|  | /* | 
|  | * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/init.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/spi/spi.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/clk.h> | 
|  | #include <linux/gpio.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include <asm/io.h> | 
|  | #include <asm/irq.h> | 
|  | #include <asm/delay.h> | 
|  |  | 
|  | #include <mach/dma.h> | 
|  | #include <plat/ssp.h> | 
|  | #include <mach/pxa2xx_spi.h> | 
|  |  | 
|  | MODULE_AUTHOR("Stephen Street"); | 
|  | MODULE_DESCRIPTION("PXA2xx SSP SPI Controller"); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_ALIAS("platform:pxa2xx-spi"); | 
|  |  | 
|  | #define MAX_BUSES 3 | 
|  |  | 
|  | #define RX_THRESH_DFLT 	8 | 
|  | #define TX_THRESH_DFLT 	8 | 
|  | #define TIMOUT_DFLT		1000 | 
|  |  | 
|  | #define DMA_INT_MASK		(DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR) | 
|  | #define RESET_DMA_CHANNEL	(DCSR_NODESC | DMA_INT_MASK) | 
|  | #define IS_DMA_ALIGNED(x)	((((u32)(x)) & 0x07) == 0) | 
|  | #define MAX_DMA_LEN		8191 | 
|  | #define DMA_ALIGNMENT		8 | 
|  |  | 
|  | /* | 
|  | * for testing SSCR1 changes that require SSP restart, basically | 
|  | * everything except the service and interrupt enables, the pxa270 developer | 
|  | * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this | 
|  | * list, but the PXA255 dev man says all bits without really meaning the | 
|  | * service and interrupt enables | 
|  | */ | 
|  | #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \ | 
|  | | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \ | 
|  | | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \ | 
|  | | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \ | 
|  | | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \ | 
|  | | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) | 
|  |  | 
|  | #define DEFINE_SSP_REG(reg, off) \ | 
|  | static inline u32 read_##reg(void const __iomem *p) \ | 
|  | { return __raw_readl(p + (off)); } \ | 
|  | \ | 
|  | static inline void write_##reg(u32 v, void __iomem *p) \ | 
|  | { __raw_writel(v, p + (off)); } | 
|  |  | 
|  | DEFINE_SSP_REG(SSCR0, 0x00) | 
|  | DEFINE_SSP_REG(SSCR1, 0x04) | 
|  | DEFINE_SSP_REG(SSSR, 0x08) | 
|  | DEFINE_SSP_REG(SSITR, 0x0c) | 
|  | DEFINE_SSP_REG(SSDR, 0x10) | 
|  | DEFINE_SSP_REG(SSTO, 0x28) | 
|  | DEFINE_SSP_REG(SSPSP, 0x2c) | 
|  |  | 
|  | #define START_STATE ((void*)0) | 
|  | #define RUNNING_STATE ((void*)1) | 
|  | #define DONE_STATE ((void*)2) | 
|  | #define ERROR_STATE ((void*)-1) | 
|  |  | 
|  | #define QUEUE_RUNNING 0 | 
|  | #define QUEUE_STOPPED 1 | 
|  |  | 
|  | struct driver_data { | 
|  | /* Driver model hookup */ | 
|  | struct platform_device *pdev; | 
|  |  | 
|  | /* SSP Info */ | 
|  | struct ssp_device *ssp; | 
|  |  | 
|  | /* SPI framework hookup */ | 
|  | enum pxa_ssp_type ssp_type; | 
|  | struct spi_master *master; | 
|  |  | 
|  | /* PXA hookup */ | 
|  | struct pxa2xx_spi_master *master_info; | 
|  |  | 
|  | /* DMA setup stuff */ | 
|  | int rx_channel; | 
|  | int tx_channel; | 
|  | u32 *null_dma_buf; | 
|  |  | 
|  | /* SSP register addresses */ | 
|  | void __iomem *ioaddr; | 
|  | u32 ssdr_physical; | 
|  |  | 
|  | /* SSP masks*/ | 
|  | u32 dma_cr1; | 
|  | u32 int_cr1; | 
|  | u32 clear_sr; | 
|  | u32 mask_sr; | 
|  |  | 
|  | /* Driver message queue */ | 
|  | struct workqueue_struct	*workqueue; | 
|  | struct work_struct pump_messages; | 
|  | spinlock_t lock; | 
|  | struct list_head queue; | 
|  | int busy; | 
|  | int run; | 
|  |  | 
|  | /* Message Transfer pump */ | 
|  | struct tasklet_struct pump_transfers; | 
|  |  | 
|  | /* Current message transfer state info */ | 
|  | struct spi_message* cur_msg; | 
|  | struct spi_transfer* cur_transfer; | 
|  | struct chip_data *cur_chip; | 
|  | size_t len; | 
|  | void *tx; | 
|  | void *tx_end; | 
|  | void *rx; | 
|  | void *rx_end; | 
|  | int dma_mapped; | 
|  | dma_addr_t rx_dma; | 
|  | dma_addr_t tx_dma; | 
|  | size_t rx_map_len; | 
|  | size_t tx_map_len; | 
|  | u8 n_bytes; | 
|  | u32 dma_width; | 
|  | int (*write)(struct driver_data *drv_data); | 
|  | int (*read)(struct driver_data *drv_data); | 
|  | irqreturn_t (*transfer_handler)(struct driver_data *drv_data); | 
|  | void (*cs_control)(u32 command); | 
|  | }; | 
|  |  | 
|  | struct chip_data { | 
|  | u32 cr0; | 
|  | u32 cr1; | 
|  | u32 psp; | 
|  | u32 timeout; | 
|  | u8 n_bytes; | 
|  | u32 dma_width; | 
|  | u32 dma_burst_size; | 
|  | u32 threshold; | 
|  | u32 dma_threshold; | 
|  | u8 enable_dma; | 
|  | u8 bits_per_word; | 
|  | u32 speed_hz; | 
|  | int gpio_cs; | 
|  | int gpio_cs_inverted; | 
|  | int (*write)(struct driver_data *drv_data); | 
|  | int (*read)(struct driver_data *drv_data); | 
|  | void (*cs_control)(u32 command); | 
|  | }; | 
|  |  | 
|  | static void pump_messages(struct work_struct *work); | 
|  |  | 
|  | static void cs_assert(struct driver_data *drv_data) | 
|  | { | 
|  | struct chip_data *chip = drv_data->cur_chip; | 
|  |  | 
|  | if (chip->cs_control) { | 
|  | chip->cs_control(PXA2XX_CS_ASSERT); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (gpio_is_valid(chip->gpio_cs)) | 
|  | gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted); | 
|  | } | 
|  |  | 
|  | static void cs_deassert(struct driver_data *drv_data) | 
|  | { | 
|  | struct chip_data *chip = drv_data->cur_chip; | 
|  |  | 
|  | if (chip->cs_control) { | 
|  | chip->cs_control(PXA2XX_CS_DEASSERT); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (gpio_is_valid(chip->gpio_cs)) | 
|  | gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted); | 
|  | } | 
|  |  | 
|  | static int flush(struct driver_data *drv_data) | 
|  | { | 
|  | unsigned long limit = loops_per_jiffy << 1; | 
|  |  | 
|  | void __iomem *reg = drv_data->ioaddr; | 
|  |  | 
|  | do { | 
|  | while (read_SSSR(reg) & SSSR_RNE) { | 
|  | read_SSDR(reg); | 
|  | } | 
|  | } while ((read_SSSR(reg) & SSSR_BSY) && --limit); | 
|  | write_SSSR(SSSR_ROR, reg); | 
|  |  | 
|  | return limit; | 
|  | } | 
|  |  | 
|  | static int null_writer(struct driver_data *drv_data) | 
|  | { | 
|  | void __iomem *reg = drv_data->ioaddr; | 
|  | u8 n_bytes = drv_data->n_bytes; | 
|  |  | 
|  | if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00) | 
|  | || (drv_data->tx == drv_data->tx_end)) | 
|  | return 0; | 
|  |  | 
|  | write_SSDR(0, reg); | 
|  | drv_data->tx += n_bytes; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int null_reader(struct driver_data *drv_data) | 
|  | { | 
|  | void __iomem *reg = drv_data->ioaddr; | 
|  | u8 n_bytes = drv_data->n_bytes; | 
|  |  | 
|  | while ((read_SSSR(reg) & SSSR_RNE) | 
|  | && (drv_data->rx < drv_data->rx_end)) { | 
|  | read_SSDR(reg); | 
|  | drv_data->rx += n_bytes; | 
|  | } | 
|  |  | 
|  | return drv_data->rx == drv_data->rx_end; | 
|  | } | 
|  |  | 
|  | static int u8_writer(struct driver_data *drv_data) | 
|  | { | 
|  | void __iomem *reg = drv_data->ioaddr; | 
|  |  | 
|  | if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00) | 
|  | || (drv_data->tx == drv_data->tx_end)) | 
|  | return 0; | 
