|  | /* | 
|  | *	x86 SMP booting functions | 
|  | * | 
|  | *	(c) 1995 Alan Cox, Building #3 <alan@redhat.com> | 
|  | *	(c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com> | 
|  | * | 
|  | *	Much of the core SMP work is based on previous work by Thomas Radke, to | 
|  | *	whom a great many thanks are extended. | 
|  | * | 
|  | *	Thanks to Intel for making available several different Pentium, | 
|  | *	Pentium Pro and Pentium-II/Xeon MP machines. | 
|  | *	Original development of Linux SMP code supported by Caldera. | 
|  | * | 
|  | *	This code is released under the GNU General Public License version 2 or | 
|  | *	later. | 
|  | * | 
|  | *	Fixes | 
|  | *		Felix Koop	:	NR_CPUS used properly | 
|  | *		Jose Renau	:	Handle single CPU case. | 
|  | *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report. | 
|  | *		Greg Wright	:	Fix for kernel stacks panic. | 
|  | *		Erich Boleyn	:	MP v1.4 and additional changes. | 
|  | *	Matthias Sattler	:	Changes for 2.1 kernel map. | 
|  | *	Michel Lespinasse	:	Changes for 2.1 kernel map. | 
|  | *	Michael Chastain	:	Change trampoline.S to gnu as. | 
|  | *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine | 
|  | *		Ingo Molnar	:	Added APIC timers, based on code | 
|  | *					from Jose Renau | 
|  | *		Ingo Molnar	:	various cleanups and rewrites | 
|  | *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug. | 
|  | *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs | 
|  | *		Martin J. Bligh	: 	Added support for multi-quad systems | 
|  | *		Dave Jones	:	Report invalid combinations of Athlon CPUs. | 
|  | *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process. */ | 
|  |  | 
|  |  | 
|  | /* SMP boot always wants to use real time delay to allow sufficient time for | 
|  | * the APs to come online */ | 
|  | #define USE_REAL_TIME_DELAY | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/kernel.h> | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/smp_lock.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/percpu.h> | 
|  |  | 
|  | #include <linux/delay.h> | 
|  | #include <linux/mc146818rtc.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/desc.h> | 
|  | #include <asm/arch_hooks.h> | 
|  | #include <asm/nmi.h> | 
|  | #include <asm/pda.h> | 
|  | #include <asm/genapic.h> | 
|  |  | 
|  | #include <mach_apic.h> | 
|  | #include <mach_wakecpu.h> | 
|  | #include <smpboot_hooks.h> | 
|  | #include <asm/vmi.h> | 
|  |  | 
|  | /* Set if we find a B stepping CPU */ | 
|  | static int __devinitdata smp_b_stepping; | 
|  |  | 
|  | /* Number of siblings per CPU package */ | 
|  | int smp_num_siblings = 1; | 
|  | EXPORT_SYMBOL(smp_num_siblings); | 
|  |  | 
|  | /* Last level cache ID of each logical CPU */ | 
|  | int cpu_llc_id[NR_CPUS] __cpuinitdata = {[0 ... NR_CPUS-1] = BAD_APICID}; | 
|  |  | 
|  | /* representing HT siblings of each logical CPU */ | 
|  | cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; | 
|  | EXPORT_SYMBOL(cpu_sibling_map); | 
|  |  | 
|  | /* representing HT and core siblings of each logical CPU */ | 
|  | cpumask_t cpu_core_map[NR_CPUS] __read_mostly; | 
|  | EXPORT_SYMBOL(cpu_core_map); | 
|  |  | 
|  | /* bitmap of online cpus */ | 
|  | cpumask_t cpu_online_map __read_mostly; | 
|  | EXPORT_SYMBOL(cpu_online_map); | 
|  |  | 
|  | cpumask_t cpu_callin_map; | 
|  | cpumask_t cpu_callout_map; | 
|  | EXPORT_SYMBOL(cpu_callout_map); | 
|  | cpumask_t cpu_possible_map; | 
|  | EXPORT_SYMBOL(cpu_possible_map); | 
|  | static cpumask_t smp_commenced_mask; | 
|  |  | 
|  | /* Per CPU bogomips and other parameters */ | 
|  | struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned; | 
|  | EXPORT_SYMBOL(cpu_data); | 
|  |  | 
|  | u8 x86_cpu_to_apicid[NR_CPUS] __read_mostly = | 
|  | { [0 ... NR_CPUS-1] = 0xff }; | 
|  | EXPORT_SYMBOL(x86_cpu_to_apicid); | 
|  |  | 
|  | u8 apicid_2_node[MAX_APICID]; | 
|  |  | 
|  | /* | 
|  | * Trampoline 80x86 program as an array. | 
|  | */ | 
|  |  | 
|  | extern unsigned char trampoline_data []; | 
|  | extern unsigned char trampoline_end  []; | 
|  | static unsigned char *trampoline_base; | 
|  | static int trampoline_exec; | 
|  |  | 
|  | static void map_cpu_to_logical_apicid(void); | 
|  |  | 
|  | /* State of each CPU. */ | 
|  | DEFINE_PER_CPU(int, cpu_state) = { 0 }; | 
|  |  | 
|  | /* | 
|  | * Currently trivial. Write the real->protected mode | 
|  | * bootstrap into the page concerned. The caller | 
|  | * has made sure it's suitably aligned. | 
|  | */ | 
|  |  | 
|  | static unsigned long __devinit setup_trampoline(void) | 
|  | { | 
|  | memcpy(trampoline_base, trampoline_data, trampoline_end - trampoline_data); | 
|  | return virt_to_phys(trampoline_base); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We are called very early to get the low memory for the | 
|  | * SMP bootup trampoline page. | 
|  | */ | 
|  | void __init smp_alloc_memory(void) | 
|  | { | 
|  | trampoline_base = (void *) alloc_bootmem_low_pages(PAGE_SIZE); | 
|  | /* | 
|  | * Has to be in very low memory so we can execute | 
|  | * real-mode AP code. | 
|  | */ | 
|  | if (__pa(trampoline_base) >= 0x9F000) | 
|  | BUG(); | 
|  | /* | 
|  | * Make the SMP trampoline executable: | 
|  | */ | 
|  | trampoline_exec = set_kernel_exec((unsigned long)trampoline_base, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The bootstrap kernel entry code has set these up. Save them for | 
