|  | /* | 
|  | *  linux/kernel/signal.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992  Linus Torvalds | 
|  | * | 
|  | *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson | 
|  | * | 
|  | *  2003-06-02  Jim Houston - Concurrent Computer Corp. | 
|  | *		Changes to use preallocated sigqueue structures | 
|  | *		to allow signals to be sent reliably. | 
|  | */ | 
|  |  | 
|  | #include <linux/slab.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/tty.h> | 
|  | #include <linux/binfmts.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/signal.h> | 
|  | #include <linux/signalfd.h> | 
|  | #include <linux/tracehook.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/freezer.h> | 
|  | #include <linux/pid_namespace.h> | 
|  | #include <linux/nsproxy.h> | 
|  | #include <trace/events/sched.h> | 
|  |  | 
|  | #include <asm/param.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/unistd.h> | 
|  | #include <asm/siginfo.h> | 
|  | #include "audit.h"	/* audit_signal_info() */ | 
|  |  | 
|  | /* | 
|  | * SLAB caches for signal bits. | 
|  | */ | 
|  |  | 
|  | static struct kmem_cache *sigqueue_cachep; | 
|  |  | 
|  | static void __user *sig_handler(struct task_struct *t, int sig) | 
|  | { | 
|  | return t->sighand->action[sig - 1].sa.sa_handler; | 
|  | } | 
|  |  | 
|  | static int sig_handler_ignored(void __user *handler, int sig) | 
|  | { | 
|  | /* Is it explicitly or implicitly ignored? */ | 
|  | return handler == SIG_IGN || | 
|  | (handler == SIG_DFL && sig_kernel_ignore(sig)); | 
|  | } | 
|  |  | 
|  | static int sig_task_ignored(struct task_struct *t, int sig, | 
|  | int from_ancestor_ns) | 
|  | { | 
|  | void __user *handler; | 
|  |  | 
|  | handler = sig_handler(t, sig); | 
|  |  | 
|  | if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && | 
|  | handler == SIG_DFL && !from_ancestor_ns) | 
|  | return 1; | 
|  |  | 
|  | return sig_handler_ignored(handler, sig); | 
|  | } | 
|  |  | 
|  | static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns) | 
|  | { | 
|  | /* | 
|  | * Blocked signals are never ignored, since the | 
|  | * signal handler may change by the time it is | 
|  | * unblocked. | 
|  | */ | 
|  | if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) | 
|  | return 0; | 
|  |  | 
|  | if (!sig_task_ignored(t, sig, from_ancestor_ns)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Tracers may want to know about even ignored signals. | 
|  | */ | 
|  | return !tracehook_consider_ignored_signal(t, sig); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Re-calculate pending state from the set of locally pending | 
|  | * signals, globally pending signals, and blocked signals. | 
|  | */ | 
|  | static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) | 
|  | { | 
|  | unsigned long ready; | 
|  | long i; | 
|  |  | 
|  | switch (_NSIG_WORDS) { | 
|  | default: | 
|  | for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) | 
|  | ready |= signal->sig[i] &~ blocked->sig[i]; | 
|  | break; | 
|  |  | 
|  | case 4: ready  = signal->sig[3] &~ blocked->sig[3]; | 
|  | ready |= signal->sig[2] &~ blocked->sig[2]; | 
|  | ready |= signal->sig[1] &~ blocked->sig[1]; | 
|  | ready |= signal->sig[0] &~ blocked->sig[0]; | 
|  | break; | 
|  |  | 
|  | case 2: ready  = signal->sig[1] &~ blocked->sig[1]; | 
|  | ready |= signal->sig[0] &~ blocked->sig[0]; | 
|  | break; | 
|  |  | 
|  | case 1: ready  = signal->sig[0] &~ blocked->sig[0]; | 
|  | } | 
|  | return ready !=	0; | 
|  | } | 
|  |  | 
|  | #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) | 
|  |  | 
|  | static int recalc_sigpending_tsk(struct task_struct *t) | 
|  | { | 
|  | if (t->signal->group_stop_count > 0 || | 
|  | PENDING(&t->pending, &t->blocked) || | 
|  | PENDING(&t->signal->shared_pending, &t->blocked)) { | 
|  | set_tsk_thread_flag(t, TIF_SIGPENDING); | 
|  | return 1; | 
|  | } | 
|  | /* | 
|  | * We must never clear the flag in another thread, or in current | 
|  | * when it's possible the current syscall is returning -ERESTART*. | 
|  | * So we don't clear it here, and only callers who know they should do. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. | 
|  | * This is superfluous when called on current, the wakeup is a harmless no-op. | 
|  | */ | 
|  | void recalc_sigpending_and_wake(struct task_struct *t) | 
|  | { | 
|  | if (recalc_sigpending_tsk(t)) | 
|  | signal_wake_up(t, 0); | 
|  | } | 
|  |  | 
|  | void recalc_sigpending(void) | 
|  | { | 
|  | if (unlikely(tracehook_force_sigpending())) | 
|  | set_thread_flag(TIF_SIGPENDING); | 
|  | else if (!recalc_sigpending_tsk(current) && !freezing(current)) | 
|  | clear_thread_flag(TIF_SIGPENDING); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* Given the mask, find the first available signal that should be serviced. */ | 
|  |  | 
|  | int next_signal(struct sigpending *pending, sigset_t *mask) | 
|  | { | 
|  | unsigned long i, *s, *m, x; | 
|  | int sig = 0; | 
|  |  | 
|  | s = pending->signal.sig; | 
|  | m = mask->sig; | 
|  | switch (_NSIG_WORDS) { | 
|  | default: | 
|  | for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m) | 
|  | if ((x = *s &~ *m) != 0) { | 
|  | sig = ffz(~x) + i*_NSIG_BPW + 1; | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 2: if ((x = s[0] &~ m[0]) != 0) | 
|  | sig = 1; | 
|  | else if ((x = s[1] &~ m[1]) != 0) | 
|  | sig = _NSIG_BPW + 1; | 
|  | else | 
|  | break; | 
|  | sig += ffz(~x); | 
|  | break; | 
|  |  | 
|  | case 1: if ((x = *s &~ *m) != 0) | 
|  | sig = ffz(~x) + 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return sig; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * allocate a new signal queue record | 
|  | * - this may be called without locks if and only if t == current, otherwise an | 
|  | *   appopriate lock must be held to stop the target task from exiting | 
|  | */ | 
|  | static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags, | 
|  | int override_rlimit) | 
|  | { | 
|  | struct sigqueue *q = NULL; | 
|  | struct user_struct *user; | 
|  |  | 
|  | /* | 
|  | * We won't get problems with the target's UID changing under us | 
|  | * because changing it requires RCU be used, and if t != current, the | 
|  | * caller must be holding the RCU readlock (by way of a spinlock) and | 
|  | * we use RCU protection here | 
|  | */ | 
|  | user = get_uid(__task_cred(t)->user); | 
|  | atomic_inc(&user->sigpending); | 
|  | if (override_rlimit || | 
|  | atomic_read(&user->sigpending) <= | 
|  | t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur) | 
|  | q = kmem_cache_alloc(sigqueue_cachep, flags); | 
|  | if (unlikely(q == NULL)) { | 
|  | atomic_dec(&user->sigpending); | 
|  | free_uid(user); | 
|  | } else { | 
|  | INIT_LIST_HEAD(&q->list); | 
|  | q->flags = 0; | 
|  | q->user = user; | 
|  | } | 
|  |  | 
|  | return q; | 
|  | } | 
|  |  | 
|  | static void __sigqueue_free(struct sigqueue *q) | 
|  | { | 
|  | if (q->flags & SIGQUEUE_PREALLOC) | 
|  | return; | 
|  | atomic_dec(&q->user->sigpending); | 
|  | free_uid(q->user); | 
|  | kmem_cache_free(sigqueue_cachep, q); | 
|  | } | 
|  |  | 
|  | void flush_sigqueue(struct sigpending *queue) | 
|  | { | 
|  | struct sigqueue *q; | 
|  |  | 
|  | sigemptyset(&queue->signal); | 
|  | while (!list_empty(&queue->list)) { | 
|  | q = list_entry(queue->list.next, struct sigqueue , list); | 
|  | list_del_init(&q->list); | 
|  | __sigqueue_free(q); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Flush all pending signals for a task. | 
|  | */ | 
|  | void __flush_signals(struct task_struct *t) | 
|  | { | 
|  | clear_tsk_thread_flag(t, TIF_SIGPENDING); | 
|  | flush_sigqueue(&t->pending); | 
|  | flush_sigqueue(&t->signal->shared_pending); | 
|  | } | 
|  |  | 
|  | void flush_signals(struct task_struct *t) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&t->sighand->siglock, flags); | 
|  | __flush_signals(t); | 
|  | spin_unlock_irqrestore(&t->sighand->siglock, flags); | 
|  | } | 
|  |  | 
|  | static void __flush_itimer_signals(struct sigpending *pending) | 
|  | { | 
|  | sigset_t signal, retain; | 
|  | struct sigqueue *q, *n; | 
|  |  | 
|  | signal = pending->signal; | 
|  | sigemptyset(&retain); | 
|  |  | 
|  | list_for_each_entry_safe(q, n, &pending->list, list) { | 
|  | int sig = q->info.si_signo; | 
|  |  | 
|  | if (likely(q->info.si_code != SI_TIMER)) { | 
|  | sigaddset(&retain, sig); | 
|  | } else { | 
|  | sigdelset(&signal, sig); | 
|  | list_del_init(&q->list); | 
|  | __sigqueue_free(q); | 
|  | } | 
|  | } | 
|  |  | 
|  | sigorsets(&pending->signal, &signal, &retain); | 
|  | } | 
|  |  | 
|  | void flush_itimer_signals(void) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&tsk->sighand->siglock, flags); | 
|  | __flush_itimer_signals(&tsk->pending); | 
|  | __flush_itimer_signals(&tsk->signal->shared_pending); | 
|  | spin_unlock_irqrestore(&tsk->sighand->siglock, flags); | 
|  | } | 
|  |  | 
|  | void ignore_signals(struct task_struct *t) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < _NSIG; ++i) | 
|  | t->sighand->action[i].sa.sa_handler = SIG_IGN; | 
|  |  | 
|  | flush_signals(t); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Flush all handlers for a task. | 
|  | */ | 
|  |  | 
|  | void | 
|  | flush_signal_handlers(struct task_struct *t, int force_default) | 
|  | { | 
|  | int i; | 
|  | struct k_sigaction *ka = &t->sighand->action[0]; | 
|  | for (i = _NSIG ; i != 0 ; i--) { | 
|  | if (force_default || ka->sa.sa_handler != SIG_IGN) | 
|  | ka->sa.sa_handler = SIG_DFL; | 
|  | ka->sa.sa_flags = 0; | 
|  | sigemptyset(&ka->sa.sa_mask); | 
|  | ka++; | 
|  | } | 
|  | } | 
|  |  | 
|  | int unhandled_signal(struct task_struct *tsk, int sig) | 
|  | { | 
|  | void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; | 
|  | if (is_global_init(tsk)) | 
|  | return 1; | 
|  | if (handler != SIG_IGN && handler != SIG_DFL) | 
|  | return 0; | 
|  | return !tracehook_consider_fatal_signal(tsk, sig); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Notify the system that a driver wants to block all signals for this | 
|  | * process, and wants to be notified if any signals at all were to be | 
|  | * sent/acted upon.  If the notifier routine returns non-zero, then the | 
|  | * signal will be acted upon after all.  If the notifier routine returns 0, | 
|  | * then then signal will be blocked.  Only one block per process is | 
|  | * allowed.  priv is a pointer to private data that the notifier routine | 
|  | * can use to determine if the signal should be blocked or not.  */ | 
|  |  | 
|  | void | 