|  |  | 
|  | write_SSDR(*(u8 *)(drv_data->tx), reg); | 
|  | ++drv_data->tx; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int u8_reader(struct driver_data *drv_data) | 
|  | { | 
|  | void __iomem *reg = drv_data->ioaddr; | 
|  |  | 
|  | while ((read_SSSR(reg) & SSSR_RNE) | 
|  | && (drv_data->rx < drv_data->rx_end)) { | 
|  | *(u8 *)(drv_data->rx) = read_SSDR(reg); | 
|  | ++drv_data->rx; | 
|  | } | 
|  |  | 
|  | return drv_data->rx == drv_data->rx_end; | 
|  | } | 
|  |  | 
|  | static int u16_writer(struct driver_data *drv_data) | 
|  | { | 
|  | void __iomem *reg = drv_data->ioaddr; | 
|  |  | 
|  | if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00) | 
|  | || (drv_data->tx == drv_data->tx_end)) | 
|  | return 0; | 
|  |  | 
|  | write_SSDR(*(u16 *)(drv_data->tx), reg); | 
|  | drv_data->tx += 2; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int u16_reader(struct driver_data *drv_data) | 
|  | { | 
|  | void __iomem *reg = drv_data->ioaddr; | 
|  |  | 
|  | while ((read_SSSR(reg) & SSSR_RNE) | 
|  | && (drv_data->rx < drv_data->rx_end)) { | 
|  | *(u16 *)(drv_data->rx) = read_SSDR(reg); | 
|  | drv_data->rx += 2; | 
|  | } | 
|  |  | 
|  | return drv_data->rx == drv_data->rx_end; | 
|  | } | 
|  |  | 
|  | static int u32_writer(struct driver_data *drv_data) | 
|  | { | 
|  | void __iomem *reg = drv_data->ioaddr; | 
|  |  | 
|  | if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00) | 
|  | || (drv_data->tx == drv_data->tx_end)) | 
|  | return 0; | 
|  |  | 
|  | write_SSDR(*(u32 *)(drv_data->tx), reg); | 
|  | drv_data->tx += 4; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int u32_reader(struct driver_data *drv_data) | 
|  | { | 
|  | void __iomem *reg = drv_data->ioaddr; | 
|  |  | 
|  | while ((read_SSSR(reg) & SSSR_RNE) | 
|  | && (drv_data->rx < drv_data->rx_end)) { | 
|  | *(u32 *)(drv_data->rx) = read_SSDR(reg); | 
|  | drv_data->rx += 4; | 
|  | } | 
|  |  | 
|  | return drv_data->rx == drv_data->rx_end; | 
|  | } | 
|  |  | 
|  | static void *next_transfer(struct driver_data *drv_data) | 
|  | { | 
|  | struct spi_message *msg = drv_data->cur_msg; | 
|  | struct spi_transfer *trans = drv_data->cur_transfer; | 
|  |  | 
|  | /* Move to next transfer */ | 
|  | if (trans->transfer_list.next != &msg->transfers) { | 
|  | drv_data->cur_transfer = | 
|  | list_entry(trans->transfer_list.next, | 
|  | struct spi_transfer, | 
|  | transfer_list); | 
|  | return RUNNING_STATE; | 
|  | } else | 
|  | return DONE_STATE; | 
|  | } | 
|  |  | 
|  | static int map_dma_buffers(struct driver_data *drv_data) | 
|  | { | 
|  | struct spi_message *msg = drv_data->cur_msg; | 
|  | struct device *dev = &msg->spi->dev; | 
|  |  | 
|  | if (!drv_data->cur_chip->enable_dma) | 
|  | return 0; | 
|  |  | 
|  | if (msg->is_dma_mapped) | 
|  | return  drv_data->rx_dma && drv_data->tx_dma; | 
|  |  | 
|  | if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx)) | 
|  | return 0; | 
|  |  | 
|  | /* Modify setup if rx buffer is null */ | 
|  | if (drv_data->rx == NULL) { | 
|  | *drv_data->null_dma_buf = 0; | 
|  | drv_data->rx = drv_data->null_dma_buf; | 
|  | drv_data->rx_map_len = 4; | 
|  | } else | 
|  | drv_data->rx_map_len = drv_data->len; | 
|  |  | 
|  |  | 
|  | /* Modify setup if tx buffer is null */ | 
|  | if (drv_data->tx == NULL) { | 
|  | *drv_data->null_dma_buf = 0; | 
|  | drv_data->tx = drv_data->null_dma_buf; | 
|  | drv_data->tx_map_len = 4; | 
|  | } else | 
|  | drv_data->tx_map_len = drv_data->len; | 
|  |  | 
|  | /* Stream map the tx buffer. Always do DMA_TO_DEVICE first | 
|  | * so we flush the cache *before* invalidating it, in case | 
|  | * the tx and rx buffers overlap. | 
|  | */ | 
|  | drv_data->tx_dma = dma_map_single(dev, drv_data->tx, | 
|  | drv_data->tx_map_len, DMA_TO_DEVICE); | 
|  | if (dma_mapping_error(dev, drv_data->tx_dma)) | 
|  | return 0; | 
|  |  | 
|  | /* Stream map the rx buffer */ | 
|  | drv_data->rx_dma = dma_map_single(dev, drv_data->rx, | 
|  | drv_data->rx_map_len, DMA_FROM_DEVICE); | 
|  | if (dma_mapping_error(dev, drv_data->rx_dma)) { | 
|  | dma_unmap_single(dev, drv_data->tx_dma, | 
|  | drv_data->tx_map_len, DMA_TO_DEVICE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void unmap_dma_buffers(struct driver_data *drv_data) | 
|  | { | 
|  | struct device *dev; | 
|  |  | 
|  | if (!drv_data->dma_mapped) | 
|  | return; | 
|  |  | 
|  | if (!drv_data->cur_msg->is_dma_mapped) { | 
|  | dev = &drv_data->cur_msg->spi->dev; | 
|  | dma_unmap_single(dev, drv_data->rx_dma, | 
|  | drv_data->rx_map_len, DMA_FROM_DEVICE); | 
|  | dma_unmap_single(dev, drv_data->tx_dma, | 
|  | drv_data->tx_map_len, DMA_TO_DEVICE); | 
|  | } | 
|  |  | 
|  | drv_data->dma_mapped = 0; | 
|  | } | 
|  |  | 
|  | /* caller already set message->status; dma and pio irqs are blocked */ | 
|  | static void giveback(struct driver_data *drv_data) | 
|  | { | 
|  | struct spi_transfer* last_transfer; | 
|  | unsigned long flags; | 
|  | struct spi_message *msg; | 
|  |  | 
|  | spin_lock_irqsave(&drv_data->lock, flags); | 
|  | msg = drv_data->cur_msg; | 
|  | drv_data->cur_msg = NULL; | 
|  | drv_data->cur_transfer = NULL; | 
|  | queue_work(drv_data->workqueue, &drv_data->pump_messages); | 
|  | spin_unlock_irqrestore(&drv_data->lock, flags); | 
|  |  | 
|  | last_transfer = list_entry(msg->transfers.prev, | 
|  | struct spi_transfer, | 
|  | transfer_list); | 
|  |  | 
|  | /* Delay if requested before any change in chip select */ | 
|  | if (last_transfer->delay_usecs) | 
|  | udelay(last_transfer->delay_usecs); | 
|  |  | 
|  | /* Drop chip select UNLESS cs_change is true or we are returning | 
|  | * a message with an error, or next message is for another chip | 
|  | */ | 
|  | if (!last_transfer->cs_change) | 
|  | cs_deassert(drv_data); | 
|  | else { | 
|  | struct spi_message *next_msg; | 
|  |  | 
|  | /* Holding of cs was hinted, but we need to make sure | 
|  | * the next message is for the same chip.  Don't waste | 
|  | * time with the following tests unless this was hinted. | 
|  | * | 
|  | * We cannot postpone this until pump_messages, because | 
|  | * after calling msg->complete (below) the driver that | 
|  | * sent the current message could be unloaded, which | 
|  | * could invalidate the cs_control() callback... | 
|  | */ | 
|  |  | 
|  | /* get a pointer to the next message, if any */ | 
|  | spin_lock_irqsave(&drv_data->lock, flags); | 
|  | if (list_empty(&drv_data->queue)) | 
|  | next_msg = NULL; | 
|  | else | 
|  | next_msg = list_entry(drv_data->queue.next, | 
|  | struct spi_message, queue); | 
|  | spin_unlock_irqrestore(&drv_data->lock, flags); | 
|  |  | 
|  | /* see if the next and current messages point | 
|  | * to the same chip | 
|  | */ | 
|  | if (next_msg && next_msg->spi != msg->spi) | 
|  | next_msg = NULL; | 
|  | if (!next_msg || msg->state == ERROR_STATE) | 
|  | cs_deassert(drv_data); | 
|  | } | 
|  |  | 
|  | msg->state = NULL; | 
|  | if (msg->complete) | 
|  | msg->complete(msg->context); | 
|  |  | 
|  | drv_data->cur_chip = NULL; | 
|  | } | 
|  |  | 
|  | static int wait_ssp_rx_stall(void const __iomem *ioaddr) | 