|  | * a given CPU | 
|  | */ | 
|  |  | 
|  | static void __cpuinit smp_store_cpu_info(int id) | 
|  | { | 
|  | struct cpuinfo_x86 *c = cpu_data + id; | 
|  |  | 
|  | *c = boot_cpu_data; | 
|  | if (id!=0) | 
|  | identify_cpu(c); | 
|  | /* | 
|  | * Mask B, Pentium, but not Pentium MMX | 
|  | */ | 
|  | if (c->x86_vendor == X86_VENDOR_INTEL && | 
|  | c->x86 == 5 && | 
|  | c->x86_mask >= 1 && c->x86_mask <= 4 && | 
|  | c->x86_model <= 3) | 
|  | /* | 
|  | * Remember we have B step Pentia with bugs | 
|  | */ | 
|  | smp_b_stepping = 1; | 
|  |  | 
|  | /* | 
|  | * Certain Athlons might work (for various values of 'work') in SMP | 
|  | * but they are not certified as MP capable. | 
|  | */ | 
|  | if ((c->x86_vendor == X86_VENDOR_AMD) && (c->x86 == 6)) { | 
|  |  | 
|  | if (num_possible_cpus() == 1) | 
|  | goto valid_k7; | 
|  |  | 
|  | /* Athlon 660/661 is valid. */ | 
|  | if ((c->x86_model==6) && ((c->x86_mask==0) || (c->x86_mask==1))) | 
|  | goto valid_k7; | 
|  |  | 
|  | /* Duron 670 is valid */ | 
|  | if ((c->x86_model==7) && (c->x86_mask==0)) | 
|  | goto valid_k7; | 
|  |  | 
|  | /* | 
|  | * Athlon 662, Duron 671, and Athlon >model 7 have capability bit. | 
|  | * It's worth noting that the A5 stepping (662) of some Athlon XP's | 
|  | * have the MP bit set. | 
|  | * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for more. | 
|  | */ | 
|  | if (((c->x86_model==6) && (c->x86_mask>=2)) || | 
|  | ((c->x86_model==7) && (c->x86_mask>=1)) || | 
|  | (c->x86_model> 7)) | 
|  | if (cpu_has_mp) | 
|  | goto valid_k7; | 
|  |  | 
|  | /* If we get here, it's not a certified SMP capable AMD system. */ | 
|  | add_taint(TAINT_UNSAFE_SMP); | 
|  | } | 
|  |  | 
|  | valid_k7: | 
|  | ; | 
|  | } | 
|  |  | 
|  | extern void calibrate_delay(void); | 
|  |  | 
|  | static atomic_t init_deasserted; | 
|  |  | 
|  | static void __cpuinit smp_callin(void) | 
|  | { | 
|  | int cpuid, phys_id; | 
|  | unsigned long timeout; | 
|  |  | 
|  | /* | 
|  | * If waken up by an INIT in an 82489DX configuration | 
|  | * we may get here before an INIT-deassert IPI reaches | 
|  | * our local APIC.  We have to wait for the IPI or we'll | 
|  | * lock up on an APIC access. | 
|  | */ | 
|  | wait_for_init_deassert(&init_deasserted); | 
|  |  | 
|  | /* | 
|  | * (This works even if the APIC is not enabled.) | 
|  | */ | 
|  | phys_id = GET_APIC_ID(apic_read(APIC_ID)); | 
|  | cpuid = smp_processor_id(); | 
|  | if (cpu_isset(cpuid, cpu_callin_map)) { | 
|  | printk("huh, phys CPU#%d, CPU#%d already present??\n", | 
|  | phys_id, cpuid); | 
|  | BUG(); | 
|  | } | 
|  | Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id); | 
|  |  | 
|  | /* | 
|  | * STARTUP IPIs are fragile beasts as they might sometimes | 
|  | * trigger some glue motherboard logic. Complete APIC bus | 
|  | * silence for 1 second, this overestimates the time the | 
|  | * boot CPU is spending to send the up to 2 STARTUP IPIs | 
|  | * by a factor of two. This should be enough. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Waiting 2s total for startup (udelay is not yet working) | 
|  | */ | 
|  | timeout = jiffies + 2*HZ; | 
|  | while (time_before(jiffies, timeout)) { | 
|  | /* | 
|  | * Has the boot CPU finished it's STARTUP sequence? | 
|  | */ | 
|  | if (cpu_isset(cpuid, cpu_callout_map)) | 
|  | break; | 
|  | rep_nop(); | 
|  | } | 
|  |  | 
|  | if (!time_before(jiffies, timeout)) { | 
|  | printk("BUG: CPU%d started up but did not get a callout!\n", | 
|  | cpuid); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the boot CPU has finished the init stage and is spinning | 
|  | * on callin_map until we finish. We are free to set up this | 
|  | * CPU, first the APIC. (this is probably redundant on most | 
|  | * boards) | 
|  | */ | 
|  |  | 
|  | Dprintk("CALLIN, before setup_local_APIC().\n"); | 
|  | smp_callin_clear_local_apic(); | 
|  | setup_local_APIC(); | 
|  | map_cpu_to_logical_apicid(); | 
|  |  | 
|  | /* | 
|  | * Get our bogomips. | 
|  | */ | 
|  | calibrate_delay(); | 
|  | Dprintk("Stack at about %p\n",&cpuid); | 
|  |  | 
|  | /* | 
|  | * Save our processor parameters | 
|  | */ | 
|  | smp_store_cpu_info(cpuid); | 
|  |  | 
|  | /* | 
|  | * Allow the master to continue. | 
|  | */ | 
|  | cpu_set(cpuid, cpu_callin_map); | 
|  | } | 
|  |  | 
|  | static int cpucount; | 
|  |  | 
|  | /* maps the cpu to the sched domain representing multi-core */ | 
|  | cpumask_t cpu_coregroup_map(int cpu) | 
|  | { | 
|  | struct cpuinfo_x86 *c = cpu_data + cpu; | 
|  | /* | 
|  | * For perf, we return last level cache shared map. | 
|  | * And for power savings, we return cpu_core_map | 
|  | */ | 
|  | if (sched_mc_power_savings || sched_smt_power_savings) | 
|  | return cpu_core_map[cpu]; | 
|  | else | 
|  | return c->llc_shared_map; | 
|  | } | 
|  |  | 
|  | /* representing cpus for which sibling maps can be computed */ | 
|  | static cpumask_t cpu_sibling_setup_map; | 
|  |  | 
|  | static inline void | 
|  | set_cpu_sibling_map(int cpu) | 
|  | { | 
|  | int i; | 
|  | struct cpuinfo_x86 *c = cpu_data; | 
|  |  | 
|  | cpu_set(cpu, cpu_sibling_setup_map); | 
|  |  | 
|  | if (smp_num_siblings > 1) { | 
|  | for_each_cpu_mask(i, cpu_sibling_setup_map) { | 
|  | if (c[cpu].phys_proc_id == c[i].phys_proc_id && | 
|  | c[cpu].cpu_core_id == c[i].cpu_core_id) { | 
