|  | /* | 
|  | * Misc utility routines for accessing chip-specific features | 
|  | * of the SiliconBackplane-based Broadcom chips. | 
|  | * | 
|  | * Copyright (C) 1999-2012, Broadcom Corporation | 
|  | * | 
|  | *      Unless you and Broadcom execute a separate written software license | 
|  | * agreement governing use of this software, this software is licensed to you | 
|  | * under the terms of the GNU General Public License version 2 (the "GPL"), | 
|  | * available at http://www.broadcom.com/licenses/GPLv2.php, with the | 
|  | * following added to such license: | 
|  | * | 
|  | *      As a special exception, the copyright holders of this software give you | 
|  | * permission to link this software with independent modules, and to copy and | 
|  | * distribute the resulting executable under terms of your choice, provided that | 
|  | * you also meet, for each linked independent module, the terms and conditions of | 
|  | * the license of that module.  An independent module is a module which is not | 
|  | * derived from this software.  The special exception does not apply to any | 
|  | * modifications of the software. | 
|  | * | 
|  | *      Notwithstanding the above, under no circumstances may you combine this | 
|  | * software in any way with any other Broadcom software provided under a license | 
|  | * other than the GPL, without Broadcom's express prior written consent. | 
|  | * | 
|  | * $Id: sbutils.c 310902 2012-01-26 19:45:33Z $ | 
|  | */ | 
|  |  | 
|  | #include <bcm_cfg.h> | 
|  | #include <typedefs.h> | 
|  | #include <bcmdefs.h> | 
|  | #include <osl.h> | 
|  | #include <bcmutils.h> | 
|  | #include <siutils.h> | 
|  | #include <bcmdevs.h> | 
|  | #include <hndsoc.h> | 
|  | #include <sbchipc.h> | 
|  | #include <pcicfg.h> | 
|  | #include <sbpcmcia.h> | 
|  |  | 
|  | #include "siutils_priv.h" | 
|  |  | 
|  |  | 
|  | /* local prototypes */ | 
|  | static uint _sb_coreidx(si_info_t *sii, uint32 sba); | 
|  | static uint _sb_scan(si_info_t *sii, uint32 sba, void *regs, uint bus, uint32 sbba, | 
|  | uint ncores); | 
|  | static uint32 _sb_coresba(si_info_t *sii); | 
|  | static void *_sb_setcoreidx(si_info_t *sii, uint coreidx); | 
|  |  | 
|  | #define	SET_SBREG(sii, r, mask, val)	\ | 
|  | W_SBREG((sii), (r), ((R_SBREG((sii), (r)) & ~(mask)) | (val))) | 
|  | #define	REGS2SB(va)	(sbconfig_t*) ((int8*)(va) + SBCONFIGOFF) | 
|  |  | 
|  | /* sonicsrev */ | 
|  | #define	SONICS_2_2	(SBIDL_RV_2_2 >> SBIDL_RV_SHIFT) | 
|  | #define	SONICS_2_3	(SBIDL_RV_2_3 >> SBIDL_RV_SHIFT) | 
|  |  | 
|  | #define	R_SBREG(sii, sbr)	sb_read_sbreg((sii), (sbr)) | 
|  | #define	W_SBREG(sii, sbr, v)	sb_write_sbreg((sii), (sbr), (v)) | 
|  | #define	AND_SBREG(sii, sbr, v)	W_SBREG((sii), (sbr), (R_SBREG((sii), (sbr)) & (v))) | 
|  | #define	OR_SBREG(sii, sbr, v)	W_SBREG((sii), (sbr), (R_SBREG((sii), (sbr)) | (v))) | 