|  | { | 
|  | unsigned long limit = loops_per_jiffy << 1; | 
|  |  | 
|  | while ((read_SSSR(ioaddr) & SSSR_BSY) && --limit) | 
|  | cpu_relax(); | 
|  |  | 
|  | return limit; | 
|  | } | 
|  |  | 
|  | static int wait_dma_channel_stop(int channel) | 
|  | { | 
|  | unsigned long limit = loops_per_jiffy << 1; | 
|  |  | 
|  | while (!(DCSR(channel) & DCSR_STOPSTATE) && --limit) | 
|  | cpu_relax(); | 
|  |  | 
|  | return limit; | 
|  | } | 
|  |  | 
|  | static void dma_error_stop(struct driver_data *drv_data, const char *msg) | 
|  | { | 
|  | void __iomem *reg = drv_data->ioaddr; | 
|  |  | 
|  | /* Stop and reset */ | 
|  | DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL; | 
|  | DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL; | 
|  | write_SSSR(drv_data->clear_sr, reg); | 
|  | write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg); | 
|  | if (drv_data->ssp_type != PXA25x_SSP) | 
|  | write_SSTO(0, reg); | 
|  | flush(drv_data); | 
|  | write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg); | 
|  |  | 
|  | unmap_dma_buffers(drv_data); | 
|  |  | 
|  | dev_err(&drv_data->pdev->dev, "%s\n", msg); | 
|  |  | 
|  | drv_data->cur_msg->state = ERROR_STATE; | 
|  | tasklet_schedule(&drv_data->pump_transfers); | 
|  | } | 
|  |  | 
|  | static void dma_transfer_complete(struct driver_data *drv_data) | 
|  | { | 
|  | void __iomem *reg = drv_data->ioaddr; | 
|  | struct spi_message *msg = drv_data->cur_msg; | 
|  |  | 
|  | /* Clear and disable interrupts on SSP and DMA channels*/ | 
|  | write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg); | 
|  | write_SSSR(drv_data->clear_sr, reg); | 
|  | DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL; | 
|  | DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL; | 
|  |  | 
|  | if (wait_dma_channel_stop(drv_data->rx_channel) == 0) | 
|  | dev_err(&drv_data->pdev->dev, | 
|  | "dma_handler: dma rx channel stop failed\n"); | 
|  |  | 
|  | if (wait_ssp_rx_stall(drv_data->ioaddr) == 0) | 
|  | dev_err(&drv_data->pdev->dev, | 
|  | "dma_transfer: ssp rx stall failed\n"); | 
|  |  | 
|  | unmap_dma_buffers(drv_data); | 
|  |  | 
|  | /* update the buffer pointer for the amount completed in dma */ | 
|  | drv_data->rx += drv_data->len - | 
|  | (DCMD(drv_data->rx_channel) & DCMD_LENGTH); | 
|  |  | 
|  | /* read trailing data from fifo, it does not matter how many | 
|  | * bytes are in the fifo just read until buffer is full | 
|  | * or fifo is empty, which ever occurs first */ | 
|  | drv_data->read(drv_data); | 
|  |  | 
|  | /* return count of what was actually read */ | 
|  | msg->actual_length += drv_data->len - | 
|  | (drv_data->rx_end - drv_data->rx); | 
|  |  | 
|  | /* Transfer delays and chip select release are | 
|  | * handled in pump_transfers or giveback | 
|  | */ | 
|  |  | 
|  | /* Move to next transfer */ | 
|  | msg->state = next_transfer(drv_data); | 
|  |  | 
|  | /* Schedule transfer tasklet */ | 
|  | tasklet_schedule(&drv_data->pump_transfers); | 
|  | } | 
|  |  | 
|  | static void dma_handler(int channel, void *data) | 
|  | { | 
|  | struct driver_data *drv_data = data; | 
|  | u32 irq_status = DCSR(channel) & DMA_INT_MASK; | 
|  |  | 
|  | if (irq_status & DCSR_BUSERR) { | 
|  |  | 
|  | if (channel == drv_data->tx_channel) | 
|  | dma_error_stop(drv_data, | 
|  | "dma_handler: " | 
|  | "bad bus address on tx channel"); | 
|  | else | 
|  | dma_error_stop(drv_data, | 
|  | "dma_handler: " | 
|  | "bad bus address on rx channel"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */ | 
|  | if ((channel == drv_data->tx_channel) | 
|  | && (irq_status & DCSR_ENDINTR) | 
|  | && (drv_data->ssp_type == PXA25x_SSP)) { | 
|  |  | 
|  | /* Wait for rx to stall */ | 
|  | if (wait_ssp_rx_stall(drv_data->ioaddr) == 0) | 
|  | dev_err(&drv_data->pdev->dev, | 
|  | "dma_handler: ssp rx stall failed\n"); | 
|  |  | 
|  | /* finish this transfer, start the next */ | 
|  | dma_transfer_complete(drv_data); | 
|  | } | 
|  | } | 
|  |  | 
|  | static irqreturn_t dma_transfer(struct driver_data *drv_data) | 
|  | { | 
|  | u32 irq_status; | 
|  | void __iomem *reg = drv_data->ioaddr; | 
|  |  | 
|  | irq_status = read_SSSR(reg) & drv_data->mask_sr; | 
|  | if (irq_status & SSSR_ROR) { | 
|  | dma_error_stop(drv_data, "dma_transfer: fifo overrun"); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* Check for false positive timeout */ | 
|  | if ((irq_status & SSSR_TINT) | 
|  | && (DCSR(drv_data->tx_channel) & DCSR_RUN)) { | 
|  | write_SSSR(SSSR_TINT, reg); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) { | 
|  |  | 
|  | /* Clear and disable timeout interrupt, do the rest in | 
|  | * dma_transfer_complete */ | 
|  | if (drv_data->ssp_type != PXA25x_SSP) | 
|  | write_SSTO(0, reg); | 
|  |  | 
|  | /* finish this transfer, start the next */ | 
|  | dma_transfer_complete(drv_data); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* Opps problem detected */ | 
|  | return IRQ_NONE; | 
|  | } | 
|  |  | 
|  | static void int_error_stop(struct driver_data *drv_data, const char* msg) | 
|  | { | 
|  | void __iomem *reg = drv_data->ioaddr; | 
|  |  | 
|  | /* Stop and reset SSP */ | 
|  | write_SSSR(drv_data->clear_sr, reg); | 
|  | write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg); | 
|  | if (drv_data->ssp_type != PXA25x_SSP) | 
|  | write_SSTO(0, reg); | 
|  | flush(drv_data); | 
|  | write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg); | 
|  |  | 
|  | dev_err(&drv_data->pdev->dev, "%s\n", msg); | 
|  |  | 
|  | drv_data->cur_msg->state = ERROR_STATE; | 
|  | tasklet_schedule(&drv_data->pump_transfers); | 
|  | } | 
|  |  | 
|  | static void int_transfer_complete(struct driver_data *drv_data) | 
|  | { | 
|  | void __iomem *reg = drv_data->ioaddr; | 
|  |  | 
|  | /* Stop SSP */ | 
|  | write_SSSR(drv_data->clear_sr, reg); | 
|  | write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg); | 
|  | if (drv_data->ssp_type != PXA25x_SSP) | 
|  | write_SSTO(0, reg); | 
|  |  | 
|  | /* Update total byte transfered return count actual bytes read */ | 
|  | drv_data->cur_msg->actual_length += drv_data->len - | 
|  | (drv_data->rx_end - drv_data->rx); | 
|  |  | 
|  | /* Transfer delays and chip select release are | 
|  | * handled in pump_transfers or giveback | 
|  | */ | 
|  |  | 
|  | /* Move to next transfer */ | 
|  | drv_data->cur_msg->state = next_transfer(drv_data); | 
|  |  | 
|  | /* Schedule transfer tasklet */ | 
|  | tasklet_schedule(&drv_data->pump_transfers); | 
|  | } | 
|  |  | 
|  | static irqreturn_t interrupt_transfer(struct driver_data *drv_data) | 
|  | { | 
|  | void __iomem *reg = drv_data->ioaddr; | 
|  |  | 
|  | u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ? | 
|  | drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS; | 
|  |  | 
|  | u32 irq_status = read_SSSR(reg) & irq_mask; | 
|  |  | 
|  | if (irq_status & SSSR_ROR) { | 
|  | int_error_stop(drv_data, "interrupt_transfer: fifo overrun"); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | if (irq_status & SSSR_TINT) { | 
|  | write_SSSR(SSSR_TINT, reg); | 