|  | cpu_set(i, cpu_sibling_map[cpu]); | 
|  | cpu_set(cpu, cpu_sibling_map[i]); | 
|  | cpu_set(i, cpu_core_map[cpu]); | 
|  | cpu_set(cpu, cpu_core_map[i]); | 
|  | cpu_set(i, c[cpu].llc_shared_map); | 
|  | cpu_set(cpu, c[i].llc_shared_map); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | cpu_set(cpu, cpu_sibling_map[cpu]); | 
|  | } | 
|  |  | 
|  | cpu_set(cpu, c[cpu].llc_shared_map); | 
|  |  | 
|  | if (current_cpu_data.x86_max_cores == 1) { | 
|  | cpu_core_map[cpu] = cpu_sibling_map[cpu]; | 
|  | c[cpu].booted_cores = 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | for_each_cpu_mask(i, cpu_sibling_setup_map) { | 
|  | if (cpu_llc_id[cpu] != BAD_APICID && | 
|  | cpu_llc_id[cpu] == cpu_llc_id[i]) { | 
|  | cpu_set(i, c[cpu].llc_shared_map); | 
|  | cpu_set(cpu, c[i].llc_shared_map); | 
|  | } | 
|  | if (c[cpu].phys_proc_id == c[i].phys_proc_id) { | 
|  | cpu_set(i, cpu_core_map[cpu]); | 
|  | cpu_set(cpu, cpu_core_map[i]); | 
|  | /* | 
|  | *  Does this new cpu bringup a new core? | 
|  | */ | 
|  | if (cpus_weight(cpu_sibling_map[cpu]) == 1) { | 
|  | /* | 
|  | * for each core in package, increment | 
|  | * the booted_cores for this new cpu | 
|  | */ | 
|  | if (first_cpu(cpu_sibling_map[i]) == i) | 
|  | c[cpu].booted_cores++; | 
|  | /* | 
|  | * increment the core count for all | 
|  | * the other cpus in this package | 
|  | */ | 
|  | if (i != cpu) | 
|  | c[i].booted_cores++; | 
|  | } else if (i != cpu && !c[cpu].booted_cores) | 
|  | c[cpu].booted_cores = c[i].booted_cores; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Activate a secondary processor. | 
|  | */ | 
|  | static void __cpuinit start_secondary(void *unused) | 
|  | { | 
|  | /* | 
|  | * Don't put *anything* before secondary_cpu_init(), SMP | 
|  | * booting is too fragile that we want to limit the | 
|  | * things done here to the most necessary things. | 
|  | */ | 
|  | #ifdef CONFIG_VMI | 
|  | vmi_bringup(); | 
|  | #endif | 
|  | secondary_cpu_init(); | 
|  | preempt_disable(); | 
|  | smp_callin(); | 
|  | while (!cpu_isset(smp_processor_id(), smp_commenced_mask)) | 
|  | rep_nop(); | 
|  | /* | 
|  | * Check TSC synchronization with the BP: | 
|  | */ | 
|  | check_tsc_sync_target(); | 
|  |  | 
|  | setup_secondary_clock(); | 
|  | if (nmi_watchdog == NMI_IO_APIC) { | 
|  | disable_8259A_irq(0); | 
|  | enable_NMI_through_LVT0(NULL); | 
|  | enable_8259A_irq(0); | 
|  | } | 
|  | /* | 
|  | * low-memory mappings have been cleared, flush them from | 
|  | * the local TLBs too. | 
|  | */ | 
|  | local_flush_tlb(); | 
|  |  | 
|  | /* This must be done before setting cpu_online_map */ | 
|  | set_cpu_sibling_map(raw_smp_processor_id()); | 
|  | wmb(); | 
|  |  | 
|  | /* | 
|  | * We need to hold call_lock, so there is no inconsistency | 
|  | * between the time smp_call_function() determines number of | 
|  | * IPI receipients, and the time when the determination is made | 
|  | * for which cpus receive the IPI. Holding this | 
|  | * lock helps us to not include this cpu in a currently in progress | 
|  | * smp_call_function(). | 
|  | */ | 
|  | lock_ipi_call_lock(); | 
|  | cpu_set(smp_processor_id(), cpu_online_map); | 
|  | unlock_ipi_call_lock(); | 
|  | per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE; | 
|  |  | 
|  | /* We can take interrupts now: we're officially "up". */ | 
|  | local_irq_enable(); | 
|  |  | 
|  | wmb(); | 
|  | cpu_idle(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Everything has been set up for the secondary | 
|  | * CPUs - they just need to reload everything | 
|  | * from the task structure | 
|  | * This function must not return. | 
|  | */ | 
|  | void __devinit initialize_secondary(void) | 
|  | { | 
|  | /* | 
|  | * switch to the per CPU GDT we already set up | 
|  | * in do_boot_cpu() | 
|  | */ | 
|  | cpu_set_gdt(current_thread_info()->cpu); | 
|  |  | 
|  | /* | 
|  | * We don't actually need to load the full TSS, | 
|  | * basically just the stack pointer and the eip. | 
|  | */ | 
|  |  | 
|  | asm volatile( | 
|  | "movl %0,%%esp\n\t" | 
|  | "jmp *%1" | 
|  | : | 
|  | :"m" (current->thread.esp),"m" (current->thread.eip)); | 
|  | } | 
|  |  | 
|  | /* Static state in head.S used to set up a CPU */ | 
|  | extern struct { | 
|  | void * esp; | 
|  | unsigned short ss; | 
|  | } stack_start; | 
|  | extern struct i386_pda *start_pda; | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  |  | 
|  | /* which logical CPUs are on which nodes */ | 
|  | cpumask_t node_2_cpu_mask[MAX_NUMNODES] __read_mostly = | 
|  | { [0 ... MAX_NUMNODES-1] = CPU_MASK_NONE }; | 
|  | EXPORT_SYMBOL(node_2_cpu_mask); | 
|  | /* which node each logical CPU is on */ | 
|  | int cpu_2_node[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = 0 }; | 
|  | EXPORT_SYMBOL(cpu_2_node); | 
|  |  | 
|  | /* set up a mapping between cpu and node. */ | 
|  | static inline void map_cpu_to_node(int cpu, int node) | 
|  | { | 
|  | printk("Mapping cpu %d to node %d\n", cpu, node); | 
|  | cpu_set(cpu, node_2_cpu_mask[node]); | 
|  | cpu_2_node[cpu] = node; | 
|  | } | 
|  |  | 
|  | /* undo a mapping between cpu and node. */ | 
|  | static inline void unmap_cpu_to_node(int cpu) | 
|  | { | 
|  | int node; | 
|  |  | 
|  | printk("Unmapping cpu %d from all nodes\n", cpu); | 
|  | for (node = 0; node < MAX_NUMNODES; node ++) | 
|  | cpu_clear(cpu, node_2_cpu_mask[node]); | 