|  |  | 
|  | static uint32 | 
|  | sb_read_sbreg(si_info_t *sii, volatile uint32 *sbr) | 
|  | { | 
|  | uint8 tmp; | 
|  | uint32 val, intr_val = 0; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * compact flash only has 11 bits address, while we needs 12 bits address. | 
|  | * MEM_SEG will be OR'd with other 11 bits address in hardware, | 
|  | * so we program MEM_SEG with 12th bit when necessary(access sb regsiters). | 
|  | * For normal PCMCIA bus(CFTable_regwinsz > 2k), do nothing special | 
|  | */ | 
|  | if (PCMCIA(sii)) { | 
|  | INTR_OFF(sii, intr_val); | 
|  | tmp = 1; | 
|  | OSL_PCMCIA_WRITE_ATTR(sii->osh, MEM_SEG, &tmp, 1); | 
|  | sbr = (volatile uint32 *)((uintptr)sbr & ~(1 << 11)); /* mask out bit 11 */ | 
|  | } | 
|  |  | 
|  | val = R_REG(sii->osh, sbr); | 
|  |  | 
|  | if (PCMCIA(sii)) { | 
|  | tmp = 0; | 
|  | OSL_PCMCIA_WRITE_ATTR(sii->osh, MEM_SEG, &tmp, 1); | 
|  | INTR_RESTORE(sii, intr_val); | 
|  | } | 
|  |  | 
|  | return (val); | 
|  | } | 
|  |  | 
|  | static void | 
|  | sb_write_sbreg(si_info_t *sii, volatile uint32 *sbr, uint32 v) | 
|  | { | 
|  | uint8 tmp; | 
|  | volatile uint32 dummy; | 
|  | uint32 intr_val = 0; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * compact flash only has 11 bits address, while we needs 12 bits address. | 
|  | * MEM_SEG will be OR'd with other 11 bits address in hardware, | 
|  | * so we program MEM_SEG with 12th bit when necessary(access sb regsiters). | 
|  | * For normal PCMCIA bus(CFTable_regwinsz > 2k), do nothing special | 
|  | */ | 
|  | if (PCMCIA(sii)) { | 
|  | INTR_OFF(sii, intr_val); | 
|  | tmp = 1; | 
|  | OSL_PCMCIA_WRITE_ATTR(sii->osh, MEM_SEG, &tmp, 1); | 
|  | sbr = (volatile uint32 *)((uintptr)sbr & ~(1 << 11)); /* mask out bit 11 */ | 
|  | } | 
|  |  | 
|  | if (BUSTYPE(sii->pub.bustype) == PCMCIA_BUS) { | 
|  | dummy = R_REG(sii->osh, sbr); | 
|  | BCM_REFERENCE(dummy); | 
|  | W_REG(sii->osh, (volatile uint16 *)sbr, (uint16)(v & 0xffff)); | 
|  | dummy = R_REG(sii->osh, sbr); | 
|  | BCM_REFERENCE(dummy); | 
|  | W_REG(sii->osh, ((volatile uint16 *)sbr + 1), (uint16)((v >> 16) & 0xffff)); | 
|  | } else | 
|  | W_REG(sii->osh, sbr, v); | 
|  |  | 
|  | if (PCMCIA(sii)) { | 
|  | tmp = 0; | 
|  | OSL_PCMCIA_WRITE_ATTR(sii->osh, MEM_SEG, &tmp, 1); | 
|  | INTR_RESTORE(sii, intr_val); | 
|  | } | 
|  | } | 
|  |  | 
|  | uint | 
|  | sb_coreid(si_t *sih) | 
|  | { | 
|  | si_info_t *sii; | 
|  | sbconfig_t *sb; | 
|  |  | 
|  | sii = SI_INFO(sih); | 
|  | sb = REGS2SB(sii->curmap); | 
|  |  | 
|  | return ((R_SBREG(sii, &sb->sbidhigh) & SBIDH_CC_MASK) >> SBIDH_CC_SHIFT); | 
|  | } | 
|  |  | 
|  | uint | 
|  | sb_intflag(si_t *sih) | 
|  | { | 
|  | si_info_t *sii; | 
|  | void *corereg; | 
|  | sbconfig_t *sb; | 
|  | uint origidx, intflag, intr_val = 0; | 
|  |  | 