|  | if (drv_data->read(drv_data)) { | 
|  | int_transfer_complete(drv_data); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Drain rx fifo, Fill tx fifo and prevent overruns */ | 
|  | do { | 
|  | if (drv_data->read(drv_data)) { | 
|  | int_transfer_complete(drv_data); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  | } while (drv_data->write(drv_data)); | 
|  |  | 
|  | if (drv_data->read(drv_data)) { | 
|  | int_transfer_complete(drv_data); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | if (drv_data->tx == drv_data->tx_end) { | 
|  | write_SSCR1(read_SSCR1(reg) & ~SSCR1_TIE, reg); | 
|  | /* PXA25x_SSP has no timeout, read trailing bytes */ | 
|  | if (drv_data->ssp_type == PXA25x_SSP) { | 
|  | if (!wait_ssp_rx_stall(reg)) | 
|  | { | 
|  | int_error_stop(drv_data, "interrupt_transfer: " | 
|  | "rx stall failed"); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  | if (!drv_data->read(drv_data)) | 
|  | { | 
|  | int_error_stop(drv_data, | 
|  | "interrupt_transfer: " | 
|  | "trailing byte read failed"); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  | int_transfer_complete(drv_data); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* We did something */ | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static irqreturn_t ssp_int(int irq, void *dev_id) | 
|  | { | 
|  | struct driver_data *drv_data = dev_id; | 
|  | void __iomem *reg = drv_data->ioaddr; | 
|  |  | 
|  | if (!drv_data->cur_msg) { | 
|  |  | 
|  | write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg); | 
|  | write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg); | 
|  | if (drv_data->ssp_type != PXA25x_SSP) | 
|  | write_SSTO(0, reg); | 
|  | write_SSSR(drv_data->clear_sr, reg); | 
|  |  | 
|  | dev_err(&drv_data->pdev->dev, "bad message state " | 
|  | "in interrupt handler\n"); | 
|  |  | 
|  | /* Never fail */ | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | return drv_data->transfer_handler(drv_data); | 
|  | } | 
|  |  | 
|  | static int set_dma_burst_and_threshold(struct chip_data *chip, | 
|  | struct spi_device *spi, | 
|  | u8 bits_per_word, u32 *burst_code, | 
|  | u32 *threshold) | 
|  | { | 
|  | struct pxa2xx_spi_chip *chip_info = | 
|  | (struct pxa2xx_spi_chip *)spi->controller_data; | 
|  | int bytes_per_word; | 
|  | int burst_bytes; | 
|  | int thresh_words; | 
|  | int req_burst_size; | 
|  | int retval = 0; | 
|  |  | 
|  | /* Set the threshold (in registers) to equal the same amount of data | 
|  | * as represented by burst size (in bytes).  The computation below | 
|  | * is (burst_size rounded up to nearest 8 byte, word or long word) | 
|  | * divided by (bytes/register); the tx threshold is the inverse of | 
|  | * the rx, so that there will always be enough data in the rx fifo | 
|  | * to satisfy a burst, and there will always be enough space in the | 
|  | * tx fifo to accept a burst (a tx burst will overwrite the fifo if | 
|  | * there is not enough space), there must always remain enough empty | 
|  | * space in the rx fifo for any data loaded to the tx fifo. | 
|  | * Whenever burst_size (in bytes) equals bits/word, the fifo threshold | 
|  | * will be 8, or half the fifo; | 
|  | * The threshold can only be set to 2, 4 or 8, but not 16, because | 
|  | * to burst 16 to the tx fifo, the fifo would have to be empty; | 
|  | * however, the minimum fifo trigger level is 1, and the tx will | 
|  | * request service when the fifo is at this level, with only 15 spaces. | 
|  | */ | 
|  |  | 
|  | /* find bytes/word */ | 
|  | if (bits_per_word <= 8) | 
|  | bytes_per_word = 1; | 
|  | else if (bits_per_word <= 16) | 
|  | bytes_per_word = 2; | 
|  | else | 
|  | bytes_per_word = 4; | 
|  |  | 
|  | /* use struct pxa2xx_spi_chip->dma_burst_size if available */ | 
|  | if (chip_info) | 
|  | req_burst_size = chip_info->dma_burst_size; | 
|  | else { | 
|  | switch (chip->dma_burst_size) { | 
|  | default: | 
|  | /* if the default burst size is not set, | 
|  | * do it now */ | 
|  | chip->dma_burst_size = DCMD_BURST8; | 
|  | case DCMD_BURST8: | 
|  | req_burst_size = 8; | 
|  | break; | 
|  | case DCMD_BURST16: | 
|  | req_burst_size = 16; | 
|  | break; | 
|  | case DCMD_BURST32: | 
|  | req_burst_size = 32; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (req_burst_size <= 8) { | 
|  | *burst_code = DCMD_BURST8; | 
|  | burst_bytes = 8; | 
|  | } else if (req_burst_size <= 16) { | 
|  | if (bytes_per_word == 1) { | 
|  | /* don't burst more than 1/2 the fifo */ | 
|  | *burst_code = DCMD_BURST8; | 
|  | burst_bytes = 8; | 
|  | retval = 1; | 
|  | } else { | 
|  | *burst_code = DCMD_BURST16; | 
|  | burst_bytes = 16; | 
|  | } | 
|  | } else { | 
|  | if (bytes_per_word == 1) { | 
|  | /* don't burst more than 1/2 the fifo */ | 
|  | *burst_code = DCMD_BURST8; | 
|  | burst_bytes = 8; | 
|  | retval = 1; | 
|  | } else if (bytes_per_word == 2) { | 
|  | /* don't burst more than 1/2 the fifo */ | 
|  | *burst_code = DCMD_BURST16; | 
|  | burst_bytes = 16; | 
|  | retval = 1; | 
|  | } else { | 
|  | *burst_code = DCMD_BURST32; | 
|  | burst_bytes = 32; | 
|  | } | 
|  | } | 
|  |  | 
|  | thresh_words = burst_bytes / bytes_per_word; | 
|  |  | 
|  | /* thresh_words will be between 2 and 8 */ | 
|  | *threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT) | 
|  | | (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static unsigned int ssp_get_clk_div(struct ssp_device *ssp, int rate) | 
|  | { | 
|  | unsigned long ssp_clk = clk_get_rate(ssp->clk); | 
|  |  | 
|  | if (ssp->type == PXA25x_SSP) | 
|  | return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8; | 
|  | else | 
|  | return ((ssp_clk / rate - 1) & 0xfff) << 8; | 
|  | } | 
|  |  | 
|  | static void pump_transfers(unsigned long data) | 
|  | { | 
|  | struct driver_data *drv_data = (struct driver_data *)data; | 
|  | struct spi_message *message = NULL; | 
|  | struct spi_transfer *transfer = NULL; | 
|  | struct spi_transfer *previous = NULL; | 
|  | struct chip_data *chip = NULL; | 
|  | struct ssp_device *ssp = drv_data->ssp; | 
|  | void __iomem *reg = drv_data->ioaddr; | 
|  | u32 clk_div = 0; | 
|  | u8 bits = 0; | 
|  | u32 speed = 0; | 
|  | u32 cr0; | 
|  | u32 cr1; | 
|  | u32 dma_thresh = drv_data->cur_chip->dma_threshold; | 
|  | u32 dma_burst = drv_data->cur_chip->dma_burst_size; | 
|  |  | 
|  | /* Get current state information */ | 
|  | message = drv_data->cur_msg; | 
|  | transfer = drv_data->cur_transfer; | 
|  | chip = drv_data->cur_chip; | 
|  |  | 
|  | /* Handle for abort */ | 
|  | if (message->state == ERROR_STATE) { | 
|  | message->status = -EIO; | 
|  | giveback(drv_data); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Handle end of message */ | 
|  | if (message->state == DONE_STATE) { | 
|  | message->status = 0; | 
|  | giveback(drv_data); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Delay if requested at end of transfer before CS change */ | 
|  | if (message->state == RUNNING_STATE) { | 
|  | previous = list_entry(transfer->transfer_list.prev, | 
|  | struct spi_transfer, | 
|  | transfer_list); | 
|  | if (previous->delay_usecs) | 