|  | cpu_2_node[cpu] = 0; | 
|  | } | 
|  | #else /* !CONFIG_NUMA */ | 
|  |  | 
|  | #define map_cpu_to_node(cpu, node)	({}) | 
|  | #define unmap_cpu_to_node(cpu)	({}) | 
|  |  | 
|  | #endif /* CONFIG_NUMA */ | 
|  |  | 
|  | u8 cpu_2_logical_apicid[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID }; | 
|  |  | 
|  | static void map_cpu_to_logical_apicid(void) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  | int apicid = logical_smp_processor_id(); | 
|  | int node = apicid_to_node(apicid); | 
|  |  | 
|  | if (!node_online(node)) | 
|  | node = first_online_node; | 
|  |  | 
|  | cpu_2_logical_apicid[cpu] = apicid; | 
|  | map_cpu_to_node(cpu, node); | 
|  | } | 
|  |  | 
|  | static void unmap_cpu_to_logical_apicid(int cpu) | 
|  | { | 
|  | cpu_2_logical_apicid[cpu] = BAD_APICID; | 
|  | unmap_cpu_to_node(cpu); | 
|  | } | 
|  |  | 
|  | #if APIC_DEBUG | 
|  | static inline void __inquire_remote_apic(int apicid) | 
|  | { | 
|  | int i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 }; | 
|  | char *names[] = { "ID", "VERSION", "SPIV" }; | 
|  | int timeout, status; | 
|  |  | 
|  | printk("Inquiring remote APIC #%d...\n", apicid); | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(regs); i++) { | 
|  | printk("... APIC #%d %s: ", apicid, names[i]); | 
|  |  | 
|  | /* | 
|  | * Wait for idle. | 
|  | */ | 
|  | apic_wait_icr_idle(); | 
|  |  | 
|  | apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid)); | 
|  | apic_write_around(APIC_ICR, APIC_DM_REMRD | regs[i]); | 
|  |  | 
|  | timeout = 0; | 
|  | do { | 
|  | udelay(100); | 
|  | status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK; | 
|  | } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000); | 
|  |  | 
|  | switch (status) { | 
|  | case APIC_ICR_RR_VALID: | 
|  | status = apic_read(APIC_RRR); | 
|  | printk("%08x\n", status); | 
|  | break; | 
|  | default: | 
|  | printk("failed\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef WAKE_SECONDARY_VIA_NMI | 
|  | /* | 
|  | * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal | 
|  | * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this | 
|  | * won't ... remember to clear down the APIC, etc later. | 
|  | */ | 
|  | static int __devinit | 
|  | wakeup_secondary_cpu(int logical_apicid, unsigned long start_eip) | 
|  | { | 
|  | unsigned long send_status = 0, accept_status = 0; | 
|  | int timeout, maxlvt; | 
|  |  | 
|  | /* Target chip */ | 
|  | apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(logical_apicid)); | 
|  |  | 
|  | /* Boot on the stack */ | 
|  | /* Kick the second */ | 
|  | apic_write_around(APIC_ICR, APIC_DM_NMI | APIC_DEST_LOGICAL); | 
|  |  | 
|  | Dprintk("Waiting for send to finish...\n"); | 
|  | timeout = 0; | 
|  | do { | 
|  | Dprintk("+"); | 
|  | udelay(100); | 
|  | send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; | 
|  | } while (send_status && (timeout++ < 1000)); | 
|  |  | 
|  | /* | 
|  | * Give the other CPU some time to accept the IPI. | 
|  | */ | 
|  | udelay(200); | 
|  | /* | 
|  | * Due to the Pentium erratum 3AP. | 
|  | */ | 
|  | maxlvt = lapic_get_maxlvt(); | 
|  | if (maxlvt > 3) { | 
|  | apic_read_around(APIC_SPIV); | 
|  | apic_write(APIC_ESR, 0); | 
|  | } | 
|  | accept_status = (apic_read(APIC_ESR) & 0xEF); | 
|  | Dprintk("NMI sent.\n"); | 
|  |  | 
|  | if (send_status) | 
|  | printk("APIC never delivered???\n"); | 
|  | if (accept_status) | 
|  | printk("APIC delivery error (%lx).\n", accept_status); | 
|  |  | 
|  | return (send_status | accept_status); | 
|  | } | 
|  | #endif	/* WAKE_SECONDARY_VIA_NMI */ | 
|  |  | 
|  | #ifdef WAKE_SECONDARY_VIA_INIT | 
|  | static int __devinit | 
|  | wakeup_secondary_cpu(int phys_apicid, unsigned long start_eip) | 
|  | { | 
|  | unsigned long send_status = 0, accept_status = 0; | 
|  | int maxlvt, timeout, num_starts, j; | 
|  |  | 
|  | /* | 
|  | * Be paranoid about clearing APIC errors. | 
|  | */ | 
|  | if (APIC_INTEGRATED(apic_version[phys_apicid])) { | 
|  | apic_read_around(APIC_SPIV); | 
|  | apic_write(APIC_ESR, 0); | 
|  | apic_read(APIC_ESR); | 
|  | } | 
|  |  | 
|  | Dprintk("Asserting INIT.\n"); | 
|  |  | 
|  | /* | 
|  | * Turn INIT on target chip | 
|  | */ | 
|  | apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid)); | 
|  |  | 
|  | /* | 
|  | * Send IPI | 
|  | */ | 
|  | apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT | 
|  | | APIC_DM_INIT); | 
|  |  | 
|  | Dprintk("Waiting for send to finish...\n"); | 
|  | timeout = 0; | 
|  | do { | 
|  | Dprintk("+"); | 
|  | udelay(100); | 
|  | send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; | 
|  | } while (send_status && (timeout++ < 1000)); | 
|  |  | 
|  | mdelay(10); | 
|  |  | 
|  | Dprintk("Deasserting INIT.\n"); | 
|  |  | 
|  | /* Target chip */ | 
|  | apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid)); | 
|  |  | 
|  | /* Send IPI */ | 
|  | apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT); | 
|  |  | 
|  | Dprintk("Waiting for send to finish...\n"); | 
|  | timeout = 0; | 
|  | do { | 
|  | Dprintk("+"); | 
|  | udelay(100); | 
|  | send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; | 
|  | } while (send_status && (timeout++ < 1000)); | 
|  |  | 
|  | atomic_set(&init_deasserted, 1); | 
|  |  | 
|  | /* | 
|  | * Should we send STARTUP IPIs ? | 
|  | * | 
|  | * Determine this based on the APIC version. | 