|  | block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(¤t->sighand->siglock, flags); | 
|  | current->notifier_mask = mask; | 
|  | current->notifier_data = priv; | 
|  | current->notifier = notifier; | 
|  | spin_unlock_irqrestore(¤t->sighand->siglock, flags); | 
|  | } | 
|  |  | 
|  | /* Notify the system that blocking has ended. */ | 
|  |  | 
|  | void | 
|  | unblock_all_signals(void) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(¤t->sighand->siglock, flags); | 
|  | current->notifier = NULL; | 
|  | current->notifier_data = NULL; | 
|  | recalc_sigpending(); | 
|  | spin_unlock_irqrestore(¤t->sighand->siglock, flags); | 
|  | } | 
|  |  | 
|  | static void collect_signal(int sig, struct sigpending *list, siginfo_t *info) | 
|  | { | 
|  | struct sigqueue *q, *first = NULL; | 
|  |  | 
|  | /* | 
|  | * Collect the siginfo appropriate to this signal.  Check if | 
|  | * there is another siginfo for the same signal. | 
|  | */ | 
|  | list_for_each_entry(q, &list->list, list) { | 
|  | if (q->info.si_signo == sig) { | 
|  | if (first) | 
|  | goto still_pending; | 
|  | first = q; | 
|  | } | 
|  | } | 
|  |  | 
|  | sigdelset(&list->signal, sig); | 
|  |  | 
|  | if (first) { | 
|  | still_pending: | 
|  | list_del_init(&first->list); | 
|  | copy_siginfo(info, &first->info); | 
|  | __sigqueue_free(first); | 
|  | } else { | 
|  | /* Ok, it wasn't in the queue.  This must be | 
|  | a fast-pathed signal or we must have been | 
|  | out of queue space.  So zero out the info. | 
|  | */ | 
|  | info->si_signo = sig; | 
|  | info->si_errno = 0; | 
|  | info->si_code = 0; | 
|  | info->si_pid = 0; | 
|  | info->si_uid = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, | 
|  | siginfo_t *info) | 
|  | { | 
|  | int sig = next_signal(pending, mask); | 
|  |  | 
|  | if (sig) { | 
|  | if (current->notifier) { | 
|  | if (sigismember(current->notifier_mask, sig)) { | 
|  | if (!(current->notifier)(current->notifier_data)) { | 
|  | clear_thread_flag(TIF_SIGPENDING); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | collect_signal(sig, pending, info); | 
|  | } | 
|  |  | 
|  | return sig; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dequeue a signal and return the element to the caller, which is | 
|  | * expected to free it. | 
|  | * | 
|  | * All callers have to hold the siglock. | 
|  | */ | 
|  | int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) | 
|  | { | 
|  | int signr; | 
|  |  | 
|  | /* We only dequeue private signals from ourselves, we don't let | 
|  | * signalfd steal them | 
|  | */ | 
|  | signr = __dequeue_signal(&tsk->pending, mask, info); | 
|  | if (!signr) { | 
|  | signr = __dequeue_signal(&tsk->signal->shared_pending, | 
|  | mask, info); | 
|  | /* | 
|  | * itimer signal ? | 
|  | * | 
|  | * itimers are process shared and we restart periodic | 
|  | * itimers in the signal delivery path to prevent DoS | 
|  | * attacks in the high resolution timer case. This is | 
|  | * compliant with the old way of self restarting | 
|  | * itimers, as the SIGALRM is a legacy signal and only | 
|  | * queued once. Changing the restart behaviour to | 
|  | * restart the timer in the signal dequeue path is | 
|  | * reducing the timer noise on heavy loaded !highres | 
|  | * systems too. | 
|  | */ | 
|  | if (unlikely(signr == SIGALRM)) { | 
|  | struct hrtimer *tmr = &tsk->signal->real_timer; | 
|  |  | 
|  | if (!hrtimer_is_queued(tmr) && | 
|  | tsk->signal->it_real_incr.tv64 != 0) { | 
|  | hrtimer_forward(tmr, tmr->base->get_time(), | 
|  | tsk->signal->it_real_incr); | 
|  | hrtimer_restart(tmr); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | recalc_sigpending(); | 
|  | if (!signr) | 
|  | return 0; | 
|  |  | 
|  | if (unlikely(sig_kernel_stop(signr))) { | 
|  | /* | 
|  | * Set a marker that we have dequeued a stop signal.  Our | 
|  | * caller might release the siglock and then the pending | 
|  | * stop signal it is about to process is no longer in the | 
|  | * pending bitmasks, but must still be cleared by a SIGCONT | 
|  | * (and overruled by a SIGKILL).  So those cases clear this | 
|  | * shared flag after we've set it.  Note that this flag may | 
|  | * remain set after the signal we return is ignored or | 
|  | * handled.  That doesn't matter because its only purpose | 
|  | * is to alert stop-signal processing code when another | 
|  | * processor has come along and cleared the flag. | 
|  | */ | 
|  | tsk->signal->flags |= SIGNAL_STOP_DEQUEUED; | 
|  | } | 
|  | if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) { | 
|  | /* | 
|  | * Release the siglock to ensure proper locking order | 
|  | * of timer locks outside of siglocks.  Note, we leave | 
|  | * irqs disabled here, since the posix-timers code is | 
|  | * about to disable them again anyway. | 
|  | */ | 
|  | spin_unlock(&tsk->sighand->siglock); | 
|  | do_schedule_next_timer(info); | 
|  | spin_lock(&tsk->sighand->siglock); | 
|  | } | 
|  | return signr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Tell a process that it has a new active signal.. | 
|  | * | 
|  | * NOTE! we rely on the previous spin_lock to | 
|  | * lock interrupts for us! We can only be called with | 
|  | * "siglock" held, and the local interrupt must | 
|  | * have been disabled when that got acquired! | 
|  | * | 
|  | * No need to set need_resched since signal event passing | 
|  | * goes through ->blocked | 
|  | */ | 
|  | void signal_wake_up(struct task_struct *t, int resume) | 
|  | { | 
|  | unsigned int mask; | 
|  |  | 
|  | set_tsk_thread_flag(t, TIF_SIGPENDING); | 
|  |  | 
|  | /* | 
|  | * For SIGKILL, we want to wake it up in the stopped/traced/killable | 
|  | * case. We don't check t->state here because there is a race with it | 
|  | * executing another processor and just now entering stopped state. | 
|  | * By using wake_up_state, we ensure the process will wake up and | 
|  | * handle its death signal. | 
|  | */ | 
|  | mask = TASK_INTERRUPTIBLE; | 
|  | if (resume) | 
|  | mask |= TASK_WAKEKILL; | 
|  | if (!wake_up_state(t, mask)) | 
|  | kick_process(t); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove signals in mask from the pending set and queue. | 
|  | * Returns 1 if any signals were found. | 
|  | * | 
|  | * All callers must be holding the siglock. | 
|  | * | 
|  | * This version takes a sigset mask and looks at all signals, | 
|  | * not just those in the first mask word. | 
|  | */ | 
|  | static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) | 
|  | { | 
|  | struct sigqueue *q, *n; | 
|  | sigset_t m; | 
|  |  | 
|  | sigandsets(&m, mask, &s->signal); | 
|  | if (sigisemptyset(&m)) | 
|  | return 0; | 
|  |  | 
|  | signandsets(&s->signal, &s->signal, mask); | 
|  | list_for_each_entry_safe(q, n, &s->list, list) { | 
|  | if (sigismember(mask, q->info.si_signo)) { | 
|  | list_del_init(&q->list); | 
|  | __sigqueue_free(q); | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | /* | 
|  | * Remove signals in mask from the pending set and queue. | 
|  | * Returns 1 if any signals were found. | 
|  | * | 
|  | * All callers must be holding the siglock. | 
|  | */ | 
|  | static int rm_from_queue(unsigned long mask, struct sigpending *s) | 
|  | { | 
|  | struct sigqueue *q, *n; | 
|  |  | 
|  | if (!sigtestsetmask(&s->signal, mask)) | 
|  | return 0; | 
|  |  | 
|  | sigdelsetmask(&s->signal, mask); | 
|  | list_for_each_entry_safe(q, n, &s->list, list) { | 
|  | if (q->info.si_signo < SIGRTMIN && | 
|  | (mask & sigmask(q->info.si_signo))) { | 
|  | list_del_init(&q->list); | 
|  | __sigqueue_free(q); | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Bad permissions for sending the signal | 
|  | * - the caller must hold at least the RCU read lock | 
|  | */ | 
|  | static int check_kill_permission(int sig, struct siginfo *info, | 
|  | struct task_struct *t) | 
|  | { | 
|  | const struct cred *cred = current_cred(), *tcred; | 
|  | struct pid *sid; | 
|  | int error; | 
|  |  | 
|  | if (!valid_signal(sig)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info))) | 
|  | return 0; | 
|  |  | 
|  | error = audit_signal_info(sig, t); /* Let audit system see the signal */ | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | tcred = __task_cred(t); | 
|  | if ((cred->euid ^ tcred->suid) && | 
|  | (cred->euid ^ tcred->uid) && | 
|  | (cred->uid  ^ tcred->suid) && | 
|  | (cred->uid  ^ tcred->uid) && | 
|  | !capable(CAP_KILL)) { | 
|  | switch (sig) { | 
|  | case SIGCONT: | 
|  | sid = task_session(t); | 
|  | /* | 
|  | * We don't return the error if sid == NULL. The | 
|  | * task was unhashed, the caller must notice this. | 
|  | */ | 
|  | if (!sid || sid == task_session(current)) | 
|  | break; | 
|  | default: | 
|  | return -EPERM; | 
|  | } | 
|  | } | 
|  |  | 
|  | return security_task_kill(t, info, sig, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle magic process-wide effects of stop/continue signals. Unlike | 
|  | * the signal actions, these happen immediately at signal-generation | 
|  | * time regardless of blocking, ignoring, or handling.  This does the | 
|  | * actual continuing for SIGCONT, but not the actual stopping for stop | 
|  | * signals. The process stop is done as a signal action for SIG_DFL. | 
|  | * | 
|  | * Returns true if the signal should be actually delivered, otherwise | 
|  | * it should be dropped. | 
|  | */ | 
|  | static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns) | 
|  | { | 
|  | struct signal_struct *signal = p->signal; | 
|  | struct task_struct *t; | 
|  |  | 
|  | if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) { | 
|  | /* | 
|  | * The process is in the middle of dying, nothing to do. | 
|  | */ | 
|  | } else if (sig_kernel_stop(sig)) { | 
|  | /* | 
|  | * This is a stop signal.  Remove SIGCONT from all queues. | 
|  | */ | 
|  | rm_from_queue(sigmask(SIGCONT), &signal->shared_pending); | 
|  | t = p; | 
|  | do { | 
|  | rm_from_queue(sigmask(SIGCONT), &t->pending); | 
|  | } while_each_thread(p, t); | 
|  | } else if (sig == SIGCONT) { | 
|  | unsigned int why; | 
|  | /* | 
|  | * Remove all stop signals from all queues, | 
|  | * and wake all threads. | 
|  | */ | 
|  | rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending); | 
|  | t = p; | 
|  | do { | 
|  | unsigned int state; | 
|  | rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); | 
|  | /* | 
|  | * If there is a handler for SIGCONT, we must make | 
|  | * sure that no thread returns to user mode before | 
|  | * we post the signal, in case it was the only | 
|  | * thread eligible to run the signal handler--then | 