|  | sii = SI_INFO(sih); | 
|  |  | 
|  | INTR_OFF(sii, intr_val); | 
|  | origidx = si_coreidx(sih); | 
|  | corereg = si_setcore(sih, CC_CORE_ID, 0); | 
|  | ASSERT(corereg != NULL); | 
|  | sb = REGS2SB(corereg); | 
|  | intflag = R_SBREG(sii, &sb->sbflagst); | 
|  | sb_setcoreidx(sih, origidx); | 
|  | INTR_RESTORE(sii, intr_val); | 
|  |  | 
|  | return intflag; | 
|  | } | 
|  |  | 
|  | uint | 
|  | sb_flag(si_t *sih) | 
|  | { | 
|  | si_info_t *sii; | 
|  | sbconfig_t *sb; | 
|  |  | 
|  | sii = SI_INFO(sih); | 
|  | sb = REGS2SB(sii->curmap); | 
|  |  | 
|  | return R_SBREG(sii, &sb->sbtpsflag) & SBTPS_NUM0_MASK; | 
|  | } | 
|  |  | 
|  | void | 
|  | sb_setint(si_t *sih, int siflag) | 
|  | { | 
|  | si_info_t *sii; | 
|  | sbconfig_t *sb; | 
|  | uint32 vec; | 
|  |  | 
|  | sii = SI_INFO(sih); | 
|  | sb = REGS2SB(sii->curmap); | 
|  |  | 
|  | if (siflag == -1) | 
|  | vec = 0; | 
|  | else | 
|  | vec = 1 << siflag; | 
|  | W_SBREG(sii, &sb->sbintvec, vec); | 
|  | } | 
|  |  | 
|  | /* return core index of the core with address 'sba' */ | 
|  | static uint | 
|  | _sb_coreidx(si_info_t *sii, uint32 sba) | 
|  | { | 
|  | uint i; | 
|  |  | 
|  | for (i = 0; i < sii->numcores; i ++) | 
|  | if (sba == sii->coresba[i]) | 
|  | return i; | 
|  | return BADIDX; | 
|  | } | 
|  |  | 
|  | /* return core address of the current core */ | 
|  | static uint32 | 
|  | _sb_coresba(si_info_t *sii) | 
|  | { | 
|  | uint32 sbaddr; | 
|  |  | 
|  |  | 
|  | switch (BUSTYPE(sii->pub.bustype)) { | 
|  | case SI_BUS: { | 
|  | sbconfig_t *sb = REGS2SB(sii->curmap); | 
|  | sbaddr = sb_base(R_SBREG(sii, &sb->sbadmatch0)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case PCI_BUS: | 
|  | sbaddr = OSL_PCI_READ_CONFIG(sii->osh, PCI_BAR0_WIN, sizeof(uint32)); | 
|  | break; | 
|  |  | 
|  | case PCMCIA_BUS: { | 
|  | uint8 tmp = 0; | 
|  | OSL_PCMCIA_READ_ATTR(sii->osh, PCMCIA_ADDR0, &tmp, 1); | 
|  | sbaddr  = (uint32)tmp << 12; | 
|  | OSL_PCMCIA_READ_ATTR(sii->osh, PCMCIA_ADDR1, &tmp, 1); | 
|  | sbaddr |= (uint32)tmp << 16; | 
|  | OSL_PCMCIA_READ_ATTR(sii->osh, PCMCIA_ADDR2, &tmp, 1); | 
|  | sbaddr |= (uint32)tmp << 24; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case SPI_BUS: | 
|  | case SDIO_BUS: | 
|  | sbaddr = (uint32)(uintptr)sii->curmap; | 
|  | break; | 
|  |  | 
|  |  | 
|  | default: | 
|  | sbaddr = BADCOREADDR; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return sbaddr; | 
|  | } | 
|  |  | 
|  | uint | 
|  | sb_corevendor(si_t *sih) | 
|  | { | 
|  | si_info_t *sii; | 
|  | sbconfig_t *sb; | 
|  |  | 
|  | sii = SI_INFO(sih); | 
|  | sb = REGS2SB(sii->curmap); | 
|  |  | 
|  | return ((R_SBREG(sii, &sb->sbidhigh) & SBIDH_VC_MASK) >> SBIDH_VC_SHIFT); | 
|  | } | 
|  |  | 
|  | uint | 
|  | sb_corerev(si_t *sih) | 
|  | { | 
|  | si_info_t *sii; | 
|  | sbconfig_t *sb; | 
