|  | /* | 
|  | *  linux/arch/arm/mm/dma-mapping.c | 
|  | * | 
|  | *  Copyright (C) 2000-2004 Russell King | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | *  DMA uncached mapping support. | 
|  | */ | 
|  | #include <linux/module.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/highmem.h> | 
|  |  | 
|  | #include <asm/memory.h> | 
|  | #include <asm/highmem.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/sizes.h> | 
|  |  | 
|  | static u64 get_coherent_dma_mask(struct device *dev) | 
|  | { | 
|  | u64 mask = ISA_DMA_THRESHOLD; | 
|  |  | 
|  | if (dev) { | 
|  | mask = dev->coherent_dma_mask; | 
|  |  | 
|  | /* | 
|  | * Sanity check the DMA mask - it must be non-zero, and | 
|  | * must be able to be satisfied by a DMA allocation. | 
|  | */ | 
|  | if (mask == 0) { | 
|  | dev_warn(dev, "coherent DMA mask is unset\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if ((~mask) & ISA_DMA_THRESHOLD) { | 
|  | dev_warn(dev, "coherent DMA mask %#llx is smaller " | 
|  | "than system GFP_DMA mask %#llx\n", | 
|  | mask, (unsigned long long)ISA_DMA_THRESHOLD); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return mask; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a DMA buffer for 'dev' of size 'size' using the | 
|  | * specified gfp mask.  Note that 'size' must be page aligned. | 
|  | */ | 
|  | static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp) | 
|  | { | 
|  | unsigned long order = get_order(size); | 
|  | struct page *page, *p, *e; | 
|  | void *ptr; | 
|  | u64 mask = get_coherent_dma_mask(dev); | 
|  |  | 
|  | #ifdef CONFIG_DMA_API_DEBUG | 
|  | u64 limit = (mask + 1) & ~mask; | 
|  | if (limit && size >= limit) { | 
|  | dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", | 
|  | size, mask); | 
|  | return NULL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (!mask) | 
|  | return NULL; | 
|  |  | 
|  | if (mask < 0xffffffffULL) | 
|  | gfp |= GFP_DMA; | 
|  |  | 
|  | page = alloc_pages(gfp, order); | 
|  | if (!page) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * Now split the huge page and free the excess pages | 
|  | */ | 
|  | split_page(page, order); | 
|  | for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) | 
|  | __free_page(p); | 
|  |  | 
|  | /* | 
|  | * Ensure that the allocated pages are zeroed, and that any data | 
|  | * lurking in the kernel direct-mapped region is invalidated. | 
|  | */ | 
|  | ptr = page_address(page); | 
|  | memset(ptr, 0, size); | 
|  | dmac_flush_range(ptr, ptr + size); | 
|  | outer_flush_range(__pa(ptr), __pa(ptr) + size); | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free a DMA buffer.  'size' must be page aligned. | 
|  | */ | 
|  | static void __dma_free_buffer(struct page *page, size_t size) | 
|  | { | 
|  | struct page *e = page + (size >> PAGE_SHIFT); | 
|  |  | 
|  | while (page < e) { | 
|  | __free_page(page); | 
|  | page++; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  | /* Sanity check size */ | 
|  | #if (CONSISTENT_DMA_SIZE % SZ_2M) | 
|  | #error "CONSISTENT_DMA_SIZE must be multiple of 2MiB" | 
|  | #endif | 
|  |  | 
|  | #define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT) | 
|  | #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT) | 
|  | #define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT) | 
|  |  | 
|  | /* | 
|  | * These are the page tables (2MB each) covering uncached, DMA consistent allocations | 