|  | * If we don't have an integrated APIC, don't send the STARTUP IPIs. | 
|  | */ | 
|  | if (APIC_INTEGRATED(apic_version[phys_apicid])) | 
|  | num_starts = 2; | 
|  | else | 
|  | num_starts = 0; | 
|  |  | 
|  | /* | 
|  | * Paravirt / VMI wants a startup IPI hook here to set up the | 
|  | * target processor state. | 
|  | */ | 
|  | startup_ipi_hook(phys_apicid, (unsigned long) start_secondary, | 
|  | (unsigned long) stack_start.esp); | 
|  |  | 
|  | /* | 
|  | * Run STARTUP IPI loop. | 
|  | */ | 
|  | Dprintk("#startup loops: %d.\n", num_starts); | 
|  |  | 
|  | maxlvt = lapic_get_maxlvt(); | 
|  |  | 
|  | for (j = 1; j <= num_starts; j++) { | 
|  | Dprintk("Sending STARTUP #%d.\n",j); | 
|  | apic_read_around(APIC_SPIV); | 
|  | apic_write(APIC_ESR, 0); | 
|  | apic_read(APIC_ESR); | 
|  | Dprintk("After apic_write.\n"); | 
|  |  | 
|  | /* | 
|  | * STARTUP IPI | 
|  | */ | 
|  |  | 
|  | /* Target chip */ | 
|  | apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid)); | 
|  |  | 
|  | /* Boot on the stack */ | 
|  | /* Kick the second */ | 
|  | apic_write_around(APIC_ICR, APIC_DM_STARTUP | 
|  | | (start_eip >> 12)); | 
|  |  | 
|  | /* | 
|  | * Give the other CPU some time to accept the IPI. | 
|  | */ | 
|  | udelay(300); | 
|  |  | 
|  | Dprintk("Startup point 1.\n"); | 
|  |  | 
|  | Dprintk("Waiting for send to finish...\n"); | 
|  | timeout = 0; | 
|  | do { | 
|  | Dprintk("+"); | 
|  | udelay(100); | 
|  | send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; | 
|  | } while (send_status && (timeout++ < 1000)); | 
|  |  | 
|  | /* | 
|  | * Give the other CPU some time to accept the IPI. | 
|  | */ | 
|  | udelay(200); | 
|  | /* | 
|  | * Due to the Pentium erratum 3AP. | 
|  | */ | 
|  | if (maxlvt > 3) { | 
|  | apic_read_around(APIC_SPIV); | 
|  | apic_write(APIC_ESR, 0); | 
|  | } | 
|  | accept_status = (apic_read(APIC_ESR) & 0xEF); | 
|  | if (send_status || accept_status) | 
|  | break; | 
|  | } | 
|  | Dprintk("After Startup.\n"); | 
|  |  | 
|  | if (send_status) | 
|  | printk("APIC never delivered???\n"); | 
|  | if (accept_status) | 
|  | printk("APIC delivery error (%lx).\n", accept_status); | 
|  |  | 
|  | return (send_status | accept_status); | 
|  | } | 
|  | #endif	/* WAKE_SECONDARY_VIA_INIT */ | 
|  |  | 
|  | extern cpumask_t cpu_initialized; | 
|  | static inline int alloc_cpu_id(void) | 
|  | { | 
|  | cpumask_t	tmp_map; | 
|  | int cpu; | 
|  | cpus_complement(tmp_map, cpu_present_map); | 
|  | cpu = first_cpu(tmp_map); | 
|  | if (cpu >= NR_CPUS) | 
|  | return -ENODEV; | 
|  | return cpu; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | static struct task_struct * __devinitdata cpu_idle_tasks[NR_CPUS]; | 
|  | static inline struct task_struct * alloc_idle_task(int cpu) | 
|  | { | 
|  | struct task_struct *idle; | 
|  |  | 
|  | if ((idle = cpu_idle_tasks[cpu]) != NULL) { | 
|  | /* initialize thread_struct.  we really want to avoid destroy | 
|  | * idle tread | 
|  | */ | 
|  | idle->thread.esp = (unsigned long)task_pt_regs(idle); | 
|  | init_idle(idle, cpu); | 
|  | return idle; | 
|  | } | 
|  | idle = fork_idle(cpu); | 
|  |  | 
|  | if (!IS_ERR(idle)) | 
|  | cpu_idle_tasks[cpu] = idle; | 
|  | return idle; | 
|  | } | 
|  | #else | 
|  | #define alloc_idle_task(cpu) fork_idle(cpu) | 
|  | #endif | 
|  |  | 
|  | static int __cpuinit do_boot_cpu(int apicid, int cpu) | 
|  | /* | 
|  | * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad | 
|  | * (ie clustered apic addressing mode), this is a LOGICAL apic ID. | 
|  | * Returns zero if CPU booted OK, else error code from wakeup_secondary_cpu. | 
|  | */ | 
|  | { | 
|  | struct task_struct *idle; | 
|  | unsigned long boot_error; | 
|  | int timeout; | 
|  | unsigned long start_eip; | 
|  | unsigned short nmi_high = 0, nmi_low = 0; | 
|  |  | 
|  | /* | 
|  | * We can't use kernel_thread since we must avoid to | 
|  | * reschedule the child. | 
|  | */ | 
|  | idle = alloc_idle_task(cpu); | 
|  | if (IS_ERR(idle)) | 
|  | panic("failed fork for CPU %d", cpu); | 
|  |  | 
|  | /* Pre-allocate and initialize the CPU's GDT and PDA so it | 
|  | doesn't have to do any memory allocation during the | 
|  | delicate CPU-bringup phase. */ | 
|  | if (!init_gdt(cpu, idle)) { | 
|  | printk(KERN_INFO "Couldn't allocate GDT/PDA for CPU %d\n", cpu); | 
|  | return -1;	/* ? */ | 
|  | } | 
|  |  | 
|  | idle->thread.eip = (unsigned long) start_secondary; | 
|  | /* start_eip had better be page-aligned! */ | 
|  | start_eip = setup_trampoline(); | 
|  |  | 
|  | ++cpucount; | 
|  | alternatives_smp_switch(1); | 
|  |  | 
|  | /* So we see what's up   */ | 
|  | printk("Booting processor %d/%d eip %lx\n", cpu, apicid, start_eip); | 
|  | /* Stack for startup_32 can be just as for start_secondary onwards */ | 
|  | stack_start.esp = (void *) idle->thread.esp; | 
|  |  | 
|  | irq_ctx_init(cpu); | 
|  |  | 
|  | x86_cpu_to_apicid[cpu] = apicid; | 
|  | /* | 
|  | * This grunge runs the startup process for | 
|  | * the targeted processor. | 
|  | */ | 
|  |  | 
|  | atomic_set(&init_deasserted, 0); | 
|  |  | 
|  | Dprintk("Setting warm reset code and vector.\n"); | 
|  |  | 
|  | store_NMI_vector(&nmi_high, &nmi_low); | 
|  |  | 
|  | smpboot_setup_warm_reset_vector(start_eip); | 
|  |  | 
|  | /* | 
|  | * Starting actual IPI sequence... | 
|  | */ | 
|  | boot_error = wakeup_secondary_cpu(apicid, start_eip); | 
