|  | /* | 
|  | * Driver for Atmel AT32 and AT91 SPI Controllers | 
|  | * | 
|  | * Copyright (C) 2006 Atmel Corporation | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/clk.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/spi/spi.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include <asm/io.h> | 
|  | #include <mach/board.h> | 
|  | #include <mach/gpio.h> | 
|  | #include <mach/cpu.h> | 
|  |  | 
|  | #include "atmel_spi.h" | 
|  |  | 
|  | /* | 
|  | * The core SPI transfer engine just talks to a register bank to set up | 
|  | * DMA transfers; transfer queue progress is driven by IRQs.  The clock | 
|  | * framework provides the base clock, subdivided for each spi_device. | 
|  | */ | 
|  | struct atmel_spi { | 
|  | spinlock_t		lock; | 
|  |  | 
|  | void __iomem		*regs; | 
|  | int			irq; | 
|  | struct clk		*clk; | 
|  | struct platform_device	*pdev; | 
|  | struct spi_device	*stay; | 
|  |  | 
|  | u8			stopping; | 
|  | struct list_head	queue; | 
|  | struct spi_transfer	*current_transfer; | 
|  | unsigned long		current_remaining_bytes; | 
|  | struct spi_transfer	*next_transfer; | 
|  | unsigned long		next_remaining_bytes; | 
|  |  | 
|  | void			*buffer; | 
|  | dma_addr_t		buffer_dma; | 
|  | }; | 
|  |  | 
|  | /* Controller-specific per-slave state */ | 
|  | struct atmel_spi_device { | 
|  | unsigned int		npcs_pin; | 
|  | u32			csr; | 
|  | }; | 
|  |  | 
|  | #define BUFFER_SIZE		PAGE_SIZE | 
|  | #define INVALID_DMA_ADDRESS	0xffffffff | 
|  |  | 
|  | /* | 
|  | * Version 2 of the SPI controller has | 
|  | *  - CR.LASTXFER | 
|  | *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero) | 
|  | *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs) | 
|  | *  - SPI_CSRx.CSAAT | 
|  | *  - SPI_CSRx.SBCR allows faster clocking | 
|  | * | 
|  | * We can determine the controller version by reading the VERSION | 
|  | * register, but I haven't checked that it exists on all chips, and | 
|  | * this is cheaper anyway. | 
|  | */ | 
|  | static bool atmel_spi_is_v2(void) | 
|  | { | 
|  | return !cpu_is_at91rm9200(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby | 
|  | * they assume that spi slave device state will not change on deselect, so | 
|  | * that automagic deselection is OK.  ("NPCSx rises if no data is to be | 
|  | * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer | 
|  | * controllers have CSAAT and friends. | 
|  | * | 
|  | * Since the CSAAT functionality is a bit weird on newer controllers as | 
|  | * well, we use GPIO to control nCSx pins on all controllers, updating | 
|  | * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us | 
|  | * support active-high chipselects despite the controller's belief that | 
|  | * only active-low devices/systems exists. | 
|  | * | 
|  | * However, at91rm9200 has a second erratum whereby nCS0 doesn't work | 
|  | * right when driven with GPIO.  ("Mode Fault does not allow more than one | 
|  | * Master on Chip Select 0.")  No workaround exists for that ... so for | 
|  | * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH, | 
|  | * and (c) will trigger that first erratum in some cases. | 
|  | * | 
|  | * TODO: Test if the atmel_spi_is_v2() branch below works on | 
|  | * AT91RM9200 if we use some other register than CSR0. However, don't | 
|  | * do this unconditionally since AP7000 has an errata where the BITS | 
|  | * field in CSR0 overrides all other CSRs. | 
|  | */ | 
|  |  | 
|  | static void cs_activate(struct atmel_spi *as, struct spi_device *spi) | 
|  | { | 
|  | struct atmel_spi_device *asd = spi->controller_state; | 
|  | unsigned active = spi->mode & SPI_CS_HIGH; | 
|  | u32 mr; | 