|  | */ | 
|  | static pte_t *consistent_pte[NUM_CONSISTENT_PTES]; | 
|  |  | 
|  | #include "vmregion.h" | 
|  |  | 
|  | static struct arm_vmregion_head consistent_head = { | 
|  | .vm_lock	= __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock), | 
|  | .vm_list	= LIST_HEAD_INIT(consistent_head.vm_list), | 
|  | .vm_start	= CONSISTENT_BASE, | 
|  | .vm_end		= CONSISTENT_END, | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | #error ARM Coherent DMA allocator does not (yet) support huge TLB | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Initialise the consistent memory allocation. | 
|  | */ | 
|  | static int __init consistent_init(void) | 
|  | { | 
|  | int ret = 0; | 
|  | pgd_t *pgd; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  | int i = 0; | 
|  | u32 base = CONSISTENT_BASE; | 
|  |  | 
|  | do { | 
|  | pgd = pgd_offset(&init_mm, base); | 
|  |  | 
|  | pud = pud_alloc(&init_mm, pgd, base); | 
|  | if (!pud) { | 
|  | printk(KERN_ERR "%s: no pud tables\n", __func__); | 
|  | ret = -ENOMEM; | 
|  | break; | 
|  | } | 
|  |  | 
|  | pmd = pmd_alloc(&init_mm, pud, base); | 
|  | if (!pmd) { | 
|  | printk(KERN_ERR "%s: no pmd tables\n", __func__); | 
|  | ret = -ENOMEM; | 
|  | break; | 
|  | } | 
|  | WARN_ON(!pmd_none(*pmd)); | 
|  |  | 
|  | pte = pte_alloc_kernel(pmd, base); | 
|  | if (!pte) { | 
|  | printk(KERN_ERR "%s: no pte tables\n", __func__); | 
|  | ret = -ENOMEM; | 
|  | break; | 
|  | } | 
|  |  | 
|  | consistent_pte[i++] = pte; | 
|  | base += (1 << PGDIR_SHIFT); | 
|  | } while (base < CONSISTENT_END); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | core_initcall(consistent_init); | 
|  |  | 
|  | static void * | 
|  | __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot) | 
|  | { | 
|  | struct arm_vmregion *c; | 
|  | size_t align; | 
|  | int bit; | 
|  |  | 
|  | if (!consistent_pte[0]) { | 
|  | printk(KERN_ERR "%s: not initialised\n", __func__); | 
|  | dump_stack(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Align the virtual region allocation - maximum alignment is | 
|  | * a section size, minimum is a page size.  This helps reduce | 
|  | * fragmentation of the DMA space, and also prevents allocations | 
|  | * smaller than a section from crossing a section boundary. | 
|  | */ | 
|  | bit = fls(size - 1); | 
|  | if (bit > SECTION_SHIFT) | 
|  | bit = SECTION_SHIFT; | 
|  | align = 1 << bit; | 
|  |  | 
|  | /* | 
|  | * Allocate a virtual address in the consistent mapping region. | 
|  | */ | 
|  | c = arm_vmregion_alloc(&consistent_head, align, size, | 
|  | gfp & ~(__GFP_DMA | __GFP_HIGHMEM)); | 
|  | if (c) { | 
|  | pte_t *pte; | 
|  | int idx = CONSISTENT_PTE_INDEX(c->vm_start); | 
|  | u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1); | 
|  |  | 
|  | pte = consistent_pte[idx] + off; | 
|  | c->vm_pages = page; | 
|  |  | 
|  | do { | 
|  | BUG_ON(!pte_none(*pte)); | 
|  |  | 
|  | set_pte_ext(pte, mk_pte(page, prot), 0); | 
|  | page++; | 
|  | pte++; | 
|  | off++; | 
|  | if (off >= PTRS_PER_PTE) { | 
|  | off = 0; | 
|  | pte = consistent_pte[++idx]; | 
|  | } | 
|  | } while (size -= PAGE_SIZE); | 
|  |  | 
|  | dsb(); | 
|  |  | 
|  | return (void *)c->vm_start; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void __dma_free_remap(void *cpu_addr, size_t size) | 
|  | { | 
|  | struct arm_vmregion *c; | 