|  |  | 
|  | if (!boot_error) { | 
|  | /* | 
|  | * allow APs to start initializing. | 
|  | */ | 
|  | Dprintk("Before Callout %d.\n", cpu); | 
|  | cpu_set(cpu, cpu_callout_map); | 
|  | Dprintk("After Callout %d.\n", cpu); | 
|  |  | 
|  | /* | 
|  | * Wait 5s total for a response | 
|  | */ | 
|  | for (timeout = 0; timeout < 50000; timeout++) { | 
|  | if (cpu_isset(cpu, cpu_callin_map)) | 
|  | break;	/* It has booted */ | 
|  | udelay(100); | 
|  | } | 
|  |  | 
|  | if (cpu_isset(cpu, cpu_callin_map)) { | 
|  | /* number CPUs logically, starting from 1 (BSP is 0) */ | 
|  | Dprintk("OK.\n"); | 
|  | printk("CPU%d: ", cpu); | 
|  | print_cpu_info(&cpu_data[cpu]); | 
|  | Dprintk("CPU has booted.\n"); | 
|  | } else { | 
|  | boot_error= 1; | 
|  | if (*((volatile unsigned char *)trampoline_base) | 
|  | == 0xA5) | 
|  | /* trampoline started but...? */ | 
|  | printk("Stuck ??\n"); | 
|  | else | 
|  | /* trampoline code not run */ | 
|  | printk("Not responding.\n"); | 
|  | inquire_remote_apic(apicid); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (boot_error) { | 
|  | /* Try to put things back the way they were before ... */ | 
|  | unmap_cpu_to_logical_apicid(cpu); | 
|  | cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */ | 
|  | cpu_clear(cpu, cpu_initialized); /* was set by cpu_init() */ | 
|  | cpucount--; | 
|  | } else { | 
|  | x86_cpu_to_apicid[cpu] = apicid; | 
|  | cpu_set(cpu, cpu_present_map); | 
|  | } | 
|  |  | 
|  | /* mark "stuck" area as not stuck */ | 
|  | *((volatile unsigned long *)trampoline_base) = 0; | 
|  |  | 
|  | return boot_error; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | void cpu_exit_clear(void) | 
|  | { | 
|  | int cpu = raw_smp_processor_id(); | 
|  |  | 
|  | idle_task_exit(); | 
|  |  | 
|  | cpucount --; | 
|  | cpu_uninit(); | 
|  | irq_ctx_exit(cpu); | 
|  |  | 
|  | cpu_clear(cpu, cpu_callout_map); | 
|  | cpu_clear(cpu, cpu_callin_map); | 
|  |  | 
|  | cpu_clear(cpu, smp_commenced_mask); | 
|  | unmap_cpu_to_logical_apicid(cpu); | 
|  | } | 
|  |  | 
|  | struct warm_boot_cpu_info { | 
|  | struct completion *complete; | 
|  | struct work_struct task; | 
|  | int apicid; | 
|  | int cpu; | 
|  | }; | 
|  |  | 
|  | static void __cpuinit do_warm_boot_cpu(struct work_struct *work) | 
|  | { | 
|  | struct warm_boot_cpu_info *info = | 
|  | container_of(work, struct warm_boot_cpu_info, task); | 
|  | do_boot_cpu(info->apicid, info->cpu); | 
|  | complete(info->complete); | 
|  | } | 
|  |  | 
|  | static int __cpuinit __smp_prepare_cpu(int cpu) | 
|  | { | 
|  | DECLARE_COMPLETION_ONSTACK(done); | 
|  | struct warm_boot_cpu_info info; | 
|  | int	apicid, ret; | 
|  | struct Xgt_desc_struct *cpu_gdt_descr = &per_cpu(cpu_gdt_descr, cpu); | 
|  |  | 
|  | apicid = x86_cpu_to_apicid[cpu]; | 
|  | if (apicid == BAD_APICID) { | 
|  | ret = -ENODEV; | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the CPU isn't initialized at boot time, allocate gdt table here. | 
|  | * cpu_init will initialize it | 
|  | */ | 
|  | if (!cpu_gdt_descr->address) { | 
|  | cpu_gdt_descr->address = get_zeroed_page(GFP_KERNEL); | 
|  | if (!cpu_gdt_descr->address) | 
|  | printk(KERN_CRIT "CPU%d failed to allocate GDT\n", cpu); | 
|  | ret = -ENOMEM; | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | info.complete = &done; | 
|  | info.apicid = apicid; | 
|  | info.cpu = cpu; | 
|  | INIT_WORK(&info.task, do_warm_boot_cpu); | 
|  |  | 
|  | /* init low mem mapping */ | 
|  | clone_pgd_range(swapper_pg_dir, swapper_pg_dir + USER_PGD_PTRS, | 
|  | min_t(unsigned long, KERNEL_PGD_PTRS, USER_PGD_PTRS)); | 
|  | flush_tlb_all(); | 
|  | schedule_work(&info.task); | 
|  | wait_for_completion(&done); | 
|  |  | 
|  | zap_low_mappings(); | 
|  | ret = 0; | 
|  | exit: | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void smp_tune_scheduling(void) | 
|  | { | 
|  | unsigned long cachesize;       /* kB   */ | 
|  |  | 
|  | if (cpu_khz) { | 
|  | cachesize = boot_cpu_data.x86_cache_size; | 
|  |  | 
|  | if (cachesize > 0) | 
|  | max_cache_size = cachesize * 1024; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Cycle through the processors sending APIC IPIs to boot each. | 
|  | */ | 
|  |  | 
|  | static int boot_cpu_logical_apicid; | 
|  | /* Where the IO area was mapped on multiquad, always 0 otherwise */ | 
|  | void *xquad_portio; | 
|  | #ifdef CONFIG_X86_NUMAQ | 
|  | EXPORT_SYMBOL(xquad_portio); | 
|  | #endif | 
|  |  | 
|  | static void __init smp_boot_cpus(unsigned int max_cpus) | 
|  | { | 
|  | int apicid, cpu, bit, kicked; | 
|  | unsigned long bogosum = 0; | 
|  |  | 
|  | /* | 
|  | * Setup boot CPU information | 
|  | */ | 
|  | smp_store_cpu_info(0); /* Final full version of the data */ | 
|  | printk("CPU%d: ", 0); | 
|  | print_cpu_info(&cpu_data[0]); | 
|  |  | 
|  | boot_cpu_physical_apicid = GET_APIC_ID(apic_read(APIC_ID)); | 
|  | boot_cpu_logical_apicid = logical_smp_processor_id(); | 
|  | x86_cpu_to_apicid[0] = boot_cpu_physical_apicid; | 
|  |  | 
|  | current_thread_info()->cpu = 0; | 
|  | smp_tune_scheduling(); | 
|  |  | 
|  | set_cpu_sibling_map(0); | 
|  |  | 
|  | /* | 
|  | * If we couldn't find an SMP configuration at boot time, | 
|  | * get out of here now! | 
|  | */ | 
|  | if (!smp_found_config && !acpi_lapic) { | 
|  | printk(KERN_NOTICE "SMP motherboard not detected.\n"); | 
