|  | /* | 
|  | * SN Platform GRU Driver | 
|  | * | 
|  | *              KERNEL SERVICES THAT USE THE GRU | 
|  | * | 
|  | *  Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved. | 
|  | * | 
|  | *  This program is free software; you can redistribute it and/or modify | 
|  | *  it under the terms of the GNU General Public License as published by | 
|  | *  the Free Software Foundation; either version 2 of the License, or | 
|  | *  (at your option) any later version. | 
|  | * | 
|  | *  This program is distributed in the hope that it will be useful, | 
|  | *  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | *  GNU General Public License for more details. | 
|  | * | 
|  | *  You should have received a copy of the GNU General Public License | 
|  | *  along with this program; if not, write to the Free Software | 
|  | *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/miscdevice.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/delay.h> | 
|  | #include <asm/io_apic.h> | 
|  | #include "gru.h" | 
|  | #include "grulib.h" | 
|  | #include "grutables.h" | 
|  | #include "grukservices.h" | 
|  | #include "gru_instructions.h" | 
|  | #include <asm/uv/uv_hub.h> | 
|  |  | 
|  | /* | 
|  | * Kernel GRU Usage | 
|  | * | 
|  | * The following is an interim algorithm for management of kernel GRU | 
|  | * resources. This will likely be replaced when we better understand the | 
|  | * kernel/user requirements. | 
|  | * | 
|  | * Blade percpu resources reserved for kernel use. These resources are | 
|  | * reserved whenever the the kernel context for the blade is loaded. Note | 
|  | * that the kernel context is not guaranteed to be always available. It is | 
|  | * loaded on demand & can be stolen by a user if the user demand exceeds the | 
|  | * kernel demand. The kernel can always reload the kernel context but | 
|  | * a SLEEP may be required!!!. | 
|  | * | 
|  | * Async Overview: | 
|  | * | 
|  | * 	Each blade has one "kernel context" that owns GRU kernel resources | 
|  | * 	located on the blade. Kernel drivers use GRU resources in this context | 
|  | * 	for sending messages, zeroing memory, etc. | 
|  | * | 
|  | * 	The kernel context is dynamically loaded on demand. If it is not in | 
|  | * 	use by the kernel, the kernel context can be unloaded & given to a user. | 
|  | * 	The kernel context will be reloaded when needed. This may require that | 
|  | * 	a context be stolen from a user. | 
|  | * 		NOTE: frequent unloading/reloading of the kernel context is | 
|  | * 		expensive. We are depending on batch schedulers, cpusets, sane | 
|  | * 		drivers or some other mechanism to prevent the need for frequent | 
|  | *	 	stealing/reloading. | 
|  | * | 
|  | * 	The kernel context consists of two parts: | 
|  | * 		- 1 CB & a few DSRs that are reserved for each cpu on the blade. | 
|  | * 		  Each cpu has it's own private resources & does not share them | 
|  | * 		  with other cpus. These resources are used serially, ie, | 
|  | * 		  locked, used & unlocked  on each call to a function in | 
|  | * 		  grukservices. | 
|  | * 		  	(Now that we have dynamic loading of kernel contexts, I | 
|  | * 		  	 may rethink this & allow sharing between cpus....) | 
|  | * | 
|  | *		- Additional resources can be reserved long term & used directly | 
|  | *		  by UV drivers located in the kernel. Drivers using these GRU | 
|  | *		  resources can use asynchronous GRU instructions that send | 
|  | *		  interrupts on completion. | 
|  | *		  	- these resources must be explicitly locked/unlocked | 
|  | *		  	- locked resources prevent (obviously) the kernel | 
|  | *		  	  context from being unloaded. | 
|  | *			- drivers using these resource directly issue their own | 
|  | *			  GRU instruction and must wait/check completion. | 
|  | * | 
|  | * 		  When these resources are reserved, the caller can optionally | 
|  | * 		  associate a wait_queue with the resources and use asynchronous | 
|  | * 		  GRU instructions. When an async GRU instruction completes, the | 
|  | * 		  driver will do a wakeup on the event. | 
|  | * | 
|  | */ | 
|  |  | 
|  |  | 
|  | #define ASYNC_HAN_TO_BID(h)	((h) - 1) | 
|  | #define ASYNC_BID_TO_HAN(b)	((b) + 1) | 
|  | #define ASYNC_HAN_TO_BS(h)	gru_base[ASYNC_HAN_TO_BID(h)] | 
|  |  | 
|  | #define GRU_NUM_KERNEL_CBR	1 | 
|  | #define GRU_NUM_KERNEL_DSR_BYTES 256 | 
|  | #define GRU_NUM_KERNEL_DSR_CL	(GRU_NUM_KERNEL_DSR_BYTES /		\ | 
|  | GRU_CACHE_LINE_BYTES) | 
|  |  | 
|  | /* GRU instruction attributes for all instructions */ | 
|  | #define IMA			IMA_CB_DELAY | 
|  |  | 
|  | /* GRU cacheline size is always 64 bytes - even on arches with 128 byte lines */ | 