|  | uint sbidh; | 
|  |  | 
|  | sii = SI_INFO(sih); | 
|  | sb = REGS2SB(sii->curmap); | 
|  | sbidh = R_SBREG(sii, &sb->sbidhigh); | 
|  |  | 
|  | return (SBCOREREV(sbidh)); | 
|  | } | 
|  |  | 
|  | /* set core-specific control flags */ | 
|  | void | 
|  | sb_core_cflags_wo(si_t *sih, uint32 mask, uint32 val) | 
|  | { | 
|  | si_info_t *sii; | 
|  | sbconfig_t *sb; | 
|  | uint32 w; | 
|  |  | 
|  | sii = SI_INFO(sih); | 
|  | sb = REGS2SB(sii->curmap); | 
|  |  | 
|  | ASSERT((val & ~mask) == 0); | 
|  |  | 
|  | /* mask and set */ | 
|  | w = (R_SBREG(sii, &sb->sbtmstatelow) & ~(mask << SBTML_SICF_SHIFT)) | | 
|  | (val << SBTML_SICF_SHIFT); | 
|  | W_SBREG(sii, &sb->sbtmstatelow, w); | 
|  | } | 
|  |  | 
|  | /* set/clear core-specific control flags */ | 
|  | uint32 | 
|  | sb_core_cflags(si_t *sih, uint32 mask, uint32 val) | 
|  | { | 
|  | si_info_t *sii; | 
|  | sbconfig_t *sb; | 
|  | uint32 w; | 
|  |  | 
|  | sii = SI_INFO(sih); | 
|  | sb = REGS2SB(sii->curmap); | 
|  |  | 
|  | ASSERT((val & ~mask) == 0); | 
|  |  | 
|  | /* mask and set */ | 
|  | if (mask || val) { | 
|  | w = (R_SBREG(sii, &sb->sbtmstatelow) & ~(mask << SBTML_SICF_SHIFT)) | | 
|  | (val << SBTML_SICF_SHIFT); | 
|  | W_SBREG(sii, &sb->sbtmstatelow, w); | 
|  | } | 
|  |  | 
|  | /* return the new value | 
|  | * for write operation, the following readback ensures the completion of write opration. | 
|  | */ | 
|  | return (R_SBREG(sii, &sb->sbtmstatelow) >> SBTML_SICF_SHIFT); | 
|  | } | 
|  |  | 
|  | /* set/clear core-specific status flags */ | 
|  | uint32 | 
|  | sb_core_sflags(si_t *sih, uint32 mask, uint32 val) | 
|  | { | 
|  | si_info_t *sii; | 
|  | sbconfig_t *sb; | 
|  | uint32 w; | 
|  |  | 
|  | sii = SI_INFO(sih); | 
|  | sb = REGS2SB(sii->curmap); | 
|  |  | 
|  | ASSERT((val & ~mask) == 0); | 
|  | ASSERT((mask & ~SISF_CORE_BITS) == 0); | 
|  |  | 
|  | /* mask and set */ | 
|  | if (mask || val) { | 
|  | w = (R_SBREG(sii, &sb->sbtmstatehigh) & ~(mask << SBTMH_SISF_SHIFT)) | | 
|  | (val << SBTMH_SISF_SHIFT); | 
|  | W_SBREG(sii, &sb->sbtmstatehigh, w); | 
|  | } | 
|  |  | 
|  | /* return the new value */ | 
|  | return (R_SBREG(sii, &sb->sbtmstatehigh) >> SBTMH_SISF_SHIFT); | 
|  | } | 
|  |  | 
|  | bool | 
|  | sb_iscoreup(si_t *sih) | 
|  | { | 
|  | si_info_t *sii; | 
|  | sbconfig_t *sb; | 
|  |  | 
|  | sii = SI_INFO(sih); | 
|  | sb = REGS2SB(sii->curmap); | 
|  |  | 
|  | return ((R_SBREG(sii, &sb->sbtmstatelow) & | 
|  | (SBTML_RESET | SBTML_REJ_MASK | (SICF_CLOCK_EN << SBTML_SICF_SHIFT))) == | 
|  | (SICF_CLOCK_EN << SBTML_SICF_SHIFT)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Switch to 'coreidx', issue a single arbitrary 32bit register mask&set operation, | 
|  | * switch back to the original core, and return the new value. | 
|  | * | 