|  | smpboot_clear_io_apic_irqs(); | 
|  | phys_cpu_present_map = physid_mask_of_physid(0); | 
|  | if (APIC_init_uniprocessor()) | 
|  | printk(KERN_NOTICE "Local APIC not detected." | 
|  | " Using dummy APIC emulation.\n"); | 
|  | map_cpu_to_logical_apicid(); | 
|  | cpu_set(0, cpu_sibling_map[0]); | 
|  | cpu_set(0, cpu_core_map[0]); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Should not be necessary because the MP table should list the boot | 
|  | * CPU too, but we do it for the sake of robustness anyway. | 
|  | * Makes no sense to do this check in clustered apic mode, so skip it | 
|  | */ | 
|  | if (!check_phys_apicid_present(boot_cpu_physical_apicid)) { | 
|  | printk("weird, boot CPU (#%d) not listed by the BIOS.\n", | 
|  | boot_cpu_physical_apicid); | 
|  | physid_set(hard_smp_processor_id(), phys_cpu_present_map); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we couldn't find a local APIC, then get out of here now! | 
|  | */ | 
|  | if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) && !cpu_has_apic) { | 
|  | printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n", | 
|  | boot_cpu_physical_apicid); | 
|  | printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n"); | 
|  | smpboot_clear_io_apic_irqs(); | 
|  | phys_cpu_present_map = physid_mask_of_physid(0); | 
|  | cpu_set(0, cpu_sibling_map[0]); | 
|  | cpu_set(0, cpu_core_map[0]); | 
|  | return; | 
|  | } | 
|  |  | 
|  | verify_local_APIC(); | 
|  |  | 
|  | /* | 
|  | * If SMP should be disabled, then really disable it! | 
|  | */ | 
|  | if (!max_cpus) { | 
|  | smp_found_config = 0; | 
|  | printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n"); | 
|  | smpboot_clear_io_apic_irqs(); | 
|  | phys_cpu_present_map = physid_mask_of_physid(0); | 
|  | cpu_set(0, cpu_sibling_map[0]); | 
|  | cpu_set(0, cpu_core_map[0]); | 
|  | return; | 
|  | } | 
|  |  | 
|  | connect_bsp_APIC(); | 
|  | setup_local_APIC(); | 
|  | map_cpu_to_logical_apicid(); | 
|  |  | 
|  |  | 
|  | setup_portio_remap(); | 
|  |  | 
|  | /* | 
|  | * Scan the CPU present map and fire up the other CPUs via do_boot_cpu | 
|  | * | 
|  | * In clustered apic mode, phys_cpu_present_map is a constructed thus: | 
|  | * bits 0-3 are quad0, 4-7 are quad1, etc. A perverse twist on the | 
|  | * clustered apic ID. | 
|  | */ | 
|  | Dprintk("CPU present map: %lx\n", physids_coerce(phys_cpu_present_map)); | 
|  |  | 
|  | kicked = 1; | 
|  | for (bit = 0; kicked < NR_CPUS && bit < MAX_APICS; bit++) { | 
|  | apicid = cpu_present_to_apicid(bit); | 
|  | /* | 
|  | * Don't even attempt to start the boot CPU! | 
|  | */ | 
|  | if ((apicid == boot_cpu_apicid) || (apicid == BAD_APICID)) | 
|  | continue; | 
|  |  | 
|  | if (!check_apicid_present(bit)) | 
|  | continue; | 
|  | if (max_cpus <= cpucount+1) | 
|  | continue; | 
|  |  | 
|  | if (((cpu = alloc_cpu_id()) <= 0) || do_boot_cpu(apicid, cpu)) | 
|  | printk("CPU #%d not responding - cannot use it.\n", | 
|  | apicid); | 
|  | else | 
|  | ++kicked; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Cleanup possible dangling ends... | 
|  | */ | 
|  | smpboot_restore_warm_reset_vector(); | 
|  |  | 
|  | /* | 
|  | * Allow the user to impress friends. | 
|  | */ | 
|  | Dprintk("Before bogomips.\n"); | 
|  | for (cpu = 0; cpu < NR_CPUS; cpu++) | 
|  | if (cpu_isset(cpu, cpu_callout_map)) | 
|  | bogosum += cpu_data[cpu].loops_per_jiffy; | 
|  | printk(KERN_INFO | 
|  | "Total of %d processors activated (%lu.%02lu BogoMIPS).\n", | 
|  | cpucount+1, | 
|  | bogosum/(500000/HZ), | 
|  | (bogosum/(5000/HZ))%100); | 
|  |  | 
|  | Dprintk("Before bogocount - setting activated=1.\n"); | 
|  |  | 
|  | if (smp_b_stepping) | 
|  | printk(KERN_WARNING "WARNING: SMP operation may be unreliable with B stepping processors.\n"); | 
|  |  | 
|  | /* | 
|  | * Don't taint if we are running SMP kernel on a single non-MP | 
|  | * approved Athlon | 
|  | */ | 
|  | if (tainted & TAINT_UNSAFE_SMP) { | 
|  | if (cpucount) | 
|  | printk (KERN_INFO "WARNING: This combination of AMD processors is not suitable for SMP.\n"); | 
|  | else | 
|  | tainted &= ~TAINT_UNSAFE_SMP; | 
|  | } | 
|  |  | 
|  | Dprintk("Boot done.\n"); | 
|  |  | 
|  | /* | 
|  | * construct cpu_sibling_map[], so that we can tell sibling CPUs | 
|  | * efficiently. | 
|  | */ | 
|  | for (cpu = 0; cpu < NR_CPUS; cpu++) { | 
|  | cpus_clear(cpu_sibling_map[cpu]); | 
|  | cpus_clear(cpu_core_map[cpu]); | 
|  | } | 
|  |  | 
|  | cpu_set(0, cpu_sibling_map[0]); | 
|  | cpu_set(0, cpu_core_map[0]); | 
|  |  | 
|  | smpboot_setup_io_apic(); | 
|  |  | 
|  | setup_boot_clock(); | 
|  | } | 
|  |  | 
|  | /* These are wrappers to interface to the new boot process.  Someone | 
|  | who understands all this stuff should rewrite it properly. --RR 15/Jul/02 */ | 
|  | void __init smp_prepare_cpus(unsigned int max_cpus) | 
|  | { | 
|  | smp_commenced_mask = cpumask_of_cpu(0); | 
|  | cpu_callin_map = cpumask_of_cpu(0); | 
|  | mb(); | 
|  | smp_boot_cpus(max_cpus); | 
|  | } | 
|  |  | 
|  | void __devinit smp_prepare_boot_cpu(void) | 
|  | { | 
|  | cpu_set(smp_processor_id(), cpu_online_map); | 
|  | cpu_set(smp_processor_id(), cpu_callout_map); | 
|  | cpu_set(smp_processor_id(), cpu_present_map); | 
|  | cpu_set(smp_processor_id(), cpu_possible_map); | 
|  | per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | static void | 
|  | remove_siblinginfo(int cpu) | 