|  | #define __gru_cacheline_aligned__                               \ | 
|  | __attribute__((__aligned__(GRU_CACHE_LINE_BYTES))) | 
|  |  | 
|  | #define MAGIC	0x1234567887654321UL | 
|  |  | 
|  | /* Default retry count for GRU errors on kernel instructions */ | 
|  | #define EXCEPTION_RETRY_LIMIT	3 | 
|  |  | 
|  | /* Status of message queue sections */ | 
|  | #define MQS_EMPTY		0 | 
|  | #define MQS_FULL		1 | 
|  | #define MQS_NOOP		2 | 
|  |  | 
|  | /*----------------- RESOURCE MANAGEMENT -------------------------------------*/ | 
|  | /* optimized for x86_64 */ | 
|  | struct message_queue { | 
|  | union gru_mesqhead	head __gru_cacheline_aligned__;	/* CL 0 */ | 
|  | int			qlines;				/* DW 1 */ | 
|  | long 			hstatus[2]; | 
|  | void 			*next __gru_cacheline_aligned__;/* CL 1 */ | 
|  | void 			*limit; | 
|  | void 			*start; | 
|  | void 			*start2; | 
|  | char			data ____cacheline_aligned;	/* CL 2 */ | 
|  | }; | 
|  |  | 
|  | /* First word in every message - used by mesq interface */ | 
|  | struct message_header { | 
|  | char	present; | 
|  | char	present2; | 
|  | char 	lines; | 
|  | char	fill; | 
|  | }; | 
|  |  | 
|  | #define HSTATUS(mq, h)	((mq) + offsetof(struct message_queue, hstatus[h])) | 
|  |  | 
|  | /* | 
|  | * Reload the blade's kernel context into a GRU chiplet. Called holding | 
|  | * the bs_kgts_sema for READ. Will steal user contexts if necessary. | 
|  | */ | 
|  | static void gru_load_kernel_context(struct gru_blade_state *bs, int blade_id) | 
|  | { | 
|  | struct gru_state *gru; | 
|  | struct gru_thread_state *kgts; | 
|  | void *vaddr; | 
|  | int ctxnum, ncpus; | 
|  |  | 
|  | up_read(&bs->bs_kgts_sema); | 
|  | down_write(&bs->bs_kgts_sema); | 
|  |  | 
|  | if (!bs->bs_kgts) { | 
|  | bs->bs_kgts = gru_alloc_gts(NULL, 0, 0, 0, 0, 0); | 
|  | bs->bs_kgts->ts_user_blade_id = blade_id; | 
|  | } | 
|  | kgts = bs->bs_kgts; | 
|  |  | 
|  | if (!kgts->ts_gru) { | 
|  | STAT(load_kernel_context); | 
|  | ncpus = uv_blade_nr_possible_cpus(blade_id); | 
|  | kgts->ts_cbr_au_count = GRU_CB_COUNT_TO_AU( | 
|  | GRU_NUM_KERNEL_CBR * ncpus + bs->bs_async_cbrs); | 
|  | kgts->ts_dsr_au_count = GRU_DS_BYTES_TO_AU( | 
|  | GRU_NUM_KERNEL_DSR_BYTES * ncpus + | 
|  | bs->bs_async_dsr_bytes); | 
|  | while (!gru_assign_gru_context(kgts)) { | 
|  | msleep(1); | 
|  | gru_steal_context(kgts); | 
|  | } | 
|  | gru_load_context(kgts); | 
|  | gru = bs->bs_kgts->ts_gru; | 
|  | vaddr = gru->gs_gru_base_vaddr; | 
|  | ctxnum = kgts->ts_ctxnum; | 
|  | bs->kernel_cb = get_gseg_base_address_cb(vaddr, ctxnum, 0); | 
|  | bs->kernel_dsr = get_gseg_base_address_ds(vaddr, ctxnum, 0); | 
|  | } | 
|  | downgrade_write(&bs->bs_kgts_sema); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free all kernel contexts that are not currently in use. | 
|  | *   Returns 0 if all freed, else number of inuse context. | 
|  | */ | 
|  | static int gru_free_kernel_contexts(void) | 
|  | { | 
|  | struct gru_blade_state *bs; | 
|  | struct gru_thread_state *kgts; | 
|  | int bid, ret = 0; | 
|  |  | 
|  | for (bid = 0; bid < GRU_MAX_BLADES; bid++) { | 
|  | bs = gru_base[bid]; | 
|  | if (!bs) | 
|  | continue; | 
|  |  | 
|  | /* Ignore busy contexts. Don't want to block here.  */ | 
|  | if (down_write_trylock(&bs->bs_kgts_sema)) { | 
|  | kgts = bs->bs_kgts; | 
|  | if (kgts && kgts->ts_gru) | 
|  | gru_unload_context(kgts, 0); | 
|  | bs->bs_kgts = NULL; | 
|  | up_write(&bs->bs_kgts_sema); | 
|  | kfree(kgts); | 
|  | } else { | 
|  | ret++; | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lock & load the kernel context for the specified blade. | 
|  | */ | 
|  | static struct gru_blade_state *gru_lock_kernel_context(int blade_id) | 
|  | { | 
|  | struct gru_blade_state *bs; | 
|  | int bid; | 
|  |  | 
|  | STAT(lock_kernel_context); | 
|  | again: | 
|  | bid = blade_id < 0 ? uv_numa_blade_id() : blade_id; | 
|  | bs = gru_base[bid]; | 
|  |  | 
|  | /* Handle the case where migration occured while waiting for the sema */ | 
|  | down_read(&bs->bs_kgts_sema); | 
|  | if (blade_id < 0 && bid != uv_numa_blade_id()) { | 
|  | up_read(&bs->bs_kgts_sema); | 
|  | goto again; | 
|  | } | 
|  | if (!bs->bs_kgts || !bs->bs_kgts->ts_gru) | 
|  | gru_load_kernel_context(bs, bid); | 
|  | return bs; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unlock the kernel context for the specified blade. Context is not | 
|  | * unloaded but may be stolen before next use. | 
|  | */ | 
|  | static void gru_unlock_kernel_context(int blade_id) | 
|  | { | 
|  | struct gru_blade_state *bs; | 
|  |  | 
|  | bs = gru_base[blade_id]; | 
|  | up_read(&bs->bs_kgts_sema); | 