|  | * When using the silicon backplane, no fidleing with interrupts or core switches are needed. | 
|  | * | 
|  | * Also, when using pci/pcie, we can optimize away the core switching for pci registers | 
|  | * and (on newer pci cores) chipcommon registers. | 
|  | */ | 
|  | uint | 
|  | sb_corereg(si_t *sih, uint coreidx, uint regoff, uint mask, uint val) | 
|  | { | 
|  | uint origidx = 0; | 
|  | uint32 *r = NULL; | 
|  | uint w; | 
|  | uint intr_val = 0; | 
|  | bool fast = FALSE; | 
|  | si_info_t *sii; | 
|  |  | 
|  | sii = SI_INFO(sih); | 
|  |  | 
|  | ASSERT(GOODIDX(coreidx)); | 
|  | ASSERT(regoff < SI_CORE_SIZE); | 
|  | ASSERT((val & ~mask) == 0); | 
|  |  | 
|  | if (coreidx >= SI_MAXCORES) | 
|  | return 0; | 
|  |  | 
|  | if (BUSTYPE(sii->pub.bustype) == SI_BUS) { | 
|  | /* If internal bus, we can always get at everything */ | 
|  | fast = TRUE; | 
|  | /* map if does not exist */ | 
|  | if (!sii->regs[coreidx]) { | 
|  | sii->regs[coreidx] = REG_MAP(sii->coresba[coreidx], | 
|  | SI_CORE_SIZE); | 
|  | ASSERT(GOODREGS(sii->regs[coreidx])); | 
|  | } | 
|  | r = (uint32 *)((uchar *)sii->regs[coreidx] + regoff); | 
|  | } else if (BUSTYPE(sii->pub.bustype) == PCI_BUS) { | 
|  | /* If pci/pcie, we can get at pci/pcie regs and on newer cores to chipc */ | 
|  |  | 
|  | if ((sii->coreid[coreidx] == CC_CORE_ID) && SI_FAST(sii)) { | 
|  | /* Chipc registers are mapped at 12KB */ | 
|  |  | 
|  | fast = TRUE; | 
|  | r = (uint32 *)((char *)sii->curmap + PCI_16KB0_CCREGS_OFFSET + regoff); | 
|  | } else if (sii->pub.buscoreidx == coreidx) { | 
|  | /* pci registers are at either in the last 2KB of an 8KB window | 
|  | * or, in pcie and pci rev 13 at 8KB | 
|  | */ | 
|  | fast = TRUE; | 
|  | if (SI_FAST(sii)) | 
|  | r = (uint32 *)((char *)sii->curmap + | 
|  | PCI_16KB0_PCIREGS_OFFSET + regoff); | 
|  | else | 
|  | r = (uint32 *)((char *)sii->curmap + | 
|  | ((regoff >= SBCONFIGOFF) ? | 
|  | PCI_BAR0_PCISBR_OFFSET : PCI_BAR0_PCIREGS_OFFSET) + | 
|  | regoff); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!fast) { | 
|  | INTR_OFF(sii, intr_val); | 
|  |  | 
|  | /* save current core index */ | 
|  | origidx = si_coreidx(&sii->pub); | 
|  |  | 
|  | /* switch core */ | 
|  | r = (uint32*) ((uchar*)sb_setcoreidx(&sii->pub, coreidx) + regoff); | 
|  | } | 
|  | ASSERT(r != NULL); | 
|  |  | 
|  | /* mask and set */ | 
|  | if (mask || val) { | 
|  | if (regoff >= SBCONFIGOFF) { | 
|  | w = (R_SBREG(sii, r) & ~mask) | val; | 
|  | W_SBREG(sii, r, w); | 
|  | } else { | 
|  | w = (R_REG(sii->osh, r) & ~mask) | val; | 
|  | W_REG(sii->osh, r, w); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* readback */ | 
|  | if (regoff >= SBCONFIGOFF) | 
|  | w = R_SBREG(sii, r); | 
|  | else { | 
|  | if ((CHIPID(sii->pub.chip) == BCM5354_CHIP_ID) && | 
|  | (coreidx == SI_CC_IDX) && | 
|  | (regoff == OFFSETOF(chipcregs_t, watchdog))) { | 