|  | udelay(previous->delay_usecs); | 
|  |  | 
|  | /* Drop chip select only if cs_change is requested */ | 
|  | if (previous->cs_change) | 
|  | cs_deassert(drv_data); | 
|  | } | 
|  |  | 
|  | /* Check for transfers that need multiple DMA segments */ | 
|  | if (transfer->len > MAX_DMA_LEN && chip->enable_dma) { | 
|  |  | 
|  | /* reject already-mapped transfers; PIO won't always work */ | 
|  | if (message->is_dma_mapped | 
|  | || transfer->rx_dma || transfer->tx_dma) { | 
|  | dev_err(&drv_data->pdev->dev, | 
|  | "pump_transfers: mapped transfer length " | 
|  | "of %u is greater than %d\n", | 
|  | transfer->len, MAX_DMA_LEN); | 
|  | message->status = -EINVAL; | 
|  | giveback(drv_data); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* warn ... we force this to PIO mode */ | 
|  | if (printk_ratelimit()) | 
|  | dev_warn(&message->spi->dev, "pump_transfers: " | 
|  | "DMA disabled for transfer length %ld " | 
|  | "greater than %d\n", | 
|  | (long)drv_data->len, MAX_DMA_LEN); | 
|  | } | 
|  |  | 
|  | /* Setup the transfer state based on the type of transfer */ | 
|  | if (flush(drv_data) == 0) { | 
|  | dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n"); | 
|  | message->status = -EIO; | 
|  | giveback(drv_data); | 
|  | return; | 
|  | } | 
|  | drv_data->n_bytes = chip->n_bytes; | 
|  | drv_data->dma_width = chip->dma_width; | 
|  | drv_data->tx = (void *)transfer->tx_buf; | 
|  | drv_data->tx_end = drv_data->tx + transfer->len; | 
|  | drv_data->rx = transfer->rx_buf; | 
|  | drv_data->rx_end = drv_data->rx + transfer->len; | 
|  | drv_data->rx_dma = transfer->rx_dma; | 
|  | drv_data->tx_dma = transfer->tx_dma; | 
|  | drv_data->len = transfer->len & DCMD_LENGTH; | 
|  | drv_data->write = drv_data->tx ? chip->write : null_writer; | 
|  | drv_data->read = drv_data->rx ? chip->read : null_reader; | 
|  |  | 
|  | /* Change speed and bit per word on a per transfer */ | 
|  | cr0 = chip->cr0; | 
|  | if (transfer->speed_hz || transfer->bits_per_word) { | 
|  |  | 
|  | bits = chip->bits_per_word; | 
|  | speed = chip->speed_hz; | 
|  |  | 
|  | if (transfer->speed_hz) | 
|  | speed = transfer->speed_hz; | 
|  |  | 
|  | if (transfer->bits_per_word) | 
|  | bits = transfer->bits_per_word; | 
|  |  | 
|  | clk_div = ssp_get_clk_div(ssp, speed); | 
|  |  | 
|  | if (bits <= 8) { | 
|  | drv_data->n_bytes = 1; | 
|  | drv_data->dma_width = DCMD_WIDTH1; | 
|  | drv_data->read = drv_data->read != null_reader ? | 
|  | u8_reader : null_reader; | 
|  | drv_data->write = drv_data->write != null_writer ? | 
|  | u8_writer : null_writer; | 
|  | } else if (bits <= 16) { | 
|  | drv_data->n_bytes = 2; | 
|  | drv_data->dma_width = DCMD_WIDTH2; | 
|  | drv_data->read = drv_data->read != null_reader ? | 
|  | u16_reader : null_reader; | 
|  | drv_data->write = drv_data->write != null_writer ? | 
|  | u16_writer : null_writer; | 
|  | } else if (bits <= 32) { | 
|  | drv_data->n_bytes = 4; | 
|  | drv_data->dma_width = DCMD_WIDTH4; | 
|  | drv_data->read = drv_data->read != null_reader ? | 
|  | u32_reader : null_reader; | 
|  | drv_data->write = drv_data->write != null_writer ? | 
|  | u32_writer : null_writer; | 
|  | } | 
|  | /* if bits/word is changed in dma mode, then must check the | 
|  | * thresholds and burst also */ | 
|  | if (chip->enable_dma) { | 
|  | if (set_dma_burst_and_threshold(chip, message->spi, | 
|  | bits, &dma_burst, | 
|  | &dma_thresh)) | 
|  | if (printk_ratelimit()) | 
|  | dev_warn(&message->spi->dev, | 
|  | "pump_transfers: " | 
|  | "DMA burst size reduced to " | 
|  | "match bits_per_word\n"); | 
|  | } | 
|  |  | 
|  | cr0 = clk_div | 
|  | | SSCR0_Motorola | 
|  | | SSCR0_DataSize(bits > 16 ? bits - 16 : bits) | 
|  | | SSCR0_SSE | 
|  | | (bits > 16 ? SSCR0_EDSS : 0); | 
|  | } | 
|  |  | 
|  | message->state = RUNNING_STATE; | 
|  |  | 
|  | /* Try to map dma buffer and do a dma transfer if successful, but | 
|  | * only if the length is non-zero and less than MAX_DMA_LEN. | 
|  | * | 
|  | * Zero-length non-descriptor DMA is illegal on PXA2xx; force use | 
|  | * of PIO instead.  Care is needed above because the transfer may | 
|  | * have have been passed with buffers that are already dma mapped. | 
|  | * A zero-length transfer in PIO mode will not try to write/read | 
|  | * to/from the buffers | 
|  | * | 
|  | * REVISIT large transfers are exactly where we most want to be | 
|  | * using DMA.  If this happens much, split those transfers into | 
|  | * multiple DMA segments rather than forcing PIO. | 
|  | */ | 
|  | drv_data->dma_mapped = 0; | 
|  | if (drv_data->len > 0 && drv_data->len <= MAX_DMA_LEN) | 
|  | drv_data->dma_mapped = map_dma_buffers(drv_data); | 
|  | if (drv_data->dma_mapped) { | 
|  |  | 
|  | /* Ensure we have the correct interrupt handler */ | 
|  | drv_data->transfer_handler = dma_transfer; | 
|  |  | 
|  | /* Setup rx DMA Channel */ | 
|  | DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL; | 
|  | DSADR(drv_data->rx_channel) = drv_data->ssdr_physical; | 
|  | DTADR(drv_data->rx_channel) = drv_data->rx_dma; | 
|  | if (drv_data->rx == drv_data->null_dma_buf) | 
|  | /* No target address increment */ | 
|  | DCMD(drv_data->rx_channel) = DCMD_FLOWSRC | 
|  | | drv_data->dma_width | 
|  | | dma_burst | 
|  | | drv_data->len; | 
|  | else | 
|  | DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR | 
|  | | DCMD_FLOWSRC | 
|  | | drv_data->dma_width | 
|  | | dma_burst | 
|  | | drv_data->len; | 
|  |  | 
|  | /* Setup tx DMA Channel */ | 
|  | DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL; | 
|  | DSADR(drv_data->tx_channel) = drv_data->tx_dma; | 
|  | DTADR(drv_data->tx_channel) = drv_data->ssdr_physical; | 
|  | if (drv_data->tx == drv_data->null_dma_buf) | 
|  | /* No source address increment */ | 
|  | DCMD(drv_data->tx_channel) = DCMD_FLOWTRG | 
|  | | drv_data->dma_width | 
|  | | dma_burst | 
|  | | drv_data->len; | 
|  | else | 
|  | DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR | 
|  | | DCMD_FLOWTRG | 
|  | | drv_data->dma_width | 
|  | | dma_burst | 
|  | | drv_data->len; | 
|  |  | 
|  | /* Enable dma end irqs on SSP to detect end of transfer */ | 
|  | if (drv_data->ssp_type == PXA25x_SSP) | 
|  | DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN; | 
|  |  | 
|  | /* Clear status and start DMA engine */ | 
|  | cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1; | 
|  | write_SSSR(drv_data->clear_sr, reg); | 
|  | DCSR(drv_data->rx_channel) |= DCSR_RUN; | 
|  | DCSR(drv_data->tx_channel) |= DCSR_RUN; | 
|  | } else { | 
|  | /* Ensure we have the correct interrupt handler	*/ | 
|  | drv_data->transfer_handler = interrupt_transfer; | 
|  |  | 
|  | /* Clear status  */ | 
|  | cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1; | 
|  | write_SSSR(drv_data->clear_sr, reg); | 
|  | } | 
|  |  | 
|  | /* see if we need to reload the config registers */ | 
|  | if ((read_SSCR0(reg) != cr0) | 
|  | || (read_SSCR1(reg) & SSCR1_CHANGE_MASK) != | 
|  | (cr1 & SSCR1_CHANGE_MASK)) { | 
|  |  | 
|  | /* stop the SSP, and update the other bits */ | 
|  | write_SSCR0(cr0 & ~SSCR0_SSE, reg); | 