|  | STAT(unlock_kernel_context); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reserve & get pointers to the DSR/CBRs reserved for the current cpu. | 
|  | * 	- returns with preemption disabled | 
|  | */ | 
|  | static int gru_get_cpu_resources(int dsr_bytes, void **cb, void **dsr) | 
|  | { | 
|  | struct gru_blade_state *bs; | 
|  | int lcpu; | 
|  |  | 
|  | BUG_ON(dsr_bytes > GRU_NUM_KERNEL_DSR_BYTES); | 
|  | preempt_disable(); | 
|  | bs = gru_lock_kernel_context(-1); | 
|  | lcpu = uv_blade_processor_id(); | 
|  | *cb = bs->kernel_cb + lcpu * GRU_HANDLE_STRIDE; | 
|  | *dsr = bs->kernel_dsr + lcpu * GRU_NUM_KERNEL_DSR_BYTES; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free the current cpus reserved DSR/CBR resources. | 
|  | */ | 
|  | static void gru_free_cpu_resources(void *cb, void *dsr) | 
|  | { | 
|  | gru_unlock_kernel_context(uv_numa_blade_id()); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reserve GRU resources to be used asynchronously. | 
|  | *   Note: currently supports only 1 reservation per blade. | 
|  | * | 
|  | * 	input: | 
|  | * 		blade_id  - blade on which resources should be reserved | 
|  | * 		cbrs	  - number of CBRs | 
|  | * 		dsr_bytes - number of DSR bytes needed | 
|  | *	output: | 
|  | *		handle to identify resource | 
|  | *		(0 = async resources already reserved) | 
|  | */ | 
|  | unsigned long gru_reserve_async_resources(int blade_id, int cbrs, int dsr_bytes, | 
|  | struct completion *cmp) | 
|  | { | 
|  | struct gru_blade_state *bs; | 
|  | struct gru_thread_state *kgts; | 
|  | int ret = 0; | 
|  |  | 
|  | bs = gru_base[blade_id]; | 
|  |  | 
|  | down_write(&bs->bs_kgts_sema); | 
|  |  | 
|  | /* Verify no resources already reserved */ | 
|  | if (bs->bs_async_dsr_bytes + bs->bs_async_cbrs) | 
|  | goto done; | 
|  | bs->bs_async_dsr_bytes = dsr_bytes; | 
|  | bs->bs_async_cbrs = cbrs; | 
|  | bs->bs_async_wq = cmp; | 
|  | kgts = bs->bs_kgts; | 
|  |  | 
|  | /* Resources changed. Unload context if already loaded */ | 
|  | if (kgts && kgts->ts_gru) | 
|  | gru_unload_context(kgts, 0); | 
|  | ret = ASYNC_BID_TO_HAN(blade_id); | 
|  |  | 
|  | done: | 
|  | up_write(&bs->bs_kgts_sema); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release async resources previously reserved. | 
|  | * | 
|  | *	input: | 
|  | *		han - handle to identify resources | 
|  | */ | 
|  | void gru_release_async_resources(unsigned long han) | 
|  | { | 
|  | struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han); | 
|  |  | 
|  | down_write(&bs->bs_kgts_sema); | 
|  | bs->bs_async_dsr_bytes = 0; | 
|  | bs->bs_async_cbrs = 0; | 
|  | bs->bs_async_wq = NULL; | 
|  | up_write(&bs->bs_kgts_sema); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wait for async GRU instructions to complete. | 
|  | * | 
|  | *	input: | 
|  | *		han - handle to identify resources | 
|  | */ | 
|  | void gru_wait_async_cbr(unsigned long han) | 
|  | { | 
|  | struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han); | 
|  |  | 
|  | wait_for_completion(bs->bs_async_wq); | 
|  | mb(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lock previous reserved async GRU resources | 
|  | * | 
|  | *	input: | 
|  | *		han - handle to identify resources | 
|  | *	output: | 
|  | *		cb  - pointer to first CBR | 
|  | *		dsr - pointer to first DSR | 
|  | */ | 
|  | void gru_lock_async_resource(unsigned long han,  void **cb, void **dsr) | 
|  | { | 
|  | struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han); | 
|  | int blade_id = ASYNC_HAN_TO_BID(han); | 
|  | int ncpus; | 
|  |  | 
|  | gru_lock_kernel_context(blade_id); | 
|  | ncpus = uv_blade_nr_possible_cpus(blade_id); | 
|  | if (cb) | 
|  | *cb = bs->kernel_cb + ncpus * GRU_HANDLE_STRIDE; | 
|  | if (dsr) | 
|  | *dsr = bs->kernel_dsr + ncpus * GRU_NUM_KERNEL_DSR_BYTES; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unlock previous reserved async GRU resources | 
|  | * | 
|  | *	input: | 
|  | *		han - handle to identify resources | 
|  | */ | 
|  | void gru_unlock_async_resource(unsigned long han) | 
|  | { | 
|  | int blade_id = ASYNC_HAN_TO_BID(han); | 
|  |  | 
|  | gru_unlock_kernel_context(blade_id); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------------*/ | 
|  | int gru_get_cb_exception_detail(void *cb, | 
|  | struct control_block_extended_exc_detail *excdet) | 
|  | { | 
|  | struct gru_control_block_extended *cbe; | 
|  | struct gru_thread_state *kgts = NULL; | 
|  | unsigned long off; | 
|  | int cbrnum, bid; | 
|  |  | 
|  | /* | 
|  | * Locate kgts for cb. This algorithm is SLOW but | 
|  | * this function is rarely called (ie., almost never). | 
|  | * Performance does not matter. | 
|  | */ | 