|  | * it must not do anything between resuming and | 
|  | * running the handler.  With the TIF_SIGPENDING | 
|  | * flag set, the thread will pause and acquire the | 
|  | * siglock that we hold now and until we've queued | 
|  | * the pending signal. | 
|  | * | 
|  | * Wake up the stopped thread _after_ setting | 
|  | * TIF_SIGPENDING | 
|  | */ | 
|  | state = __TASK_STOPPED; | 
|  | if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) { | 
|  | set_tsk_thread_flag(t, TIF_SIGPENDING); | 
|  | state |= TASK_INTERRUPTIBLE; | 
|  | } | 
|  | wake_up_state(t, state); | 
|  | } while_each_thread(p, t); | 
|  |  | 
|  | /* | 
|  | * Notify the parent with CLD_CONTINUED if we were stopped. | 
|  | * | 
|  | * If we were in the middle of a group stop, we pretend it | 
|  | * was already finished, and then continued. Since SIGCHLD | 
|  | * doesn't queue we report only CLD_STOPPED, as if the next | 
|  | * CLD_CONTINUED was dropped. | 
|  | */ | 
|  | why = 0; | 
|  | if (signal->flags & SIGNAL_STOP_STOPPED) | 
|  | why |= SIGNAL_CLD_CONTINUED; | 
|  | else if (signal->group_stop_count) | 
|  | why |= SIGNAL_CLD_STOPPED; | 
|  |  | 
|  | if (why) { | 
|  | /* | 
|  | * The first thread which returns from finish_stop() | 
|  | * will take ->siglock, notice SIGNAL_CLD_MASK, and | 
|  | * notify its parent. See get_signal_to_deliver(). | 
|  | */ | 
|  | signal->flags = why | SIGNAL_STOP_CONTINUED; | 
|  | signal->group_stop_count = 0; | 
|  | signal->group_exit_code = 0; | 
|  | } else { | 
|  | /* | 
|  | * We are not stopped, but there could be a stop | 
|  | * signal in the middle of being processed after | 
|  | * being removed from the queue.  Clear that too. | 
|  | */ | 
|  | signal->flags &= ~SIGNAL_STOP_DEQUEUED; | 
|  | } | 
|  | } | 
|  |  | 
|  | return !sig_ignored(p, sig, from_ancestor_ns); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Test if P wants to take SIG.  After we've checked all threads with this, | 
|  | * it's equivalent to finding no threads not blocking SIG.  Any threads not | 
|  | * blocking SIG were ruled out because they are not running and already | 
|  | * have pending signals.  Such threads will dequeue from the shared queue | 
|  | * as soon as they're available, so putting the signal on the shared queue | 
|  | * will be equivalent to sending it to one such thread. | 
|  | */ | 
|  | static inline int wants_signal(int sig, struct task_struct *p) | 
|  | { | 
|  | if (sigismember(&p->blocked, sig)) | 
|  | return 0; | 
|  | if (p->flags & PF_EXITING) | 
|  | return 0; | 
|  | if (sig == SIGKILL) | 
|  | return 1; | 
|  | if (task_is_stopped_or_traced(p)) | 
|  | return 0; | 
|  | return task_curr(p) || !signal_pending(p); | 
|  | } | 
|  |  | 
|  | static void complete_signal(int sig, struct task_struct *p, int group) | 
|  | { | 
|  | struct signal_struct *signal = p->signal; | 
|  | struct task_struct *t; | 
|  |  | 
|  | /* | 
|  | * Now find a thread we can wake up to take the signal off the queue. | 
|  | * | 
|  | * If the main thread wants the signal, it gets first crack. | 
|  | * Probably the least surprising to the average bear. | 
|  | */ | 
|  | if (wants_signal(sig, p)) | 
|  | t = p; | 
|  | else if (!group || thread_group_empty(p)) | 
|  | /* | 
|  | * There is just one thread and it does not need to be woken. | 
|  | * It will dequeue unblocked signals before it runs again. | 
|  | */ | 
|  | return; | 
|  | else { | 
|  | /* | 
|  | * Otherwise try to find a suitable thread. | 
|  | */ | 
|  | t = signal->curr_target; | 
|  | while (!wants_signal(sig, t)) { | 
|  | t = next_thread(t); | 
|  | if (t == signal->curr_target) | 
|  | /* | 
|  | * No thread needs to be woken. | 
|  | * Any eligible threads will see | 
|  | * the signal in the queue soon. | 
|  | */ | 
|  | return; | 
|  | } | 
|  | signal->curr_target = t; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Found a killable thread.  If the signal will be fatal, | 
|  | * then start taking the whole group down immediately. | 
|  | */ | 
|  | if (sig_fatal(p, sig) && | 
|  | !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) && | 
|  | !sigismember(&t->real_blocked, sig) && | 
|  | (sig == SIGKILL || | 
|  | !tracehook_consider_fatal_signal(t, sig))) { | 
|  | /* | 
|  | * This signal will be fatal to the whole group. | 
|  | */ | 
|  | if (!sig_kernel_coredump(sig)) { | 
|  | /* | 
|  | * Start a group exit and wake everybody up. | 
|  | * This way we don't have other threads | 
|  | * running and doing things after a slower | 
|  | * thread has the fatal signal pending. | 
|  | */ | 
|  | signal->flags = SIGNAL_GROUP_EXIT; | 
|  | signal->group_exit_code = sig; | 
|  | signal->group_stop_count = 0; | 
|  | t = p; | 
|  | do { | 
|  | sigaddset(&t->pending.signal, SIGKILL); | 
|  | signal_wake_up(t, 1); | 
|  | } while_each_thread(p, t); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The signal is already in the shared-pending queue. | 
|  | * Tell the chosen thread to wake up and dequeue it. | 
|  | */ | 
|  | signal_wake_up(t, sig == SIGKILL); | 
|  | return; | 
|  | } | 
|  |  | 
|  | static inline int legacy_queue(struct sigpending *signals, int sig) | 
|  | { | 
|  | return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); | 
|  | } | 
|  |  | 
|  | static int __send_signal(int sig, struct siginfo *info, struct task_struct *t, | 
|  | int group, int from_ancestor_ns) | 
|  | { | 
|  | struct sigpending *pending; | 
|  | struct sigqueue *q; | 
|  | int override_rlimit; | 
|  |  | 
|  | trace_sched_signal_send(sig, t); | 
|  |  | 
|  | assert_spin_locked(&t->sighand->siglock); | 
|  |  | 
|  | if (!prepare_signal(sig, t, from_ancestor_ns)) | 
|  | return 0; | 
|  |  | 
|  | pending = group ? &t->signal->shared_pending : &t->pending; | 
|  | /* | 
|  | * Short-circuit ignored signals and support queuing | 
|  | * exactly one non-rt signal, so that we can get more | 
|  | * detailed information about the cause of the signal. | 
|  | */ | 
|  | if (legacy_queue(pending, sig)) | 
|  | return 0; | 
|  | /* | 
|  | * fast-pathed signals for kernel-internal things like SIGSTOP | 
|  | * or SIGKILL. | 
|  | */ | 
|  | if (info == SEND_SIG_FORCED) | 
|  | goto out_set; | 
|  |  | 
|  | /* Real-time signals must be queued if sent by sigqueue, or | 
|  | some other real-time mechanism.  It is implementation | 
|  | defined whether kill() does so.  We attempt to do so, on | 
|  | the principle of least surprise, but since kill is not | 
|  | allowed to fail with EAGAIN when low on memory we just | 
|  | make sure at least one signal gets delivered and don't | 
|  | pass on the info struct.  */ | 
|  |  | 
|  | if (sig < SIGRTMIN) | 
|  | override_rlimit = (is_si_special(info) || info->si_code >= 0); | 
|  | else | 
|  | override_rlimit = 0; | 
|  |  | 
|  | q = __sigqueue_alloc(t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE, | 
|  | override_rlimit); | 
|  | if (q) { | 
|  | list_add_tail(&q->list, &pending->list); | 
|  | switch ((unsigned long) info) { | 
|  | case (unsigned long) SEND_SIG_NOINFO: | 
|  | q->info.si_signo = sig; | 
|  | q->info.si_errno = 0; | 
|  | q->info.si_code = SI_USER; | 
|  | q->info.si_pid = task_tgid_nr_ns(current, | 
|  | task_active_pid_ns(t)); | 
|  | q->info.si_uid = current_uid(); | 
|  | break; | 
|  | case (unsigned long) SEND_SIG_PRIV: | 
|  | q->info.si_signo = sig; | 
|  | q->info.si_errno = 0; | 
|  | q->info.si_code = SI_KERNEL; | 
|  | q->info.si_pid = 0; | 
|  | q->info.si_uid = 0; | 
|  | break; | 
|  | default: | 
|  | copy_siginfo(&q->info, info); | 
|  | if (from_ancestor_ns) | 
|  | q->info.si_pid = 0; | 
|  | break; | 
|  | } | 
|  | } else if (!is_si_special(info)) { | 
|  | if (sig >= SIGRTMIN && info->si_code != SI_USER) | 
|  | /* | 
|  | * Queue overflow, abort.  We may abort if the signal was rt | 
|  | * and sent by user using something other than kill(). | 
|  | */ | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | out_set: | 
|  | signalfd_notify(t, sig); | 
|  | sigaddset(&pending->signal, sig); | 
|  | complete_signal(sig, t, group); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int send_signal(int sig, struct siginfo *info, struct task_struct *t, | 
|  | int group) | 
|  | { | 
|  | int from_ancestor_ns = 0; | 
|  |  | 
|  | #ifdef CONFIG_PID_NS | 
|  | if (!is_si_special(info) && SI_FROMUSER(info) && | 
|  | task_pid_nr_ns(current, task_active_pid_ns(t)) <= 0) | 
|  | from_ancestor_ns = 1; | 
|  | #endif | 
|  |  | 
|  | return __send_signal(sig, info, t, group, from_ancestor_ns); | 
|  | } | 
|  |  | 
|  | int print_fatal_signals; | 
|  |  | 
|  | static void print_fatal_signal(struct pt_regs *regs, int signr) | 
|  | { | 
|  | printk("%s/%d: potentially unexpected fatal signal %d.\n", | 
|  | current->comm, task_pid_nr(current), signr); | 
|  |  | 
|  | #if defined(__i386__) && !defined(__arch_um__) | 
|  | printk("code at %08lx: ", regs->ip); | 
|  | { | 
|  | int i; | 
|  | for (i = 0; i < 16; i++) { | 
|  | unsigned char insn; | 
|  |  | 
|  | __get_user(insn, (unsigned char *)(regs->ip + i)); | 
|  | printk("%02x ", insn); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | printk("\n"); | 
|  | preempt_disable(); | 
|  | show_regs(regs); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | static int __init setup_print_fatal_signals(char *str) | 
|  | { | 
|  | get_option (&str, &print_fatal_signals); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("print-fatal-signals=", setup_print_fatal_signals); | 
|  |  | 
|  | int | 
|  | __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) | 
|  | { | 
|  | return send_signal(sig, info, p, 1); | 
|  | } | 
|  |  | 
|  | static int | 
|  | specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) | 
|  | { | 
|  | return send_signal(sig, info, t, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Force a signal that the process can't ignore: if necessary | 
|  | * we unblock the signal and change any SIG_IGN to SIG_DFL. | 
|  | * | 
|  | * Note: If we unblock the signal, we always reset it to SIG_DFL, | 
|  | * since we do not want to have a signal handler that was blocked | 
|  | * be invoked when user space had explicitly blocked it. | 
|  | * | 
|  | * We don't want to have recursive SIGSEGV's etc, for example, | 
|  | * that is why we also clear SIGNAL_UNKILLABLE. | 
|  | */ | 
|  | int | 
|  | force_sig_info(int sig, struct siginfo *info, struct task_struct *t) | 
|  | { | 
|  | unsigned long int flags; | 
|  | int ret, blocked, ignored; | 
|  | struct k_sigaction *action; | 
|  |  | 
|  | spin_lock_irqsave(&t->sighand->siglock, flags); | 
