|  | /* | 
|  | *  Copyright © 2012 Mike Dunn <mikedunn@newsguy.com> | 
|  | * | 
|  | * mtd nand driver for M-Systems DiskOnChip G4 | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * Tested on the Palm Treo 680.  The G4 is also present on Toshiba Portege, Asus | 
|  | * P526, some HTC smartphones (Wizard, Prophet, ...), O2 XDA Zinc, maybe others. | 
|  | * Should work on these as well.  Let me know! | 
|  | * | 
|  | * TODO: | 
|  | * | 
|  | *  Mechanism for management of password-protected areas | 
|  | * | 
|  | *  Hamming ecc when reading oob only | 
|  | * | 
|  | *  According to the M-Sys documentation, this device is also available in a | 
|  | *  "dual-die" configuration having a 256MB capacity, but no mechanism for | 
|  | *  detecting this variant is documented.  Currently this driver assumes 128MB | 
|  | *  capacity. | 
|  | * | 
|  | *  Support for multiple cascaded devices ("floors").  Not sure which gadgets | 
|  | *  contain multiple G4s in a cascaded configuration, if any. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/mtd/partitions.h> | 
|  | #include <linux/mtd/mtd.h> | 
|  | #include <linux/mtd/nand.h> | 
|  | #include <linux/bch.h> | 
|  | #include <linux/bitrev.h> | 
|  |  | 
|  | /* | 
|  | * You'll want to ignore badblocks if you're reading a partition that contains | 
|  | * data written by the TrueFFS library (i.e., by PalmOS, Windows, etc), since | 
|  | * it does not use mtd nand's method for marking bad blocks (using oob area). | 
|  | * This will also skip the check of the "page written" flag. | 
|  | */ | 
|  | static bool ignore_badblocks; | 
|  | module_param(ignore_badblocks, bool, 0); | 
|  | MODULE_PARM_DESC(ignore_badblocks, "no badblock checking performed"); | 
|  |  | 
|  | struct docg4_priv { | 
|  | struct mtd_info	*mtd; | 
|  | struct device *dev; | 
|  | void __iomem *virtadr; | 
|  | int status; | 
|  | struct { | 
|  | unsigned int command; | 
|  | int column; | 
|  | int page; | 
|  | } last_command; | 
|  | uint8_t oob_buf[16]; | 
|  | uint8_t ecc_buf[7]; | 
|  | int oob_page; | 
|  | struct bch_control *bch; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Defines prefixed with DOCG4 are unique to the diskonchip G4.  All others are | 
|  | * shared with other diskonchip devices (P3, G3 at least). | 
|  | * | 
|  | * Functions with names prefixed with docg4_ are mtd / nand interface functions | 
|  | * (though they may also be called internally).  All others are internal. | 
|  | */ | 
|  |  | 
|  | #define DOC_IOSPACE_DATA		0x0800 | 
|  |  | 
|  | /* register offsets */ | 
|  | #define DOC_CHIPID			0x1000 | 
|  | #define DOC_DEVICESELECT		0x100a | 
|  | #define DOC_ASICMODE			0x100c | 
|  | #define DOC_DATAEND			0x101e | 
|  | #define DOC_NOP				0x103e | 
|  |  | 
|  | #define DOC_FLASHSEQUENCE		0x1032 | 
|  | #define DOC_FLASHCOMMAND		0x1034 | 
|  | #define DOC_FLASHADDRESS		0x1036 | 
|  | #define DOC_FLASHCONTROL		0x1038 | 
|  | #define DOC_ECCCONF0			0x1040 | 
|  | #define DOC_ECCCONF1			0x1042 | 
|  | #define DOC_HAMMINGPARITY		0x1046 | 
|  | #define DOC_BCH_SYNDROM(idx)		(0x1048 + idx) | 
|  |  | 
|  | #define DOC_ASICMODECONFIRM		0x1072 | 
|  | #define DOC_CHIPID_INV			0x1074 | 
|  | #define DOC_POWERMODE			0x107c | 
|  |  | 
|  | #define DOCG4_MYSTERY_REG		0x1050 | 
|  |  | 
|  | /* apparently used only to write oob bytes 6 and 7 */ | 
|  | #define DOCG4_OOB_6_7			0x1052 | 
|  |  | 
|  | /* DOC_FLASHSEQUENCE register commands */ | 
|  | #define DOC_SEQ_RESET			0x00 | 
|  | #define DOCG4_SEQ_PAGE_READ		0x03 | 
|  | #define DOCG4_SEQ_FLUSH			0x29 | 
|  | #define DOCG4_SEQ_PAGEWRITE		0x16 | 
|  | #define DOCG4_SEQ_PAGEPROG		0x1e | 
|  | #define DOCG4_SEQ_BLOCKERASE		0x24 | 
|  |  | 
|  | /* DOC_FLASHCOMMAND register commands */ | 
|  | #define DOCG4_CMD_PAGE_READ             0x00 | 
|  | #define DOC_CMD_ERASECYCLE2		0xd0 | 
|  | #define DOCG4_CMD_FLUSH                 0x70 | 
|  | #define DOCG4_CMD_READ2                 0x30 | 
|  | #define DOC_CMD_PROG_BLOCK_ADDR		0x60 | 
|  | #define DOCG4_CMD_PAGEWRITE		0x80 | 
|  | #define DOC_CMD_PROG_CYCLE2		0x10 | 
|  | #define DOC_CMD_RESET			0xff | 
|  |  | 
|  | /* DOC_POWERMODE register bits */ | 
|  | #define DOC_POWERDOWN_READY		0x80 | 
|  |  | 
|  | /* DOC_FLASHCONTROL register bits */ | 
|  | #define DOC_CTRL_CE			0x10 | 
|  | #define DOC_CTRL_UNKNOWN		0x40 | 
|  | #define DOC_CTRL_FLASHREADY		0x01 | 
|  |  | 
|  | /* DOC_ECCCONF0 register bits */ | 
|  | #define DOC_ECCCONF0_READ_MODE		0x8000 | 
|  | #define DOC_ECCCONF0_UNKNOWN		0x2000 | 
|  | #define DOC_ECCCONF0_ECC_ENABLE	        0x1000 | 
|  | #define DOC_ECCCONF0_DATA_BYTES_MASK	0x07ff | 
|  |  | 
|  | /* DOC_ECCCONF1 register bits */ | 
|  | #define DOC_ECCCONF1_BCH_SYNDROM_ERR	0x80 | 
|  | #define DOC_ECCCONF1_ECC_ENABLE         0x07 | 
|  | #define DOC_ECCCONF1_PAGE_IS_WRITTEN	0x20 | 
|  |  | 
|  | /* DOC_ASICMODE register bits */ | 
|  | #define DOC_ASICMODE_RESET		0x00 | 
|  | #define DOC_ASICMODE_NORMAL		0x01 | 
|  | #define DOC_ASICMODE_POWERDOWN		0x02 | 
|  | #define DOC_ASICMODE_MDWREN		0x04 | 
|  | #define DOC_ASICMODE_BDETCT_RESET	0x08 | 
|  | #define DOC_ASICMODE_RSTIN_RESET	0x10 | 
|  | #define DOC_ASICMODE_RAM_WE		0x20 | 
|  |  | 
|  | /* good status values read after read/write/erase operations */ | 
|  | #define DOCG4_PROGSTATUS_GOOD          0x51 | 
|  | #define DOCG4_PROGSTATUS_GOOD_2        0xe0 | 
|  |  | 
|  | /* | 
|  | * On read operations (page and oob-only), the first byte read from I/O reg is a | 
|  | * status.  On error, it reads 0x73; otherwise, it reads either 0x71 (first read | 
|  | * after reset only) or 0x51, so bit 1 is presumed to be an error indicator. | 
|  | */ | 
|  | #define DOCG4_READ_ERROR           0x02 /* bit 1 indicates read error */ | 
|  |  | 
|  | /* anatomy of the device */ | 
|  | #define DOCG4_CHIP_SIZE        0x8000000 | 
|  | #define DOCG4_PAGE_SIZE        0x200 | 
|  | #define DOCG4_PAGES_PER_BLOCK  0x200 | 
|  | #define DOCG4_BLOCK_SIZE       (DOCG4_PAGES_PER_BLOCK * DOCG4_PAGE_SIZE) | 