|  | for_each_possible_blade(bid) { | 
|  | if (!gru_base[bid]) | 
|  | break; | 
|  | kgts = gru_base[bid]->bs_kgts; | 
|  | if (!kgts || !kgts->ts_gru) | 
|  | continue; | 
|  | off = cb - kgts->ts_gru->gs_gru_base_vaddr; | 
|  | if (off < GRU_SIZE) | 
|  | break; | 
|  | kgts = NULL; | 
|  | } | 
|  | BUG_ON(!kgts); | 
|  | cbrnum = thread_cbr_number(kgts, get_cb_number(cb)); | 
|  | cbe = get_cbe(GRUBASE(cb), cbrnum); | 
|  | gru_flush_cache(cbe);	/* CBE not coherent */ | 
|  | sync_core(); | 
|  | excdet->opc = cbe->opccpy; | 
|  | excdet->exopc = cbe->exopccpy; | 
|  | excdet->ecause = cbe->ecause; | 
|  | excdet->exceptdet0 = cbe->idef1upd; | 
|  | excdet->exceptdet1 = cbe->idef3upd; | 
|  | gru_flush_cache(cbe); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | char *gru_get_cb_exception_detail_str(int ret, void *cb, | 
|  | char *buf, int size) | 
|  | { | 
|  | struct gru_control_block_status *gen = (void *)cb; | 
|  | struct control_block_extended_exc_detail excdet; | 
|  |  | 
|  | if (ret > 0 && gen->istatus == CBS_EXCEPTION) { | 
|  | gru_get_cb_exception_detail(cb, &excdet); | 
|  | snprintf(buf, size, | 
|  | "GRU:%d exception: cb %p, opc %d, exopc %d, ecause 0x%x," | 
|  | "excdet0 0x%lx, excdet1 0x%x", smp_processor_id(), | 
|  | gen, excdet.opc, excdet.exopc, excdet.ecause, | 
|  | excdet.exceptdet0, excdet.exceptdet1); | 
|  | } else { | 
|  | snprintf(buf, size, "No exception"); | 
|  | } | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | static int gru_wait_idle_or_exception(struct gru_control_block_status *gen) | 
|  | { | 
|  | while (gen->istatus >= CBS_ACTIVE) { | 
|  | cpu_relax(); | 
|  | barrier(); | 
|  | } | 
|  | return gen->istatus; | 
|  | } | 
|  |  | 
|  | static int gru_retry_exception(void *cb) | 
|  | { | 
|  | struct gru_control_block_status *gen = (void *)cb; | 
|  | struct control_block_extended_exc_detail excdet; | 
|  | int retry = EXCEPTION_RETRY_LIMIT; | 
|  |  | 
|  | while (1)  { | 
|  | if (gru_wait_idle_or_exception(gen) == CBS_IDLE) | 
|  | return CBS_IDLE; | 
|  | if (gru_get_cb_message_queue_substatus(cb)) | 
|  | return CBS_EXCEPTION; | 
|  | gru_get_cb_exception_detail(cb, &excdet); | 
|  | if ((excdet.ecause & ~EXCEPTION_RETRY_BITS) || | 
|  | (excdet.cbrexecstatus & CBR_EXS_ABORT_OCC)) | 
|  | break; | 
|  | if (retry-- == 0) | 
|  | break; | 
|  | gen->icmd = 1; | 
|  | gru_flush_cache(gen); | 
|  | } | 
|  | return CBS_EXCEPTION; | 
|  | } | 
|  |  | 
|  | int gru_check_status_proc(void *cb) | 
|  | { | 
|  | struct gru_control_block_status *gen = (void *)cb; | 
|  | int ret; | 
|  |  | 
|  | ret = gen->istatus; | 
|  | if (ret == CBS_EXCEPTION) | 
|  | ret = gru_retry_exception(cb); | 
|  | rmb(); | 
|  | return ret; | 
|  |  | 
|  | } | 
|  |  | 
|  | int gru_wait_proc(void *cb) | 
|  | { | 
|  | struct gru_control_block_status *gen = (void *)cb; | 
|  | int ret; | 
|  |  | 
|  | ret = gru_wait_idle_or_exception(gen); | 
|  | if (ret == CBS_EXCEPTION) | 
|  | ret = gru_retry_exception(cb); | 
|  | rmb(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void gru_abort(int ret, void *cb, char *str) | 
|  | { | 
|  | char buf[GRU_EXC_STR_SIZE]; | 
|  |  | 
|  | panic("GRU FATAL ERROR: %s - %s\n", str, | 
|  | gru_get_cb_exception_detail_str(ret, cb, buf, sizeof(buf))); | 
|  | } | 
|  |  | 
|  | void gru_wait_abort_proc(void *cb) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = gru_wait_proc(cb); | 
|  | if (ret) | 
|  | gru_abort(ret, cb, "gru_wait_abort"); | 
|  | } | 
|  |  | 
|  |  | 
|  | /*------------------------------ MESSAGE QUEUES -----------------------------*/ | 
|  |  | 
|  | /* Internal status . These are NOT returned to the user. */ | 
|  | #define MQIE_AGAIN		-1	/* try again */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Save/restore the "present" flag that is in the second line of 2-line | 
|  | * messages | 
|  | */ | 
|  | static inline int get_present2(void *p) | 
|  | { | 
|  | struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES; | 
|  | return mhdr->present; | 
|  | } | 
|  |  | 
|  | static inline void restore_present2(void *p, int val) | 
|  | { | 
|  | struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES; | 
|  | mhdr->present = val; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create a message queue. | 
|  | * 	qlines - message queue size in cache lines. Includes 2-line header. | 
|  | */ | 
|  | int gru_create_message_queue(struct gru_message_queue_desc *mqd, | 
|  | void *p, unsigned int bytes, int nasid, int vector, int apicid) | 
|  | { | 
|  | struct message_queue *mq = p; | 
|  | unsigned int qlines; | 
|  |  | 
|  | qlines = bytes / GRU_CACHE_LINE_BYTES - 2; | 
|  | memset(mq, 0, bytes); | 