|  | { | 
|  | int sibling; | 
|  | struct cpuinfo_x86 *c = cpu_data; | 
|  |  | 
|  | for_each_cpu_mask(sibling, cpu_core_map[cpu]) { | 
|  | cpu_clear(cpu, cpu_core_map[sibling]); | 
|  | /* | 
|  | * last thread sibling in this cpu core going down | 
|  | */ | 
|  | if (cpus_weight(cpu_sibling_map[cpu]) == 1) | 
|  | c[sibling].booted_cores--; | 
|  | } | 
|  |  | 
|  | for_each_cpu_mask(sibling, cpu_sibling_map[cpu]) | 
|  | cpu_clear(cpu, cpu_sibling_map[sibling]); | 
|  | cpus_clear(cpu_sibling_map[cpu]); | 
|  | cpus_clear(cpu_core_map[cpu]); | 
|  | c[cpu].phys_proc_id = 0; | 
|  | c[cpu].cpu_core_id = 0; | 
|  | cpu_clear(cpu, cpu_sibling_setup_map); | 
|  | } | 
|  |  | 
|  | int __cpu_disable(void) | 
|  | { | 
|  | cpumask_t map = cpu_online_map; | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | /* | 
|  | * Perhaps use cpufreq to drop frequency, but that could go | 
|  | * into generic code. | 
|  | * | 
|  | * We won't take down the boot processor on i386 due to some | 
|  | * interrupts only being able to be serviced by the BSP. | 
|  | * Especially so if we're not using an IOAPIC	-zwane | 
|  | */ | 
|  | if (cpu == 0) | 
|  | return -EBUSY; | 
|  | if (nmi_watchdog == NMI_LOCAL_APIC) | 
|  | stop_apic_nmi_watchdog(NULL); | 
|  | clear_local_APIC(); | 
|  | /* Allow any queued timer interrupts to get serviced */ | 
|  | local_irq_enable(); | 
|  | mdelay(1); | 
|  | local_irq_disable(); | 
|  |  | 
|  | remove_siblinginfo(cpu); | 
|  |  | 
|  | cpu_clear(cpu, map); | 
|  | fixup_irqs(map); | 
|  | /* It's now safe to remove this processor from the online map */ | 
|  | cpu_clear(cpu, cpu_online_map); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __cpu_die(unsigned int cpu) | 
|  | { | 
|  | /* We don't do anything here: idle task is faking death itself. */ | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < 10; i++) { | 
|  | /* They ack this in play_dead by setting CPU_DEAD */ | 
|  | if (per_cpu(cpu_state, cpu) == CPU_DEAD) { | 
|  | printk ("CPU %d is now offline\n", cpu); | 
|  | if (1 == num_online_cpus()) | 
|  | alternatives_smp_switch(0); | 
|  | return; | 
|  | } | 
|  | msleep(100); | 
|  | } | 
|  | printk(KERN_ERR "CPU %u didn't die...\n", cpu); | 
|  | } | 
|  | #else /* ... !CONFIG_HOTPLUG_CPU */ | 
|  | int __cpu_disable(void) | 
|  | { | 
|  | return -ENOSYS; | 
|  | } | 
|  |  | 
|  | void __cpu_die(unsigned int cpu) | 
|  | { | 
|  | /* We said "no" in __cpu_disable */ | 
|  | BUG(); | 
|  | } | 
|  | #endif /* CONFIG_HOTPLUG_CPU */ | 
|  |  | 
|  | int __cpuinit __cpu_up(unsigned int cpu) | 
|  | { | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | int ret=0; | 
|  |  | 
|  | /* | 
|  | * We do warm boot only on cpus that had booted earlier | 
|  | * Otherwise cold boot is all handled from smp_boot_cpus(). | 
|  | * cpu_callin_map is set during AP kickstart process. Its reset | 
|  | * when a cpu is taken offline from cpu_exit_clear(). | 
|  | */ | 
|  | if (!cpu_isset(cpu, cpu_callin_map)) | 
|  | ret = __smp_prepare_cpu(cpu); | 
|  |  | 
|  | if (ret) | 
|  | return -EIO; | 
|  | #endif | 
|  |  | 
|  | /* In case one didn't come up */ | 
|  | if (!cpu_isset(cpu, cpu_callin_map)) { | 
|  | printk(KERN_DEBUG "skipping cpu%d, didn't come online\n", cpu); | 
|  | local_irq_enable(); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | local_irq_enable(); | 
|  |  | 
|  | per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; | 
|  | /* Unleash the CPU! */ | 
|  | cpu_set(cpu, smp_commenced_mask); | 
|  |  | 
|  | /* | 
|  | * Check TSC synchronization with the AP: | 
|  | */ | 
|  | check_tsc_sync_source(cpu); | 
|  |  | 
|  | while (!cpu_isset(cpu, cpu_online_map)) | 
|  | cpu_relax(); | 
|  |  | 
|  | #ifdef CONFIG_X86_GENERICARCH | 
|  | if (num_online_cpus() > 8 && genapic == &apic_default) | 
|  | panic("Default flat APIC routing can't be used with > 8 cpus\n"); | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __init smp_cpus_done(unsigned int max_cpus) | 
|  | { | 
|  | #ifdef CONFIG_X86_IO_APIC | 
|  | setup_ioapic_dest(); | 
|  | #endif | 
|  | zap_low_mappings(); | 
|  | #ifndef CONFIG_HOTPLUG_CPU | 
|  | /* | 
|  | * Disable executability of the SMP trampoline: | 
|  | */ | 
|  | set_kernel_exec((unsigned long)trampoline_base, trampoline_exec); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void __init smp_intr_init(void) | 
|  | { | 
|  | /* | 
|  | * IRQ0 must be given a fixed assignment and initialized, | 
|  | * because it's used before the IO-APIC is set up. | 
|  | */ | 
|  | set_intr_gate(FIRST_DEVICE_VECTOR, interrupt[0]); | 
|  |  | 
|  | /* | 
|  | * The reschedule interrupt is a CPU-to-CPU reschedule-helper | 
|  | * IPI, driven by wakeup. | 
|  | */ | 
|  | set_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt); | 
|  |  | 
|  | /* IPI for invalidation */ | 
|  | set_intr_gate(INVALIDATE_TLB_VECTOR, invalidate_interrupt); | 
|  |  | 
|  | /* IPI for generic function call */ | 
|  | set_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the BIOS enumerates physical processors before logical, | 
|  | * maxcpus=N at enumeration-time can be used to disable HT. | 
|  | */ | 
|  | static int __init parse_maxcpus(char *arg) | 
|  | { | 
|  | extern unsigned int maxcpus; | 
|  |  | 
|  | maxcpus = simple_strtoul(arg, NULL, 0); | 
|  | return 0; | 
|  | } | 
|  | early_param("maxcpus", parse_maxcpus); |