|  | if (drv_data->ssp_type != PXA25x_SSP) | 
|  | write_SSTO(chip->timeout, reg); | 
|  | /* first set CR1 without interrupt and service enables */ | 
|  | write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg); | 
|  | /* restart the SSP */ | 
|  | write_SSCR0(cr0, reg); | 
|  |  | 
|  | } else { | 
|  | if (drv_data->ssp_type != PXA25x_SSP) | 
|  | write_SSTO(chip->timeout, reg); | 
|  | } | 
|  |  | 
|  | cs_assert(drv_data); | 
|  |  | 
|  | /* after chip select, release the data by enabling service | 
|  | * requests and interrupts, without changing any mode bits */ | 
|  | write_SSCR1(cr1, reg); | 
|  | } | 
|  |  | 
|  | static void pump_messages(struct work_struct *work) | 
|  | { | 
|  | struct driver_data *drv_data = | 
|  | container_of(work, struct driver_data, pump_messages); | 
|  | unsigned long flags; | 
|  |  | 
|  | /* Lock queue and check for queue work */ | 
|  | spin_lock_irqsave(&drv_data->lock, flags); | 
|  | if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) { | 
|  | drv_data->busy = 0; | 
|  | spin_unlock_irqrestore(&drv_data->lock, flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Make sure we are not already running a message */ | 
|  | if (drv_data->cur_msg) { | 
|  | spin_unlock_irqrestore(&drv_data->lock, flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Extract head of queue */ | 
|  | drv_data->cur_msg = list_entry(drv_data->queue.next, | 
|  | struct spi_message, queue); | 
|  | list_del_init(&drv_data->cur_msg->queue); | 
|  |  | 
|  | /* Initial message state*/ | 
|  | drv_data->cur_msg->state = START_STATE; | 
|  | drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next, | 
|  | struct spi_transfer, | 
|  | transfer_list); | 
|  |  | 
|  | /* prepare to setup the SSP, in pump_transfers, using the per | 
|  | * chip configuration */ | 
|  | drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi); | 
|  |  | 
|  | /* Mark as busy and launch transfers */ | 
|  | tasklet_schedule(&drv_data->pump_transfers); | 
|  |  | 
|  | drv_data->busy = 1; | 
|  | spin_unlock_irqrestore(&drv_data->lock, flags); | 
|  | } | 
|  |  | 
|  | static int transfer(struct spi_device *spi, struct spi_message *msg) | 
|  | { | 
|  | struct driver_data *drv_data = spi_master_get_devdata(spi->master); | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&drv_data->lock, flags); | 
|  |  | 
|  | if (drv_data->run == QUEUE_STOPPED) { | 
|  | spin_unlock_irqrestore(&drv_data->lock, flags); | 
|  | return -ESHUTDOWN; | 
|  | } | 
|  |  | 
|  | msg->actual_length = 0; | 
|  | msg->status = -EINPROGRESS; | 
|  | msg->state = START_STATE; | 
|  |  | 
|  | list_add_tail(&msg->queue, &drv_data->queue); | 
|  |  | 
|  | if (drv_data->run == QUEUE_RUNNING && !drv_data->busy) | 
|  | queue_work(drv_data->workqueue, &drv_data->pump_messages); | 
|  |  | 
|  | spin_unlock_irqrestore(&drv_data->lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int setup_cs(struct spi_device *spi, struct chip_data *chip, | 
|  | struct pxa2xx_spi_chip *chip_info) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | if (chip == NULL || chip_info == NULL) | 
|  | return 0; | 
|  |  | 
|  | /* NOTE: setup() can be called multiple times, possibly with | 
|  | * different chip_info, release previously requested GPIO | 
|  | */ | 
|  | if (gpio_is_valid(chip->gpio_cs)) | 
|  | gpio_free(chip->gpio_cs); | 
|  |  | 
|  | /* If (*cs_control) is provided, ignore GPIO chip select */ | 
|  | if (chip_info->cs_control) { | 
|  | chip->cs_control = chip_info->cs_control; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (gpio_is_valid(chip_info->gpio_cs)) { | 
|  | err = gpio_request(chip_info->gpio_cs, "SPI_CS"); | 
|  | if (err) { | 
|  | dev_err(&spi->dev, "failed to request chip select " | 
|  | "GPIO%d\n", chip_info->gpio_cs); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | chip->gpio_cs = chip_info->gpio_cs; | 
|  | chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH; | 
|  |  | 
|  | err = gpio_direction_output(chip->gpio_cs, | 
|  | !chip->gpio_cs_inverted); | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int setup(struct spi_device *spi) | 
|  | { | 
|  | struct pxa2xx_spi_chip *chip_info = NULL; | 
|  | struct chip_data *chip; | 
|  | struct driver_data *drv_data = spi_master_get_devdata(spi->master); | 
|  | struct ssp_device *ssp = drv_data->ssp; | 
|  | unsigned int clk_div; | 
|  | uint tx_thres = TX_THRESH_DFLT; | 
|  | uint rx_thres = RX_THRESH_DFLT; | 
|  |  | 
|  | if (drv_data->ssp_type != PXA25x_SSP | 
|  | && (spi->bits_per_word < 4 || spi->bits_per_word > 32)) { | 
|  | dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d " | 
|  | "b/w not 4-32 for type non-PXA25x_SSP\n", | 
|  | drv_data->ssp_type, spi->bits_per_word); | 
|  | return -EINVAL; | 
|  | } | 
|  | else if (drv_data->ssp_type == PXA25x_SSP | 
|  | && (spi->bits_per_word < 4 | 
|  | || spi->bits_per_word > 16)) { | 
|  | dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d " | 
|  | "b/w not 4-16 for type PXA25x_SSP\n", | 
|  | drv_data->ssp_type, spi->bits_per_word); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Only alloc on first setup */ | 
|  | chip = spi_get_ctldata(spi); | 
|  | if (!chip) { | 
|  | chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); | 
|  | if (!chip) { | 
|  | dev_err(&spi->dev, | 
|  | "failed setup: can't allocate chip data\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | chip->gpio_cs = -1; | 
|  | chip->enable_dma = 0; | 
|  | chip->timeout = TIMOUT_DFLT; | 
|  | chip->dma_burst_size = drv_data->master_info->enable_dma ? | 
|  | DCMD_BURST8 : 0; | 
|  | } | 
|  |  | 
|  | /* protocol drivers may change the chip settings, so... | 
|  | * if chip_info exists, use it */ | 
|  | chip_info = spi->controller_data; | 
|  |  | 
|  | /* chip_info isn't always needed */ | 
|  | chip->cr1 = 0; | 
|  | if (chip_info) { | 
|  | if (chip_info->timeout) | 
|  | chip->timeout = chip_info->timeout; | 
|  | if (chip_info->tx_threshold) | 
|  | tx_thres = chip_info->tx_threshold; | 
|  | if (chip_info->rx_threshold) | 
|  | rx_thres = chip_info->rx_threshold; | 
|  | chip->enable_dma = drv_data->master_info->enable_dma; | 
|  | chip->dma_threshold = 0; | 
|  | if (chip_info->enable_loopback) | 
|  | chip->cr1 = SSCR1_LBM; | 
|  | } | 
|  |  | 
|  | chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) | | 
|  | (SSCR1_TxTresh(tx_thres) & SSCR1_TFT); | 
|  |  | 
|  | /* set dma burst and threshold outside of chip_info path so that if | 
|  | * chip_info goes away after setting chip->enable_dma, the | 
|  | * burst and threshold can still respond to changes in bits_per_word */ | 
|  | if (chip->enable_dma) { | 
|  | /* set up legal burst and threshold for dma */ | 
|  | if (set_dma_burst_and_threshold(chip, spi, spi->bits_per_word, | 
|  | &chip->dma_burst_size, | 
|  | &chip->dma_threshold)) { | 
|  | dev_warn(&spi->dev, "in setup: DMA burst size reduced " | 
|  | "to match bits_per_word\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | clk_div = ssp_get_clk_div(ssp, spi->max_speed_hz); | 
|  | chip->speed_hz = spi->max_speed_hz; | 
|  |  | 
|  | chip->cr0 = clk_div | 
