | } | 
 |  | 
 | static struct { | 
 | 	unsigned char id; | 
 | 	void (*parse)(struct parsed_partitions *, struct block_device *, | 
 | 			u32, u32, int); | 
 | } subtypes[] = { | 
 | 	{FREEBSD_PARTITION, parse_freebsd}, | 
 | 	{NETBSD_PARTITION, parse_netbsd}, | 
 | 	{OPENBSD_PARTITION, parse_openbsd}, | 
 | 	{MINIX_PARTITION, parse_minix}, | 
 | 	{UNIXWARE_PARTITION, parse_unixware}, | 
 | 	{SOLARIS_X86_PARTITION, parse_solaris_x86}, | 
 | 	{NEW_SOLARIS_X86_PARTITION, parse_solaris_x86}, | 
 | 	{0, NULL}, | 
 | }; | 
 |   | 
 | int msdos_partition(struct parsed_partitions *state, struct block_device *bdev) | 
 | { | 
 | 	int sector_size = bdev_hardsect_size(bdev) / 512; | 
 | 	Sector sect; | 
 | 	unsigned char *data; | 
 | 	struct partition *p; | 
 | 	int slot; | 
 |  | 
 | 	data = read_dev_sector(bdev, 0, §); | 
 | 	if (!data) | 
 | 		return -1; | 
 | 	if (!msdos_magic_present(data + 510)) { | 
 | 		put_dev_sector(sect); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (aix_magic_present(data, bdev)) { | 
 | 		put_dev_sector(sect); | 
 | 		printk( " [AIX]"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Now that the 55aa signature is present, this is probably | 
 | 	 * either the boot sector of a FAT filesystem or a DOS-type | 
 | 	 * partition table. Reject this in case the boot indicator | 
 | 	 * is not 0 or 0x80. | 
 | 	 */ | 
 | 	p = (struct partition *) (data + 0x1be); | 
 | 	for (slot = 1; slot <= 4; slot++, p++) { | 
 | 		if (p->boot_ind != 0 && p->boot_ind != 0x80) { | 
 | 			put_dev_sector(sect); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_EFI_PARTITION | 
 | 	p = (struct partition *) (data + 0x1be); | 
 | 	for (slot = 1 ; slot <= 4 ; slot++, p++) { | 
 | 		/* If this is an EFI GPT disk, msdos should ignore it. */ | 
 | 		if (SYS_IND(p) == EFI_PMBR_OSTYPE_EFI_GPT) { | 
 | 			put_dev_sector(sect); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 | #endif | 
 | 	p = (struct partition *) (data + 0x1be); | 
 |  | 
 | 	/* | 
 | 	 * Look for partitions in two passes: | 
 | 	 * First find the primary and DOS-type extended partitions. | 
 | 	 * On the second pass look inside *BSD, Unixware and Solaris partitions. | 
 | 	 */ | 
 |  | 
 | 	state->next = 5; | 
 | 	for (slot = 1 ; slot <= 4 ; slot++, p++) { | 
 | 		u32 start = START_SECT(p)*sector_size; | 
 | 		u32 size = NR_SECTS(p)*sector_size; | 
 | 		if (!size) | 
 | 			continue; | 
 | 		if (is_extended_partition(p)) { | 
 | 			/* prevent someone doing mkfs or mkswap on an | 
 | 			   extended partition, but leave room for LILO */ | 
 | 			put_partition(state, slot, start, size == 1 ? 1 : 2); | 
 | 			printk(" <"); | 
 | 			parse_extended(state, bdev, start, size); | 
 | 			printk(" >"); | 
 | 			continue; | 
 | 		} | 
 | 		put_partition(state, slot, start, size); | 
 | 		if (SYS_IND(p) == LINUX_RAID_PARTITION) | 
 | 			state->parts[slot].flags = 1; | 
 | 		if (SYS_IND(p) == DM6_PARTITION) | 
 | 			printk("[DM]"); | 
 | 		if (SYS_IND(p) == EZD_PARTITION) | 
 | 			printk("[EZD]"); | 
 | 	} | 
 |  | 
 | 	printk("\n"); | 
 |  | 
 | 	/* second pass - output for each on a separate line */ | 
 | 	p = (struct partition *) (0x1be + data); | 
 | 	for (slot = 1 ; slot <= 4 ; slot++, p++) { | 
 | 		unsigned char id = SYS_IND(p); | 
 | 		int n; | 
 |  | 
 | 		if (!NR_SECTS(p)) | 
 | 			continue; | 
 |  | 
 | 		for (n = 0; subtypes[n].parse && id != subtypes[n].id; n++) | 
 | 			; | 
 |  | 
 | 		if (!subtypes[n].parse) | 
 | 			continue; | 
 | 		subtypes[n].parse(state, bdev, START_SECT(p)*sector_size, | 
 | 						NR_SECTS(p)*sector_size, slot); | 
 | 	} | 
 | 	put_dev_sector(sect); | 
 | 	return 1; | 
 | } |