|  |  | 
|  | if (atmel_spi_is_v2()) { | 
|  | /* | 
|  | * Always use CSR0. This ensures that the clock | 
|  | * switches to the correct idle polarity before we | 
|  | * toggle the CS. | 
|  | */ | 
|  | spi_writel(as, CSR0, asd->csr); | 
|  | spi_writel(as, MR, SPI_BF(PCS, 0x0e) | SPI_BIT(MODFDIS) | 
|  | | SPI_BIT(MSTR)); | 
|  | mr = spi_readl(as, MR); | 
|  | gpio_set_value(asd->npcs_pin, active); | 
|  | } else { | 
|  | u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0; | 
|  | int i; | 
|  | u32 csr; | 
|  |  | 
|  | /* Make sure clock polarity is correct */ | 
|  | for (i = 0; i < spi->master->num_chipselect; i++) { | 
|  | csr = spi_readl(as, CSR0 + 4 * i); | 
|  | if ((csr ^ cpol) & SPI_BIT(CPOL)) | 
|  | spi_writel(as, CSR0 + 4 * i, | 
|  | csr ^ SPI_BIT(CPOL)); | 
|  | } | 
|  |  | 
|  | mr = spi_readl(as, MR); | 
|  | mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr); | 
|  | if (spi->chip_select != 0) | 
|  | gpio_set_value(asd->npcs_pin, active); | 
|  | spi_writel(as, MR, mr); | 
|  | } | 
|  |  | 
|  | dev_dbg(&spi->dev, "activate %u%s, mr %08x\n", | 
|  | asd->npcs_pin, active ? " (high)" : "", | 
|  | mr); | 
|  | } | 
|  |  | 
|  | static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi) | 
|  | { | 
|  | struct atmel_spi_device *asd = spi->controller_state; | 
|  | unsigned active = spi->mode & SPI_CS_HIGH; | 
|  | u32 mr; | 
|  |  | 
|  | /* only deactivate *this* device; sometimes transfers to | 
|  | * another device may be active when this routine is called. | 
|  | */ | 
|  | mr = spi_readl(as, MR); | 
|  | if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) { | 
|  | mr = SPI_BFINS(PCS, 0xf, mr); | 
|  | spi_writel(as, MR, mr); | 
|  | } | 
|  |  | 
|  | dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n", | 
|  | asd->npcs_pin, active ? " (low)" : "", | 
|  | mr); | 
|  |  | 
|  | if (atmel_spi_is_v2() || spi->chip_select != 0) | 
|  | gpio_set_value(asd->npcs_pin, !active); | 
|  | } | 
|  |  | 
|  | static inline int atmel_spi_xfer_is_last(struct spi_message *msg, | 
|  | struct spi_transfer *xfer) | 
|  | { | 
|  | return msg->transfers.prev == &xfer->transfer_list; | 
|  | } | 
|  |  | 
|  | static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer) | 
|  | { | 
|  | return xfer->delay_usecs == 0 && !xfer->cs_change; | 
|  | } | 
|  |  | 
|  | static void atmel_spi_next_xfer_data(struct spi_master *master, | 
|  | struct spi_transfer *xfer, | 
|  | dma_addr_t *tx_dma, | 
|  | dma_addr_t *rx_dma, | 
|  | u32 *plen) | 
|  | { | 
|  | struct atmel_spi	*as = spi_master_get_devdata(master); | 
|  | u32			len = *plen; | 
|  |  | 
|  | /* use scratch buffer only when rx or tx data is unspecified */ | 
|  | if (xfer->rx_buf) | 
|  | *rx_dma = xfer->rx_dma + xfer->len - *plen; | 
|  | else { | 
|  | *rx_dma = as->buffer_dma; | 
|  | if (len > BUFFER_SIZE) | 
|  | len = BUFFER_SIZE; | 
|  | } | 
|  | if (xfer->tx_buf) | 
|  | *tx_dma = xfer->tx_dma + xfer->len - *plen; | 
|  | else { | 
|  | *tx_dma = as->buffer_dma; | 
|  | if (len > BUFFER_SIZE) | 
|  | len = BUFFER_SIZE; | 
|  | memset(as->buffer, 0, len); | 
|  | dma_sync_single_for_device(&as->pdev->dev, | 
|  | as->buffer_dma, len, DMA_TO_DEVICE); | 
|  | } | 
|  |  | 
|  | *plen = len; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Submit next transfer for DMA. | 
|  | * lock is held, spi irq is blocked | 
|  | */ | 
|  | static void atmel_spi_next_xfer(struct spi_master *master, | 
|  | struct spi_message *msg) | 
|  | { | 
|  | struct atmel_spi	*as = spi_master_get_devdata(master); | 
|  | struct spi_transfer	*xfer; | 
|  | u32			len, remaining; | 
|  | u32			ieval; | 