|  | unsigned long addr; | 
|  | pte_t *ptep; | 
|  | int idx; | 
|  | u32 off; | 
|  |  | 
|  | c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr); | 
|  | if (!c) { | 
|  | printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n", | 
|  | __func__, cpu_addr); | 
|  | dump_stack(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if ((c->vm_end - c->vm_start) != size) { | 
|  | printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n", | 
|  | __func__, c->vm_end - c->vm_start, size); | 
|  | dump_stack(); | 
|  | size = c->vm_end - c->vm_start; | 
|  | } | 
|  |  | 
|  | idx = CONSISTENT_PTE_INDEX(c->vm_start); | 
|  | off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1); | 
|  | ptep = consistent_pte[idx] + off; | 
|  | addr = c->vm_start; | 
|  | do { | 
|  | pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep); | 
|  |  | 
|  | ptep++; | 
|  | addr += PAGE_SIZE; | 
|  | off++; | 
|  | if (off >= PTRS_PER_PTE) { | 
|  | off = 0; | 
|  | ptep = consistent_pte[++idx]; | 
|  | } | 
|  |  | 
|  | if (pte_none(pte) || !pte_present(pte)) | 
|  | printk(KERN_CRIT "%s: bad page in kernel page table\n", | 
|  | __func__); | 
|  | } while (size -= PAGE_SIZE); | 
|  |  | 
|  | flush_tlb_kernel_range(c->vm_start, c->vm_end); | 
|  |  | 
|  | arm_vmregion_free(&consistent_head, c); | 
|  | } | 
|  |  | 
|  | #else	/* !CONFIG_MMU */ | 
|  |  | 
|  | #define __dma_alloc_remap(page, size, gfp, prot)	page_address(page) | 
|  | #define __dma_free_remap(addr, size)			do { } while (0) | 
|  |  | 
|  | #endif	/* CONFIG_MMU */ | 
|  |  | 
|  | static void * | 
|  | __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp, | 
|  | pgprot_t prot) | 
|  | { | 
|  | struct page *page; | 
|  | void *addr; | 
|  |  | 
|  | *handle = ~0; | 
|  | size = PAGE_ALIGN(size); | 
|  |  | 
|  | page = __dma_alloc_buffer(dev, size, gfp); | 
|  | if (!page) | 
|  | return NULL; | 
|  |  | 
|  | if (!arch_is_coherent()) | 
|  | addr = __dma_alloc_remap(page, size, gfp, prot); | 
|  | else | 
|  | addr = page_address(page); | 
|  |  | 
|  | if (addr) | 
|  | *handle = pfn_to_dma(dev, page_to_pfn(page)); | 
|  |  | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate DMA-coherent memory space and return both the kernel remapped | 
|  | * virtual and bus address for that space. | 
|  | */ | 
|  | void * | 
|  | dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp) | 
|  | { | 
|  | void *memory; | 
|  |  | 
|  | if (dma_alloc_from_coherent(dev, size, handle, &memory)) | 
|  | return memory; | 
|  |  | 
|  | return __dma_alloc(dev, size, handle, gfp, | 
|  | pgprot_dmacoherent(pgprot_kernel)); | 
|  | } | 
|  | EXPORT_SYMBOL(dma_alloc_coherent); | 
|  |  | 
|  | /* | 
|  | * Allocate a writecombining region, in much the same way as | 
|  | * dma_alloc_coherent above. | 
|  | */ | 
|  | void * | 
|  | dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp) | 
|  | { | 
|  | return __dma_alloc(dev, size, handle, gfp, | 
|  | pgprot_writecombine(pgprot_kernel)); | 
|  | } | 
|  | EXPORT_SYMBOL(dma_alloc_writecombine); | 
|  |  | 
|  | static int dma_mmap(struct device *dev, struct vm_area_struct *vma, | 
|  | void *cpu_addr, dma_addr_t dma_addr, size_t size) | 
|  | { | 
|  | int ret = -ENXIO; | 
|  | #ifdef CONFIG_MMU | 
|  | unsigned long user_size, kern_size; | 
|  | struct arm_vmregion *c; | 
|  |  | 
|  | user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; | 