|  | #define DOCG4_NUMBLOCKS        (DOCG4_CHIP_SIZE / DOCG4_BLOCK_SIZE) | 
|  | #define DOCG4_OOB_SIZE         0x10 | 
|  | #define DOCG4_CHIP_SHIFT       27    /* log_2(DOCG4_CHIP_SIZE) */ | 
|  | #define DOCG4_PAGE_SHIFT       9     /* log_2(DOCG4_PAGE_SIZE) */ | 
|  | #define DOCG4_ERASE_SHIFT      18    /* log_2(DOCG4_BLOCK_SIZE) */ | 
|  |  | 
|  | /* all but the last byte is included in ecc calculation */ | 
|  | #define DOCG4_BCH_SIZE         (DOCG4_PAGE_SIZE + DOCG4_OOB_SIZE - 1) | 
|  |  | 
|  | #define DOCG4_USERDATA_LEN     520 /* 512 byte page plus 8 oob avail to user */ | 
|  |  | 
|  | /* expected values from the ID registers */ | 
|  | #define DOCG4_IDREG1_VALUE     0x0400 | 
|  | #define DOCG4_IDREG2_VALUE     0xfbff | 
|  |  | 
|  | /* primitive polynomial used to build the Galois field used by hw ecc gen */ | 
|  | #define DOCG4_PRIMITIVE_POLY   0x4443 | 
|  |  | 
|  | #define DOCG4_M                14  /* Galois field is of order 2^14 */ | 
|  | #define DOCG4_T                4   /* BCH alg corrects up to 4 bit errors */ | 
|  |  | 
|  | #define DOCG4_FACTORY_BBT_PAGE 16 /* page where read-only factory bbt lives */ | 
|  |  | 
|  | /* | 
|  | * Oob bytes 0 - 6 are available to the user. | 
|  | * Byte 7 is hamming ecc for first 7 bytes.  Bytes 8 - 14 are hw-generated ecc. | 
|  | * Byte 15 (the last) is used by the driver as a "page written" flag. | 
|  | */ | 
|  | static struct nand_ecclayout docg4_oobinfo = { | 
|  | .eccbytes = 9, | 
|  | .eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15}, | 
|  | .oobavail = 7, | 
|  | .oobfree = { {0, 7} } | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * The device has a nop register which M-Sys claims is for the purpose of | 
|  | * inserting precise delays.  But beware; at least some operations fail if the | 
|  | * nop writes are replaced with a generic delay! | 
|  | */ | 
|  | static inline void write_nop(void __iomem *docptr) | 
|  | { | 
|  | writew(0, docptr + DOC_NOP); | 
|  | } | 
|  |  | 
|  | static void docg4_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) | 
|  | { | 
|  | int i; | 
|  | struct nand_chip *nand = mtd->priv; | 
|  | uint16_t *p = (uint16_t *) buf; | 
|  | len >>= 1; | 
|  |  | 
|  | for (i = 0; i < len; i++) | 
|  | p[i] = readw(nand->IO_ADDR_R); | 
|  | } | 
|  |  | 
|  | static void docg4_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) | 
|  | { | 
|  | int i; | 
|  | struct nand_chip *nand = mtd->priv; | 
|  | uint16_t *p = (uint16_t *) buf; | 
|  | len >>= 1; | 
|  |  | 
|  | for (i = 0; i < len; i++) | 
|  | writew(p[i], nand->IO_ADDR_W); | 
|  | } | 
|  |  | 
|  | static int poll_status(struct docg4_priv *doc) | 
|  | { | 
|  | /* | 
|  | * Busy-wait for the FLASHREADY bit to be set in the FLASHCONTROL | 
|  | * register.  Operations known to take a long time (e.g., block erase) | 
|  | * should sleep for a while before calling this. | 
|  | */ | 
|  |  | 
|  | uint16_t flash_status; | 
|  | unsigned int timeo; | 
|  | void __iomem *docptr = doc->virtadr; | 
|  |  | 
|  | dev_dbg(doc->dev, "%s...\n", __func__); | 
|  |  | 
|  | /* hardware quirk requires reading twice initially */ | 
|  | flash_status = readw(docptr + DOC_FLASHCONTROL); | 
|  |  | 
|  | timeo = 1000; | 
|  | do { | 
|  | cpu_relax(); | 
|  | flash_status = readb(docptr + DOC_FLASHCONTROL); | 
|  | } while (!(flash_status & DOC_CTRL_FLASHREADY) && --timeo); | 
|  |  | 
|  |  | 
|  | if (!timeo) { | 
|  | dev_err(doc->dev, "%s: timed out!\n", __func__); | 
|  | return NAND_STATUS_FAIL; | 
|  | } | 
|  |  | 
|  | if (unlikely(timeo < 50)) | 
|  | dev_warn(doc->dev, "%s: nearly timed out; %d remaining\n", | 
|  | __func__, timeo); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int docg4_wait(struct mtd_info *mtd, struct nand_chip *nand) | 
|  | { | 
|  |  | 
|  | struct docg4_priv *doc = nand->priv; | 
|  | int status = NAND_STATUS_WP;       /* inverse logic?? */ | 
|  | dev_dbg(doc->dev, "%s...\n", __func__); | 
|  |  | 
|  | /* report any previously unreported error */ | 
|  | if (doc->status) { | 
|  | status |= doc->status; | 
|  | doc->status = 0; | 
|  | return status; | 
|  | } | 
|  |  | 
|  | status |= poll_status(doc); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static void docg4_select_chip(struct mtd_info *mtd, int chip) | 
|  | { | 
|  | /* | 
|  | * Select among multiple cascaded chips ("floors").  Multiple floors are | 
|  | * not yet supported, so the only valid non-negative value is 0. | 
|  | */ | 
|  | struct nand_chip *nand = mtd->priv; | 
|  | struct docg4_priv *doc = nand->priv; | 
|  | void __iomem *docptr = doc->virtadr; | 
|  |  | 
|  | dev_dbg(doc->dev, "%s: chip %d\n", __func__, chip); | 
|  |  | 
|  | if (chip < 0) | 
|  | return;		/* deselected */ | 
|  |  | 
|  | if (chip > 0) | 
|  | dev_warn(doc->dev, "multiple floors currently unsupported\n"); | 
|  |  | 
|  | writew(0, docptr + DOC_DEVICESELECT); | 
|  | } | 
|  |  | 
|  | static void reset(struct mtd_info *mtd) | 
|  | { | 
|  | /* full device reset */ | 
|  |  | 
|  | struct nand_chip *nand = mtd->priv; | 
|  | struct docg4_priv *doc = nand->priv; | 
|  | void __iomem *docptr = doc->virtadr; | 
|  |  | 
|  | writew(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN, | 
|  | docptr + DOC_ASICMODE); | 
|  | writew(~(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN), | 
|  | docptr + DOC_ASICMODECONFIRM); | 
|  | write_nop(docptr); | 
|  |  | 
|  | writew(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN, | 
|  | docptr + DOC_ASICMODE); | 
|  | writew(~(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN), | 
|  | docptr + DOC_ASICMODECONFIRM); | 
|  |  | 
|  | writew(DOC_ECCCONF1_ECC_ENABLE, docptr + DOC_ECCCONF1); | 
|  |  | 
|  | poll_status(doc); | 
|  | } | 
|  |  | 
|  | static void read_hw_ecc(void __iomem *docptr, uint8_t *ecc_buf) | 
|  | { | 
|  | /* read the 7 hw-generated ecc bytes */ | 
|  |  | 
|  | int i; | 
|  | for (i = 0; i < 7; i++) { /* hw quirk; read twice */ | 