|  | dma_addr_t		tx_dma, rx_dma; | 
|  |  | 
|  | if (!as->current_transfer) | 
|  | xfer = list_entry(msg->transfers.next, | 
|  | struct spi_transfer, transfer_list); | 
|  | else if (!as->next_transfer) | 
|  | xfer = list_entry(as->current_transfer->transfer_list.next, | 
|  | struct spi_transfer, transfer_list); | 
|  | else | 
|  | xfer = NULL; | 
|  |  | 
|  | if (xfer) { | 
|  | spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); | 
|  |  | 
|  | len = xfer->len; | 
|  | atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len); | 
|  | remaining = xfer->len - len; | 
|  |  | 
|  | spi_writel(as, RPR, rx_dma); | 
|  | spi_writel(as, TPR, tx_dma); | 
|  |  | 
|  | if (msg->spi->bits_per_word > 8) | 
|  | len >>= 1; | 
|  | spi_writel(as, RCR, len); | 
|  | spi_writel(as, TCR, len); | 
|  |  | 
|  | dev_dbg(&msg->spi->dev, | 
|  | "  start xfer %p: len %u tx %p/%08x rx %p/%08x\n", | 
|  | xfer, xfer->len, xfer->tx_buf, xfer->tx_dma, | 
|  | xfer->rx_buf, xfer->rx_dma); | 
|  | } else { | 
|  | xfer = as->next_transfer; | 
|  | remaining = as->next_remaining_bytes; | 
|  | } | 
|  |  | 
|  | as->current_transfer = xfer; | 
|  | as->current_remaining_bytes = remaining; | 
|  |  | 
|  | if (remaining > 0) | 
|  | len = remaining; | 
|  | else if (!atmel_spi_xfer_is_last(msg, xfer) | 
|  | && atmel_spi_xfer_can_be_chained(xfer)) { | 
|  | xfer = list_entry(xfer->transfer_list.next, | 
|  | struct spi_transfer, transfer_list); | 
|  | len = xfer->len; | 
|  | } else | 
|  | xfer = NULL; | 
|  |  | 
|  | as->next_transfer = xfer; | 
|  |  | 
|  | if (xfer) { | 
|  | u32	total; | 
|  |  | 
|  | total = len; | 
|  | atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len); | 
|  | as->next_remaining_bytes = total - len; | 
|  |  | 
|  | spi_writel(as, RNPR, rx_dma); | 
|  | spi_writel(as, TNPR, tx_dma); | 
|  |  | 
|  | if (msg->spi->bits_per_word > 8) | 
|  | len >>= 1; | 
|  | spi_writel(as, RNCR, len); | 
|  | spi_writel(as, TNCR, len); | 
|  |  | 
|  | dev_dbg(&msg->spi->dev, | 
|  | "  next xfer %p: len %u tx %p/%08x rx %p/%08x\n", | 
|  | xfer, xfer->len, xfer->tx_buf, xfer->tx_dma, | 
|  | xfer->rx_buf, xfer->rx_dma); | 
|  | ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES); | 
|  | } else { | 
|  | spi_writel(as, RNCR, 0); | 
|  | spi_writel(as, TNCR, 0); | 
|  | ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES); | 
|  | } | 
|  |  | 
|  | /* REVISIT: We're waiting for ENDRX before we start the next | 
|  | * transfer because we need to handle some difficult timing | 
|  | * issues otherwise. If we wait for ENDTX in one transfer and | 
|  | * then starts waiting for ENDRX in the next, it's difficult | 
|  | * to tell the difference between the ENDRX interrupt we're | 
|  | * actually waiting for and the ENDRX interrupt of the | 
|  | * previous transfer. | 
|  | * | 
|  | * It should be doable, though. Just not now... | 
|  | */ | 
|  | spi_writel(as, IER, ieval); | 
|  | spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN)); | 
|  | } | 
|  |  | 
|  | static void atmel_spi_next_message(struct spi_master *master) | 
|  | { | 
|  | struct atmel_spi	*as = spi_master_get_devdata(master); | 
|  | struct spi_message	*msg; | 
|  | struct spi_device	*spi; | 
|  |  | 
|  | BUG_ON(as->current_transfer); | 
|  |  | 
|  | msg = list_entry(as->queue.next, struct spi_message, queue); | 
|  | spi = msg->spi; | 
|  |  | 
|  | dev_dbg(master->dev.parent, "start message %p for %s\n", | 
|  | msg, dev_name(&spi->dev)); | 
|  |  | 
|  | /* select chip if it's not still active */ | 
|  | if (as->stay) { | 
|  | if (as->stay != spi) { | 
|  | cs_deactivate(as, as->stay); | 
|  | cs_activate(as, spi); | 
