|  | /* | 
|  | * This file is subject to the terms and conditions of the GNU General Public | 
|  | * License.  See the file "COPYING" in the main directory of this archive | 
|  | * for more details. | 
|  | * | 
|  | * Copyright (C) 1995 Linus Torvalds | 
|  | * Copyright (C) 1995 Waldorf Electronics | 
|  | * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle | 
|  | * Copyright (C) 1996 Stoned Elipot | 
|  | * Copyright (C) 1999 Silicon Graphics, Inc. | 
|  | * Copyright (C) 2000, 2001, 2002, 2007  Maciej W. Rozycki | 
|  | */ | 
|  | #include <linux/init.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/screen_info.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/initrd.h> | 
|  | #include <linux/root_dev.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/console.h> | 
|  | #include <linux/pfn.h> | 
|  | #include <linux/debugfs.h> | 
|  |  | 
|  | #include <asm/addrspace.h> | 
|  | #include <asm/bootinfo.h> | 
|  | #include <asm/bugs.h> | 
|  | #include <asm/cache.h> | 
|  | #include <asm/cpu.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/setup.h> | 
|  | #include <asm/smp-ops.h> | 
|  | #include <asm/system.h> | 
|  |  | 
|  | struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly; | 
|  |  | 
|  | EXPORT_SYMBOL(cpu_data); | 
|  |  | 
|  | #ifdef CONFIG_VT | 
|  | struct screen_info screen_info; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Despite it's name this variable is even if we don't have PCI | 
|  | */ | 
|  | unsigned int PCI_DMA_BUS_IS_PHYS; | 
|  |  | 
|  | EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS); | 
|  |  | 
|  | /* | 
|  | * Setup information | 
|  | * | 
|  | * These are initialized so they are in the .data section | 
|  | */ | 
|  | unsigned long mips_machtype __read_mostly = MACH_UNKNOWN; | 
|  |  | 
|  | EXPORT_SYMBOL(mips_machtype); | 
|  |  | 
|  | struct boot_mem_map boot_mem_map; | 
|  |  | 
|  | static char __initdata command_line[COMMAND_LINE_SIZE]; | 
|  | char __initdata arcs_cmdline[COMMAND_LINE_SIZE]; | 
|  |  | 
|  | #ifdef CONFIG_CMDLINE_BOOL | 
|  | static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * mips_io_port_base is the begin of the address space to which x86 style | 
|  | * I/O ports are mapped. | 
|  | */ | 
|  | const unsigned long mips_io_port_base __read_mostly = -1; | 
|  | EXPORT_SYMBOL(mips_io_port_base); | 
|  |  | 
|  | static struct resource code_resource = { .name = "Kernel code", }; | 
|  | static struct resource data_resource = { .name = "Kernel data", }; | 
|  |  | 
|  | void __init add_memory_region(phys_t start, phys_t size, long type) | 
|  | { | 
|  | int x = boot_mem_map.nr_map; | 
|  | struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1; | 
|  |  | 
|  | /* Sanity check */ | 
|  | if (start + size < start) { | 
|  | pr_warning("Trying to add an invalid memory region, skipped\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to merge with previous entry if any.  This is far less than | 
|  | * perfect but is sufficient for most real world cases. | 
|  | */ | 
|  | if (x && prev->addr + prev->size == start && prev->type == type) { | 
|  | prev->size += size; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (x == BOOT_MEM_MAP_MAX) { | 
|  | pr_err("Ooops! Too many entries in the memory map!\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | boot_mem_map.map[x].addr = start; | 
|  | boot_mem_map.map[x].size = size; | 
|  | boot_mem_map.map[x].type = type; | 
|  | boot_mem_map.nr_map++; | 
|  | } | 
|  |  | 
|  | static void __init print_memory_map(void) | 