|  | ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i)); | 
|  | ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int correct_data(struct mtd_info *mtd, uint8_t *buf, int page) | 
|  | { | 
|  | /* | 
|  | * Called after a page read when hardware reports bitflips. | 
|  | * Up to four bitflips can be corrected. | 
|  | */ | 
|  |  | 
|  | struct nand_chip *nand = mtd->priv; | 
|  | struct docg4_priv *doc = nand->priv; | 
|  | void __iomem *docptr = doc->virtadr; | 
|  | int i, numerrs, errpos[4]; | 
|  | const uint8_t blank_read_hwecc[8] = { | 
|  | 0xcf, 0x72, 0xfc, 0x1b, 0xa9, 0xc7, 0xb9, 0 }; | 
|  |  | 
|  | read_hw_ecc(docptr, doc->ecc_buf); /* read 7 hw-generated ecc bytes */ | 
|  |  | 
|  | /* check if read error is due to a blank page */ | 
|  | if (!memcmp(doc->ecc_buf, blank_read_hwecc, 7)) | 
|  | return 0;	/* yes */ | 
|  |  | 
|  | /* skip additional check of "written flag" if ignore_badblocks */ | 
|  | if (ignore_badblocks == false) { | 
|  |  | 
|  | /* | 
|  | * If the hw ecc bytes are not those of a blank page, there's | 
|  | * still a chance that the page is blank, but was read with | 
|  | * errors.  Check the "written flag" in last oob byte, which | 
|  | * is set to zero when a page is written.  If more than half | 
|  | * the bits are set, assume a blank page.  Unfortunately, the | 
|  | * bit flips(s) are not reported in stats. | 
|  | */ | 
|  |  | 
|  | if (doc->oob_buf[15]) { | 
|  | int bit, numsetbits = 0; | 
|  | unsigned long written_flag = doc->oob_buf[15]; | 
|  | for_each_set_bit(bit, &written_flag, 8) | 
|  | numsetbits++; | 
|  | if (numsetbits > 4) { /* assume blank */ | 
|  | dev_warn(doc->dev, | 
|  | "error(s) in blank page " | 
|  | "at offset %08x\n", | 
|  | page * DOCG4_PAGE_SIZE); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The hardware ecc unit produces oob_ecc ^ calc_ecc.  The kernel's bch | 
|  | * algorithm is used to decode this.  However the hw operates on page | 
|  | * data in a bit order that is the reverse of that of the bch alg, | 
|  | * requiring that the bits be reversed on the result.  Thanks to Ivan | 
|  | * Djelic for his analysis! | 
|  | */ | 
|  | for (i = 0; i < 7; i++) | 
|  | doc->ecc_buf[i] = bitrev8(doc->ecc_buf[i]); | 
|  |  | 
|  | numerrs = decode_bch(doc->bch, NULL, DOCG4_USERDATA_LEN, NULL, | 
|  | doc->ecc_buf, NULL, errpos); | 
|  |  | 
|  | if (numerrs == -EBADMSG) { | 
|  | dev_warn(doc->dev, "uncorrectable errors at offset %08x\n", | 
|  | page * DOCG4_PAGE_SIZE); | 
|  | return -EBADMSG; | 
|  | } | 
|  |  | 
|  | BUG_ON(numerrs < 0);	/* -EINVAL, or anything other than -EBADMSG */ | 
|  |  | 
|  | /* undo last step in BCH alg (modulo mirroring not needed) */ | 
|  | for (i = 0; i < numerrs; i++) | 
|  | errpos[i] = (errpos[i] & ~7)|(7-(errpos[i] & 7)); | 
|  |  | 
|  | /* fix the errors */ | 
|  | for (i = 0; i < numerrs; i++) { | 
|  |  | 
|  | /* ignore if error within oob ecc bytes */ | 
|  | if (errpos[i] > DOCG4_USERDATA_LEN * 8) | 
|  | continue; | 
|  |  | 
|  | /* if error within oob area preceeding ecc bytes... */ | 
|  | if (errpos[i] > DOCG4_PAGE_SIZE * 8) | 
|  | change_bit(errpos[i] - DOCG4_PAGE_SIZE * 8, | 
|  | (unsigned long *)doc->oob_buf); | 
|  |  | 
|  | else    /* error in page data */ | 
|  | change_bit(errpos[i], (unsigned long *)buf); | 
|  | } | 
|  |  | 
|  | dev_notice(doc->dev, "%d error(s) corrected at offset %08x\n", | 
|  | numerrs, page * DOCG4_PAGE_SIZE); | 
|  |  | 
|  | return numerrs; | 
|  | } | 
|  |  | 
|  | static uint8_t docg4_read_byte(struct mtd_info *mtd) | 
|  | { | 
|  | struct nand_chip *nand = mtd->priv; | 
|  | struct docg4_priv *doc = nand->priv; | 
|  |  | 
|  | dev_dbg(doc->dev, "%s\n", __func__); | 
|  |  | 
|  | if (doc->last_command.command == NAND_CMD_STATUS) { | 
|  | int status; | 
|  |  | 
|  | /* | 
|  | * Previous nand command was status request, so nand | 
|  | * infrastructure code expects to read the status here.  If an | 
|  | * error occurred in a previous operation, report it. | 
|  | */ | 
|  | doc->last_command.command = 0; | 
|  |  | 
|  | if (doc->status) { | 
|  | status = doc->status; | 
|  | doc->status = 0; | 
|  | } | 
|  |  | 
|  | /* why is NAND_STATUS_WP inverse logic?? */ | 
|  | else | 
|  | status = NAND_STATUS_WP | NAND_STATUS_READY; | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | dev_warn(doc->dev, "unexpectd call to read_byte()\n"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void write_addr(struct docg4_priv *doc, uint32_t docg4_addr) | 
|  | { | 
|  | /* write the four address bytes packed in docg4_addr to the device */ | 
|  |  | 
|  | void __iomem *docptr = doc->virtadr; | 
|  | writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); | 
|  | docg4_addr >>= 8; | 
|  | writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); | 
|  | docg4_addr >>= 8; | 
|  | writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); | 
|  | docg4_addr >>= 8; | 
|  | writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); | 
|  | } | 
|  |  | 
|  | static int read_progstatus(struct docg4_priv *doc) | 
|  | { | 
|  | /* | 
|  | * This apparently checks the status of programming.  Done after an | 
|  | * erasure, and after page data is written.  On error, the status is | 
|  | * saved, to be later retrieved by the nand infrastructure code. | 
|  | */ | 
|  | void __iomem *docptr = doc->virtadr; | 
|  |  | 
|  | /* status is read from the I/O reg */ | 
|  | uint16_t status1 = readw(docptr + DOC_IOSPACE_DATA); | 
|  | uint16_t status2 = readw(docptr + DOC_IOSPACE_DATA); | 
|  | uint16_t status3 = readw(docptr + DOCG4_MYSTERY_REG); | 
|  |  | 
|  | dev_dbg(doc->dev, "docg4: %s: %02x %02x %02x\n", | 
|  | __func__, status1, status2, status3); | 
|  |  | 
|  | if (status1 != DOCG4_PROGSTATUS_GOOD | 
|  | || status2 != DOCG4_PROGSTATUS_GOOD_2 | 
|  | || status3 != DOCG4_PROGSTATUS_GOOD_2) { | 
|  | doc->status = NAND_STATUS_FAIL; | 
|  | dev_warn(doc->dev, "read_progstatus failed: " | 
|  | "%02x, %02x, %02x\n", status1, status2, status3); | 