|  | | SSCR0_Motorola | 
|  | | SSCR0_DataSize(spi->bits_per_word > 16 ? | 
|  | spi->bits_per_word - 16 : spi->bits_per_word) | 
|  | | SSCR0_SSE | 
|  | | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0); | 
|  | chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH); | 
|  | chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0) | 
|  | | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0); | 
|  |  | 
|  | /* NOTE:  PXA25x_SSP _could_ use external clocking ... */ | 
|  | if (drv_data->ssp_type != PXA25x_SSP) | 
|  | dev_dbg(&spi->dev, "%ld Hz actual, %s\n", | 
|  | clk_get_rate(ssp->clk) | 
|  | / (1 + ((chip->cr0 & SSCR0_SCR(0xfff)) >> 8)), | 
|  | chip->enable_dma ? "DMA" : "PIO"); | 
|  | else | 
|  | dev_dbg(&spi->dev, "%ld Hz actual, %s\n", | 
|  | clk_get_rate(ssp->clk) / 2 | 
|  | / (1 + ((chip->cr0 & SSCR0_SCR(0x0ff)) >> 8)), | 
|  | chip->enable_dma ? "DMA" : "PIO"); | 
|  |  | 
|  | if (spi->bits_per_word <= 8) { | 
|  | chip->n_bytes = 1; | 
|  | chip->dma_width = DCMD_WIDTH1; | 
|  | chip->read = u8_reader; | 
|  | chip->write = u8_writer; | 
|  | } else if (spi->bits_per_word <= 16) { | 
|  | chip->n_bytes = 2; | 
|  | chip->dma_width = DCMD_WIDTH2; | 
|  | chip->read = u16_reader; | 
|  | chip->write = u16_writer; | 
|  | } else if (spi->bits_per_word <= 32) { | 
|  | chip->cr0 |= SSCR0_EDSS; | 
|  | chip->n_bytes = 4; | 
|  | chip->dma_width = DCMD_WIDTH4; | 
|  | chip->read = u32_reader; | 
|  | chip->write = u32_writer; | 
|  | } else { | 
|  | dev_err(&spi->dev, "invalid wordsize\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  | chip->bits_per_word = spi->bits_per_word; | 
|  |  | 
|  | spi_set_ctldata(spi, chip); | 
|  |  | 
|  | return setup_cs(spi, chip, chip_info); | 
|  | } | 
|  |  | 
|  | static void cleanup(struct spi_device *spi) | 
|  | { | 
|  | struct chip_data *chip = spi_get_ctldata(spi); | 
|  |  | 
|  | if (!chip) | 
|  | return; | 
|  |  | 
|  | if (gpio_is_valid(chip->gpio_cs)) | 
|  | gpio_free(chip->gpio_cs); | 
|  |  | 
|  | kfree(chip); | 
|  | } | 
|  |  | 
|  | static int __init init_queue(struct driver_data *drv_data) | 
|  | { | 
|  | INIT_LIST_HEAD(&drv_data->queue); | 
|  | spin_lock_init(&drv_data->lock); | 
|  |  | 
|  | drv_data->run = QUEUE_STOPPED; | 
|  | drv_data->busy = 0; | 
|  |  | 
|  | tasklet_init(&drv_data->pump_transfers, | 
|  | pump_transfers,	(unsigned long)drv_data); | 
|  |  | 
|  | INIT_WORK(&drv_data->pump_messages, pump_messages); | 
|  | drv_data->workqueue = create_singlethread_workqueue( | 
|  | dev_name(drv_data->master->dev.parent)); | 
|  | if (drv_data->workqueue == NULL) | 
|  | return -EBUSY; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int start_queue(struct driver_data *drv_data) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&drv_data->lock, flags); | 
|  |  | 
|  | if (drv_data->run == QUEUE_RUNNING || drv_data->busy) { | 
|  | spin_unlock_irqrestore(&drv_data->lock, flags); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | drv_data->run = QUEUE_RUNNING; | 
|  | drv_data->cur_msg = NULL; | 
|  | drv_data->cur_transfer = NULL; | 
|  | drv_data->cur_chip = NULL; | 
|  | spin_unlock_irqrestore(&drv_data->lock, flags); | 
|  |  | 
|  | queue_work(drv_data->workqueue, &drv_data->pump_messages); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int stop_queue(struct driver_data *drv_data) | 
|  | { | 
|  | unsigned long flags; | 
|  | unsigned limit = 500; | 
|  | int status = 0; | 
|  |  | 
|  | spin_lock_irqsave(&drv_data->lock, flags); | 
|  |  | 
|  | /* This is a bit lame, but is optimized for the common execution path. | 
|  | * A wait_queue on the drv_data->busy could be used, but then the common | 
|  | * execution path (pump_messages) would be required to call wake_up or | 
|  | * friends on every SPI message. Do this instead */ | 
|  | drv_data->run = QUEUE_STOPPED; | 
|  | while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) { | 
|  | spin_unlock_irqrestore(&drv_data->lock, flags); | 
|  | msleep(10); | 
|  | spin_lock_irqsave(&drv_data->lock, flags); | 
|  | } | 
|  |  | 
|  | if (!list_empty(&drv_data->queue) || drv_data->busy) | 
|  | status = -EBUSY; | 
|  |  | 
|  | spin_unlock_irqrestore(&drv_data->lock, flags); | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static int destroy_queue(struct driver_data *drv_data) | 
|  | { | 
|  | int status; | 
|  |  | 
|  | status = stop_queue(drv_data); | 
|  | /* we are unloading the module or failing to load (only two calls | 
|  | * to this routine), and neither call can handle a return value. | 
|  | * However, destroy_workqueue calls flush_workqueue, and that will | 
|  | * block until all work is done.  If the reason that stop_queue | 
|  | * timed out is that the work will never finish, then it does no | 
|  | * good to call destroy_workqueue, so return anyway. */ | 
|  | if (status != 0) | 
|  | return status; | 
|  |  | 
|  | destroy_workqueue(drv_data->workqueue); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init pxa2xx_spi_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct device *dev = &pdev->dev; | 
|  | struct pxa2xx_spi_master *platform_info; | 
|  | struct spi_master *master; | 
|  | struct driver_data *drv_data; | 
|  | struct ssp_device *ssp; | 
|  | int status; | 
|  |  | 
|  | platform_info = dev->platform_data; | 
|  |  | 
|  | ssp = pxa_ssp_request(pdev->id, pdev->name); | 
|  | if (ssp == NULL) { | 
|  | dev_err(&pdev->dev, "failed to request SSP%d\n", pdev->id); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* Allocate master with space for drv_data and null dma buffer */ | 
|  | master = spi_alloc_master(dev, sizeof(struct driver_data) + 16); | 
|  | if (!master) { | 
|  | dev_err(&pdev->dev, "cannot alloc spi_master\n"); | 
|  | pxa_ssp_free(ssp); | 
|  | return -ENOMEM; | 
|  | } | 
|  | drv_data = spi_master_get_devdata(master); | 
|  | drv_data->master = master; | 
|  | drv_data->master_info = platform_info; | 
|  | drv_data->pdev = pdev; | 
|  | drv_data->ssp = ssp; | 
|  |  | 
|  | /* the spi->mode bits understood by this driver: */ | 
|  | master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; | 
|  |  | 
|  | master->bus_num = pdev->id; | 
|  | master->num_chipselect = platform_info->num_chipselect; | 
|  | master->dma_alignment = DMA_ALIGNMENT; | 
|  | master->cleanup = cleanup; | 
|  | master->setup = setup; | 
|  | master->transfer = transfer; | 
|  |  | 
|  | drv_data->ssp_type = ssp->type; | 
|  | drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data + | 
|  | sizeof(struct driver_data)), 8); | 
|  |  | 
|  | drv_data->ioaddr = ssp->mmio_base; | 
|  | drv_data->ssdr_physical = ssp->phys_base + SSDR; | 
|  | if (ssp->type == PXA25x_SSP) { | 
|  | drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE; | 
|  | drv_data->dma_cr1 = 0; | 
|  | drv_data->clear_sr = SSSR_ROR; | 
|  | drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR; | 
|  | } else { | 
|  | drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE; | 
|  | drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE; | 
|  | drv_data->clear_sr = SSSR_ROR | SSSR_TINT; | 
