| /* | 
 |  * lib/kernel_lock.c | 
 |  * | 
 |  * This is the traditional BKL - big kernel lock. Largely | 
 |  * relegated to obsolescense, but used by various less | 
 |  * important (or lazy) subsystems. | 
 |  */ | 
 | #include <linux/smp_lock.h> | 
 | #include <linux/module.h> | 
 | #include <linux/kallsyms.h> | 
 |  | 
 | #if defined(CONFIG_PREEMPT) && defined(__smp_processor_id) && \ | 
 | 		defined(CONFIG_DEBUG_PREEMPT) | 
 |  | 
 | /* | 
 |  * Debugging check. | 
 |  */ | 
 | unsigned int smp_processor_id(void) | 
 | { | 
 | 	unsigned long preempt_count = preempt_count(); | 
 | 	int this_cpu = __smp_processor_id(); | 
 | 	cpumask_t this_mask; | 
 |  | 
 | 	if (likely(preempt_count)) | 
 | 		goto out; | 
 |  | 
 | 	if (irqs_disabled()) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Kernel threads bound to a single CPU can safely use | 
 | 	 * smp_processor_id(): | 
 | 	 */ | 
 | 	this_mask = cpumask_of_cpu(this_cpu); | 
 |  | 
 | 	if (cpus_equal(current->cpus_allowed, this_mask)) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * It is valid to assume CPU-locality during early bootup: | 
 | 	 */ | 
 | 	if (system_state != SYSTEM_RUNNING) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Avoid recursion: | 
 | 	 */ | 
 | 	preempt_disable(); | 
 |  | 
 | 	if (!printk_ratelimit()) | 
 | 		goto out_enable; | 
 |  | 
 | 	printk(KERN_ERR "BUG: using smp_processor_id() in preemptible [%08x] code: %s/%d\n", preempt_count(), current->comm, current->pid); | 
 | 	print_symbol("caller is %s\n", (long)__builtin_return_address(0)); | 
 | 	dump_stack(); | 
 |  | 
 | out_enable: | 
 | 	preempt_enable_no_resched(); | 
 | out: | 
 | 	return this_cpu; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(smp_processor_id); | 
 |  | 
 | #endif /* PREEMPT && __smp_processor_id && DEBUG_PREEMPT */ | 
 |  | 
 | #ifdef CONFIG_PREEMPT_BKL | 
 | /* | 
 |  * The 'big kernel semaphore' | 
 |  * | 
 |  * This mutex is taken and released recursively by lock_kernel() | 
 |  * and unlock_kernel().  It is transparently dropped and reaquired | 
 |  * over schedule().  It is used to protect legacy code that hasn't | 
 |  * been migrated to a proper locking design yet. | 
 |  * | 
 |  * Note: code locked by this semaphore will only be serialized against | 
 |  * other code using the same locking facility. The code guarantees that | 
 |  * the task remains on the same CPU. | 
 |  * | 
 |  * Don't use in new code. | 
 |  */ | 
 | static DECLARE_MUTEX(kernel_sem); | 
 |  | 
 | /* | 
 |  * Re-acquire the kernel semaphore. | 
 |  * | 
 |  * This function is called with preemption off. | 
 |  * | 
 |  * We are executing in schedule() so the code must be extremely careful | 
 |  * about recursion, both due to the down() and due to the enabling of | 
 |  * preemption. schedule() will re-check the preemption flag after | 
 |  * reacquiring the semaphore. | 
 |  */ | 
 | int __lockfunc __reacquire_kernel_lock(void) | 
 | { | 
 | 	struct task_struct *task = current; | 
 | 	int saved_lock_depth = task->lock_depth; | 
 |  | 
 | 	BUG_ON(saved_lock_depth < 0); | 
 |  | 
 | 	task->lock_depth = -1; | 
 | 	preempt_enable_no_resched(); | 
 |  | 
 | 	down(&kernel_sem); | 
 |  | 
 | 	preempt_disable(); | 
 | 	task->lock_depth = saved_lock_depth; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __lockfunc __release_kernel_lock(void) | 
 | { | 
 | 	up(&kernel_sem); | 
 | } | 
 |  | 
 | /* | 
 |  * Getting the big kernel semaphore. | 
 |  */ | 
 | void __lockfunc lock_kernel(void) | 
 | { | 
 | 	struct task_struct *task = current; | 
 | 	int depth = task->lock_depth + 1; | 
 |  | 
 | 	if (likely(!depth)) | 
 | 		/* | 
 | 		 * No recursion worries - we set up lock_depth _after_ | 
 | 		 */ | 