|  | return -EIO; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pageprog(struct mtd_info *mtd) | 
|  | { | 
|  | /* | 
|  | * Final step in writing a page.  Writes the contents of its | 
|  | * internal buffer out to the flash array, or some such. | 
|  | */ | 
|  |  | 
|  | struct nand_chip *nand = mtd->priv; | 
|  | struct docg4_priv *doc = nand->priv; | 
|  | void __iomem *docptr = doc->virtadr; | 
|  | int retval = 0; | 
|  |  | 
|  | dev_dbg(doc->dev, "docg4: %s\n", __func__); | 
|  |  | 
|  | writew(DOCG4_SEQ_PAGEPROG, docptr + DOC_FLASHSEQUENCE); | 
|  | writew(DOC_CMD_PROG_CYCLE2, docptr + DOC_FLASHCOMMAND); | 
|  | write_nop(docptr); | 
|  | write_nop(docptr); | 
|  |  | 
|  | /* Just busy-wait; usleep_range() slows things down noticeably. */ | 
|  | poll_status(doc); | 
|  |  | 
|  | writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE); | 
|  | writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND); | 
|  | writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0); | 
|  | write_nop(docptr); | 
|  | write_nop(docptr); | 
|  | write_nop(docptr); | 
|  | write_nop(docptr); | 
|  | write_nop(docptr); | 
|  |  | 
|  | retval = read_progstatus(doc); | 
|  | writew(0, docptr + DOC_DATAEND); | 
|  | write_nop(docptr); | 
|  | poll_status(doc); | 
|  | write_nop(docptr); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static void sequence_reset(struct mtd_info *mtd) | 
|  | { | 
|  | /* common starting sequence for all operations */ | 
|  |  | 
|  | struct nand_chip *nand = mtd->priv; | 
|  | struct docg4_priv *doc = nand->priv; | 
|  | void __iomem *docptr = doc->virtadr; | 
|  |  | 
|  | writew(DOC_CTRL_UNKNOWN | DOC_CTRL_CE, docptr + DOC_FLASHCONTROL); | 
|  | writew(DOC_SEQ_RESET, docptr + DOC_FLASHSEQUENCE); | 
|  | writew(DOC_CMD_RESET, docptr + DOC_FLASHCOMMAND); | 
|  | write_nop(docptr); | 
|  | write_nop(docptr); | 
|  | poll_status(doc); | 
|  | write_nop(docptr); | 
|  | } | 
|  |  | 
|  | static void read_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr) | 
|  | { | 
|  | /* first step in reading a page */ | 
|  |  | 
|  | struct nand_chip *nand = mtd->priv; | 
|  | struct docg4_priv *doc = nand->priv; | 
|  | void __iomem *docptr = doc->virtadr; | 
|  |  | 
|  | dev_dbg(doc->dev, | 
|  | "docg4: %s: g4 page %08x\n", __func__, docg4_addr); | 
|  |  | 
|  | sequence_reset(mtd); | 
|  |  | 
|  | writew(DOCG4_SEQ_PAGE_READ, docptr + DOC_FLASHSEQUENCE); | 
|  | writew(DOCG4_CMD_PAGE_READ, docptr + DOC_FLASHCOMMAND); | 
|  | write_nop(docptr); | 
|  |  | 
|  | write_addr(doc, docg4_addr); | 
|  |  | 
|  | write_nop(docptr); | 
|  | writew(DOCG4_CMD_READ2, docptr + DOC_FLASHCOMMAND); | 
|  | write_nop(docptr); | 
|  | write_nop(docptr); | 
|  |  | 
|  | poll_status(doc); | 
|  | } | 
|  |  | 
|  | static void write_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr) | 
|  | { | 
|  | /* first step in writing a page */ | 
|  |  | 
|  | struct nand_chip *nand = mtd->priv; | 
|  | struct docg4_priv *doc = nand->priv; | 
|  | void __iomem *docptr = doc->virtadr; | 
|  |  | 
|  | dev_dbg(doc->dev, | 
|  | "docg4: %s: g4 addr: %x\n", __func__, docg4_addr); | 
|  | sequence_reset(mtd); | 
|  | writew(DOCG4_SEQ_PAGEWRITE, docptr + DOC_FLASHSEQUENCE); | 
|  | writew(DOCG4_CMD_PAGEWRITE, docptr + DOC_FLASHCOMMAND); | 
|  | write_nop(docptr); | 
|  | write_addr(doc, docg4_addr); | 
|  | write_nop(docptr); | 
|  | write_nop(docptr); | 
|  | poll_status(doc); | 
|  | } | 
|  |  | 
|  | static uint32_t mtd_to_docg4_address(int page, int column) | 
|  | { | 
|  | /* | 
|  | * Convert mtd address to format used by the device, 32 bit packed. | 
|  | * | 
|  | * Some notes on G4 addressing... The M-Sys documentation on this device | 
|  | * claims that pages are 2K in length, and indeed, the format of the | 
|  | * address used by the device reflects that.  But within each page are | 
|  | * four 512 byte "sub-pages", each with its own oob data that is | 
|  | * read/written immediately after the 512 bytes of page data.  This oob | 
|  | * data contains the ecc bytes for the preceeding 512 bytes. | 
|  | * | 
|  | * Rather than tell the mtd nand infrastructure that page size is 2k, | 
|  | * with four sub-pages each, we engage in a little subterfuge and tell | 
|  | * the infrastructure code that pages are 512 bytes in size.  This is | 
|  | * done because during the course of reverse-engineering the device, I | 
|  | * never observed an instance where an entire 2K "page" was read or | 
|  | * written as a unit.  Each "sub-page" is always addressed individually, | 
|  | * its data read/written, and ecc handled before the next "sub-page" is | 
|  | * addressed. | 
|  | * | 
|  | * This requires us to convert addresses passed by the mtd nand | 
|  | * infrastructure code to those used by the device. | 
|  | * | 
|  | * The address that is written to the device consists of four bytes: the | 
|  | * first two are the 2k page number, and the second is the index into | 
|  | * the page.  The index is in terms of 16-bit half-words and includes | 
|  | * the preceeding oob data, so e.g., the index into the second | 
|  | * "sub-page" is 0x108, and the full device address of the start of mtd | 
|  | * page 0x201 is 0x00800108. | 
|  | */ | 
|  | int g4_page = page / 4;	                      /* device's 2K page */ | 
|  | int g4_index = (page % 4) * 0x108 + column/2; /* offset into page */ | 
|  | return (g4_page << 16) | g4_index;	      /* pack */ | 
|  | } | 
|  |  | 
|  | static void docg4_command(struct mtd_info *mtd, unsigned command, int column, | 
|  | int page_addr) | 
|  | { | 
|  | /* handle standard nand commands */ | 
|  |  | 
|  | struct nand_chip *nand = mtd->priv; | 
|  | struct docg4_priv *doc = nand->priv; | 
|  | uint32_t g4_addr = mtd_to_docg4_address(page_addr, column); | 
|  |  | 
|  | dev_dbg(doc->dev, "%s %x, page_addr=%x, column=%x\n", | 
|  | __func__, command, page_addr, column); | 
|  |  | 
|  | /* | 
|  | * Save the command and its arguments.  This enables emulation of | 