|  | mq->start = &mq->data; | 
|  | mq->start2 = &mq->data + (qlines / 2 - 1) * GRU_CACHE_LINE_BYTES; | 
|  | mq->next = &mq->data; | 
|  | mq->limit = &mq->data + (qlines - 2) * GRU_CACHE_LINE_BYTES; | 
|  | mq->qlines = qlines; | 
|  | mq->hstatus[0] = 0; | 
|  | mq->hstatus[1] = 1; | 
|  | mq->head = gru_mesq_head(2, qlines / 2 + 1); | 
|  | mqd->mq = mq; | 
|  | mqd->mq_gpa = uv_gpa(mq); | 
|  | mqd->qlines = qlines; | 
|  | mqd->interrupt_pnode = nasid >> 1; | 
|  | mqd->interrupt_vector = vector; | 
|  | mqd->interrupt_apicid = apicid; | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(gru_create_message_queue); | 
|  |  | 
|  | /* | 
|  | * Send a NOOP message to a message queue | 
|  | * 	Returns: | 
|  | * 		 0 - if queue is full after the send. This is the normal case | 
|  | * 		     but various races can change this. | 
|  | *		-1 - if mesq sent successfully but queue not full | 
|  | *		>0 - unexpected error. MQE_xxx returned | 
|  | */ | 
|  | static int send_noop_message(void *cb, struct gru_message_queue_desc *mqd, | 
|  | void *mesg) | 
|  | { | 
|  | const struct message_header noop_header = { | 
|  | .present = MQS_NOOP, .lines = 1}; | 
|  | unsigned long m; | 
|  | int substatus, ret; | 
|  | struct message_header save_mhdr, *mhdr = mesg; | 
|  |  | 
|  | STAT(mesq_noop); | 
|  | save_mhdr = *mhdr; | 
|  | *mhdr = noop_header; | 
|  | gru_mesq(cb, mqd->mq_gpa, gru_get_tri(mhdr), 1, IMA); | 
|  | ret = gru_wait(cb); | 
|  |  | 
|  | if (ret) { | 
|  | substatus = gru_get_cb_message_queue_substatus(cb); | 
|  | switch (substatus) { | 
|  | case CBSS_NO_ERROR: | 
|  | STAT(mesq_noop_unexpected_error); | 
|  | ret = MQE_UNEXPECTED_CB_ERR; | 
|  | break; | 
|  | case CBSS_LB_OVERFLOWED: | 
|  | STAT(mesq_noop_lb_overflow); | 
|  | ret = MQE_CONGESTION; | 
|  | break; | 
|  | case CBSS_QLIMIT_REACHED: | 
|  | STAT(mesq_noop_qlimit_reached); | 
|  | ret = 0; | 
|  | break; | 
|  | case CBSS_AMO_NACKED: | 
|  | STAT(mesq_noop_amo_nacked); | 
|  | ret = MQE_CONGESTION; | 
|  | break; | 
|  | case CBSS_PUT_NACKED: | 
|  | STAT(mesq_noop_put_nacked); | 
|  | m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6); | 
|  | gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, 1, 1, | 
|  | IMA); | 
|  | if (gru_wait(cb) == CBS_IDLE) | 
|  | ret = MQIE_AGAIN; | 
|  | else | 
|  | ret = MQE_UNEXPECTED_CB_ERR; | 
|  | break; | 
|  | case CBSS_PAGE_OVERFLOW: | 
|  | STAT(mesq_noop_page_overflow); | 
|  | /* fallthru */ | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  | *mhdr = save_mhdr; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle a gru_mesq full. | 
|  | */ | 
|  | static int send_message_queue_full(void *cb, struct gru_message_queue_desc *mqd, | 
|  | void *mesg, int lines) | 
|  | { | 
|  | union gru_mesqhead mqh; | 
|  | unsigned int limit, head; | 
|  | unsigned long avalue; | 
|  | int half, qlines; | 
|  |  | 
|  | /* Determine if switching to first/second half of q */ | 
|  | avalue = gru_get_amo_value(cb); | 
|  | head = gru_get_amo_value_head(cb); | 
|  | limit = gru_get_amo_value_limit(cb); | 
|  |  | 
|  | qlines = mqd->qlines; | 
|  | half = (limit != qlines); | 
|  |  | 
|  | if (half) | 
|  | mqh = gru_mesq_head(qlines / 2 + 1, qlines); | 
|  | else | 
|  | mqh = gru_mesq_head(2, qlines / 2 + 1); | 
|  |  | 
|  | /* Try to get lock for switching head pointer */ | 
|  | gru_gamir(cb, EOP_IR_CLR, HSTATUS(mqd->mq_gpa, half), XTYPE_DW, IMA); | 
|  | if (gru_wait(cb) != CBS_IDLE) | 
|  | goto cberr; | 
|  | if (!gru_get_amo_value(cb)) { | 
|  | STAT(mesq_qf_locked); | 
|  | return MQE_QUEUE_FULL; | 
|  | } | 
|  |  | 
|  | /* Got the lock. Send optional NOP if queue not full, */ | 
|  | if (head != limit) { | 
|  | if (send_noop_message(cb, mqd, mesg)) { | 
|  | gru_gamir(cb, EOP_IR_INC, HSTATUS(mqd->mq_gpa, half), | 
|  | XTYPE_DW, IMA); | 
|  | if (gru_wait(cb) != CBS_IDLE) | 
|  | goto cberr; | 
|  | STAT(mesq_qf_noop_not_full); | 
|  | return MQIE_AGAIN; | 
|  | } | 
|  | avalue++; | 
|  | } | 
|  |  | 
|  | /* Then flip queuehead to other half of queue. */ | 
|  | gru_gamer(cb, EOP_ERR_CSWAP, mqd->mq_gpa, XTYPE_DW, mqh.val, avalue, | 
|  | IMA); | 
|  | if (gru_wait(cb) != CBS_IDLE) | 
|  | goto cberr; | 
|  |  | 
|  | /* If not successfully in swapping queue head, clear the hstatus lock */ | 
|  | if (gru_get_amo_value(cb) != avalue) { | 
|  | STAT(mesq_qf_switch_head_failed); | 
|  | gru_gamir(cb, EOP_IR_INC, HSTATUS(mqd->mq_gpa, half), XTYPE_DW, | 
|  | IMA); | 
|  | if (gru_wait(cb) != CBS_IDLE) | 
|  | goto cberr; | 
|  | } | 
|  | return MQIE_AGAIN; | 
|  | cberr: | 
|  | STAT(mesq_qf_unexpected_error); | 