|  | } | 
|  | as->stay = NULL; | 
|  | } else | 
|  | cs_activate(as, spi); | 
|  |  | 
|  | atmel_spi_next_xfer(master, msg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma: | 
|  | *  - The buffer is either valid for CPU access, else NULL | 
|  | *  - If the buffer is valid, so is its DMA addresss | 
|  | * | 
|  | * This driver manages the dma addresss unless message->is_dma_mapped. | 
|  | */ | 
|  | static int | 
|  | atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer) | 
|  | { | 
|  | struct device	*dev = &as->pdev->dev; | 
|  |  | 
|  | xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS; | 
|  | if (xfer->tx_buf) { | 
|  | xfer->tx_dma = dma_map_single(dev, | 
|  | (void *) xfer->tx_buf, xfer->len, | 
|  | DMA_TO_DEVICE); | 
|  | if (dma_mapping_error(dev, xfer->tx_dma)) | 
|  | return -ENOMEM; | 
|  | } | 
|  | if (xfer->rx_buf) { | 
|  | xfer->rx_dma = dma_map_single(dev, | 
|  | xfer->rx_buf, xfer->len, | 
|  | DMA_FROM_DEVICE); | 
|  | if (dma_mapping_error(dev, xfer->rx_dma)) { | 
|  | if (xfer->tx_buf) | 
|  | dma_unmap_single(dev, | 
|  | xfer->tx_dma, xfer->len, | 
|  | DMA_TO_DEVICE); | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void atmel_spi_dma_unmap_xfer(struct spi_master *master, | 
|  | struct spi_transfer *xfer) | 
|  | { | 
|  | if (xfer->tx_dma != INVALID_DMA_ADDRESS) | 
|  | dma_unmap_single(master->dev.parent, xfer->tx_dma, | 
|  | xfer->len, DMA_TO_DEVICE); | 
|  | if (xfer->rx_dma != INVALID_DMA_ADDRESS) | 
|  | dma_unmap_single(master->dev.parent, xfer->rx_dma, | 
|  | xfer->len, DMA_FROM_DEVICE); | 
|  | } | 
|  |  | 
|  | static void | 
|  | atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as, | 
|  | struct spi_message *msg, int status, int stay) | 
|  | { | 
|  | if (!stay || status < 0) | 
|  | cs_deactivate(as, msg->spi); | 
|  | else | 
|  | as->stay = msg->spi; | 
|  |  | 
|  | list_del(&msg->queue); | 
|  | msg->status = status; | 
|  |  | 
|  | dev_dbg(master->dev.parent, | 
|  | "xfer complete: %u bytes transferred\n", | 
|  | msg->actual_length); | 
|  |  | 
|  | spin_unlock(&as->lock); | 
|  | msg->complete(msg->context); | 
|  | spin_lock(&as->lock); | 
|  |  | 
|  | as->current_transfer = NULL; | 
|  | as->next_transfer = NULL; | 
|  |  | 
|  | /* continue if needed */ | 
|  | if (list_empty(&as->queue) || as->stopping) | 
|  | spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); | 
|  | else | 
|  | atmel_spi_next_message(master); | 
|  | } | 
|  |  | 
|  | static irqreturn_t | 
|  | atmel_spi_interrupt(int irq, void *dev_id) | 
|  | { | 
|  | struct spi_master	*master = dev_id; | 
|  | struct atmel_spi	*as = spi_master_get_devdata(master); | 
|  | struct spi_message	*msg; | 
|  | struct spi_transfer	*xfer; | 
|  | u32			status, pending, imr; | 
|  | int			ret = IRQ_NONE; | 
|  |  | 
|  | spin_lock(&as->lock); | 
|  |  | 
|  | xfer = as->current_transfer; | 
|  | msg = list_entry(as->queue.next, struct spi_message, queue); | 
|  |  | 
|  | imr = spi_readl(as, IMR); | 
|  | status = spi_readl(as, SR); | 
|  | pending = status & imr; | 
|  |  | 
|  | if (pending & SPI_BIT(OVRES)) { | 
|  | int timeout; | 
|  |  | 
|  | ret = IRQ_HANDLED; | 
|  |  | 
|  | spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | 
|  | | SPI_BIT(OVRES))); | 
|  |  | 
|  | /* | 
|  | * When we get an overrun, we disregard the current | 
|  | * transfer. Data will not be copied back from any | 
|  | * bounce buffer and msg->actual_len will not be | 
|  | * updated with the last xfer. | 
|  | * | 
|  | * We will also not process any remaning transfers in | 
|  | * the message. | 
|  | * | 
|  | * First, stop the transfer and unmap the DMA buffers. | 