|  | w = val; | 
|  | } else | 
|  | w = R_REG(sii->osh, r); | 
|  | } | 
|  |  | 
|  | if (!fast) { | 
|  | /* restore core index */ | 
|  | if (origidx != coreidx) | 
|  | sb_setcoreidx(&sii->pub, origidx); | 
|  |  | 
|  | INTR_RESTORE(sii, intr_val); | 
|  | } | 
|  |  | 
|  | return (w); | 
|  | } | 
|  |  | 
|  | /* Scan the enumeration space to find all cores starting from the given | 
|  | * bus 'sbba'. Append coreid and other info to the lists in 'si'. 'sba' | 
|  | * is the default core address at chip POR time and 'regs' is the virtual | 
|  | * address that the default core is mapped at. 'ncores' is the number of | 
|  | * cores expected on bus 'sbba'. It returns the total number of cores | 
|  | * starting from bus 'sbba', inclusive. | 
|  | */ | 
|  | #define SB_MAXBUSES	2 | 
|  | static uint | 
|  | _sb_scan(si_info_t *sii, uint32 sba, void *regs, uint bus, uint32 sbba, uint numcores) | 
|  | { | 
|  | uint next; | 
|  | uint ncc = 0; | 
|  | uint i; | 
|  |  | 
|  | if (bus >= SB_MAXBUSES) { | 
|  | SI_ERROR(("_sb_scan: bus 0x%08x at level %d is too deep to scan\n", sbba, bus)); | 
|  | return 0; | 
|  | } | 
|  | SI_MSG(("_sb_scan: scan bus 0x%08x assume %u cores\n", sbba, numcores)); | 
|  |  | 
|  | /* Scan all cores on the bus starting from core 0. | 
|  | * Core addresses must be contiguous on each bus. | 
|  | */ | 
|  | for (i = 0, next = sii->numcores; i < numcores && next < SB_BUS_MAXCORES; i++, next++) { | 
|  | sii->coresba[next] = sbba + (i * SI_CORE_SIZE); | 
|  |  | 
|  | /* keep and reuse the initial register mapping */ | 
|  | if ((BUSTYPE(sii->pub.bustype) == SI_BUS) && (sii->coresba[next] == sba)) { | 
|  | SI_VMSG(("_sb_scan: reuse mapped regs %p for core %u\n", regs, next)); | 
|  | sii->regs[next] = regs; | 
|  | } | 
|  |  | 
|  | /* change core to 'next' and read its coreid */ | 
|  | sii->curmap = _sb_setcoreidx(sii, next); | 
|  | sii->curidx = next; | 
|  |  | 
|  | sii->coreid[next] = sb_coreid(&sii->pub); | 
|  |  | 
|  | /* core specific processing... */ | 
|  | /* chipc provides # cores */ | 
|  | if (sii->coreid[next] == CC_CORE_ID) { | 
|  | chipcregs_t *cc = (chipcregs_t *)sii->curmap; | 
|  | uint32 ccrev = sb_corerev(&sii->pub); | 
|  |  | 
|  | /* determine numcores - this is the total # cores in the chip */ | 
|  | if (((ccrev == 4) || (ccrev >= 6))) | 
|  | numcores = (R_REG(sii->osh, &cc->chipid) & CID_CC_MASK) >> | 
|  | CID_CC_SHIFT; | 
|  | else { | 
|  | /* Older chips */ | 
|  | uint chip = CHIPID(sii->pub.chip); | 
|  |  | 
|  | if (chip == BCM4306_CHIP_ID)	/* < 4306c0 */ | 
|  | numcores = 6; | 
|  | else if (chip == BCM4704_CHIP_ID) | 
|  | numcores = 9; | 
|  | else if (chip == BCM5365_CHIP_ID) | 
|  | numcores = 7; | 
|  | else { | 
|  | SI_ERROR(("sb_chip2numcores: unsupported chip 0x%x\n", | 
|  | chip)); | 
|  | ASSERT(0); | 