|  | action = &t->sighand->action[sig-1]; | 
|  | ignored = action->sa.sa_handler == SIG_IGN; | 
|  | blocked = sigismember(&t->blocked, sig); | 
|  | if (blocked || ignored) { | 
|  | action->sa.sa_handler = SIG_DFL; | 
|  | if (blocked) { | 
|  | sigdelset(&t->blocked, sig); | 
|  | recalc_sigpending_and_wake(t); | 
|  | } | 
|  | } | 
|  | if (action->sa.sa_handler == SIG_DFL) | 
|  | t->signal->flags &= ~SIGNAL_UNKILLABLE; | 
|  | ret = specific_send_sig_info(sig, info, t); | 
|  | spin_unlock_irqrestore(&t->sighand->siglock, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void | 
|  | force_sig_specific(int sig, struct task_struct *t) | 
|  | { | 
|  | force_sig_info(sig, SEND_SIG_FORCED, t); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Nuke all other threads in the group. | 
|  | */ | 
|  | void zap_other_threads(struct task_struct *p) | 
|  | { | 
|  | struct task_struct *t; | 
|  |  | 
|  | p->signal->group_stop_count = 0; | 
|  |  | 
|  | for (t = next_thread(p); t != p; t = next_thread(t)) { | 
|  | /* | 
|  | * Don't bother with already dead threads | 
|  | */ | 
|  | if (t->exit_state) | 
|  | continue; | 
|  |  | 
|  | /* SIGKILL will be handled before any pending SIGSTOP */ | 
|  | sigaddset(&t->pending.signal, SIGKILL); | 
|  | signal_wake_up(t, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | int __fatal_signal_pending(struct task_struct *tsk) | 
|  | { | 
|  | return sigismember(&tsk->pending.signal, SIGKILL); | 
|  | } | 
|  | EXPORT_SYMBOL(__fatal_signal_pending); | 
|  |  | 
|  | struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) | 
|  | { | 
|  | struct sighand_struct *sighand; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for (;;) { | 
|  | sighand = rcu_dereference(tsk->sighand); | 
|  | if (unlikely(sighand == NULL)) | 
|  | break; | 
|  |  | 
|  | spin_lock_irqsave(&sighand->siglock, *flags); | 
|  | if (likely(sighand == tsk->sighand)) | 
|  | break; | 
|  | spin_unlock_irqrestore(&sighand->siglock, *flags); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return sighand; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * send signal info to all the members of a group | 
|  | * - the caller must hold the RCU read lock at least | 
|  | */ | 
|  | int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) | 
|  | { | 
|  | unsigned long flags; | 
|  | int ret; | 
|  |  | 
|  | ret = check_kill_permission(sig, info, p); | 
|  |  | 
|  | if (!ret && sig) { | 
|  | ret = -ESRCH; | 
|  | if (lock_task_sighand(p, &flags)) { | 
|  | ret = __group_send_sig_info(sig, info, p); | 
|  | unlock_task_sighand(p, &flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __kill_pgrp_info() sends a signal to a process group: this is what the tty | 
|  | * control characters do (^C, ^Z etc) | 
|  | * - the caller must hold at least a readlock on tasklist_lock | 
|  | */ | 
|  | int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) | 
|  | { | 
|  | struct task_struct *p = NULL; | 
|  | int retval, success; | 
|  |  | 
|  | success = 0; | 
|  | retval = -ESRCH; | 
|  | do_each_pid_task(pgrp, PIDTYPE_PGID, p) { | 
|  | int err = group_send_sig_info(sig, info, p); | 
|  | success |= !err; | 
|  | retval = err; | 
|  | } while_each_pid_task(pgrp, PIDTYPE_PGID, p); | 
|  | return success ? 0 : retval; | 
|  | } | 
|  |  | 
|  | int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) | 
|  | { | 
|  | int error = -ESRCH; | 
|  | struct task_struct *p; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | retry: | 
|  | p = pid_task(pid, PIDTYPE_PID); | 
|  | if (p) { | 
|  | error = group_send_sig_info(sig, info, p); | 
|  | if (unlikely(error == -ESRCH)) | 
|  | /* | 
|  | * The task was unhashed in between, try again. | 
|  | * If it is dead, pid_task() will return NULL, | 
|  | * if we race with de_thread() it will find the | 
|  | * new leader. | 
|  | */ | 
|  | goto retry; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | int | 
|  | kill_proc_info(int sig, struct siginfo *info, pid_t pid) | 
|  | { | 
|  | int error; | 
|  | rcu_read_lock(); | 
|  | error = kill_pid_info(sig, info, find_vpid(pid)); | 
|  | rcu_read_unlock(); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* like kill_pid_info(), but doesn't use uid/euid of "current" */ | 
|  | int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid, | 
|  | uid_t uid, uid_t euid, u32 secid) | 
|  | { | 
|  | int ret = -EINVAL; | 
|  | struct task_struct *p; | 
|  | const struct cred *pcred; | 
|  |  | 
|  | if (!valid_signal(sig)) | 
|  | return ret; | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | p = pid_task(pid, PIDTYPE_PID); | 
|  | if (!p) { | 
|  | ret = -ESRCH; | 
|  | goto out_unlock; | 
|  | } | 
|  | pcred = __task_cred(p); | 
|  | if ((info == SEND_SIG_NOINFO || | 
|  | (!is_si_special(info) && SI_FROMUSER(info))) && | 
|  | euid != pcred->suid && euid != pcred->uid && | 
|  | uid  != pcred->suid && uid  != pcred->uid) { | 
|  | ret = -EPERM; | 
|  | goto out_unlock; | 
|  | } | 
|  | ret = security_task_kill(p, info, sig, secid); | 
|  | if (ret) | 
|  | goto out_unlock; | 
|  | if (sig && p->sighand) { | 
|  | unsigned long flags; | 
|  | spin_lock_irqsave(&p->sighand->siglock, flags); | 
|  | ret = __send_signal(sig, info, p, 1, 0); | 
|  | spin_unlock_irqrestore(&p->sighand->siglock, flags); | 
|  | } | 
|  | out_unlock: | 
|  | read_unlock(&tasklist_lock); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kill_pid_info_as_uid); | 
|  |  | 
|  | /* | 
|  | * kill_something_info() interprets pid in interesting ways just like kill(2). | 
|  | * | 
|  | * POSIX specifies that kill(-1,sig) is unspecified, but what we have | 
|  | * is probably wrong.  Should make it like BSD or SYSV. | 
|  | */ | 
|  |  | 
|  | static int kill_something_info(int sig, struct siginfo *info, pid_t pid) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (pid > 0) { | 
|  | rcu_read_lock(); | 
|  | ret = kill_pid_info(sig, info, find_vpid(pid)); | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | if (pid != -1) { | 
|  | ret = __kill_pgrp_info(sig, info, | 
|  | pid ? find_vpid(-pid) : task_pgrp(current)); | 
|  | } else { | 
|  | int retval = 0, count = 0; | 
|  | struct task_struct * p; | 
|  |  | 
|  | for_each_process(p) { | 
|  | if (task_pid_vnr(p) > 1 && | 
|  | !same_thread_group(p, current)) { | 
|  | int err = group_send_sig_info(sig, info, p); | 
|  | ++count; | 
|  | if (err != -EPERM) | 
|  | retval = err; | 
|  | } | 
|  | } | 
|  | ret = count ? retval : -ESRCH; | 
|  | } | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These are for backward compatibility with the rest of the kernel source. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * The caller must ensure the task can't exit. | 
|  | */ | 
|  | int | 
|  | send_sig_info(int sig, struct siginfo *info, struct task_struct *p) | 
|  | { | 
|  | int ret; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * Make sure legacy kernel users don't send in bad values | 
|  | * (normal paths check this in check_kill_permission). | 
|  | */ | 
|  | if (!valid_signal(sig)) | 
|  | return -EINVAL; | 
|  |  | 
|  | spin_lock_irqsave(&p->sighand->siglock, flags); | 
|  | ret = specific_send_sig_info(sig, info, p); | 
|  | spin_unlock_irqrestore(&p->sighand->siglock, flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define __si_special(priv) \ | 
|  | ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) | 
|  |  | 
|  | int | 
|  | send_sig(int sig, struct task_struct *p, int priv) | 
|  | { | 
|  | return send_sig_info(sig, __si_special(priv), p); | 
|  | } | 
|  |  | 
|  | void | 
|  | force_sig(int sig, struct task_struct *p) | 
|  | { | 
|  | force_sig_info(sig, SEND_SIG_PRIV, p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When things go south during signal handling, we | 
|  | * will force a SIGSEGV. And if the signal that caused | 
|  | * the problem was already a SIGSEGV, we'll want to | 
|  | * make sure we don't even try to deliver the signal.. | 
|  | */ | 
|  | int | 
|  | force_sigsegv(int sig, struct task_struct *p) | 
|  | { | 
|  | if (sig == SIGSEGV) { | 
|  | unsigned long flags; | 
|  | spin_lock_irqsave(&p->sighand->siglock, flags); | 
|  | p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; | 
|  | spin_unlock_irqrestore(&p->sighand->siglock, flags); | 
|  | } | 
|  | force_sig(SIGSEGV, p); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kill_pgrp(struct pid *pid, int sig, int priv) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | ret = __kill_pgrp_info(sig, __si_special(priv), pid); | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(kill_pgrp); | 
|  |  | 
|  | int kill_pid(struct pid *pid, int sig, int priv) | 
|  | { | 
|  | return kill_pid_info(sig, __si_special(priv), pid); | 
|  | } | 
|  | EXPORT_SYMBOL(kill_pid); | 
|  |  | 
|  | /* | 
|  | * These functions support sending signals using preallocated sigqueue | 
|  | * structures.  This is needed "because realtime applications cannot | 
|  | * afford to lose notifications of asynchronous events, like timer | 
|  | * expirations or I/O completions".  In the case of Posix Timers | 
|  | * we allocate the sigqueue structure from the timer_create.  If this | 
|  | * allocation fails we are able to report the failure to the application | 
|  | * with an EAGAIN error. | 
|  | */ | 
|  |  | 
|  | struct sigqueue *sigqueue_alloc(void) | 
|  | { | 
|  | struct sigqueue *q; | 
|  |  | 
|  | if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0))) | 
|  | q->flags |= SIGQUEUE_PREALLOC; | 
|  | return(q); | 
|  | } | 
|  |  | 
|  | void sigqueue_free(struct sigqueue *q) | 
|  | { | 
|  | unsigned long flags; | 
|  | spinlock_t *lock = ¤t->sighand->siglock; | 
|  |  | 
|  | BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); | 
|  | /* | 
|  | * We must hold ->siglock while testing q->list | 
|  | * to serialize with collect_signal() or with | 
|  | * __exit_signal()->flush_sigqueue(). | 
|  | */ | 
|  | spin_lock_irqsave(lock, flags); | 
|  | q->flags &= ~SIGQUEUE_PREALLOC; | 
|  | /* | 
|  | * If it is queued it will be freed when dequeued, | 
|  | * like the "regular" sigqueue. | 
|  | */ | 
|  | if (!list_empty(&q->list)) | 
|  | q = NULL; | 
|  | spin_unlock_irqrestore(lock, flags); | 
|  |  | 
|  | if (q) | 
|  | __sigqueue_free(q); | 
|  | } | 
|  |  | 
|  | int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) | 
|  | { | 
|  | int sig = q->info.si_signo; | 
|  | struct sigpending *pending; | 
|  | unsigned long flags; | 
|  | int ret; | 
|  |  | 
|  | BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); | 
|  |  | 
|  | ret = -1; | 