|  | * standard flash devices, and also some optimizations. | 
|  | */ | 
|  | doc->last_command.command = command; | 
|  | doc->last_command.column = column; | 
|  | doc->last_command.page = page_addr; | 
|  |  | 
|  | switch (command) { | 
|  |  | 
|  | case NAND_CMD_RESET: | 
|  | reset(mtd); | 
|  | break; | 
|  |  | 
|  | case NAND_CMD_READ0: | 
|  | read_page_prologue(mtd, g4_addr); | 
|  | break; | 
|  |  | 
|  | case NAND_CMD_STATUS: | 
|  | /* next call to read_byte() will expect a status */ | 
|  | break; | 
|  |  | 
|  | case NAND_CMD_SEQIN: | 
|  | write_page_prologue(mtd, g4_addr); | 
|  |  | 
|  | /* hack for deferred write of oob bytes */ | 
|  | if (doc->oob_page == page_addr) | 
|  | memcpy(nand->oob_poi, doc->oob_buf, 16); | 
|  | break; | 
|  |  | 
|  | case NAND_CMD_PAGEPROG: | 
|  | pageprog(mtd); | 
|  | break; | 
|  |  | 
|  | /* we don't expect these, based on review of nand_base.c */ | 
|  | case NAND_CMD_READOOB: | 
|  | case NAND_CMD_READID: | 
|  | case NAND_CMD_ERASE1: | 
|  | case NAND_CMD_ERASE2: | 
|  | dev_warn(doc->dev, "docg4_command: " | 
|  | "unexpected nand command 0x%x\n", command); | 
|  | break; | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | static int read_page(struct mtd_info *mtd, struct nand_chip *nand, | 
|  | uint8_t *buf, int page, bool use_ecc) | 
|  | { | 
|  | struct docg4_priv *doc = nand->priv; | 
|  | void __iomem *docptr = doc->virtadr; | 
|  | uint16_t status, edc_err, *buf16; | 
|  |  | 
|  | dev_dbg(doc->dev, "%s: page %08x\n", __func__, page); | 
|  |  | 
|  | writew(DOC_ECCCONF0_READ_MODE | | 
|  | DOC_ECCCONF0_ECC_ENABLE | | 
|  | DOC_ECCCONF0_UNKNOWN | | 
|  | DOCG4_BCH_SIZE, | 
|  | docptr + DOC_ECCCONF0); | 
|  | write_nop(docptr); | 
|  | write_nop(docptr); | 
|  | write_nop(docptr); | 
|  | write_nop(docptr); | 
|  | write_nop(docptr); | 
|  |  | 
|  | /* the 1st byte from the I/O reg is a status; the rest is page data */ | 
|  | status = readw(docptr + DOC_IOSPACE_DATA); | 
|  | if (status & DOCG4_READ_ERROR) { | 
|  | dev_err(doc->dev, | 
|  | "docg4_read_page: bad status: 0x%02x\n", status); | 
|  | writew(0, docptr + DOC_DATAEND); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status); | 
|  |  | 
|  | docg4_read_buf(mtd, buf, DOCG4_PAGE_SIZE); /* read the page data */ | 
|  |  | 
|  | /* | 
|  | * Diskonchips read oob immediately after a page read.  Mtd | 
|  | * infrastructure issues a separate command for reading oob after the | 
|  | * page is read.  So we save the oob bytes in a local buffer and just | 
|  | * copy it if the next command reads oob from the same page. | 
|  | */ | 
|  |  | 
|  | /* first 14 oob bytes read from I/O reg */ | 
|  | docg4_read_buf(mtd, doc->oob_buf, 14); | 
|  |  | 
|  | /* last 2 read from another reg */ | 
|  | buf16 = (uint16_t *)(doc->oob_buf + 14); | 
|  | *buf16 = readw(docptr + DOCG4_MYSTERY_REG); | 
|  |  | 
|  | write_nop(docptr); | 
|  |  | 
|  | if (likely(use_ecc == true)) { | 
|  |  | 
|  | /* read the register that tells us if bitflip(s) detected  */ | 
|  | edc_err = readw(docptr + DOC_ECCCONF1); | 
|  | edc_err = readw(docptr + DOC_ECCCONF1); | 
|  | dev_dbg(doc->dev, "%s: edc_err = 0x%02x\n", __func__, edc_err); | 
|  |  | 
|  | /* If bitflips are reported, attempt to correct with ecc */ | 
|  | if (edc_err & DOC_ECCCONF1_BCH_SYNDROM_ERR) { | 
|  | int bits_corrected = correct_data(mtd, buf, page); | 
|  | if (bits_corrected == -EBADMSG) | 
|  | mtd->ecc_stats.failed++; | 
|  | else | 
|  | mtd->ecc_stats.corrected += bits_corrected; | 
|  | } | 
|  | } | 
|  |  | 
|  | writew(0, docptr + DOC_DATAEND); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int docg4_read_page_raw(struct mtd_info *mtd, struct nand_chip *nand, | 
|  | uint8_t *buf, int page) | 
|  | { | 
|  | return read_page(mtd, nand, buf, page, false); | 
|  | } | 
|  |  | 
|  | static int docg4_read_page(struct mtd_info *mtd, struct nand_chip *nand, | 
|  | uint8_t *buf, int page) | 
|  | { | 
|  | return read_page(mtd, nand, buf, page, true); | 
|  | } | 
|  |  | 
|  | static int docg4_read_oob(struct mtd_info *mtd, struct nand_chip *nand, | 
|  | int page, int sndcmd) | 
|  | { | 
|  | struct docg4_priv *doc = nand->priv; | 
|  | void __iomem *docptr = doc->virtadr; | 
|  | uint16_t status; | 
|  |  | 
|  | dev_dbg(doc->dev, "%s: page %x\n", __func__, page); | 
|  |  | 
|  | /* | 
|  | * Oob bytes are read as part of a normal page read.  If the previous | 
|  | * nand command was a read of the page whose oob is now being read, just | 
|  | * copy the oob bytes that we saved in a local buffer and avoid a | 
|  | * separate oob read. | 
|  | */ | 
|  | if (doc->last_command.command == NAND_CMD_READ0 && | 
|  | doc->last_command.page == page) { | 
|  | memcpy(nand->oob_poi, doc->oob_buf, 16); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Separate read of oob data only. | 
|  | */ | 
|  | docg4_command(mtd, NAND_CMD_READ0, nand->ecc.size, page); | 
|  |  | 
|  | writew(DOC_ECCCONF0_READ_MODE | DOCG4_OOB_SIZE, docptr + DOC_ECCCONF0); | 
|  | write_nop(docptr); | 
|  | write_nop(docptr); | 
|  | write_nop(docptr); | 
|  | write_nop(docptr); | 
|  | write_nop(docptr); | 
|  |  | 
|  | /* the 1st byte from the I/O reg is a status; the rest is oob data */ | 
|  | status = readw(docptr + DOC_IOSPACE_DATA); | 
|  | if (status & DOCG4_READ_ERROR) { | 
|  | dev_warn(doc->dev, | 
|  | "docg4_read_oob failed: status = 0x%02x\n", status); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status); | 
|  |  | 
|  | docg4_read_buf(mtd, nand->oob_poi, 16); | 
|  |  | 
|  | write_nop(docptr); | 
|  | write_nop(docptr); | 
|  | write_nop(docptr); | 
|  | writew(0, docptr + DOC_DATAEND); | 
|  | write_nop(docptr); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void docg4_erase_block(struct mtd_info *mtd, int page) | 
|  | { | 
|  | struct nand_chip *nand = mtd->priv; | 
|  | struct docg4_priv *doc = nand->priv; | 
|  | void __iomem *docptr = doc->virtadr; | 
|  | uint16_t g4_page; | 