|  | */ | 
|  | spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); | 
|  | if (!msg->is_dma_mapped) | 
|  | atmel_spi_dma_unmap_xfer(master, xfer); | 
|  |  | 
|  | /* REVISIT: udelay in irq is unfriendly */ | 
|  | if (xfer->delay_usecs) | 
|  | udelay(xfer->delay_usecs); | 
|  |  | 
|  | dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n", | 
|  | spi_readl(as, TCR), spi_readl(as, RCR)); | 
|  |  | 
|  | /* | 
|  | * Clean up DMA registers and make sure the data | 
|  | * registers are empty. | 
|  | */ | 
|  | spi_writel(as, RNCR, 0); | 
|  | spi_writel(as, TNCR, 0); | 
|  | spi_writel(as, RCR, 0); | 
|  | spi_writel(as, TCR, 0); | 
|  | for (timeout = 1000; timeout; timeout--) | 
|  | if (spi_readl(as, SR) & SPI_BIT(TXEMPTY)) | 
|  | break; | 
|  | if (!timeout) | 
|  | dev_warn(master->dev.parent, | 
|  | "timeout waiting for TXEMPTY"); | 
|  | while (spi_readl(as, SR) & SPI_BIT(RDRF)) | 
|  | spi_readl(as, RDR); | 
|  |  | 
|  | /* Clear any overrun happening while cleaning up */ | 
|  | spi_readl(as, SR); | 
|  |  | 
|  | atmel_spi_msg_done(master, as, msg, -EIO, 0); | 
|  | } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) { | 
|  | ret = IRQ_HANDLED; | 
|  |  | 
|  | spi_writel(as, IDR, pending); | 
|  |  | 
|  | if (as->current_remaining_bytes == 0) { | 
|  | msg->actual_length += xfer->len; | 
|  |  | 
|  | if (!msg->is_dma_mapped) | 
|  | atmel_spi_dma_unmap_xfer(master, xfer); | 
|  |  | 
|  | /* REVISIT: udelay in irq is unfriendly */ | 
|  | if (xfer->delay_usecs) | 
|  | udelay(xfer->delay_usecs); | 
|  |  | 
|  | if (atmel_spi_xfer_is_last(msg, xfer)) { | 
|  | /* report completed message */ | 
|  | atmel_spi_msg_done(master, as, msg, 0, | 
|  | xfer->cs_change); | 
|  | } else { | 
|  | if (xfer->cs_change) { | 
|  | cs_deactivate(as, msg->spi); | 
|  | udelay(1); | 
|  | cs_activate(as, msg->spi); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Not done yet. Submit the next transfer. | 
|  | * | 
|  | * FIXME handle protocol options for xfer | 
|  | */ | 
|  | atmel_spi_next_xfer(master, msg); | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * Keep going, we still have data to send in | 
|  | * the current transfer. | 
|  | */ | 
|  | atmel_spi_next_xfer(master, msg); | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock(&as->lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int atmel_spi_setup(struct spi_device *spi) | 
|  | { | 
|  | struct atmel_spi	*as; | 
|  | struct atmel_spi_device	*asd; | 
|  | u32			scbr, csr; | 
|  | unsigned int		bits = spi->bits_per_word; | 
|  | unsigned long		bus_hz; | 
|  | unsigned int		npcs_pin; | 
|  | int			ret; | 
|  |  | 
|  | as = spi_master_get_devdata(spi->master); | 
|  |  | 
|  | if (as->stopping) | 
|  | return -ESHUTDOWN; | 
|  |  | 
|  | if (spi->chip_select > spi->master->num_chipselect) { | 
|  | dev_dbg(&spi->dev, | 
|  | "setup: invalid chipselect %u (%u defined)\n", | 
|  | spi->chip_select, spi->master->num_chipselect); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (bits < 8 || bits > 16) { | 
|  | dev_dbg(&spi->dev, | 
|  | "setup: invalid bits_per_word %u (8 to 16)\n", | 
|  | bits); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* see notes above re chipselect */ | 
|  | if (!atmel_spi_is_v2() | 
|  | && spi->chip_select == 0 | 
|  | && (spi->mode & SPI_CS_HIGH)) { | 
|  | dev_dbg(&spi->dev, "setup: can't be active-high\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* v1 chips start out at half the peripheral bus speed. */ | 
|  | bus_hz = clk_get_rate(as->clk); | 
|  | if (!atmel_spi_is_v2()) | 
|  | bus_hz /= 2; | 
|  |  | 
|  | if (spi->max_speed_hz) { | 
|  | /* | 