|  | { | 
|  | int i; | 
|  | const int field = 2 * sizeof(unsigned long); | 
|  |  | 
|  | for (i = 0; i < boot_mem_map.nr_map; i++) { | 
|  | printk(KERN_INFO " memory: %0*Lx @ %0*Lx ", | 
|  | field, (unsigned long long) boot_mem_map.map[i].size, | 
|  | field, (unsigned long long) boot_mem_map.map[i].addr); | 
|  |  | 
|  | switch (boot_mem_map.map[i].type) { | 
|  | case BOOT_MEM_RAM: | 
|  | printk(KERN_CONT "(usable)\n"); | 
|  | break; | 
|  | case BOOT_MEM_ROM_DATA: | 
|  | printk(KERN_CONT "(ROM data)\n"); | 
|  | break; | 
|  | case BOOT_MEM_RESERVED: | 
|  | printk(KERN_CONT "(reserved)\n"); | 
|  | break; | 
|  | default: | 
|  | printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Manage initrd | 
|  | */ | 
|  | #ifdef CONFIG_BLK_DEV_INITRD | 
|  |  | 
|  | static int __init rd_start_early(char *p) | 
|  | { | 
|  | unsigned long start = memparse(p, &p); | 
|  |  | 
|  | #ifdef CONFIG_64BIT | 
|  | /* Guess if the sign extension was forgotten by bootloader */ | 
|  | if (start < XKPHYS) | 
|  | start = (int)start; | 
|  | #endif | 
|  | initrd_start = start; | 
|  | initrd_end += start; | 
|  | return 0; | 
|  | } | 
|  | early_param("rd_start", rd_start_early); | 
|  |  | 
|  | static int __init rd_size_early(char *p) | 
|  | { | 
|  | initrd_end += memparse(p, &p); | 
|  | return 0; | 
|  | } | 
|  | early_param("rd_size", rd_size_early); | 
|  |  | 
|  | /* it returns the next free pfn after initrd */ | 
|  | static unsigned long __init init_initrd(void) | 
|  | { | 
|  | unsigned long end; | 
|  |  | 
|  | /* | 
|  | * Board specific code or command line parser should have | 
|  | * already set up initrd_start and initrd_end. In these cases | 
|  | * perfom sanity checks and use them if all looks good. | 
|  | */ | 
|  | if (!initrd_start || initrd_end <= initrd_start) | 
|  | goto disable; | 
|  |  | 
|  | if (initrd_start & ~PAGE_MASK) { | 
|  | pr_err("initrd start must be page aligned\n"); | 
|  | goto disable; | 
|  | } | 
|  | if (initrd_start < PAGE_OFFSET) { | 
|  | pr_err("initrd start < PAGE_OFFSET\n"); | 
|  | goto disable; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sanitize initrd addresses. For example firmware | 
|  | * can't guess if they need to pass them through | 
|  | * 64-bits values if the kernel has been built in pure | 
|  | * 32-bit. We need also to switch from KSEG0 to XKPHYS | 
|  | * addresses now, so the code can now safely use __pa(). | 
|  | */ | 
|  | end = __pa(initrd_end); | 
|  | initrd_end = (unsigned long)__va(end); | 
|  | initrd_start = (unsigned long)__va(__pa(initrd_start)); | 
|  |  | 
|  | ROOT_DEV = Root_RAM0; | 
|  | return PFN_UP(end); | 
|  | disable: | 
|  | initrd_start = 0; | 
|  | initrd_end = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __init finalize_initrd(void) | 
|  | { | 
|  | unsigned long size = initrd_end - initrd_start; | 
|  |  | 
|  | if (size == 0) { | 
|  | printk(KERN_INFO "Initrd not found or empty"); | 
|  | goto disable; | 
|  | } | 
|  | if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) { | 
|  | printk(KERN_ERR "Initrd extends beyond end of memory"); | 
|  | goto disable; | 
|  | } | 
|  |  | 
|  | reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT); | 
|  | initrd_below_start_ok = 1; | 
|  |  | 
|  | pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n", | 
|  | initrd_start, size); | 
|  | return; | 
|  | disable: | 
|  | printk(KERN_CONT " - disabling initrd\n"); | 
|  | initrd_start = 0; | 
|  | initrd_end = 0; | 