|  |  | 
|  | dev_dbg(doc->dev, "%s: page %04x\n", __func__, page); | 
|  |  | 
|  | sequence_reset(mtd); | 
|  |  | 
|  | writew(DOCG4_SEQ_BLOCKERASE, docptr + DOC_FLASHSEQUENCE); | 
|  | writew(DOC_CMD_PROG_BLOCK_ADDR, docptr + DOC_FLASHCOMMAND); | 
|  | write_nop(docptr); | 
|  |  | 
|  | /* only 2 bytes of address are written to specify erase block */ | 
|  | g4_page = (uint16_t)(page / 4);  /* to g4's 2k page addressing */ | 
|  | writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS); | 
|  | g4_page >>= 8; | 
|  | writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS); | 
|  | write_nop(docptr); | 
|  |  | 
|  | /* start the erasure */ | 
|  | writew(DOC_CMD_ERASECYCLE2, docptr + DOC_FLASHCOMMAND); | 
|  | write_nop(docptr); | 
|  | write_nop(docptr); | 
|  |  | 
|  | usleep_range(500, 1000); /* erasure is long; take a snooze */ | 
|  | poll_status(doc); | 
|  | writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE); | 
|  | writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND); | 
|  | writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0); | 
|  | write_nop(docptr); | 
|  | write_nop(docptr); | 
|  | write_nop(docptr); | 
|  | write_nop(docptr); | 
|  | write_nop(docptr); | 
|  |  | 
|  | read_progstatus(doc); | 
|  |  | 
|  | writew(0, docptr + DOC_DATAEND); | 
|  | write_nop(docptr); | 
|  | poll_status(doc); | 
|  | write_nop(docptr); | 
|  | } | 
|  |  | 
|  | static void write_page(struct mtd_info *mtd, struct nand_chip *nand, | 
|  | const uint8_t *buf, bool use_ecc) | 
|  | { | 
|  | struct docg4_priv *doc = nand->priv; | 
|  | void __iomem *docptr = doc->virtadr; | 
|  | uint8_t ecc_buf[8]; | 
|  |  | 
|  | dev_dbg(doc->dev, "%s...\n", __func__); | 
|  |  | 
|  | writew(DOC_ECCCONF0_ECC_ENABLE | | 
|  | DOC_ECCCONF0_UNKNOWN | | 
|  | DOCG4_BCH_SIZE, | 
|  | docptr + DOC_ECCCONF0); | 
|  | write_nop(docptr); | 
|  |  | 
|  | /* write the page data */ | 
|  | docg4_write_buf16(mtd, buf, DOCG4_PAGE_SIZE); | 
|  |  | 
|  | /* oob bytes 0 through 5 are written to I/O reg */ | 
|  | docg4_write_buf16(mtd, nand->oob_poi, 6); | 
|  |  | 
|  | /* oob byte 6 written to a separate reg */ | 
|  | writew(nand->oob_poi[6], docptr + DOCG4_OOB_6_7); | 
|  |  | 
|  | write_nop(docptr); | 
|  | write_nop(docptr); | 
|  |  | 
|  | /* write hw-generated ecc bytes to oob */ | 
|  | if (likely(use_ecc == true)) { | 
|  | /* oob byte 7 is hamming code */ | 
|  | uint8_t hamming = readb(docptr + DOC_HAMMINGPARITY); | 
|  | hamming = readb(docptr + DOC_HAMMINGPARITY); /* 2nd read */ | 
|  | writew(hamming, docptr + DOCG4_OOB_6_7); | 
|  | write_nop(docptr); | 
|  |  | 
|  | /* read the 7 bch bytes from ecc regs */ | 
|  | read_hw_ecc(docptr, ecc_buf); | 
|  | ecc_buf[7] = 0;         /* clear the "page written" flag */ | 
|  | } | 
|  |  | 
|  | /* write user-supplied bytes to oob */ | 
|  | else { | 
|  | writew(nand->oob_poi[7], docptr + DOCG4_OOB_6_7); | 
|  | write_nop(docptr); | 
|  | memcpy(ecc_buf, &nand->oob_poi[8], 8); | 
|  | } | 
|  |  | 
|  | docg4_write_buf16(mtd, ecc_buf, 8); | 
|  | write_nop(docptr); | 
|  | write_nop(docptr); | 
|  | writew(0, docptr + DOC_DATAEND); | 
|  | write_nop(docptr); | 
|  | } | 
|  |  | 
|  | static void docg4_write_page_raw(struct mtd_info *mtd, struct nand_chip *nand, | 
|  | const uint8_t *buf) | 
|  | { | 
|  | return write_page(mtd, nand, buf, false); | 
|  | } | 
|  |  | 
|  | static void docg4_write_page(struct mtd_info *mtd, struct nand_chip *nand, | 
|  | const uint8_t *buf) | 
|  | { | 
|  | return write_page(mtd, nand, buf, true); | 
|  | } | 
|  |  | 
|  | static int docg4_write_oob(struct mtd_info *mtd, struct nand_chip *nand, | 
|  | int page) | 
|  | { | 
|  | /* | 
|  | * Writing oob-only is not really supported, because MLC nand must write | 
|  | * oob bytes at the same time as page data.  Nonetheless, we save the | 
|  | * oob buffer contents here, and then write it along with the page data | 
|  | * if the same page is subsequently written.  This allows user space | 
|  | * utilities that write the oob data prior to the page data to work | 
|  | * (e.g., nandwrite).  The disdvantage is that, if the intention was to | 
|  | * write oob only, the operation is quietly ignored.  Also, oob can get | 
|  | * corrupted if two concurrent processes are running nandwrite. | 
|  | */ | 
|  |  | 
|  | /* note that bytes 7..14 are hw generated hamming/ecc and overwritten */ | 
|  | struct docg4_priv *doc = nand->priv; | 
|  | doc->oob_page = page; | 
|  | memcpy(doc->oob_buf, nand->oob_poi, 16); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init read_factory_bbt(struct mtd_info *mtd) | 
|  | { | 
|  | /* | 
|  | * The device contains a read-only factory bad block table.  Read it and | 
|  | * update the memory-based bbt accordingly. | 
|  | */ | 
|  |  | 
|  | struct nand_chip *nand = mtd->priv; | 
|  | struct docg4_priv *doc = nand->priv; | 
|  | uint32_t g4_addr = mtd_to_docg4_address(DOCG4_FACTORY_BBT_PAGE, 0); | 
|  | uint8_t *buf; | 
|  | int i, block, status; | 
|  |  | 
|  | buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL); | 
|  | if (buf == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | read_page_prologue(mtd, g4_addr); | 
|  | status = docg4_read_page(mtd, nand, buf, DOCG4_FACTORY_BBT_PAGE); | 
|  | if (status) | 
|  | goto exit; | 
|  |  | 
|  | /* | 
|  | * If no memory-based bbt was created, exit.  This will happen if module | 
|  | * parameter ignore_badblocks is set.  Then why even call this function? | 
|  | * For an unknown reason, block erase always fails if it's the first | 
|  | * operation after device power-up.  The above read ensures it never is. | 
|  | * Ugly, I know. | 
|  | */ | 
|  | if (nand->bbt == NULL)  /* no memory-based bbt */ | 
|  | goto exit; | 
|  |  | 
|  | /* | 
|  | * Parse factory bbt and update memory-based bbt.  Factory bbt format is | 
|  | * simple: one bit per block, block numbers increase left to right (msb | 
|  | * to lsb).  Bit clear means bad block. | 