|  | * Calculate the lowest divider that satisfies the | 
|  | * constraint, assuming div32/fdiv/mbz == 0. | 
|  | */ | 
|  | scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz); | 
|  |  | 
|  | /* | 
|  | * If the resulting divider doesn't fit into the | 
|  | * register bitfield, we can't satisfy the constraint. | 
|  | */ | 
|  | if (scbr >= (1 << SPI_SCBR_SIZE)) { | 
|  | dev_dbg(&spi->dev, | 
|  | "setup: %d Hz too slow, scbr %u; min %ld Hz\n", | 
|  | spi->max_speed_hz, scbr, bus_hz/255); | 
|  | return -EINVAL; | 
|  | } | 
|  | } else | 
|  | /* speed zero means "as slow as possible" */ | 
|  | scbr = 0xff; | 
|  |  | 
|  | csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8); | 
|  | if (spi->mode & SPI_CPOL) | 
|  | csr |= SPI_BIT(CPOL); | 
|  | if (!(spi->mode & SPI_CPHA)) | 
|  | csr |= SPI_BIT(NCPHA); | 
|  |  | 
|  | /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs. | 
|  | * | 
|  | * DLYBCT would add delays between words, slowing down transfers. | 
|  | * It could potentially be useful to cope with DMA bottlenecks, but | 
|  | * in those cases it's probably best to just use a lower bitrate. | 
|  | */ | 
|  | csr |= SPI_BF(DLYBS, 0); | 
|  | csr |= SPI_BF(DLYBCT, 0); | 
|  |  | 
|  | /* chipselect must have been muxed as GPIO (e.g. in board setup) */ | 
|  | npcs_pin = (unsigned int)spi->controller_data; | 
|  | asd = spi->controller_state; | 
|  | if (!asd) { | 
|  | asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL); | 
|  | if (!asd) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = gpio_request(npcs_pin, dev_name(&spi->dev)); | 
|  | if (ret) { | 
|  | kfree(asd); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | asd->npcs_pin = npcs_pin; | 
|  | spi->controller_state = asd; | 
|  | gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH)); | 
|  | } else { | 
|  | unsigned long		flags; | 
|  |  | 
|  | spin_lock_irqsave(&as->lock, flags); | 
|  | if (as->stay == spi) | 
|  | as->stay = NULL; | 
|  | cs_deactivate(as, spi); | 
|  | spin_unlock_irqrestore(&as->lock, flags); | 
|  | } | 
|  |  | 
|  | asd->csr = csr; | 
|  |  | 
|  | dev_dbg(&spi->dev, | 
|  | "setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n", | 
|  | bus_hz / scbr, bits, spi->mode, spi->chip_select, csr); | 
|  |  | 
|  | if (!atmel_spi_is_v2()) | 
|  | spi_writel(as, CSR0 + 4 * spi->chip_select, csr); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg) | 
|  | { | 
|  | struct atmel_spi	*as; | 
|  | struct spi_transfer	*xfer; | 
|  | unsigned long		flags; | 
|  | struct device		*controller = spi->master->dev.parent; | 
|  |  | 
|  | as = spi_master_get_devdata(spi->master); | 
|  |  | 
|  | dev_dbg(controller, "new message %p submitted for %s\n", | 
|  | msg, dev_name(&spi->dev)); | 
|  |  | 
|  | if (unlikely(list_empty(&msg->transfers))) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (as->stopping) | 
|  | return -ESHUTDOWN; | 
|  |  | 
|  | list_for_each_entry(xfer, &msg->transfers, transfer_list) { | 
|  | if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) { | 
|  | dev_dbg(&spi->dev, "missing rx or tx buf\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* FIXME implement these protocol options!! */ | 
|  | if (xfer->bits_per_word || xfer->speed_hz) { | 
|  | dev_dbg(&spi->dev, "no protocol options yet\n"); | 
|  | return -ENOPROTOOPT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * DMA map early, for performance (empties dcache ASAP) and | 
|  | * better fault reporting.  This is a DMA-only driver. | 
|  | * | 
|  | * NOTE that if dma_unmap_single() ever starts to do work on | 
|  | * platforms supported by this driver, we would need to clean | 