|  | return MQE_UNEXPECTED_CB_ERR; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle a PUT failure. Note: if message was a 2-line message, one of the | 
|  | * lines might have successfully have been written. Before sending the | 
|  | * message, "present" must be cleared in BOTH lines to prevent the receiver | 
|  | * from prematurely seeing the full message. | 
|  | */ | 
|  | static int send_message_put_nacked(void *cb, struct gru_message_queue_desc *mqd, | 
|  | void *mesg, int lines) | 
|  | { | 
|  | unsigned long m, *val = mesg, gpa, save; | 
|  | int ret; | 
|  |  | 
|  | m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6); | 
|  | if (lines == 2) { | 
|  | gru_vset(cb, m, 0, XTYPE_CL, lines, 1, IMA); | 
|  | if (gru_wait(cb) != CBS_IDLE) | 
|  | return MQE_UNEXPECTED_CB_ERR; | 
|  | } | 
|  | gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, lines, 1, IMA); | 
|  | if (gru_wait(cb) != CBS_IDLE) | 
|  | return MQE_UNEXPECTED_CB_ERR; | 
|  |  | 
|  | if (!mqd->interrupt_vector) | 
|  | return MQE_OK; | 
|  |  | 
|  | /* | 
|  | * Send a cross-partition interrupt to the SSI that contains the target | 
|  | * message queue. Normally, the interrupt is automatically delivered by | 
|  | * hardware but some error conditions require explicit delivery. | 
|  | * Use the GRU to deliver the interrupt. Otherwise partition failures | 
|  | * could cause unrecovered errors. | 
|  | */ | 
|  | gpa = uv_global_gru_mmr_address(mqd->interrupt_pnode, UVH_IPI_INT); | 
|  | save = *val; | 
|  | *val = uv_hub_ipi_value(mqd->interrupt_apicid, mqd->interrupt_vector, | 
|  | dest_Fixed); | 
|  | gru_vstore_phys(cb, gpa, gru_get_tri(mesg), IAA_REGISTER, IMA); | 
|  | ret = gru_wait(cb); | 
|  | *val = save; | 
|  | if (ret != CBS_IDLE) | 
|  | return MQE_UNEXPECTED_CB_ERR; | 
|  | return MQE_OK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle a gru_mesq failure. Some of these failures are software recoverable | 
|  | * or retryable. | 
|  | */ | 
|  | static int send_message_failure(void *cb, struct gru_message_queue_desc *mqd, | 
|  | void *mesg, int lines) | 
|  | { | 
|  | int substatus, ret = 0; | 
|  |  | 
|  | substatus = gru_get_cb_message_queue_substatus(cb); | 
|  | switch (substatus) { | 
|  | case CBSS_NO_ERROR: | 
|  | STAT(mesq_send_unexpected_error); | 
|  | ret = MQE_UNEXPECTED_CB_ERR; | 
|  | break; | 
|  | case CBSS_LB_OVERFLOWED: | 
|  | STAT(mesq_send_lb_overflow); | 
|  | ret = MQE_CONGESTION; | 
|  | break; | 
|  | case CBSS_QLIMIT_REACHED: | 
|  | STAT(mesq_send_qlimit_reached); | 
|  | ret = send_message_queue_full(cb, mqd, mesg, lines); | 
|  | break; | 
|  | case CBSS_AMO_NACKED: | 
|  | STAT(mesq_send_amo_nacked); | 
|  | ret = MQE_CONGESTION; | 
|  | break; | 
|  | case CBSS_PUT_NACKED: | 
|  | STAT(mesq_send_put_nacked); | 
|  | ret = send_message_put_nacked(cb, mqd, mesg, lines); | 
|  | break; | 
|  | case CBSS_PAGE_OVERFLOW: | 
|  | STAT(mesq_page_overflow); | 
|  | /* fallthru */ | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Send a message to a message queue | 
|  | * 	mqd	message queue descriptor | 
|  | * 	mesg	message. ust be vaddr within a GSEG | 
|  | * 	bytes	message size (<= 2 CL) | 
|  | */ | 
|  | int gru_send_message_gpa(struct gru_message_queue_desc *mqd, void *mesg, | 
|  | unsigned int bytes) | 
|  | { | 
|  | struct message_header *mhdr; | 
|  | void *cb; | 
|  | void *dsr; | 
|  | int istatus, clines, ret; | 
|  |  | 
|  | STAT(mesq_send); | 
|  | BUG_ON(bytes < sizeof(int) || bytes > 2 * GRU_CACHE_LINE_BYTES); | 
|  |  | 
|  | clines = DIV_ROUND_UP(bytes, GRU_CACHE_LINE_BYTES); | 
|  | if (gru_get_cpu_resources(bytes, &cb, &dsr)) | 
|  | return MQE_BUG_NO_RESOURCES; | 
|  | memcpy(dsr, mesg, bytes); | 
|  | mhdr = dsr; | 
|  | mhdr->present = MQS_FULL; | 
|  | mhdr->lines = clines; | 
|  | if (clines == 2) { | 
|  | mhdr->present2 = get_present2(mhdr); | 
|  | restore_present2(mhdr, MQS_FULL); | 
|  | } | 
|  |  | 
|  | do { | 
|  | ret = MQE_OK; | 
|  | gru_mesq(cb, mqd->mq_gpa, gru_get_tri(mhdr), clines, IMA); | 
|  | istatus = gru_wait(cb); | 
|  | if (istatus != CBS_IDLE) | 
|  | ret = send_message_failure(cb, mqd, dsr, clines); | 
|  | } while (ret == MQIE_AGAIN); | 
|  | gru_free_cpu_resources(cb, dsr); | 
|  |  | 
|  | if (ret) | 
|  | STAT(mesq_send_failed); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(gru_send_message_gpa); | 
|  |  | 
|  | /* | 
|  | * Advance the receive pointer for the queue to the next message. | 
|  | */ | 
|  | void gru_free_message(struct gru_message_queue_desc *mqd, void *mesg) | 
|  | { | 
|  | struct message_queue *mq = mqd->mq; | 
|  | struct message_header *mhdr = mq->next; | 
|  | void *next, *pnext; | 
|  | int half = -1; | 