 | 		down(&kernel_sem); | 
 |  | 
 | 	task->lock_depth = depth; | 
 | } | 
 |  | 
 | void __lockfunc unlock_kernel(void) | 
 | { | 
 | 	struct task_struct *task = current; | 
 |  | 
 | 	BUG_ON(task->lock_depth < 0); | 
 |  | 
 | 	if (likely(--task->lock_depth < 0)) | 
 | 		up(&kernel_sem); | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | /* | 
 |  * The 'big kernel lock' | 
 |  * | 
 |  * This spinlock is taken and released recursively by lock_kernel() | 
 |  * and unlock_kernel().  It is transparently dropped and reaquired | 
 |  * over schedule().  It is used to protect legacy code that hasn't | 
 |  * been migrated to a proper locking design yet. | 
 |  * | 
 |  * Don't use in new code. | 
 |  */ | 
 | static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(kernel_flag); | 
 |  | 
 |  | 
 | /* | 
 |  * Acquire/release the underlying lock from the scheduler. | 
 |  * | 
 |  * This is called with preemption disabled, and should | 
 |  * return an error value if it cannot get the lock and | 
 |  * TIF_NEED_RESCHED gets set. | 
 |  * | 
 |  * If it successfully gets the lock, it should increment | 
 |  * the preemption count like any spinlock does. | 
 |  * | 
 |  * (This works on UP too - _raw_spin_trylock will never | 
 |  * return false in that case) | 
 |  */ | 
 | int __lockfunc __reacquire_kernel_lock(void) | 
 | { | 
 | 	while (!_raw_spin_trylock(&kernel_flag)) { | 
 | 		if (test_thread_flag(TIF_NEED_RESCHED)) | 
 | 			return -EAGAIN; | 
 | 		cpu_relax(); | 
 | 	} | 
 | 	preempt_disable(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __lockfunc __release_kernel_lock(void) | 
 | { | 
 | 	_raw_spin_unlock(&kernel_flag); | 
 | 	preempt_enable_no_resched(); | 
 | } | 
 |  | 
 | /* | 
 |  * These are the BKL spinlocks - we try to be polite about preemption.  | 
 |  * If SMP is not on (ie UP preemption), this all goes away because the | 
 |  * _raw_spin_trylock() will always succeed. | 
 |  */ | 
 | #ifdef CONFIG_PREEMPT | 
 | static inline void __lock_kernel(void) | 
 | { | 
 | 	preempt_disable(); | 
 | 	if (unlikely(!_raw_spin_trylock(&kernel_flag))) { | 
 | 		/* | 
 | 		 * If preemption was disabled even before this | 
 | 		 * was called, there's nothing we can be polite | 
 | 		 * about - just spin. | 
 | 		 */ | 
 | 		if (preempt_count() > 1) { | 
 | 			_raw_spin_lock(&kernel_flag); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Otherwise, let's wait for the kernel lock | 
 | 		 * with preemption enabled.. | 
 | 		 */ | 
 | 		do { | 
 | 			preempt_enable(); | 
 | 			while (spin_is_locked(&kernel_flag)) | 
 | 				cpu_relax(); | 
 | 			preempt_disable(); | 
 | 		} while (!_raw_spin_trylock(&kernel_flag)); | 
 | 	} | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | /* | 
 |  * Non-preemption case - just get the spinlock | 
 |  */ | 
 | static inline void __lock_kernel(void) | 
 | { | 
 | 	_raw_spin_lock(&kernel_flag); | 
 | } | 
 | #endif | 
 |  | 
 | static inline void __unlock_kernel(void) | 
 | { | 
 | 	_raw_spin_unlock(&kernel_flag); | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | /* | 
 |  * Getting the big kernel lock. | 
 |  * | 
 |  * This cannot happen asynchronously, so we only need to | 
 |  * worry about other CPU's. | 
 |  */ | 
 | void __lockfunc lock_kernel(void) | 
 | { | 
 | 	int depth = current->lock_depth+1; | 
 | 	if (likely(!depth)) | 
 | 		__lock_kernel(); | 
 | 	current->lock_depth = depth; | 
 | } | 
 |  | 
 | void __lockfunc unlock_kernel(void) | 
 | { | 
 | 	BUG_ON(current->lock_depth < 0); | 
 | 	if (likely(--current->lock_depth < 0)) | 
 | 		__unlock_kernel(); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | EXPORT_SYMBOL(lock_kernel); | 
 | EXPORT_SYMBOL(unlock_kernel); | 
 |  |