|  | * up mappings for previously-mapped transfers. | 
|  | */ | 
|  | if (!msg->is_dma_mapped) { | 
|  | if (atmel_spi_dma_map_xfer(as, xfer) < 0) | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef VERBOSE | 
|  | list_for_each_entry(xfer, &msg->transfers, transfer_list) { | 
|  | dev_dbg(controller, | 
|  | "  xfer %p: len %u tx %p/%08x rx %p/%08x\n", | 
|  | xfer, xfer->len, | 
|  | xfer->tx_buf, xfer->tx_dma, | 
|  | xfer->rx_buf, xfer->rx_dma); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | msg->status = -EINPROGRESS; | 
|  | msg->actual_length = 0; | 
|  |  | 
|  | spin_lock_irqsave(&as->lock, flags); | 
|  | list_add_tail(&msg->queue, &as->queue); | 
|  | if (!as->current_transfer) | 
|  | atmel_spi_next_message(spi->master); | 
|  | spin_unlock_irqrestore(&as->lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void atmel_spi_cleanup(struct spi_device *spi) | 
|  | { | 
|  | struct atmel_spi	*as = spi_master_get_devdata(spi->master); | 
|  | struct atmel_spi_device	*asd = spi->controller_state; | 
|  | unsigned		gpio = (unsigned) spi->controller_data; | 
|  | unsigned long		flags; | 
|  |  | 
|  | if (!asd) | 
|  | return; | 
|  |  | 
|  | spin_lock_irqsave(&as->lock, flags); | 
|  | if (as->stay == spi) { | 
|  | as->stay = NULL; | 
|  | cs_deactivate(as, spi); | 
|  | } | 
|  | spin_unlock_irqrestore(&as->lock, flags); | 
|  |  | 
|  | spi->controller_state = NULL; | 
|  | gpio_free(gpio); | 
|  | kfree(asd); | 
|  | } | 
|  |  | 
|  | /*-------------------------------------------------------------------------*/ | 
|  |  | 
|  | static int __init atmel_spi_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct resource		*regs; | 
|  | int			irq; | 
|  | struct clk		*clk; | 
|  | int			ret; | 
|  | struct spi_master	*master; | 
|  | struct atmel_spi	*as; | 
|  |  | 
|  | regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
|  | if (!regs) | 
|  | return -ENXIO; | 
|  |  | 
|  | irq = platform_get_irq(pdev, 0); | 
|  | if (irq < 0) | 
|  | return irq; | 
|  |  | 
|  | clk = clk_get(&pdev->dev, "spi_clk"); | 
|  | if (IS_ERR(clk)) | 
|  | return PTR_ERR(clk); | 
|  |  | 
|  | /* setup spi core then atmel-specific driver state */ | 
|  | ret = -ENOMEM; | 
|  | master = spi_alloc_master(&pdev->dev, sizeof *as); | 
|  | if (!master) | 
|  | goto out_free; | 
|  |  | 
|  | /* the spi->mode bits understood by this driver: */ | 
|  | master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; | 
|  |  | 
|  | master->bus_num = pdev->id; | 
|  | master->num_chipselect = 4; | 
|  | master->setup = atmel_spi_setup; | 
|  | master->transfer = atmel_spi_transfer; | 
|  | master->cleanup = atmel_spi_cleanup; | 
|  | platform_set_drvdata(pdev, master); | 
|  |  | 
|  | as = spi_master_get_devdata(master); | 
|  |  | 
|  | /* | 
|  | * Scratch buffer is used for throwaway rx and tx data. | 
|  | * It's coherent to minimize dcache pollution. | 
|  | */ | 
|  | as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE, | 
|  | &as->buffer_dma, GFP_KERNEL); | 
|  | if (!as->buffer) | 
|  | goto out_free; | 
|  |  | 
|  | spin_lock_init(&as->lock); | 
|  | INIT_LIST_HEAD(&as->queue); | 
|  | as->pdev = pdev; | 
|  | as->regs = ioremap(regs->start, resource_size(regs)); | 
|  | if (!as->regs) | 
|  | goto out_free_buffer; | 
|  | as->irq = irq; | 
|  | as->clk = clk; | 
|  |  | 
|  | ret = request_irq(irq, atmel_spi_interrupt, 0, | 
|  | dev_name(&pdev->dev), master); | 
|  | if (ret) | 
|  | goto out_unmap_regs; | 
|  |  | 
|  | /* Initialize the hardware */ | 
|  | clk_enable(clk); | 
|  | spi_writel(as, CR, SPI_BIT(SWRST)); | 
|  | spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ | 