|  | } | 
|  |  | 
|  | #else  /* !CONFIG_BLK_DEV_INITRD */ | 
|  |  | 
|  | static unsigned long __init init_initrd(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define finalize_initrd()	do {} while (0) | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Initialize the bootmem allocator. It also setup initrd related data | 
|  | * if needed. | 
|  | */ | 
|  | #ifdef CONFIG_SGI_IP27 | 
|  |  | 
|  | static void __init bootmem_init(void) | 
|  | { | 
|  | init_initrd(); | 
|  | finalize_initrd(); | 
|  | } | 
|  |  | 
|  | #else  /* !CONFIG_SGI_IP27 */ | 
|  |  | 
|  | static void __init bootmem_init(void) | 
|  | { | 
|  | unsigned long reserved_end; | 
|  | unsigned long mapstart = ~0UL; | 
|  | unsigned long bootmap_size; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * Init any data related to initrd. It's a nop if INITRD is | 
|  | * not selected. Once that done we can determine the low bound | 
|  | * of usable memory. | 
|  | */ | 
|  | reserved_end = max(init_initrd(), | 
|  | (unsigned long) PFN_UP(__pa_symbol(&_end))); | 
|  |  | 
|  | /* | 
|  | * max_low_pfn is not a number of pages. The number of pages | 
|  | * of the system is given by 'max_low_pfn - min_low_pfn'. | 
|  | */ | 
|  | min_low_pfn = ~0UL; | 
|  | max_low_pfn = 0; | 
|  |  | 
|  | /* | 
|  | * Find the highest page frame number we have available. | 
|  | */ | 
|  | for (i = 0; i < boot_mem_map.nr_map; i++) { | 
|  | unsigned long start, end; | 
|  |  | 
|  | if (boot_mem_map.map[i].type != BOOT_MEM_RAM) | 
|  | continue; | 
|  |  | 
|  | start = PFN_UP(boot_mem_map.map[i].addr); | 
|  | end = PFN_DOWN(boot_mem_map.map[i].addr | 
|  | + boot_mem_map.map[i].size); | 
|  |  | 
|  | if (end > max_low_pfn) | 
|  | max_low_pfn = end; | 
|  | if (start < min_low_pfn) | 
|  | min_low_pfn = start; | 
|  | if (end <= reserved_end) | 
|  | continue; | 
|  | if (start >= mapstart) | 
|  | continue; | 
|  | mapstart = max(reserved_end, start); | 
|  | } | 
|  |  | 
|  | if (min_low_pfn >= max_low_pfn) | 
|  | panic("Incorrect memory mapping !!!"); | 
|  | if (min_low_pfn > ARCH_PFN_OFFSET) { | 
|  | pr_info("Wasting %lu bytes for tracking %lu unused pages\n", | 
|  | (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page), | 
|  | min_low_pfn - ARCH_PFN_OFFSET); | 
|  | } else if (min_low_pfn < ARCH_PFN_OFFSET) { | 
|  | pr_info("%lu free pages won't be used\n", | 
|  | ARCH_PFN_OFFSET - min_low_pfn); | 
|  | } | 
|  | min_low_pfn = ARCH_PFN_OFFSET; | 
|  |  | 
|  | /* | 
|  | * Determine low and high memory ranges | 
|  | */ | 
|  | max_pfn = max_low_pfn; | 
|  | if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) { | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | highstart_pfn = PFN_DOWN(HIGHMEM_START); | 
|  | highend_pfn = max_low_pfn; | 
|  | #endif | 
|  | max_low_pfn = PFN_DOWN(HIGHMEM_START); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the boot-time allocator with low memory only. | 
|  | */ | 
|  | bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart, | 
|  | min_low_pfn, max_low_pfn); | 
|  |  | 
|  |  | 
|  | for (i = 0; i < boot_mem_map.nr_map; i++) { | 
|  | unsigned long start, end; | 
|  |  | 
|  | start = PFN_UP(boot_mem_map.map[i].addr); | 
|  | end = PFN_DOWN(boot_mem_map.map[i].addr | 
|  | + boot_mem_map.map[i].size); | 
|  |  | 
|  | if (start <= min_low_pfn) | 
|  | start = min_low_pfn; | 
|  | if (start >= end) | 
|  | continue; | 
|  |  | 
|  | #ifndef CONFIG_HIGHMEM | 
|  | if (end > max_low_pfn) | 
|  | end = max_low_pfn; | 
|  |  | 