|  | int lines = mhdr->lines; | 
|  |  | 
|  | if (lines == 2) | 
|  | restore_present2(mhdr, MQS_EMPTY); | 
|  | mhdr->present = MQS_EMPTY; | 
|  |  | 
|  | pnext = mq->next; | 
|  | next = pnext + GRU_CACHE_LINE_BYTES * lines; | 
|  | if (next == mq->limit) { | 
|  | next = mq->start; | 
|  | half = 1; | 
|  | } else if (pnext < mq->start2 && next >= mq->start2) { | 
|  | half = 0; | 
|  | } | 
|  |  | 
|  | if (half >= 0) | 
|  | mq->hstatus[half] = 1; | 
|  | mq->next = next; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(gru_free_message); | 
|  |  | 
|  | /* | 
|  | * Get next message from message queue. Return NULL if no message | 
|  | * present. User must call next_message() to move to next message. | 
|  | * 	rmq	message queue | 
|  | */ | 
|  | void *gru_get_next_message(struct gru_message_queue_desc *mqd) | 
|  | { | 
|  | struct message_queue *mq = mqd->mq; | 
|  | struct message_header *mhdr = mq->next; | 
|  | int present = mhdr->present; | 
|  |  | 
|  | /* skip NOOP messages */ | 
|  | while (present == MQS_NOOP) { | 
|  | gru_free_message(mqd, mhdr); | 
|  | mhdr = mq->next; | 
|  | present = mhdr->present; | 
|  | } | 
|  |  | 
|  | /* Wait for both halves of 2 line messages */ | 
|  | if (present == MQS_FULL && mhdr->lines == 2 && | 
|  | get_present2(mhdr) == MQS_EMPTY) | 
|  | present = MQS_EMPTY; | 
|  |  | 
|  | if (!present) { | 
|  | STAT(mesq_receive_none); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (mhdr->lines == 2) | 
|  | restore_present2(mhdr, mhdr->present2); | 
|  |  | 
|  | STAT(mesq_receive); | 
|  | return mhdr; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(gru_get_next_message); | 
|  |  | 
|  | /* ---------------------- GRU DATA COPY FUNCTIONS ---------------------------*/ | 
|  |  | 
|  | /* | 
|  | * Load a DW from a global GPA. The GPA can be a memory or MMR address. | 
|  | */ | 
|  | int gru_read_gpa(unsigned long *value, unsigned long gpa) | 
|  | { | 
|  | void *cb; | 
|  | void *dsr; | 
|  | int ret, iaa; | 
|  |  | 
|  | STAT(read_gpa); | 
|  | if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES, &cb, &dsr)) | 
|  | return MQE_BUG_NO_RESOURCES; | 
|  | iaa = gpa >> 62; | 
|  | gru_vload_phys(cb, gpa, gru_get_tri(dsr), iaa, IMA); | 
|  | ret = gru_wait(cb); | 
|  | if (ret == CBS_IDLE) | 
|  | *value = *(unsigned long *)dsr; | 
|  | gru_free_cpu_resources(cb, dsr); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(gru_read_gpa); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Copy a block of data using the GRU resources | 
|  | */ | 
|  | int gru_copy_gpa(unsigned long dest_gpa, unsigned long src_gpa, | 
|  | unsigned int bytes) | 
|  | { | 
|  | void *cb; | 
|  | void *dsr; | 
|  | int ret; | 
|  |  | 
|  | STAT(copy_gpa); | 
|  | if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES, &cb, &dsr)) | 
|  | return MQE_BUG_NO_RESOURCES; | 
|  | gru_bcopy(cb, src_gpa, dest_gpa, gru_get_tri(dsr), | 
|  | XTYPE_B, bytes, GRU_NUM_KERNEL_DSR_CL, IMA); | 
|  | ret = gru_wait(cb); | 
|  | gru_free_cpu_resources(cb, dsr); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(gru_copy_gpa); | 
|  |  | 
|  | /* ------------------- KERNEL QUICKTESTS RUN AT STARTUP ----------------*/ | 
|  | /* 	Temp - will delete after we gain confidence in the GRU		*/ | 
|  |  | 
|  | static int quicktest0(unsigned long arg) | 
|  | { | 
|  | unsigned long word0; | 
|  | unsigned long word1; | 
|  | void *cb; | 
|  | void *dsr; | 
|  | unsigned long *p; | 
|  | int ret = -EIO; | 
|  |  | 
|  | if (gru_get_cpu_resources(GRU_CACHE_LINE_BYTES, &cb, &dsr)) | 
|  | return MQE_BUG_NO_RESOURCES; | 
|  | p = dsr; | 
|  | word0 = MAGIC; | 
|  | word1 = 0; | 
|  |  | 
|  | gru_vload(cb, uv_gpa(&word0), gru_get_tri(dsr), XTYPE_DW, 1, 1, IMA); | 
|  | if (gru_wait(cb) != CBS_IDLE) { | 
|  | printk(KERN_DEBUG "GRU:%d quicktest0: CBR failure 1\n", smp_processor_id()); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | if (*p != MAGIC) { | 
|  | printk(KERN_DEBUG "GRU:%d quicktest0 bad magic 0x%lx\n", smp_processor_id(), *p); | 
|  | goto done; | 
|  | } | 
|  | gru_vstore(cb, uv_gpa(&word1), gru_get_tri(dsr), XTYPE_DW, 1, 1, IMA); | 
|  | if (gru_wait(cb) != CBS_IDLE) { | 
|  | printk(KERN_DEBUG "GRU:%d quicktest0: CBR failure 2\n", smp_processor_id()); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | if (word0 != word1 || word1 != MAGIC) { | 
|  | printk(KERN_DEBUG | 
|  | "GRU:%d quicktest0 err: found 0x%lx, expected 0x%lx\n", | 
|  | smp_processor_id(), word1, MAGIC); | 
|  | goto done; | 
|  | } | 
|  | ret = 0; | 
|  |  | 
|  | done: | 
|  | gru_free_cpu_resources(cb, dsr); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define ALIGNUP(p, q)	((void *)(((unsigned long)(p) + (q) - 1) & ~(q - 1))) | 