|  | drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR; | 
|  | } | 
|  |  | 
|  | status = request_irq(ssp->irq, ssp_int, 0, dev_name(dev), drv_data); | 
|  | if (status < 0) { | 
|  | dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq); | 
|  | goto out_error_master_alloc; | 
|  | } | 
|  |  | 
|  | /* Setup DMA if requested */ | 
|  | drv_data->tx_channel = -1; | 
|  | drv_data->rx_channel = -1; | 
|  | if (platform_info->enable_dma) { | 
|  |  | 
|  | /* Get two DMA channels	(rx and tx) */ | 
|  | drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx", | 
|  | DMA_PRIO_HIGH, | 
|  | dma_handler, | 
|  | drv_data); | 
|  | if (drv_data->rx_channel < 0) { | 
|  | dev_err(dev, "problem (%d) requesting rx channel\n", | 
|  | drv_data->rx_channel); | 
|  | status = -ENODEV; | 
|  | goto out_error_irq_alloc; | 
|  | } | 
|  | drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx", | 
|  | DMA_PRIO_MEDIUM, | 
|  | dma_handler, | 
|  | drv_data); | 
|  | if (drv_data->tx_channel < 0) { | 
|  | dev_err(dev, "problem (%d) requesting tx channel\n", | 
|  | drv_data->tx_channel); | 
|  | status = -ENODEV; | 
|  | goto out_error_dma_alloc; | 
|  | } | 
|  |  | 
|  | DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel; | 
|  | DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel; | 
|  | } | 
|  |  | 
|  | /* Enable SOC clock */ | 
|  | clk_enable(ssp->clk); | 
|  |  | 
|  | /* Load default SSP configuration */ | 
|  | write_SSCR0(0, drv_data->ioaddr); | 
|  | write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT) | | 
|  | SSCR1_TxTresh(TX_THRESH_DFLT), | 
|  | drv_data->ioaddr); | 
|  | write_SSCR0(SSCR0_SCR(2) | 
|  | | SSCR0_Motorola | 
|  | | SSCR0_DataSize(8), | 
|  | drv_data->ioaddr); | 
|  | if (drv_data->ssp_type != PXA25x_SSP) | 
|  | write_SSTO(0, drv_data->ioaddr); | 
|  | write_SSPSP(0, drv_data->ioaddr); | 
|  |  | 
|  | /* Initial and start queue */ | 
|  | status = init_queue(drv_data); | 
|  | if (status != 0) { | 
|  | dev_err(&pdev->dev, "problem initializing queue\n"); | 
|  | goto out_error_clock_enabled; | 
|  | } | 
|  | status = start_queue(drv_data); | 
|  | if (status != 0) { | 
|  | dev_err(&pdev->dev, "problem starting queue\n"); | 
|  | goto out_error_clock_enabled; | 
|  | } | 
|  |  | 
|  | /* Register with the SPI framework */ | 
|  | platform_set_drvdata(pdev, drv_data); | 
|  | status = spi_register_master(master); | 
|  | if (status != 0) { | 
|  | dev_err(&pdev->dev, "problem registering spi master\n"); | 
|  | goto out_error_queue_alloc; | 
|  | } | 
|  |  | 
|  | return status; | 
|  |  | 
|  | out_error_queue_alloc: | 
|  | destroy_queue(drv_data); | 
|  |  | 
|  | out_error_clock_enabled: | 
|  | clk_disable(ssp->clk); | 
|  |  | 
|  | out_error_dma_alloc: | 
|  | if (drv_data->tx_channel != -1) | 
|  | pxa_free_dma(drv_data->tx_channel); | 
|  | if (drv_data->rx_channel != -1) | 
|  | pxa_free_dma(drv_data->rx_channel); | 
|  |  | 
|  | out_error_irq_alloc: | 
|  | free_irq(ssp->irq, drv_data); | 
|  |  | 
|  | out_error_master_alloc: | 
|  | spi_master_put(master); | 
|  | pxa_ssp_free(ssp); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static int pxa2xx_spi_remove(struct platform_device *pdev) | 
|  | { | 
|  | struct driver_data *drv_data = platform_get_drvdata(pdev); | 
|  | struct ssp_device *ssp; | 
|  | int status = 0; | 
|  |  | 
|  | if (!drv_data) | 
|  | return 0; | 
|  | ssp = drv_data->ssp; | 
|  |  | 
|  | /* Remove the queue */ | 
|  | status = destroy_queue(drv_data); | 
|  | if (status != 0) | 
|  | /* the kernel does not check the return status of this | 
|  | * this routine (mod->exit, within the kernel).  Therefore | 
|  | * nothing is gained by returning from here, the module is | 
|  | * going away regardless, and we should not leave any more | 
|  | * resources allocated than necessary.  We cannot free the | 
|  | * message memory in drv_data->queue, but we can release the | 
|  | * resources below.  I think the kernel should honor -EBUSY | 
|  | * returns but... */ | 
|  | dev_err(&pdev->dev, "pxa2xx_spi_remove: workqueue will not " | 
|  | "complete, message memory not freed\n"); | 
|  |  | 
|  | /* Disable the SSP at the peripheral and SOC level */ | 
|  | write_SSCR0(0, drv_data->ioaddr); | 
|  | clk_disable(ssp->clk); | 
|  |  | 
|  | /* Release DMA */ | 
|  | if (drv_data->master_info->enable_dma) { | 
|  | DRCMR(ssp->drcmr_rx) = 0; | 
|  | DRCMR(ssp->drcmr_tx) = 0; | 
|  | pxa_free_dma(drv_data->tx_channel); | 
|  | pxa_free_dma(drv_data->rx_channel); | 
|  | } | 
|  |  | 
|  | /* Release IRQ */ | 
|  | free_irq(ssp->irq, drv_data); | 
|  |  | 
|  | /* Release SSP */ | 
|  | pxa_ssp_free(ssp); | 
|  |  | 
|  | /* Disconnect from the SPI framework */ | 
|  | spi_unregister_master(drv_data->master); | 
|  |  | 
|  | /* Prevent double remove */ | 
|  | platform_set_drvdata(pdev, NULL); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void pxa2xx_spi_shutdown(struct platform_device *pdev) | 
|  | { | 
|  | int status = 0; | 
|  |  | 
|  | if ((status = pxa2xx_spi_remove(pdev)) != 0) | 
|  | dev_err(&pdev->dev, "shutdown failed with %d\n", status); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | static int pxa2xx_spi_suspend(struct device *dev) | 
|  | { | 
|  | struct driver_data *drv_data = dev_get_drvdata(dev); | 
|  | struct ssp_device *ssp = drv_data->ssp; | 
|  | int status = 0; | 
|  |  | 
|  | status = stop_queue(drv_data); | 
|  | if (status != 0) | 
|  | return status; | 
|  | write_SSCR0(0, drv_data->ioaddr); | 
|  | clk_disable(ssp->clk); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pxa2xx_spi_resume(struct device *dev) | 
|  | { | 
|  | struct driver_data *drv_data = dev_get_drvdata(dev); | 
|  | struct ssp_device *ssp = drv_data->ssp; | 
|  | int status = 0; | 
|  |  | 
|  | if (drv_data->rx_channel != -1) | 
|  | DRCMR(drv_data->ssp->drcmr_rx) = | 
|  | DRCMR_MAPVLD | drv_data->rx_channel; | 
|  | if (drv_data->tx_channel != -1) | 
|  | DRCMR(drv_data->ssp->drcmr_tx) = | 
|  | DRCMR_MAPVLD | drv_data->tx_channel; | 
|  |  | 
|  | /* Enable the SSP clock */ | 
|  | clk_enable(ssp->clk); | 
|  |  | 
|  | /* Start the queue running */ | 
|  | status = start_queue(drv_data); | 
|  | if (status != 0) { | 
|  | dev_err(dev, "problem starting queue (%d)\n", status); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct dev_pm_ops pxa2xx_spi_pm_ops = { | 
|  | .suspend	= pxa2xx_spi_suspend, | 
|  | .resume		= pxa2xx_spi_resume, | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | static struct platform_driver driver = { | 
|  | .driver = { | 
|  | .name	= "pxa2xx-spi", | 
|  | .owner	= THIS_MODULE, | 
|  | #ifdef CONFIG_PM | 
|  | .pm	= &pxa2xx_spi_pm_ops, | 
|  | #endif | 
|  | }, | 
|  | .remove = pxa2xx_spi_remove, | 
|  | .shutdown = pxa2xx_spi_shutdown, | 
|  | }; | 
|  |  | 
|  | static int __init pxa2xx_spi_init(void) | 
|  | { | 
|  | return platform_driver_probe(&driver, pxa2xx_spi_probe); | 
|  | } | 
|  | subsys_initcall(pxa2xx_spi_init); | 
|  |  | 
|  | static void __exit pxa2xx_spi_exit(void) | 
|  | { | 
|  | platform_driver_unregister(&driver); | 
|  | } | 
|  | module_exit(pxa2xx_spi_exit); |