|  | if (!likely(lock_task_sighand(t, &flags))) | 
|  | goto ret; | 
|  |  | 
|  | ret = 1; /* the signal is ignored */ | 
|  | if (!prepare_signal(sig, t, 0)) | 
|  | goto out; | 
|  |  | 
|  | ret = 0; | 
|  | if (unlikely(!list_empty(&q->list))) { | 
|  | /* | 
|  | * If an SI_TIMER entry is already queue just increment | 
|  | * the overrun count. | 
|  | */ | 
|  | BUG_ON(q->info.si_code != SI_TIMER); | 
|  | q->info.si_overrun++; | 
|  | goto out; | 
|  | } | 
|  | q->info.si_overrun = 0; | 
|  |  | 
|  | signalfd_notify(t, sig); | 
|  | pending = group ? &t->signal->shared_pending : &t->pending; | 
|  | list_add_tail(&q->list, &pending->list); | 
|  | sigaddset(&pending->signal, sig); | 
|  | complete_signal(sig, t, group); | 
|  | out: | 
|  | unlock_task_sighand(t, &flags); | 
|  | ret: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wake up any threads in the parent blocked in wait* syscalls. | 
|  | */ | 
|  | static inline void __wake_up_parent(struct task_struct *p, | 
|  | struct task_struct *parent) | 
|  | { | 
|  | wake_up_interruptible_sync(&parent->signal->wait_chldexit); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Let a parent know about the death of a child. | 
|  | * For a stopped/continued status change, use do_notify_parent_cldstop instead. | 
|  | * | 
|  | * Returns -1 if our parent ignored us and so we've switched to | 
|  | * self-reaping, or else @sig. | 
|  | */ | 
|  | int do_notify_parent(struct task_struct *tsk, int sig) | 
|  | { | 
|  | struct siginfo info; | 
|  | unsigned long flags; | 
|  | struct sighand_struct *psig; | 
|  | int ret = sig; | 
|  |  | 
|  | BUG_ON(sig == -1); | 
|  |  | 
|  | /* do_notify_parent_cldstop should have been called instead.  */ | 
|  | BUG_ON(task_is_stopped_or_traced(tsk)); | 
|  |  | 
|  | BUG_ON(!task_ptrace(tsk) && | 
|  | (tsk->group_leader != tsk || !thread_group_empty(tsk))); | 
|  |  | 
|  | info.si_signo = sig; | 
|  | info.si_errno = 0; | 
|  | /* | 
|  | * we are under tasklist_lock here so our parent is tied to | 
|  | * us and cannot exit and release its namespace. | 
|  | * | 
|  | * the only it can is to switch its nsproxy with sys_unshare, | 
|  | * bu uncharing pid namespaces is not allowed, so we'll always | 
|  | * see relevant namespace | 
|  | * | 
|  | * write_lock() currently calls preempt_disable() which is the | 
|  | * same as rcu_read_lock(), but according to Oleg, this is not | 
|  | * correct to rely on this | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns); | 
|  | info.si_uid = __task_cred(tsk)->uid; | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime, | 
|  | tsk->signal->utime)); | 
|  | info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime, | 
|  | tsk->signal->stime)); | 
|  |  | 
|  | info.si_status = tsk->exit_code & 0x7f; | 
|  | if (tsk->exit_code & 0x80) | 
|  | info.si_code = CLD_DUMPED; | 
|  | else if (tsk->exit_code & 0x7f) | 
|  | info.si_code = CLD_KILLED; | 
|  | else { | 
|  | info.si_code = CLD_EXITED; | 
|  | info.si_status = tsk->exit_code >> 8; | 
|  | } | 
|  |  | 
|  | psig = tsk->parent->sighand; | 
|  | spin_lock_irqsave(&psig->siglock, flags); | 
|  | if (!task_ptrace(tsk) && sig == SIGCHLD && | 
|  | (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || | 
|  | (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { | 
|  | /* | 
|  | * We are exiting and our parent doesn't care.  POSIX.1 | 
|  | * defines special semantics for setting SIGCHLD to SIG_IGN | 
|  | * or setting the SA_NOCLDWAIT flag: we should be reaped | 
|  | * automatically and not left for our parent's wait4 call. | 
|  | * Rather than having the parent do it as a magic kind of | 
|  | * signal handler, we just set this to tell do_exit that we | 
|  | * can be cleaned up without becoming a zombie.  Note that | 
|  | * we still call __wake_up_parent in this case, because a | 
|  | * blocked sys_wait4 might now return -ECHILD. | 
|  | * | 
|  | * Whether we send SIGCHLD or not for SA_NOCLDWAIT | 
|  | * is implementation-defined: we do (if you don't want | 
|  | * it, just use SIG_IGN instead). | 
|  | */ | 
|  | ret = tsk->exit_signal = -1; | 
|  | if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) | 
|  | sig = -1; | 
|  | } | 
|  | if (valid_signal(sig) && sig > 0) | 
|  | __group_send_sig_info(sig, &info, tsk->parent); | 
|  | __wake_up_parent(tsk, tsk->parent); | 
|  | spin_unlock_irqrestore(&psig->siglock, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void do_notify_parent_cldstop(struct task_struct *tsk, int why) | 
|  | { | 
|  | struct siginfo info; | 
|  | unsigned long flags; | 
|  | struct task_struct *parent; | 
|  | struct sighand_struct *sighand; | 
|  |  | 
|  | if (task_ptrace(tsk)) | 
|  | parent = tsk->parent; | 
|  | else { | 
|  | tsk = tsk->group_leader; | 
|  | parent = tsk->real_parent; | 
|  | } | 
|  |  | 
|  | info.si_signo = SIGCHLD; | 
|  | info.si_errno = 0; | 
|  | /* | 
|  | * see comment in do_notify_parent() abot the following 3 lines | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns); | 
|  | info.si_uid = __task_cred(tsk)->uid; | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | info.si_utime = cputime_to_clock_t(tsk->utime); | 
|  | info.si_stime = cputime_to_clock_t(tsk->stime); | 
|  |  | 
|  | info.si_code = why; | 
|  | switch (why) { | 
|  | case CLD_CONTINUED: | 
|  | info.si_status = SIGCONT; | 
|  | break; | 
|  | case CLD_STOPPED: | 
|  | info.si_status = tsk->signal->group_exit_code & 0x7f; | 
|  | break; | 
|  | case CLD_TRAPPED: | 
|  | info.si_status = tsk->exit_code & 0x7f; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | sighand = parent->sighand; | 
|  | spin_lock_irqsave(&sighand->siglock, flags); | 
|  | if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && | 
|  | !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) | 
|  | __group_send_sig_info(SIGCHLD, &info, parent); | 
|  | /* | 
|  | * Even if SIGCHLD is not generated, we must wake up wait4 calls. | 
|  | */ | 
|  | __wake_up_parent(tsk, parent); | 
|  | spin_unlock_irqrestore(&sighand->siglock, flags); | 
|  | } | 
|  |  | 
|  | static inline int may_ptrace_stop(void) | 
|  | { | 
|  | if (!likely(task_ptrace(current))) | 
|  | return 0; | 
|  | /* | 
|  | * Are we in the middle of do_coredump? | 
|  | * If so and our tracer is also part of the coredump stopping | 
|  | * is a deadlock situation, and pointless because our tracer | 
|  | * is dead so don't allow us to stop. | 
|  | * If SIGKILL was already sent before the caller unlocked | 
|  | * ->siglock we must see ->core_state != NULL. Otherwise it | 
|  | * is safe to enter schedule(). | 
|  | */ | 
|  | if (unlikely(current->mm->core_state) && | 
|  | unlikely(current->mm == current->parent->mm)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return nonzero if there is a SIGKILL that should be waking us up. | 
|  | * Called with the siglock held. | 
|  | */ | 
|  | static int sigkill_pending(struct task_struct *tsk) | 
|  | { | 
|  | return	sigismember(&tsk->pending.signal, SIGKILL) || | 
|  | sigismember(&tsk->signal->shared_pending.signal, SIGKILL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This must be called with current->sighand->siglock held. | 
|  | * | 
|  | * This should be the path for all ptrace stops. | 
|  | * We always set current->last_siginfo while stopped here. | 
|  | * That makes it a way to test a stopped process for | 
|  | * being ptrace-stopped vs being job-control-stopped. | 
|  | * | 
|  | * If we actually decide not to stop at all because the tracer | 
|  | * is gone, we keep current->exit_code unless clear_code. | 
|  | */ | 
|  | static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info) | 
|  | { | 
|  | if (arch_ptrace_stop_needed(exit_code, info)) { | 
|  | /* | 
|  | * The arch code has something special to do before a | 
|  | * ptrace stop.  This is allowed to block, e.g. for faults | 
|  | * on user stack pages.  We can't keep the siglock while | 
|  | * calling arch_ptrace_stop, so we must release it now. | 
|  | * To preserve proper semantics, we must do this before | 
|  | * any signal bookkeeping like checking group_stop_count. | 
|  | * Meanwhile, a SIGKILL could come in before we retake the | 
|  | * siglock.  That must prevent us from sleeping in TASK_TRACED. | 
|  | * So after regaining the lock, we must check for SIGKILL. | 
|  | */ | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | arch_ptrace_stop(exit_code, info); | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | if (sigkill_pending(current)) | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there is a group stop in progress, | 
|  | * we must participate in the bookkeeping. | 
|  | */ | 
|  | if (current->signal->group_stop_count > 0) | 
|  | --current->signal->group_stop_count; | 
|  |  | 
|  | current->last_siginfo = info; | 
|  | current->exit_code = exit_code; | 
|  |  | 
|  | /* Let the debugger run.  */ | 
|  | __set_current_state(TASK_TRACED); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | read_lock(&tasklist_lock); | 
|  | if (may_ptrace_stop()) { | 
|  | do_notify_parent_cldstop(current, CLD_TRAPPED); | 
|  | /* | 
|  | * Don't want to allow preemption here, because | 
|  | * sys_ptrace() needs this task to be inactive. | 
|  | * | 
|  | * XXX: implement read_unlock_no_resched(). | 
|  | */ | 
|  | preempt_disable(); | 
|  | read_unlock(&tasklist_lock); | 
|  | preempt_enable_no_resched(); | 
|  | schedule(); | 
|  | } else { | 
|  | /* | 
|  | * By the time we got the lock, our tracer went away. | 
|  | * Don't drop the lock yet, another tracer may come. | 
|  | */ | 
|  | __set_current_state(TASK_RUNNING); | 
|  | if (clear_code) | 
|  | current->exit_code = 0; | 
|  | read_unlock(&tasklist_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * While in TASK_TRACED, we were considered "frozen enough". | 
|  | * Now that we woke up, it's crucial if we're supposed to be | 
|  | * frozen that we freeze now before running anything substantial. | 
|  | */ | 
|  | try_to_freeze(); | 
|  |  | 
|  | /* | 
|  | * We are back.  Now reacquire the siglock before touching | 
|  | * last_siginfo, so that we are sure to have synchronized with | 
|  | * any signal-sending on another CPU that wants to examine it. | 
|  | */ | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | current->last_siginfo = NULL; | 
|  |  | 
|  | /* | 
|  | * Queued signals ignored us while we were stopped for tracing. | 
|  | * So check for any that we should take before resuming user mode. | 
|  | * This sets TIF_SIGPENDING, but never clears it. | 
|  | */ | 
|  | recalc_sigpending_tsk(current); | 
|  | } | 