|  |  | 
|  | static int quicktest1(unsigned long arg) | 
|  | { | 
|  | struct gru_message_queue_desc mqd; | 
|  | void *p, *mq; | 
|  | unsigned long *dw; | 
|  | int i, ret = -EIO; | 
|  | char mes[GRU_CACHE_LINE_BYTES], *m; | 
|  |  | 
|  | /* Need  1K cacheline aligned that does not cross page boundary */ | 
|  | p = kmalloc(4096, 0); | 
|  | if (p == NULL) | 
|  | return -ENOMEM; | 
|  | mq = ALIGNUP(p, 1024); | 
|  | memset(mes, 0xee, sizeof(mes)); | 
|  | dw = mq; | 
|  |  | 
|  | gru_create_message_queue(&mqd, mq, 8 * GRU_CACHE_LINE_BYTES, 0, 0, 0); | 
|  | for (i = 0; i < 6; i++) { | 
|  | mes[8] = i; | 
|  | do { | 
|  | ret = gru_send_message_gpa(&mqd, mes, sizeof(mes)); | 
|  | } while (ret == MQE_CONGESTION); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | if (ret != MQE_QUEUE_FULL || i != 4) { | 
|  | printk(KERN_DEBUG "GRU:%d quicktest1: unexpect status %d, i %d\n", | 
|  | smp_processor_id(), ret, i); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 6; i++) { | 
|  | m = gru_get_next_message(&mqd); | 
|  | if (!m || m[8] != i) | 
|  | break; | 
|  | gru_free_message(&mqd, m); | 
|  | } | 
|  | if (i != 4) { | 
|  | printk(KERN_DEBUG "GRU:%d quicktest2: bad message, i %d, m %p, m8 %d\n", | 
|  | smp_processor_id(), i, m, m ? m[8] : -1); | 
|  | goto done; | 
|  | } | 
|  | ret = 0; | 
|  |  | 
|  | done: | 
|  | kfree(p); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int quicktest2(unsigned long arg) | 
|  | { | 
|  | static DECLARE_COMPLETION(cmp); | 
|  | unsigned long han; | 
|  | int blade_id = 0; | 
|  | int numcb = 4; | 
|  | int ret = 0; | 
|  | unsigned long *buf; | 
|  | void *cb0, *cb; | 
|  | struct gru_control_block_status *gen; | 
|  | int i, k, istatus, bytes; | 
|  |  | 
|  | bytes = numcb * 4 * 8; | 
|  | buf = kmalloc(bytes, GFP_KERNEL); | 
|  | if (!buf) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = -EBUSY; | 
|  | han = gru_reserve_async_resources(blade_id, numcb, 0, &cmp); | 
|  | if (!han) | 
|  | goto done; | 
|  |  | 
|  | gru_lock_async_resource(han, &cb0, NULL); | 
|  | memset(buf, 0xee, bytes); | 
|  | for (i = 0; i < numcb; i++) | 
|  | gru_vset(cb0 + i * GRU_HANDLE_STRIDE, uv_gpa(&buf[i * 4]), 0, | 
|  | XTYPE_DW, 4, 1, IMA_INTERRUPT); | 
|  |  | 
|  | ret = 0; | 
|  | k = numcb; | 
|  | do { | 
|  | gru_wait_async_cbr(han); | 
|  | for (i = 0; i < numcb; i++) { | 
|  | cb = cb0 + i * GRU_HANDLE_STRIDE; | 
|  | istatus = gru_check_status(cb); | 
|  | if (istatus != CBS_ACTIVE && istatus != CBS_CALL_OS) | 
|  | break; | 
|  | } | 
|  | if (i == numcb) | 
|  | continue; | 
|  | if (istatus != CBS_IDLE) { | 
|  | printk(KERN_DEBUG "GRU:%d quicktest2: cb %d, exception\n", smp_processor_id(), i); | 
|  | ret = -EFAULT; | 
|  | } else if (buf[4 * i] || buf[4 * i + 1] || buf[4 * i + 2] || | 
|  | buf[4 * i + 3]) { | 
|  | printk(KERN_DEBUG "GRU:%d quicktest2:cb %d,  buf 0x%lx, 0x%lx, 0x%lx, 0x%lx\n", | 
|  | smp_processor_id(), i, buf[4 * i], buf[4 * i + 1], buf[4 * i + 2], buf[4 * i + 3]); | 
|  | ret = -EIO; | 
|  | } | 
|  | k--; | 
|  | gen = cb; | 
|  | gen->istatus = CBS_CALL_OS; /* don't handle this CBR again */ | 
|  | } while (k); | 
|  | BUG_ON(cmp.done); | 
|  |  | 
|  | gru_unlock_async_resource(han); | 
|  | gru_release_async_resources(han); | 
|  | done: | 
|  | kfree(buf); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define BUFSIZE 200 | 
|  | static int quicktest3(unsigned long arg) | 
|  | { | 
|  | char buf1[BUFSIZE], buf2[BUFSIZE]; | 
|  | int ret = 0; | 
|  |  | 
|  | memset(buf2, 0, sizeof(buf2)); | 
|  | memset(buf1, get_cycles() & 255, sizeof(buf1)); | 
|  | gru_copy_gpa(uv_gpa(buf2), uv_gpa(buf1), BUFSIZE); | 
|  | if (memcmp(buf1, buf2, BUFSIZE)) { | 
|  | printk(KERN_DEBUG "GRU:%d quicktest3 error\n", smp_processor_id()); | 
|  | ret = -EIO; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Debugging only. User hook for various kernel tests | 
|  | * of driver & gru. | 
|  | */ | 
|  | int gru_ktest(unsigned long arg) | 
|  | { | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | switch (arg & 0xff) { | 
|  | case 0: | 
|  | ret = quicktest0(arg); | 
|  | break; | 
|  | case 1: | 
|  | ret = quicktest1(arg); | 
|  | break; | 
|  | case 2: | 
|  | ret = quicktest2(arg); | 
|  | break; | 
|  | case 3: | 
|  | ret = quicktest3(arg); | 
|  | break; | 
|  | case 99: | 
|  | ret = gru_free_kernel_contexts(); | 
|  | break; | 
|  | } | 
|  | return ret; | 
|  |  | 
|  | } | 
|  |  | 
|  | int gru_kservices_init(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void gru_kservices_exit(void) | 
|  | { | 
|  | if (gru_free_kernel_contexts()) | 
|  | BUG(); | 
|  | } | 
|  |  |