|  |  | 
|  | c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr); | 
|  | if (c) { | 
|  | unsigned long off = vma->vm_pgoff; | 
|  |  | 
|  | kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT; | 
|  |  | 
|  | if (off < kern_size && | 
|  | user_size <= (kern_size - off)) { | 
|  | ret = remap_pfn_range(vma, vma->vm_start, | 
|  | page_to_pfn(c->vm_pages) + off, | 
|  | user_size << PAGE_SHIFT, | 
|  | vma->vm_page_prot); | 
|  | } | 
|  | } | 
|  | #endif	/* CONFIG_MMU */ | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma, | 
|  | void *cpu_addr, dma_addr_t dma_addr, size_t size) | 
|  | { | 
|  | vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot); | 
|  | return dma_mmap(dev, vma, cpu_addr, dma_addr, size); | 
|  | } | 
|  | EXPORT_SYMBOL(dma_mmap_coherent); | 
|  |  | 
|  | int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma, | 
|  | void *cpu_addr, dma_addr_t dma_addr, size_t size) | 
|  | { | 
|  | vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); | 
|  | return dma_mmap(dev, vma, cpu_addr, dma_addr, size); | 
|  | } | 
|  | EXPORT_SYMBOL(dma_mmap_writecombine); | 
|  |  | 
|  | /* | 
|  | * free a page as defined by the above mapping. | 
|  | * Must not be called with IRQs disabled. | 
|  | */ | 
|  | void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle) | 
|  | { | 
|  | WARN_ON(irqs_disabled()); | 
|  |  | 
|  | if (dma_release_from_coherent(dev, get_order(size), cpu_addr)) | 
|  | return; | 
|  |  | 
|  | size = PAGE_ALIGN(size); | 
|  |  | 
|  | if (!arch_is_coherent()) | 
|  | __dma_free_remap(cpu_addr, size); | 
|  |  | 
|  | __dma_free_buffer(pfn_to_page(dma_to_pfn(dev, handle)), size); | 
|  | } | 
|  | EXPORT_SYMBOL(dma_free_coherent); | 
|  |  | 
|  | /* | 
|  | * Make an area consistent for devices. | 
|  | * Note: Drivers should NOT use this function directly, as it will break | 
|  | * platforms with CONFIG_DMABOUNCE. | 
|  | * Use the driver DMA support - see dma-mapping.h (dma_sync_*) | 
|  | */ | 
|  | void ___dma_single_cpu_to_dev(const void *kaddr, size_t size, | 
|  | enum dma_data_direction dir) | 
|  | { | 
|  | #ifdef CONFIG_OUTER_CACHE | 
|  | unsigned long paddr; | 
|  |  | 
|  | BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1)); | 
|  | #endif | 
|  |  | 
|  | dmac_map_area(kaddr, size, dir); | 
|  |  | 
|  | #ifdef CONFIG_OUTER_CACHE | 
|  | paddr = __pa(kaddr); | 
|  | if (dir == DMA_FROM_DEVICE) { | 
|  | outer_inv_range(paddr, paddr + size); | 
|  | } else { | 
|  | outer_clean_range(paddr, paddr + size); | 
|  | } | 
|  | #endif | 
|  | /* FIXME: non-speculating: flush on bidirectional mappings? */ | 
|  | } | 
|  | EXPORT_SYMBOL(___dma_single_cpu_to_dev); | 
|  |  | 
|  | void ___dma_single_dev_to_cpu(const void *kaddr, size_t size, | 
|  | enum dma_data_direction dir) | 
|  | { | 
|  | #ifdef CONFIG_OUTER_CACHE | 
|  | BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1)); | 
|  |  | 
|  | /* FIXME: non-speculating: not required */ | 
|  | /* don't bother invalidating if DMA to device */ | 
|  | if (dir != DMA_TO_DEVICE) { | 
|  | unsigned long paddr = __pa(kaddr); | 
|  | outer_inv_range(paddr, paddr + size); | 
|  | } | 
|  | #endif | 
|  | dmac_unmap_area(kaddr, size, dir); | 
|  | } | 
|  | EXPORT_SYMBOL(___dma_single_dev_to_cpu); | 
|  |  | 
|  | static void dma_cache_maint_page(struct page *page, unsigned long offset, | 