|  |  | 
|  | void ptrace_notify(int exit_code) | 
|  | { | 
|  | siginfo_t info; | 
|  |  | 
|  | BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); | 
|  |  | 
|  | memset(&info, 0, sizeof info); | 
|  | info.si_signo = SIGTRAP; | 
|  | info.si_code = exit_code; | 
|  | info.si_pid = task_pid_vnr(current); | 
|  | info.si_uid = current_uid(); | 
|  |  | 
|  | /* Let the debugger run.  */ | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | ptrace_stop(exit_code, 1, &info); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | } | 
|  |  | 
|  | static void | 
|  | finish_stop(int stop_count) | 
|  | { | 
|  | /* | 
|  | * If there are no other threads in the group, or if there is | 
|  | * a group stop in progress and we are the last to stop, | 
|  | * report to the parent.  When ptraced, every thread reports itself. | 
|  | */ | 
|  | if (tracehook_notify_jctl(stop_count == 0, CLD_STOPPED)) { | 
|  | read_lock(&tasklist_lock); | 
|  | do_notify_parent_cldstop(current, CLD_STOPPED); | 
|  | read_unlock(&tasklist_lock); | 
|  | } | 
|  |  | 
|  | do { | 
|  | schedule(); | 
|  | } while (try_to_freeze()); | 
|  | /* | 
|  | * Now we don't run again until continued. | 
|  | */ | 
|  | current->exit_code = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This performs the stopping for SIGSTOP and other stop signals. | 
|  | * We have to stop all threads in the thread group. | 
|  | * Returns nonzero if we've actually stopped and released the siglock. | 
|  | * Returns zero if we didn't stop and still hold the siglock. | 
|  | */ | 
|  | static int do_signal_stop(int signr) | 
|  | { | 
|  | struct signal_struct *sig = current->signal; | 
|  | int stop_count; | 
|  |  | 
|  | if (sig->group_stop_count > 0) { | 
|  | /* | 
|  | * There is a group stop in progress.  We don't need to | 
|  | * start another one. | 
|  | */ | 
|  | stop_count = --sig->group_stop_count; | 
|  | } else { | 
|  | struct task_struct *t; | 
|  |  | 
|  | if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) || | 
|  | unlikely(signal_group_exit(sig))) | 
|  | return 0; | 
|  | /* | 
|  | * There is no group stop already in progress. | 
|  | * We must initiate one now. | 
|  | */ | 
|  | sig->group_exit_code = signr; | 
|  |  | 
|  | stop_count = 0; | 
|  | for (t = next_thread(current); t != current; t = next_thread(t)) | 
|  | /* | 
|  | * Setting state to TASK_STOPPED for a group | 
|  | * stop is always done with the siglock held, | 
|  | * so this check has no races. | 
|  | */ | 
|  | if (!(t->flags & PF_EXITING) && | 
|  | !task_is_stopped_or_traced(t)) { | 
|  | stop_count++; | 
|  | signal_wake_up(t, 0); | 
|  | } | 
|  | sig->group_stop_count = stop_count; | 
|  | } | 
|  |  | 
|  | if (stop_count == 0) | 
|  | sig->flags = SIGNAL_STOP_STOPPED; | 
|  | current->exit_code = sig->group_exit_code; | 
|  | __set_current_state(TASK_STOPPED); | 
|  |  | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | finish_stop(stop_count); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int ptrace_signal(int signr, siginfo_t *info, | 
|  | struct pt_regs *regs, void *cookie) | 
|  | { | 
|  | if (!task_ptrace(current)) | 
|  | return signr; | 
|  |  | 
|  | ptrace_signal_deliver(regs, cookie); | 
|  |  | 
|  | /* Let the debugger run.  */ | 
|  | ptrace_stop(signr, 0, info); | 
|  |  | 
|  | /* We're back.  Did the debugger cancel the sig?  */ | 
|  | signr = current->exit_code; | 
|  | if (signr == 0) | 
|  | return signr; | 
|  |  | 
|  | current->exit_code = 0; | 
|  |  | 
|  | /* Update the siginfo structure if the signal has | 
|  | changed.  If the debugger wanted something | 
|  | specific in the siginfo structure then it should | 
|  | have updated *info via PTRACE_SETSIGINFO.  */ | 
|  | if (signr != info->si_signo) { | 
|  | info->si_signo = signr; | 
|  | info->si_errno = 0; | 
|  | info->si_code = SI_USER; | 
|  | info->si_pid = task_pid_vnr(current->parent); | 
|  | info->si_uid = task_uid(current->parent); | 
|  | } | 
|  |  | 
|  | /* If the (new) signal is now blocked, requeue it.  */ | 
|  | if (sigismember(¤t->blocked, signr)) { | 
|  | specific_send_sig_info(signr, info, current); | 
|  | signr = 0; | 
|  | } | 
|  |  | 
|  | return signr; | 
|  | } | 
|  |  | 
|  | int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, | 
|  | struct pt_regs *regs, void *cookie) | 
|  | { | 
|  | struct sighand_struct *sighand = current->sighand; | 
|  | struct signal_struct *signal = current->signal; | 
|  | int signr; | 
|  |  | 
|  | relock: | 
|  | /* | 
|  | * We'll jump back here after any time we were stopped in TASK_STOPPED. | 
|  | * While in TASK_STOPPED, we were considered "frozen enough". | 
|  | * Now that we woke up, it's crucial if we're supposed to be | 
|  | * frozen that we freeze now before running anything substantial. | 
|  | */ | 
|  | try_to_freeze(); | 
|  |  | 
|  | spin_lock_irq(&sighand->siglock); | 
|  | /* | 
|  | * Every stopped thread goes here after wakeup. Check to see if | 
|  | * we should notify the parent, prepare_signal(SIGCONT) encodes | 
|  | * the CLD_ si_code into SIGNAL_CLD_MASK bits. | 
|  | */ | 
|  | if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { | 
|  | int why = (signal->flags & SIGNAL_STOP_CONTINUED) | 
|  | ? CLD_CONTINUED : CLD_STOPPED; | 
|  | signal->flags &= ~SIGNAL_CLD_MASK; | 
|  | spin_unlock_irq(&sighand->siglock); | 
|  |  | 
|  | if (unlikely(!tracehook_notify_jctl(1, why))) | 
|  | goto relock; | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | do_notify_parent_cldstop(current->group_leader, why); | 
|  | read_unlock(&tasklist_lock); | 
|  | goto relock; | 
|  | } | 
|  |  | 
|  | for (;;) { | 
|  | struct k_sigaction *ka; | 
|  |  | 
|  | if (unlikely(signal->group_stop_count > 0) && | 
|  | do_signal_stop(0)) | 
|  | goto relock; | 
|  |  | 
|  | /* | 
|  | * Tracing can induce an artifical signal and choose sigaction. | 
|  | * The return value in @signr determines the default action, | 
|  | * but @info->si_signo is the signal number we will report. | 
|  | */ | 
|  | signr = tracehook_get_signal(current, regs, info, return_ka); | 
|  | if (unlikely(signr < 0)) | 
|  | goto relock; | 
|  | if (unlikely(signr != 0)) | 
|  | ka = return_ka; | 
|  | else { | 
|  | signr = dequeue_signal(current, ¤t->blocked, | 
|  | info); | 
|  |  | 
|  | if (!signr) | 
|  | break; /* will return 0 */ | 
|  |  | 
|  | if (signr != SIGKILL) { | 
|  | signr = ptrace_signal(signr, info, | 
|  | regs, cookie); | 
|  | if (!signr) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ka = &sighand->action[signr-1]; | 
|  | } | 
|  |  | 
|  | if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */ | 
|  | continue; | 
|  | if (ka->sa.sa_handler != SIG_DFL) { | 
|  | /* Run the handler.  */ | 
|  | *return_ka = *ka; | 
|  |  | 
|  | if (ka->sa.sa_flags & SA_ONESHOT) | 
|  | ka->sa.sa_handler = SIG_DFL; | 
|  |  | 
|  | break; /* will return non-zero "signr" value */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now we are doing the default action for this signal. | 
|  | */ | 
|  | if (sig_kernel_ignore(signr)) /* Default is nothing. */ | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Global init gets no signals it doesn't want. | 
|  | * Container-init gets no signals it doesn't want from same | 
|  | * container. | 
|  | * | 
|  | * Note that if global/container-init sees a sig_kernel_only() | 
|  | * signal here, the signal must have been generated internally | 
|  | * or must have come from an ancestor namespace. In either | 
|  | * case, the signal cannot be dropped. | 
|  | */ | 
|  | if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && | 
|  | !sig_kernel_only(signr)) | 
|  | continue; | 
|  |  | 
|  | if (sig_kernel_stop(signr)) { | 
|  | /* | 
|  | * The default action is to stop all threads in | 
|  | * the thread group.  The job control signals | 
|  | * do nothing in an orphaned pgrp, but SIGSTOP | 
|  | * always works.  Note that siglock needs to be | 
|  | * dropped during the call to is_orphaned_pgrp() | 
|  | * because of lock ordering with tasklist_lock. | 
|  | * This allows an intervening SIGCONT to be posted. | 
|  | * We need to check for that and bail out if necessary. | 
|  | */ | 
|  | if (signr != SIGSTOP) { | 
|  | spin_unlock_irq(&sighand->siglock); | 
|  |  | 
|  | /* signals can be posted during this window */ | 
|  |  | 
|  | if (is_current_pgrp_orphaned()) | 
|  | goto relock; | 
|  |  | 
|  | spin_lock_irq(&sighand->siglock); | 
|  | } | 
|  |  | 
|  | if (likely(do_signal_stop(info->si_signo))) { | 
|  | /* It released the siglock.  */ | 
|  | goto relock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We didn't actually stop, due to a race | 
|  | * with SIGCONT or something like that. | 
|  | */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | spin_unlock_irq(&sighand->siglock); | 
|  |  | 
|  | /* | 
|  | * Anything else is fatal, maybe with a core dump. | 
|  | */ | 
|  | current->flags |= PF_SIGNALED; | 
|  |  | 
|  | if (sig_kernel_coredump(signr)) { | 
|  | if (print_fatal_signals) | 
|  | print_fatal_signal(regs, info->si_signo); | 
|  | /* | 
|  | * If it was able to dump core, this kills all | 
|  | * other threads in the group and synchronizes with | 
|  | * their demise.  If we lost the race with another | 
|  | * thread getting here, it set group_exit_code | 
|  | * first and our do_group_exit call below will use | 
|  | * that value and ignore the one we pass it. | 
|  | */ | 
|  | do_coredump(info->si_signo, info->si_signo, regs); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Death signals, no core dump. | 
|  | */ | 
|  | do_group_exit(info->si_signo); | 
|  | /* NOTREACHED */ | 
|  | } | 
|  | spin_unlock_irq(&sighand->siglock); | 
|  | return signr; | 
|  | } | 
|  |  | 
|  | void exit_signals(struct task_struct *tsk) | 
|  | { | 
|  | int group_stop = 0; | 
|  | struct task_struct *t; | 
|  |  | 
|  | if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { | 
|  | tsk->flags |= PF_EXITING; | 
|  | return; | 
|  | } | 
|  |  | 
|  | spin_lock_irq(&tsk->sighand->siglock); | 
|  | /* | 
|  | * From now this task is not visible for group-wide signals, | 
|  | * see wants_signal(), do_signal_stop(). | 
|  | */ | 
|  | tsk->flags |= PF_EXITING; | 
|  | if (!signal_pending(tsk)) | 
|  | goto out; | 
|  |  | 
|  | /* It could be that __group_complete_signal() choose us to | 
|  | * notify about group-wide signal. Another thread should be | 
|  | * woken now to take the signal since we will not. | 
|  | */ | 
|  | for (t = tsk; (t = next_thread(t)) != tsk; ) | 
|  | if (!signal_pending(t) && !(t->flags & PF_EXITING)) | 