|  | /* | 
|  | * ... finally, is the area going away? | 
|  | */ | 
|  | if (end <= start) | 
|  | continue; | 
|  | #endif | 
|  |  | 
|  | add_active_range(0, start, end); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Register fully available low RAM pages with the bootmem allocator. | 
|  | */ | 
|  | for (i = 0; i < boot_mem_map.nr_map; i++) { | 
|  | unsigned long start, end, size; | 
|  |  | 
|  | /* | 
|  | * Reserve usable memory. | 
|  | */ | 
|  | if (boot_mem_map.map[i].type != BOOT_MEM_RAM) | 
|  | continue; | 
|  |  | 
|  | start = PFN_UP(boot_mem_map.map[i].addr); | 
|  | end   = PFN_DOWN(boot_mem_map.map[i].addr | 
|  | + boot_mem_map.map[i].size); | 
|  | /* | 
|  | * We are rounding up the start address of usable memory | 
|  | * and at the end of the usable range downwards. | 
|  | */ | 
|  | if (start >= max_low_pfn) | 
|  | continue; | 
|  | if (start < reserved_end) | 
|  | start = reserved_end; | 
|  | if (end > max_low_pfn) | 
|  | end = max_low_pfn; | 
|  |  | 
|  | /* | 
|  | * ... finally, is the area going away? | 
|  | */ | 
|  | if (end <= start) | 
|  | continue; | 
|  | size = end - start; | 
|  |  | 
|  | /* Register lowmem ranges */ | 
|  | free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT); | 
|  | memory_present(0, start, end); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reserve the bootmap memory. | 
|  | */ | 
|  | reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT); | 
|  |  | 
|  | /* | 
|  | * Reserve initrd memory if needed. | 
|  | */ | 
|  | finalize_initrd(); | 
|  | } | 
|  |  | 
|  | #endif	/* CONFIG_SGI_IP27 */ | 
|  |  | 
|  | /* | 
|  | * arch_mem_init - initialize memory management subsystem | 
|  | * | 
|  | *  o plat_mem_setup() detects the memory configuration and will record detected | 
|  | *    memory areas using add_memory_region. | 
|  | * | 
|  | * At this stage the memory configuration of the system is known to the | 
|  | * kernel but generic memory management system is still entirely uninitialized. | 
|  | * | 
|  | *  o bootmem_init() | 
|  | *  o sparse_init() | 
|  | *  o paging_init() | 
|  | * | 
|  | * At this stage the bootmem allocator is ready to use. | 
|  | * | 
|  | * NOTE: historically plat_mem_setup did the entire platform initialization. | 
|  | *       This was rather impractical because it meant plat_mem_setup had to | 
|  | * get away without any kind of memory allocator.  To keep old code from | 
|  | * breaking plat_setup was just renamed to plat_setup and a second platform | 
|  | * initialization hook for anything else was introduced. | 
|  | */ | 
|  |  | 
|  | static int usermem __initdata; | 
|  |  | 
|  | static int __init early_parse_mem(char *p) | 
|  | { | 
|  | unsigned long start, size; | 
|  |  | 
|  | /* | 
|  | * If a user specifies memory size, we | 
|  | * blow away any automatically generated | 
|  | * size. | 
|  | */ | 
|  | if (usermem == 0) { | 
|  | boot_mem_map.nr_map = 0; | 
|  | usermem = 1; | 
|  | } | 
|  | start = 0; | 
|  | size = memparse(p, &p); | 
|  | if (*p == '@') | 
|  | start = memparse(p + 1, &p); | 
|  |  | 
|  | add_memory_region(start, size, BOOT_MEM_RAM); | 
|  | return 0; | 
|  | } | 
|  | early_param("mem", early_parse_mem); | 
|  |  | 
|  | static void __init arch_mem_init(char **cmdline_p) | 
|  | { | 
|  | extern void plat_mem_setup(void); | 
|  |  | 
|  | /* call board setup routine */ | 
|  | plat_mem_setup(); | 
|  |  | 
|  | pr_info("Determined physical RAM map:\n"); | 
|  | print_memory_map(); | 
|  |  | 