|  | */ | 
|  | for (i = block = 0; block < DOCG4_NUMBLOCKS; block += 8, i++) { | 
|  | int bitnum; | 
|  | unsigned long bits = ~buf[i]; | 
|  | for_each_set_bit(bitnum, &bits, 8) { | 
|  | int badblock = block + 7 - bitnum; | 
|  | nand->bbt[badblock / 4] |= | 
|  | 0x03 << ((badblock % 4) * 2); | 
|  | mtd->ecc_stats.badblocks++; | 
|  | dev_notice(doc->dev, "factory-marked bad block: %d\n", | 
|  | badblock); | 
|  | } | 
|  | } | 
|  | exit: | 
|  | kfree(buf); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static int docg4_block_markbad(struct mtd_info *mtd, loff_t ofs) | 
|  | { | 
|  | /* | 
|  | * Mark a block as bad.  Bad blocks are marked in the oob area of the | 
|  | * first page of the block.  The default scan_bbt() in the nand | 
|  | * infrastructure code works fine for building the memory-based bbt | 
|  | * during initialization, as does the nand infrastructure function that | 
|  | * checks if a block is bad by reading the bbt.  This function replaces | 
|  | * the nand default because writes to oob-only are not supported. | 
|  | */ | 
|  |  | 
|  | int ret, i; | 
|  | uint8_t *buf; | 
|  | struct nand_chip *nand = mtd->priv; | 
|  | struct docg4_priv *doc = nand->priv; | 
|  | struct nand_bbt_descr *bbtd = nand->badblock_pattern; | 
|  | int block = (int)(ofs >> nand->bbt_erase_shift); | 
|  | int page = (int)(ofs >> nand->page_shift); | 
|  | uint32_t g4_addr = mtd_to_docg4_address(page, 0); | 
|  |  | 
|  | dev_dbg(doc->dev, "%s: %08llx\n", __func__, ofs); | 
|  |  | 
|  | if (unlikely(ofs & (DOCG4_BLOCK_SIZE - 1))) | 
|  | dev_warn(doc->dev, "%s: ofs %llx not start of block!\n", | 
|  | __func__, ofs); | 
|  |  | 
|  | /* allocate blank buffer for page data */ | 
|  | buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL); | 
|  | if (buf == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* update bbt in memory */ | 
|  | nand->bbt[block / 4] |= 0x01 << ((block & 0x03) * 2); | 
|  |  | 
|  | /* write bit-wise negation of pattern to oob buffer */ | 
|  | memset(nand->oob_poi, 0xff, mtd->oobsize); | 
|  | for (i = 0; i < bbtd->len; i++) | 
|  | nand->oob_poi[bbtd->offs + i] = ~bbtd->pattern[i]; | 
|  |  | 
|  | /* write first page of block */ | 
|  | write_page_prologue(mtd, g4_addr); | 
|  | docg4_write_page(mtd, nand, buf); | 
|  | ret = pageprog(mtd); | 
|  | if (!ret) | 
|  | mtd->ecc_stats.badblocks++; | 
|  |  | 
|  | kfree(buf); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int docg4_block_neverbad(struct mtd_info *mtd, loff_t ofs, int getchip) | 
|  | { | 
|  | /* only called when module_param ignore_badblocks is set */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int docg4_suspend(struct platform_device *pdev, pm_message_t state) | 
|  | { | 
|  | /* | 
|  | * Put the device into "deep power-down" mode.  Note that CE# must be | 
|  | * deasserted for this to take effect.  The xscale, e.g., can be | 
|  | * configured to float this signal when the processor enters power-down, | 
|  | * and a suitable pull-up ensures its deassertion. | 
|  | */ | 
|  |  | 
|  | int i; | 
|  | uint8_t pwr_down; | 
|  | struct docg4_priv *doc = platform_get_drvdata(pdev); | 
|  | void __iomem *docptr = doc->virtadr; | 
|  |  | 
|  | dev_dbg(doc->dev, "%s...\n", __func__); | 
|  |  | 
|  | /* poll the register that tells us we're ready to go to sleep */ | 
|  | for (i = 0; i < 10; i++) { | 
|  | pwr_down = readb(docptr + DOC_POWERMODE); | 
|  | if (pwr_down & DOC_POWERDOWN_READY) | 
|  | break; | 
|  | usleep_range(1000, 4000); | 
|  | } | 
|  |  | 
|  | if (pwr_down & DOC_POWERDOWN_READY) { | 
|  | dev_err(doc->dev, "suspend failed; " | 
|  | "timeout polling DOC_POWERDOWN_READY\n"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | writew(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN, | 
|  | docptr + DOC_ASICMODE); | 
|  | writew(~(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN), | 
|  | docptr + DOC_ASICMODECONFIRM); | 
|  |  | 
|  | write_nop(docptr); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int docg4_resume(struct platform_device *pdev) | 
|  | { | 
|  |  | 
|  | /* | 
|  | * Exit power-down.  Twelve consecutive reads of the address below | 
|  | * accomplishes this, assuming CE# has been asserted. | 
|  | */ | 
|  |  | 
|  | struct docg4_priv *doc = platform_get_drvdata(pdev); | 
|  | void __iomem *docptr = doc->virtadr; | 
|  | int i; | 
|  |  | 
|  | dev_dbg(doc->dev, "%s...\n", __func__); | 
|  |  | 
|  | for (i = 0; i < 12; i++) | 
|  | readb(docptr + 0x1fff); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __init init_mtd_structs(struct mtd_info *mtd) | 
|  | { | 
|  | /* initialize mtd and nand data structures */ | 
|  |  | 
|  | /* | 
|  | * Note that some of the following initializations are not usually | 
|  | * required within a nand driver because they are performed by the nand | 
|  | * infrastructure code as part of nand_scan().  In this case they need | 
|  | * to be initialized here because we skip call to nand_scan_ident() (the | 
|  | * first half of nand_scan()).  The call to nand_scan_ident() is skipped | 
|  | * because for this device the chip id is not read in the manner of a | 
|  | * standard nand device.  Unfortunately, nand_scan_ident() does other | 
|  | * things as well, such as call nand_set_defaults(). | 
|  | */ | 
|  |  | 
|  | struct nand_chip *nand = mtd->priv; | 
|  | struct docg4_priv *doc = nand->priv; | 
|  |  | 
|  | mtd->size = DOCG4_CHIP_SIZE; | 
|  | mtd->name = "Msys_Diskonchip_G4"; | 
|  | mtd->writesize = DOCG4_PAGE_SIZE; | 
|  | mtd->erasesize = DOCG4_BLOCK_SIZE; | 
|  | mtd->oobsize = DOCG4_OOB_SIZE; | 
|  | nand->chipsize = DOCG4_CHIP_SIZE; | 
|  | nand->chip_shift = DOCG4_CHIP_SHIFT; | 
|  | nand->bbt_erase_shift = nand->phys_erase_shift = DOCG4_ERASE_SHIFT; | 
|  | nand->chip_delay = 20; | 
|  | nand->page_shift = DOCG4_PAGE_SHIFT; | 
|  | nand->pagemask = 0x3ffff; | 
|  | nand->badblockpos = NAND_LARGE_BADBLOCK_POS; | 
|  | nand->badblockbits = 8; | 
|  | nand->ecc.layout = &docg4_oobinfo; | 