|  | recalc_sigpending_and_wake(t); | 
|  |  | 
|  | if (unlikely(tsk->signal->group_stop_count) && | 
|  | !--tsk->signal->group_stop_count) { | 
|  | tsk->signal->flags = SIGNAL_STOP_STOPPED; | 
|  | group_stop = 1; | 
|  | } | 
|  | out: | 
|  | spin_unlock_irq(&tsk->sighand->siglock); | 
|  |  | 
|  | if (unlikely(group_stop) && tracehook_notify_jctl(1, CLD_STOPPED)) { | 
|  | read_lock(&tasklist_lock); | 
|  | do_notify_parent_cldstop(tsk, CLD_STOPPED); | 
|  | read_unlock(&tasklist_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(recalc_sigpending); | 
|  | EXPORT_SYMBOL_GPL(dequeue_signal); | 
|  | EXPORT_SYMBOL(flush_signals); | 
|  | EXPORT_SYMBOL(force_sig); | 
|  | EXPORT_SYMBOL(send_sig); | 
|  | EXPORT_SYMBOL(send_sig_info); | 
|  | EXPORT_SYMBOL(sigprocmask); | 
|  | EXPORT_SYMBOL(block_all_signals); | 
|  | EXPORT_SYMBOL(unblock_all_signals); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * System call entry points. | 
|  | */ | 
|  |  | 
|  | SYSCALL_DEFINE0(restart_syscall) | 
|  | { | 
|  | struct restart_block *restart = ¤t_thread_info()->restart_block; | 
|  | return restart->fn(restart); | 
|  | } | 
|  |  | 
|  | long do_no_restart_syscall(struct restart_block *param) | 
|  | { | 
|  | return -EINTR; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We don't need to get the kernel lock - this is all local to this | 
|  | * particular thread.. (and that's good, because this is _heavily_ | 
|  | * used by various programs) | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * This is also useful for kernel threads that want to temporarily | 
|  | * (or permanently) block certain signals. | 
|  | * | 
|  | * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel | 
|  | * interface happily blocks "unblockable" signals like SIGKILL | 
|  | * and friends. | 
|  | */ | 
|  | int sigprocmask(int how, sigset_t *set, sigset_t *oldset) | 
|  | { | 
|  | int error; | 
|  |  | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | if (oldset) | 
|  | *oldset = current->blocked; | 
|  |  | 
|  | error = 0; | 
|  | switch (how) { | 
|  | case SIG_BLOCK: | 
|  | sigorsets(¤t->blocked, ¤t->blocked, set); | 
|  | break; | 
|  | case SIG_UNBLOCK: | 
|  | signandsets(¤t->blocked, ¤t->blocked, set); | 
|  | break; | 
|  | case SIG_SETMASK: | 
|  | current->blocked = *set; | 
|  | break; | 
|  | default: | 
|  | error = -EINVAL; | 
|  | } | 
|  | recalc_sigpending(); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, set, | 
|  | sigset_t __user *, oset, size_t, sigsetsize) | 
|  | { | 
|  | int error = -EINVAL; | 
|  | sigset_t old_set, new_set; | 
|  |  | 
|  | /* XXX: Don't preclude handling different sized sigset_t's.  */ | 
|  | if (sigsetsize != sizeof(sigset_t)) | 
|  | goto out; | 
|  |  | 
|  | if (set) { | 
|  | error = -EFAULT; | 
|  | if (copy_from_user(&new_set, set, sizeof(*set))) | 
|  | goto out; | 
|  | sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); | 
|  |  | 
|  | error = sigprocmask(how, &new_set, &old_set); | 
|  | if (error) | 
|  | goto out; | 
|  | if (oset) | 
|  | goto set_old; | 
|  | } else if (oset) { | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | old_set = current->blocked; | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  |  | 
|  | set_old: | 
|  | error = -EFAULT; | 
|  | if (copy_to_user(oset, &old_set, sizeof(*oset))) | 
|  | goto out; | 
|  | } | 
|  | error = 0; | 
|  | out: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | long do_sigpending(void __user *set, unsigned long sigsetsize) | 
|  | { | 
|  | long error = -EINVAL; | 
|  | sigset_t pending; | 
|  |  | 
|  | if (sigsetsize > sizeof(sigset_t)) | 
|  | goto out; | 
|  |  | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | sigorsets(&pending, ¤t->pending.signal, | 
|  | ¤t->signal->shared_pending.signal); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  |  | 
|  | /* Outside the lock because only this thread touches it.  */ | 
|  | sigandsets(&pending, ¤t->blocked, &pending); | 
|  |  | 
|  | error = -EFAULT; | 
|  | if (!copy_to_user(set, &pending, sigsetsize)) | 
|  | error = 0; | 
|  |  | 
|  | out: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize) | 
|  | { | 
|  | return do_sigpending(set, sigsetsize); | 
|  | } | 
|  |  | 
|  | #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER | 
|  |  | 
|  | int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) | 
|  | return -EFAULT; | 
|  | if (from->si_code < 0) | 
|  | return __copy_to_user(to, from, sizeof(siginfo_t)) | 
|  | ? -EFAULT : 0; | 
|  | /* | 
|  | * If you change siginfo_t structure, please be sure | 
|  | * this code is fixed accordingly. | 
|  | * Please remember to update the signalfd_copyinfo() function | 
|  | * inside fs/signalfd.c too, in case siginfo_t changes. | 
|  | * It should never copy any pad contained in the structure | 
|  | * to avoid security leaks, but must copy the generic | 
|  | * 3 ints plus the relevant union member. | 
|  | */ | 
|  | err = __put_user(from->si_signo, &to->si_signo); | 
|  | err |= __put_user(from->si_errno, &to->si_errno); | 
|  | err |= __put_user((short)from->si_code, &to->si_code); | 
|  | switch (from->si_code & __SI_MASK) { | 
|  | case __SI_KILL: | 
|  | err |= __put_user(from->si_pid, &to->si_pid); | 
|  | err |= __put_user(from->si_uid, &to->si_uid); | 
|  | break; | 
|  | case __SI_TIMER: | 
|  | err |= __put_user(from->si_tid, &to->si_tid); | 
|  | err |= __put_user(from->si_overrun, &to->si_overrun); | 
|  | err |= __put_user(from->si_ptr, &to->si_ptr); | 
|  | break; | 
|  | case __SI_POLL: | 
|  | err |= __put_user(from->si_band, &to->si_band); | 
|  | err |= __put_user(from->si_fd, &to->si_fd); | 
|  | break; | 
|  | case __SI_FAULT: | 
|  | err |= __put_user(from->si_addr, &to->si_addr); | 
|  | #ifdef __ARCH_SI_TRAPNO | 
|  | err |= __put_user(from->si_trapno, &to->si_trapno); | 
|  | #endif | 
|  | break; | 
|  | case __SI_CHLD: | 
|  | err |= __put_user(from->si_pid, &to->si_pid); | 
|  | err |= __put_user(from->si_uid, &to->si_uid); | 
|  | err |= __put_user(from->si_status, &to->si_status); | 
|  | err |= __put_user(from->si_utime, &to->si_utime); | 
|  | err |= __put_user(from->si_stime, &to->si_stime); | 
|  | break; | 
|  | case __SI_RT: /* This is not generated by the kernel as of now. */ | 
|  | case __SI_MESGQ: /* But this is */ | 
|  | err |= __put_user(from->si_pid, &to->si_pid); | 
|  | err |= __put_user(from->si_uid, &to->si_uid); | 
|  | err |= __put_user(from->si_ptr, &to->si_ptr); | 
|  | break; | 
|  | default: /* this is just in case for now ... */ | 
|  | err |= __put_user(from->si_pid, &to->si_pid); | 
|  | err |= __put_user(from->si_uid, &to->si_uid); | 
|  | break; | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, | 
|  | siginfo_t __user *, uinfo, const struct timespec __user *, uts, | 
|  | size_t, sigsetsize) | 
|  | { | 
|  | int ret, sig; | 
|  | sigset_t these; | 
|  | struct timespec ts; | 
|  | siginfo_t info; | 
|  | long timeout = 0; | 
|  |  | 
|  | /* XXX: Don't preclude handling different sized sigset_t's.  */ | 
|  | if (sigsetsize != sizeof(sigset_t)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (copy_from_user(&these, uthese, sizeof(these))) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* | 
|  | * Invert the set of allowed signals to get those we | 
|  | * want to block. | 
|  | */ | 
|  | sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP)); | 
|  | signotset(&these); | 
|  |  | 
|  | if (uts) { | 
|  | if (copy_from_user(&ts, uts, sizeof(ts))) | 
|  | return -EFAULT; | 
|  | if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0 | 
|  | || ts.tv_sec < 0) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | sig = dequeue_signal(current, &these, &info); | 
|  | if (!sig) { | 
|  | timeout = MAX_SCHEDULE_TIMEOUT; | 
|  | if (uts) | 
|  | timeout = (timespec_to_jiffies(&ts) | 
|  | + (ts.tv_sec || ts.tv_nsec)); | 
|  |  | 
|  | if (timeout) { | 
|  | /* None ready -- temporarily unblock those we're | 
|  | * interested while we are sleeping in so that we'll | 
|  | * be awakened when they arrive.  */ | 
|  | current->real_blocked = current->blocked; | 
|  | sigandsets(¤t->blocked, ¤t->blocked, &these); | 
|  | recalc_sigpending(); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  |  | 
|  | timeout = schedule_timeout_interruptible(timeout); | 
|  |  | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | sig = dequeue_signal(current, &these, &info); | 
|  | current->blocked = current->real_blocked; | 
|  | siginitset(¤t->real_blocked, 0); | 
|  | recalc_sigpending(); | 
|  | } | 
|  | } | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  |  | 
|  | if (sig) { | 
|  | ret = sig; | 
|  | if (uinfo) { | 
|  | if (copy_siginfo_to_user(uinfo, &info)) | 
|  | ret = -EFAULT; | 
|  | } | 
|  | } else { | 
|  | ret = -EAGAIN; | 
|  | if (timeout) | 
|  | ret = -EINTR; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) | 
|  | { | 
|  | struct siginfo info; | 
|  |  | 
|  | info.si_signo = sig; | 
|  | info.si_errno = 0; | 
|  | info.si_code = SI_USER; | 
|  | info.si_pid = task_tgid_vnr(current); | 
|  | info.si_uid = current_uid(); | 
|  |  | 
|  | return kill_something_info(sig, &info, pid); | 
|  | } | 
|  |  | 
|  | static int | 
|  | do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) | 
|  | { | 
|  | struct task_struct *p; | 
|  | unsigned long flags; | 
|  | int error = -ESRCH; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | p = find_task_by_vpid(pid); | 
|  | if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { | 
|  | error = check_kill_permission(sig, info, p); | 
|  | /* | 
|  | * The null signal is a permissions and process existence | 
|  | * probe.  No signal is actually delivered. | 
|  | * | 
|  | * If lock_task_sighand() fails we pretend the task dies | 
|  | * after receiving the signal. The window is tiny, and the | 
|  | * signal is private anyway. | 
|  | */ | 
|  | if (!error && sig && lock_task_sighand(p, &flags)) { | 
|  | error = specific_send_sig_info(sig, info, p); | 
|  | unlock_task_sighand(p, &flags); | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static int do_tkill(pid_t tgid, pid_t pid, int sig) | 
|  | { | 
|  | struct siginfo info; | 
|  |  | 
|  | info.si_signo = sig; | 
|  | info.si_errno = 0; | 
|  | info.si_code = SI_TKILL; | 
|  | info.si_pid = task_tgid_vnr(current); | 
|  | info.si_uid = current_uid(); | 
|  |  | 
|  | return do_send_specific(tgid, pid, sig, &info); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  sys_tgkill - send signal to one specific thread | 
|  | *  @tgid: the thread group ID of the thread | 