|  | size_t size, enum dma_data_direction dir, | 
|  | void (*op)(const void *, size_t, int)) | 
|  | { | 
|  | /* | 
|  | * A single sg entry may refer to multiple physically contiguous | 
|  | * pages.  But we still need to process highmem pages individually. | 
|  | * If highmem is not configured then the bulk of this loop gets | 
|  | * optimized out. | 
|  | */ | 
|  | size_t left = size; | 
|  | do { | 
|  | size_t len = left; | 
|  | void *vaddr; | 
|  |  | 
|  | if (PageHighMem(page)) { | 
|  | if (len + offset > PAGE_SIZE) { | 
|  | if (offset >= PAGE_SIZE) { | 
|  | page += offset / PAGE_SIZE; | 
|  | offset %= PAGE_SIZE; | 
|  | } | 
|  | len = PAGE_SIZE - offset; | 
|  | } | 
|  | vaddr = kmap_high_get(page); | 
|  | if (vaddr) { | 
|  | vaddr += offset; | 
|  | op(vaddr, len, dir); | 
|  | kunmap_high(page); | 
|  | } else if (cache_is_vipt()) { | 
|  | /* unmapped pages might still be cached */ | 
|  | vaddr = kmap_atomic(page); | 
|  | op(vaddr + offset, len, dir); | 
|  | kunmap_atomic(vaddr); | 
|  | } | 
|  | } else { | 
|  | vaddr = page_address(page) + offset; | 
|  | op(vaddr, len, dir); | 
|  | } | 
|  | offset = 0; | 
|  | page++; | 
|  | left -= len; | 
|  | } while (left); | 
|  | } | 
|  |  | 
|  | void ___dma_page_cpu_to_dev(struct page *page, unsigned long off, | 
|  | size_t size, enum dma_data_direction dir) | 
|  | { | 
|  | unsigned long paddr; | 
|  |  | 
|  | dma_cache_maint_page(page, off, size, dir, dmac_map_area); | 
|  |  | 
|  | paddr = page_to_phys(page) + off; | 
|  | if (dir == DMA_FROM_DEVICE) { | 
|  | outer_inv_range(paddr, paddr + size); | 
|  | } else { | 
|  | outer_clean_range(paddr, paddr + size); | 
|  | } | 
|  | /* FIXME: non-speculating: flush on bidirectional mappings? */ | 
|  | } | 
|  | EXPORT_SYMBOL(___dma_page_cpu_to_dev); | 
|  |  | 
|  | void ___dma_page_dev_to_cpu(struct page *page, unsigned long off, | 
|  | size_t size, enum dma_data_direction dir) | 
|  | { | 
|  | unsigned long paddr = page_to_phys(page) + off; | 
|  |  | 
|  | /* FIXME: non-speculating: not required */ | 
|  | /* don't bother invalidating if DMA to device */ | 
|  | if (dir != DMA_TO_DEVICE) | 
|  | outer_inv_range(paddr, paddr + size); | 
|  |  | 
|  | dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); | 
|  |  | 
|  | /* | 
|  | * Mark the D-cache clean for this page to avoid extra flushing. | 
|  | */ | 
|  | if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE) | 
|  | set_bit(PG_dcache_clean, &page->flags); | 
|  | } | 
|  | EXPORT_SYMBOL(___dma_page_dev_to_cpu); | 
|  |  | 
|  | /** | 
|  | * dma_map_sg - map a set of SG buffers for streaming mode DMA | 
|  | * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices | 
|  | * @sg: list of buffers | 
|  | * @nents: number of buffers to map | 
|  | * @dir: DMA transfer direction | 
|  | * | 
|  | * Map a set of buffers described by scatterlist in streaming mode for DMA. | 
|  | * This is the scatter-gather version of the dma_map_single interface. | 
|  | * Here the scatter gather list elements are each tagged with the | 
|  | * appropriate dma address and length.  They are obtained via | 
|  | * sg_dma_{address,length}. | 
|  | * | 
|  | * Device ownership issues as mentioned for dma_map_single are the same | 
|  | * here. | 
|  | */ | 
|  | int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, | 
|  | enum dma_data_direction dir) | 
|  | { | 