|  | nand->ecc.mode = NAND_ECC_HW_SYNDROME; | 
|  | nand->ecc.size = DOCG4_PAGE_SIZE; | 
|  | nand->ecc.prepad = 8; | 
|  | nand->ecc.bytes	= 8; | 
|  | nand->ecc.strength = DOCG4_T; | 
|  | nand->options = | 
|  | NAND_BUSWIDTH_16 | NAND_NO_SUBPAGE_WRITE | NAND_NO_AUTOINCR; | 
|  | nand->IO_ADDR_R = nand->IO_ADDR_W = doc->virtadr + DOC_IOSPACE_DATA; | 
|  | nand->controller = &nand->hwcontrol; | 
|  | spin_lock_init(&nand->controller->lock); | 
|  | init_waitqueue_head(&nand->controller->wq); | 
|  |  | 
|  | /* methods */ | 
|  | nand->cmdfunc = docg4_command; | 
|  | nand->waitfunc = docg4_wait; | 
|  | nand->select_chip = docg4_select_chip; | 
|  | nand->read_byte = docg4_read_byte; | 
|  | nand->block_markbad = docg4_block_markbad; | 
|  | nand->read_buf = docg4_read_buf; | 
|  | nand->write_buf = docg4_write_buf16; | 
|  | nand->scan_bbt = nand_default_bbt; | 
|  | nand->erase_cmd = docg4_erase_block; | 
|  | nand->ecc.read_page = docg4_read_page; | 
|  | nand->ecc.write_page = docg4_write_page; | 
|  | nand->ecc.read_page_raw = docg4_read_page_raw; | 
|  | nand->ecc.write_page_raw = docg4_write_page_raw; | 
|  | nand->ecc.read_oob = docg4_read_oob; | 
|  | nand->ecc.write_oob = docg4_write_oob; | 
|  |  | 
|  | /* | 
|  | * The way the nand infrastructure code is written, a memory-based bbt | 
|  | * is not created if NAND_SKIP_BBTSCAN is set.  With no memory bbt, | 
|  | * nand->block_bad() is used.  So when ignoring bad blocks, we skip the | 
|  | * scan and define a dummy block_bad() which always returns 0. | 
|  | */ | 
|  | if (ignore_badblocks) { | 
|  | nand->options |= NAND_SKIP_BBTSCAN; | 
|  | nand->block_bad	= docg4_block_neverbad; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | static int __init read_id_reg(struct mtd_info *mtd) | 
|  | { | 
|  | struct nand_chip *nand = mtd->priv; | 
|  | struct docg4_priv *doc = nand->priv; | 
|  | void __iomem *docptr = doc->virtadr; | 
|  | uint16_t id1, id2; | 
|  |  | 
|  | /* check for presence of g4 chip by reading id registers */ | 
|  | id1 = readw(docptr + DOC_CHIPID); | 
|  | id1 = readw(docptr + DOCG4_MYSTERY_REG); | 
|  | id2 = readw(docptr + DOC_CHIPID_INV); | 
|  | id2 = readw(docptr + DOCG4_MYSTERY_REG); | 
|  |  | 
|  | if (id1 == DOCG4_IDREG1_VALUE && id2 == DOCG4_IDREG2_VALUE) { | 
|  | dev_info(doc->dev, | 
|  | "NAND device: 128MiB Diskonchip G4 detected\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | static char const *part_probes[] = { "cmdlinepart", "saftlpart", NULL }; | 
|  |  | 
|  | static int __init probe_docg4(struct platform_device *pdev) | 
|  | { | 
|  | struct mtd_info *mtd; | 
|  | struct nand_chip *nand; | 
|  | void __iomem *virtadr; | 
|  | struct docg4_priv *doc; | 
|  | int len, retval; | 
|  | struct resource *r; | 
|  | struct device *dev = &pdev->dev; | 
|  |  | 
|  | r = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
|  | if (r == NULL) { | 
|  | dev_err(dev, "no io memory resource defined!\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | virtadr = ioremap(r->start, resource_size(r)); | 
|  | if (!virtadr) { | 
|  | dev_err(dev, "Diskonchip ioremap failed: %pR\n", r); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | len = sizeof(struct mtd_info) + sizeof(struct nand_chip) + | 
|  | sizeof(struct docg4_priv); | 
|  | mtd = kzalloc(len, GFP_KERNEL); | 
|  | if (mtd == NULL) { | 
|  | retval = -ENOMEM; | 
|  | goto fail; | 
|  | } | 
|  | nand = (struct nand_chip *) (mtd + 1); | 
|  | doc = (struct docg4_priv *) (nand + 1); | 
|  | mtd->priv = nand; | 
|  | nand->priv = doc; | 
|  | mtd->owner = THIS_MODULE; | 
|  | doc->virtadr = virtadr; | 
|  | doc->dev = dev; | 
|  |  | 
|  | init_mtd_structs(mtd); | 
|  |  | 
|  | /* initialize kernel bch algorithm */ | 
|  | doc->bch = init_bch(DOCG4_M, DOCG4_T, DOCG4_PRIMITIVE_POLY); | 
|  | if (doc->bch == NULL) { | 
|  | retval = -EINVAL; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | platform_set_drvdata(pdev, doc); | 
|  |  | 
|  | reset(mtd); | 
|  | retval = read_id_reg(mtd); | 
|  | if (retval == -ENODEV) { | 
|  | dev_warn(dev, "No diskonchip G4 device found.\n"); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | retval = nand_scan_tail(mtd); | 
|  | if (retval) | 
|  | goto fail; | 
|  |  | 
|  | retval = read_factory_bbt(mtd); | 
|  | if (retval) | 
|  | goto fail; | 
|  |  | 
|  | retval = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0); | 
|  | if (retval) | 
|  | goto fail; | 
|  |  | 
|  | doc->mtd = mtd; | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | iounmap(virtadr); | 
|  | if (mtd) { | 
|  | /* re-declarations avoid compiler warning */ | 
|  | struct nand_chip *nand = mtd->priv; | 
|  | struct docg4_priv *doc = nand->priv; | 
|  | nand_release(mtd); /* deletes partitions and mtd devices */ | 
|  | platform_set_drvdata(pdev, NULL); | 
|  | free_bch(doc->bch); | 
|  | kfree(mtd); | 
|  | } | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int __exit cleanup_docg4(struct platform_device *pdev) | 
|  | { | 
|  | struct docg4_priv *doc = platform_get_drvdata(pdev); | 
|  | nand_release(doc->mtd); | 
|  | platform_set_drvdata(pdev, NULL); | 
|  | free_bch(doc->bch); | 
|  | kfree(doc->mtd); | 
|  | iounmap(doc->virtadr); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct platform_driver docg4_driver = { | 
|  | .driver		= { | 
|  | .name	= "docg4", | 
|  | .owner	= THIS_MODULE, | 
|  | }, | 
|  | .suspend	= docg4_suspend, | 
|  | .resume		= docg4_resume, | 
|  | .remove		= __exit_p(cleanup_docg4), | 
|  | }; | 
|  |  | 
|  | static int __init docg4_init(void) | 
|  | { | 
|  | return platform_driver_probe(&docg4_driver, probe_docg4); | 
|  | } | 
|  |  | 
|  | static void __exit docg4_exit(void) | 
|  | { | 
|  | platform_driver_unregister(&docg4_driver); | 
|  | } | 
|  |  | 
|  | module_init(docg4_init); | 
|  | module_exit(docg4_exit); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("Mike Dunn"); | 
|  | MODULE_DESCRIPTION("M-Systems DiskOnChip G4 device driver"); |