|  | *  @pid: the PID of the thread | 
|  | *  @sig: signal to be sent | 
|  | * | 
|  | *  This syscall also checks the @tgid and returns -ESRCH even if the PID | 
|  | *  exists but it's not belonging to the target process anymore. This | 
|  | *  method solves the problem of threads exiting and PIDs getting reused. | 
|  | */ | 
|  | SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) | 
|  | { | 
|  | /* This is only valid for single tasks */ | 
|  | if (pid <= 0 || tgid <= 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | return do_tkill(tgid, pid, sig); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  Send a signal to only one task, even if it's a CLONE_THREAD task. | 
|  | */ | 
|  | SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) | 
|  | { | 
|  | /* This is only valid for single tasks */ | 
|  | if (pid <= 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | return do_tkill(0, pid, sig); | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, | 
|  | siginfo_t __user *, uinfo) | 
|  | { | 
|  | siginfo_t info; | 
|  |  | 
|  | if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* Not even root can pretend to send signals from the kernel. | 
|  | Nor can they impersonate a kill(), which adds source info.  */ | 
|  | if (info.si_code >= 0) | 
|  | return -EPERM; | 
|  | info.si_signo = sig; | 
|  |  | 
|  | /* POSIX.1b doesn't mention process groups.  */ | 
|  | return kill_proc_info(sig, &info, pid); | 
|  | } | 
|  |  | 
|  | long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info) | 
|  | { | 
|  | /* This is only valid for single tasks */ | 
|  | if (pid <= 0 || tgid <= 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Not even root can pretend to send signals from the kernel. | 
|  | Nor can they impersonate a kill(), which adds source info.  */ | 
|  | if (info->si_code >= 0) | 
|  | return -EPERM; | 
|  | info->si_signo = sig; | 
|  |  | 
|  | return do_send_specific(tgid, pid, sig, info); | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, | 
|  | siginfo_t __user *, uinfo) | 
|  | { | 
|  | siginfo_t info; | 
|  |  | 
|  | if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) | 
|  | return -EFAULT; | 
|  |  | 
|  | return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); | 
|  | } | 
|  |  | 
|  | int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) | 
|  | { | 
|  | struct task_struct *t = current; | 
|  | struct k_sigaction *k; | 
|  | sigset_t mask; | 
|  |  | 
|  | if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) | 
|  | return -EINVAL; | 
|  |  | 
|  | k = &t->sighand->action[sig-1]; | 
|  |  | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | if (oact) | 
|  | *oact = *k; | 
|  |  | 
|  | if (act) { | 
|  | sigdelsetmask(&act->sa.sa_mask, | 
|  | sigmask(SIGKILL) | sigmask(SIGSTOP)); | 
|  | *k = *act; | 
|  | /* | 
|  | * POSIX 3.3.1.3: | 
|  | *  "Setting a signal action to SIG_IGN for a signal that is | 
|  | *   pending shall cause the pending signal to be discarded, | 
|  | *   whether or not it is blocked." | 
|  | * | 
|  | *  "Setting a signal action to SIG_DFL for a signal that is | 
|  | *   pending and whose default action is to ignore the signal | 
|  | *   (for example, SIGCHLD), shall cause the pending signal to | 
|  | *   be discarded, whether or not it is blocked" | 
|  | */ | 
|  | if (sig_handler_ignored(sig_handler(t, sig), sig)) { | 
|  | sigemptyset(&mask); | 
|  | sigaddset(&mask, sig); | 
|  | rm_from_queue_full(&mask, &t->signal->shared_pending); | 
|  | do { | 
|  | rm_from_queue_full(&mask, &t->pending); | 
|  | t = next_thread(t); | 
|  | } while (t != current); | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int | 
|  | do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) | 
|  | { | 
|  | stack_t oss; | 
|  | int error; | 
|  |  | 
|  | oss.ss_sp = (void __user *) current->sas_ss_sp; | 
|  | oss.ss_size = current->sas_ss_size; | 
|  | oss.ss_flags = sas_ss_flags(sp); | 
|  |  | 
|  | if (uss) { | 
|  | void __user *ss_sp; | 
|  | size_t ss_size; | 
|  | int ss_flags; | 
|  |  | 
|  | error = -EFAULT; | 
|  | if (!access_ok(VERIFY_READ, uss, sizeof(*uss))) | 
|  | goto out; | 
|  | error = __get_user(ss_sp, &uss->ss_sp) | | 
|  | __get_user(ss_flags, &uss->ss_flags) | | 
|  | __get_user(ss_size, &uss->ss_size); | 
|  | if (error) | 
|  | goto out; | 
|  |  | 
|  | error = -EPERM; | 
|  | if (on_sig_stack(sp)) | 
|  | goto out; | 
|  |  | 
|  | error = -EINVAL; | 
|  | /* | 
|  | * | 
|  | * Note - this code used to test ss_flags incorrectly | 
|  | *  	  old code may have been written using ss_flags==0 | 
|  | *	  to mean ss_flags==SS_ONSTACK (as this was the only | 
|  | *	  way that worked) - this fix preserves that older | 
|  | *	  mechanism | 
|  | */ | 
|  | if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) | 
|  | goto out; | 
|  |  | 
|  | if (ss_flags == SS_DISABLE) { | 
|  | ss_size = 0; | 
|  | ss_sp = NULL; | 
|  | } else { | 
|  | error = -ENOMEM; | 
|  | if (ss_size < MINSIGSTKSZ) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | current->sas_ss_sp = (unsigned long) ss_sp; | 
|  | current->sas_ss_size = ss_size; | 
|  | } | 
|  |  | 
|  | error = 0; | 
|  | if (uoss) { | 
|  | error = -EFAULT; | 
|  | if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss))) | 
|  | goto out; | 
|  | error = __put_user(oss.ss_sp, &uoss->ss_sp) | | 
|  | __put_user(oss.ss_size, &uoss->ss_size) | | 
|  | __put_user(oss.ss_flags, &uoss->ss_flags); | 
|  | } | 
|  |  | 
|  | out: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_SIGPENDING | 
|  |  | 
|  | SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set) | 
|  | { | 
|  | return do_sigpending(set, sizeof(*set)); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_SIGPROCMASK | 
|  | /* Some platforms have their own version with special arguments others | 
|  | support only sys_rt_sigprocmask.  */ | 
|  |  | 
|  | SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, set, | 
|  | old_sigset_t __user *, oset) | 
|  | { | 
|  | int error; | 
|  | old_sigset_t old_set, new_set; | 
|  |  | 
|  | if (set) { | 
|  | error = -EFAULT; | 
|  | if (copy_from_user(&new_set, set, sizeof(*set))) | 
|  | goto out; | 
|  | new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); | 
|  |  | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | old_set = current->blocked.sig[0]; | 
|  |  | 
|  | error = 0; | 
|  | switch (how) { | 
|  | default: | 
|  | error = -EINVAL; | 
|  | break; | 
|  | case SIG_BLOCK: | 
|  | sigaddsetmask(¤t->blocked, new_set); | 
|  | break; | 
|  | case SIG_UNBLOCK: | 
|  | sigdelsetmask(¤t->blocked, new_set); | 
|  | break; | 
|  | case SIG_SETMASK: | 
|  | current->blocked.sig[0] = new_set; | 
|  | break; | 
|  | } | 
|  |  | 
|  | recalc_sigpending(); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | if (error) | 
|  | goto out; | 
|  | if (oset) | 
|  | goto set_old; | 
|  | } else if (oset) { | 
|  | old_set = current->blocked.sig[0]; | 
|  | set_old: | 
|  | error = -EFAULT; | 
|  | if (copy_to_user(oset, &old_set, sizeof(*oset))) | 
|  | goto out; | 
|  | } | 
|  | error = 0; | 
|  | out: | 
|  | return error; | 
|  | } | 
|  | #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_RT_SIGACTION | 
|  | SYSCALL_DEFINE4(rt_sigaction, int, sig, | 
|  | const struct sigaction __user *, act, | 
|  | struct sigaction __user *, oact, | 
|  | size_t, sigsetsize) | 
|  | { | 
|  | struct k_sigaction new_sa, old_sa; | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | /* XXX: Don't preclude handling different sized sigset_t's.  */ | 
|  | if (sigsetsize != sizeof(sigset_t)) | 
|  | goto out; | 
|  |  | 
|  | if (act) { | 
|  | if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); | 
|  |  | 
|  | if (!ret && oact) { | 
|  | if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) | 
|  | return -EFAULT; | 
|  | } | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  | #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_SGETMASK | 
|  |  | 
|  | /* | 
|  | * For backwards compatibility.  Functionality superseded by sigprocmask. | 
|  | */ | 
|  | SYSCALL_DEFINE0(sgetmask) | 
|  | { | 
|  | /* SMP safe */ | 
|  | return current->blocked.sig[0]; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE1(ssetmask, int, newmask) | 
|  | { | 
|  | int old; | 
|  |  | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | old = current->blocked.sig[0]; | 
|  |  | 
|  | siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)| | 
|  | sigmask(SIGSTOP))); | 
|  | recalc_sigpending(); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  |  | 
|  | return old; | 
|  | } | 
|  | #endif /* __ARCH_WANT_SGETMASK */ | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_SIGNAL | 
|  | /* | 
|  | * For backwards compatibility.  Functionality superseded by sigaction. | 
|  | */ | 
|  | SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) | 
|  | { | 
|  | struct k_sigaction new_sa, old_sa; | 
|  | int ret; | 
|  |  | 
|  | new_sa.sa.sa_handler = handler; | 
|  | new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; | 
|  | sigemptyset(&new_sa.sa.sa_mask); | 
|  |  | 
|  | ret = do_sigaction(sig, &new_sa, &old_sa); | 
|  |  | 
|  | return ret ? ret : (unsigned long)old_sa.sa.sa_handler; | 
|  | } | 
|  | #endif /* __ARCH_WANT_SYS_SIGNAL */ | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_PAUSE | 
|  |  | 
|  | SYSCALL_DEFINE0(pause) | 
|  | { | 
|  | current->state = TASK_INTERRUPTIBLE; | 
|  | schedule(); | 
|  | return -ERESTARTNOHAND; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND | 
|  | SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) | 
|  | { | 
|  | sigset_t newset; | 
|  |  | 
|  | /* XXX: Don't preclude handling different sized sigset_t's.  */ | 
|  | if (sigsetsize != sizeof(sigset_t)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (copy_from_user(&newset, unewset, sizeof(newset))) | 
|  | return -EFAULT; | 
|  | sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP)); | 
|  |  | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | current->saved_sigmask = current->blocked; | 
|  | current->blocked = newset; | 
|  | recalc_sigpending(); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  |  | 
|  | current->state = TASK_INTERRUPTIBLE; | 
|  | schedule(); | 
|  | set_restore_sigmask(); | 
|  | return -ERESTARTNOHAND; | 
|  | } | 
|  | #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */ | 
|  |  | 
|  | __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void __init signals_init(void) | 
|  | { | 
|  | sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); | 
|  | } |