|  | struct scatterlist *s; | 
|  | int i, j; | 
|  |  | 
|  | BUG_ON(!valid_dma_direction(dir)); | 
|  |  | 
|  | for_each_sg(sg, s, nents, i) { | 
|  | s->dma_address = __dma_map_page(dev, sg_page(s), s->offset, | 
|  | s->length, dir); | 
|  | if (dma_mapping_error(dev, s->dma_address)) | 
|  | goto bad_mapping; | 
|  | } | 
|  | debug_dma_map_sg(dev, sg, nents, nents, dir); | 
|  | return nents; | 
|  |  | 
|  | bad_mapping: | 
|  | for_each_sg(sg, s, i, j) | 
|  | __dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(dma_map_sg); | 
|  |  | 
|  | /** | 
|  | * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg | 
|  | * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices | 
|  | * @sg: list of buffers | 
|  | * @nents: number of buffers to unmap (same as was passed to dma_map_sg) | 
|  | * @dir: DMA transfer direction (same as was passed to dma_map_sg) | 
|  | * | 
|  | * Unmap a set of streaming mode DMA translations.  Again, CPU access | 
|  | * rules concerning calls here are the same as for dma_unmap_single(). | 
|  | */ | 
|  | void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, | 
|  | enum dma_data_direction dir) | 
|  | { | 
|  | struct scatterlist *s; | 
|  | int i; | 
|  |  | 
|  | debug_dma_unmap_sg(dev, sg, nents, dir); | 
|  |  | 
|  | for_each_sg(sg, s, nents, i) | 
|  | __dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir); | 
|  | } | 
|  | EXPORT_SYMBOL(dma_unmap_sg); | 
|  |  | 
|  | /** | 
|  | * dma_sync_sg_for_cpu | 
|  | * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices | 
|  | * @sg: list of buffers | 
|  | * @nents: number of buffers to map (returned from dma_map_sg) | 
|  | * @dir: DMA transfer direction (same as was passed to dma_map_sg) | 
|  | */ | 
|  | void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, | 
|  | int nents, enum dma_data_direction dir) | 
|  | { | 
|  | struct scatterlist *s; | 
|  | int i; | 
|  |  | 
|  | for_each_sg(sg, s, nents, i) { | 
|  | if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0, | 
|  | sg_dma_len(s), dir)) | 
|  | continue; | 
|  |  | 
|  | __dma_page_dev_to_cpu(sg_page(s), s->offset, | 
|  | s->length, dir); | 
|  | } | 
|  |  | 
|  | debug_dma_sync_sg_for_cpu(dev, sg, nents, dir); | 
|  | } | 
|  | EXPORT_SYMBOL(dma_sync_sg_for_cpu); | 
|  |  | 
|  | /** | 
|  | * dma_sync_sg_for_device | 
|  | * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices | 
|  | * @sg: list of buffers | 
|  | * @nents: number of buffers to map (returned from dma_map_sg) | 
|  | * @dir: DMA transfer direction (same as was passed to dma_map_sg) | 
|  | */ | 
|  | void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, | 
|  | int nents, enum dma_data_direction dir) | 
|  | { | 
|  | struct scatterlist *s; | 
|  | int i; | 
|  |  | 
|  | for_each_sg(sg, s, nents, i) { | 
|  | if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0, | 
|  | sg_dma_len(s), dir)) | 
|  | continue; | 
|  |  | 
|  | __dma_page_cpu_to_dev(sg_page(s), s->offset, | 
|  | s->length, dir); | 
|  | } | 
|  |  | 
|  | debug_dma_sync_sg_for_device(dev, sg, nents, dir); | 
|  | } | 
|  | EXPORT_SYMBOL(dma_sync_sg_for_device); | 
|  |  | 
|  | #define PREALLOC_DMA_DEBUG_ENTRIES	4096 | 
|  |  | 
|  | static int __init dma_debug_do_init(void) | 
|  | { | 
|  | dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); | 
|  | return 0; | 
|  | } | 
|  | fs_initcall(dma_debug_do_init); |