|  | spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS)); | 
|  | spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); | 
|  | spi_writel(as, CR, SPI_BIT(SPIEN)); | 
|  |  | 
|  | /* go! */ | 
|  | dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n", | 
|  | (unsigned long)regs->start, irq); | 
|  |  | 
|  | ret = spi_register_master(master); | 
|  | if (ret) | 
|  | goto out_reset_hw; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_reset_hw: | 
|  | spi_writel(as, CR, SPI_BIT(SWRST)); | 
|  | spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ | 
|  | clk_disable(clk); | 
|  | free_irq(irq, master); | 
|  | out_unmap_regs: | 
|  | iounmap(as->regs); | 
|  | out_free_buffer: | 
|  | dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer, | 
|  | as->buffer_dma); | 
|  | out_free: | 
|  | clk_put(clk); | 
|  | spi_master_put(master); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __exit atmel_spi_remove(struct platform_device *pdev) | 
|  | { | 
|  | struct spi_master	*master = platform_get_drvdata(pdev); | 
|  | struct atmel_spi	*as = spi_master_get_devdata(master); | 
|  | struct spi_message	*msg; | 
|  |  | 
|  | /* reset the hardware and block queue progress */ | 
|  | spin_lock_irq(&as->lock); | 
|  | as->stopping = 1; | 
|  | spi_writel(as, CR, SPI_BIT(SWRST)); | 
|  | spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ | 
|  | spi_readl(as, SR); | 
|  | spin_unlock_irq(&as->lock); | 
|  |  | 
|  | /* Terminate remaining queued transfers */ | 
|  | list_for_each_entry(msg, &as->queue, queue) { | 
|  | /* REVISIT unmapping the dma is a NOP on ARM and AVR32 | 
|  | * but we shouldn't depend on that... | 
|  | */ | 
|  | msg->status = -ESHUTDOWN; | 
|  | msg->complete(msg->context); | 
|  | } | 
|  |  | 
|  | dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer, | 
|  | as->buffer_dma); | 
|  |  | 
|  | clk_disable(as->clk); | 
|  | clk_put(as->clk); | 
|  | free_irq(as->irq, master); | 
|  | iounmap(as->regs); | 
|  |  | 
|  | spi_unregister_master(master); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef	CONFIG_PM | 
|  |  | 
|  | static int atmel_spi_suspend(struct platform_device *pdev, pm_message_t mesg) | 
|  | { | 
|  | struct spi_master	*master = platform_get_drvdata(pdev); | 
|  | struct atmel_spi	*as = spi_master_get_devdata(master); | 
|  |  | 
|  | clk_disable(as->clk); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int atmel_spi_resume(struct platform_device *pdev) | 
|  | { | 
|  | struct spi_master	*master = platform_get_drvdata(pdev); | 
|  | struct atmel_spi	*as = spi_master_get_devdata(master); | 
|  |  | 
|  | clk_enable(as->clk); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #else | 
|  | #define	atmel_spi_suspend	NULL | 
|  | #define	atmel_spi_resume	NULL | 
|  | #endif | 
|  |  | 
|  |  | 
|  | static struct platform_driver atmel_spi_driver = { | 
|  | .driver		= { | 
|  | .name	= "atmel_spi", | 
|  | .owner	= THIS_MODULE, | 
|  | }, | 
|  | .suspend	= atmel_spi_suspend, | 
|  | .resume		= atmel_spi_resume, | 
|  | .remove		= __exit_p(atmel_spi_remove), | 
|  | }; | 
|  |  | 
|  | static int __init atmel_spi_init(void) | 
|  | { | 
|  | return platform_driver_probe(&atmel_spi_driver, atmel_spi_probe); | 
|  | } | 
|  | module_init(atmel_spi_init); | 
|  |  | 
|  | static void __exit atmel_spi_exit(void) | 
|  | { | 
|  | platform_driver_unregister(&atmel_spi_driver); | 
|  | } | 
|  | module_exit(atmel_spi_exit); | 
|  |  | 
|  | MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver"); | 
|  | MODULE_AUTHOR("Haavard Skinnemoen <hskinnemoen@atmel.com>"); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_ALIAS("platform:atmel_spi"); |