|  | #ifdef CONFIG_CMDLINE_BOOL | 
|  | #ifdef CONFIG_CMDLINE_OVERRIDE | 
|  | strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); | 
|  | #else | 
|  | if (builtin_cmdline[0]) { | 
|  | strlcat(arcs_cmdline, " ", COMMAND_LINE_SIZE); | 
|  | strlcat(arcs_cmdline, builtin_cmdline, COMMAND_LINE_SIZE); | 
|  | } | 
|  | strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); | 
|  | #endif | 
|  | #else | 
|  | strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE); | 
|  | #endif | 
|  | strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE); | 
|  |  | 
|  | *cmdline_p = command_line; | 
|  |  | 
|  | parse_early_param(); | 
|  |  | 
|  | if (usermem) { | 
|  | pr_info("User-defined physical RAM map:\n"); | 
|  | print_memory_map(); | 
|  | } | 
|  |  | 
|  | bootmem_init(); | 
|  | sparse_init(); | 
|  | paging_init(); | 
|  | } | 
|  |  | 
|  | static void __init resource_init(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (UNCAC_BASE != IO_BASE) | 
|  | return; | 
|  |  | 
|  | code_resource.start = __pa_symbol(&_text); | 
|  | code_resource.end = __pa_symbol(&_etext) - 1; | 
|  | data_resource.start = __pa_symbol(&_etext); | 
|  | data_resource.end = __pa_symbol(&_edata) - 1; | 
|  |  | 
|  | /* | 
|  | * Request address space for all standard RAM. | 
|  | */ | 
|  | for (i = 0; i < boot_mem_map.nr_map; i++) { | 
|  | struct resource *res; | 
|  | unsigned long start, end; | 
|  |  | 
|  | start = boot_mem_map.map[i].addr; | 
|  | end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1; | 
|  | if (start >= HIGHMEM_START) | 
|  | continue; | 
|  | if (end >= HIGHMEM_START) | 
|  | end = HIGHMEM_START - 1; | 
|  |  | 
|  | res = alloc_bootmem(sizeof(struct resource)); | 
|  | switch (boot_mem_map.map[i].type) { | 
|  | case BOOT_MEM_RAM: | 
|  | case BOOT_MEM_ROM_DATA: | 
|  | res->name = "System RAM"; | 
|  | break; | 
|  | case BOOT_MEM_RESERVED: | 
|  | default: | 
|  | res->name = "reserved"; | 
|  | } | 
|  |  | 
|  | res->start = start; | 
|  | res->end = end; | 
|  |  | 
|  | res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; | 
|  | request_resource(&iomem_resource, res); | 
|  |  | 
|  | /* | 
|  | *  We don't know which RAM region contains kernel data, | 
|  | *  so we try it repeatedly and let the resource manager | 
|  | *  test it. | 
|  | */ | 
|  | request_resource(res, &code_resource); | 
|  | request_resource(res, &data_resource); | 
|  | } | 
|  | } | 
|  |  | 
|  | void __init setup_arch(char **cmdline_p) | 
|  | { | 
|  | cpu_probe(); | 
|  | prom_init(); | 
|  |  | 
|  | #ifdef CONFIG_EARLY_PRINTK | 
|  | setup_early_printk(); | 
|  | #endif | 
|  | cpu_report(); | 
|  | check_bugs_early(); | 
|  |  | 
|  | #if defined(CONFIG_VT) | 
|  | #if defined(CONFIG_VGA_CONSOLE) | 
|  | conswitchp = &vga_con; | 
|  | #elif defined(CONFIG_DUMMY_CONSOLE) | 
|  | conswitchp = &dummy_con; | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | arch_mem_init(cmdline_p); | 
|  |  | 
|  | resource_init(); | 
|  | plat_smp_setup(); | 
|  | } | 
|  |  | 
|  | unsigned long kernelsp[NR_CPUS]; | 
|  | unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3; | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_FS | 
|  | struct dentry *mips_debugfs_dir; | 
|  | static int __init debugfs_mips(void) | 
|  | { | 
|  | struct dentry *d; | 
|  |  | 
|  | d = debugfs_create_dir("mips", NULL); | 
|  | if (!d) | 
|  | return -ENOMEM; | 
|  | mips_debugfs_dir = d; | 
|  | return 0; | 
|  | } | 
|  | arch_initcall(debugfs_mips); | 
|  | #endif |