|  | numcores = 1; | 
|  | } | 
|  | } | 
|  | SI_VMSG(("_sb_scan: there are %u cores in the chip %s\n", numcores, | 
|  | sii->pub.issim ? "QT" : "")); | 
|  | } | 
|  | /* scan bridged SB(s) and add results to the end of the list */ | 
|  | else if (sii->coreid[next] == OCP_CORE_ID) { | 
|  | sbconfig_t *sb = REGS2SB(sii->curmap); | 
|  | uint32 nsbba = R_SBREG(sii, &sb->sbadmatch1); | 
|  | uint nsbcc; | 
|  |  | 
|  | sii->numcores = next + 1; | 
|  |  | 
|  | if ((nsbba & 0xfff00000) != SI_ENUM_BASE) | 
|  | continue; | 
|  | nsbba &= 0xfffff000; | 
|  | if (_sb_coreidx(sii, nsbba) != BADIDX) | 
|  | continue; | 
|  |  | 
|  | nsbcc = (R_SBREG(sii, &sb->sbtmstatehigh) & 0x000f0000) >> 16; | 
|  | nsbcc = _sb_scan(sii, sba, regs, bus + 1, nsbba, nsbcc); | 
|  | if (sbba == SI_ENUM_BASE) | 
|  | numcores -= nsbcc; | 
|  | ncc += nsbcc; | 
|  | } | 
|  | } | 
|  |  | 
|  | SI_MSG(("_sb_scan: found %u cores on bus 0x%08x\n", i, sbba)); | 
|  |  | 
|  | sii->numcores = i + ncc; | 
|  | return sii->numcores; | 
|  | } | 
|  |  | 
|  | /* scan the sb enumerated space to identify all cores */ | 
|  | void | 
|  | sb_scan(si_t *sih, void *regs, uint devid) | 
|  | { | 
|  | si_info_t *sii; | 
|  | uint32 origsba; | 
|  | sbconfig_t *sb; | 
|  |  | 
|  | sii = SI_INFO(sih); | 
|  | sb = REGS2SB(sii->curmap); | 
|  |  | 
|  | sii->pub.socirev = (R_SBREG(sii, &sb->sbidlow) & SBIDL_RV_MASK) >> SBIDL_RV_SHIFT; | 
|  |  | 
|  | /* Save the current core info and validate it later till we know | 
|  | * for sure what is good and what is bad. | 
|  | */ | 
|  | origsba = _sb_coresba(sii); | 
|  |  | 
|  | /* scan all SB(s) starting from SI_ENUM_BASE */ | 
|  | sii->numcores = _sb_scan(sii, origsba, regs, 0, SI_ENUM_BASE, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function changes logical "focus" to the indicated core; | 
|  | * must be called with interrupts off. | 
|  | * Moreover, callers should keep interrupts off during switching out of and back to d11 core | 
|  | */ | 
|  | void * | 
|  | sb_setcoreidx(si_t *sih, uint coreidx) | 
|  | { | 
|  | si_info_t *sii; | 
|  |  | 
|  | sii = SI_INFO(sih); | 
|  |  | 
|  | if (coreidx >= sii->numcores) | 
|  | return (NULL); | 
|  |  | 
|  | /* | 
|  | * If the user has provided an interrupt mask enabled function, | 
|  | * then assert interrupts are disabled before switching the core. | 
|  | */ | 
|  | ASSERT((sii->intrsenabled_fn == NULL) || !(*(sii)->intrsenabled_fn)((sii)->intr_arg)); | 
|  |  | 
|  | sii->curmap = _sb_setcoreidx(sii, coreidx); | 
|  | sii->curidx = coreidx; | 
|  |  | 
|  | return (sii->curmap); | 
|  | } | 
|  |  | 
|  | /* This function changes the logical "focus" to the indicated core. | 
|  | * Return the current core's virtual address. | 
|  | */ | 
|  | static void * | 
|  | _sb_setcoreidx(si_info_t *sii, uint coreidx) | 
|  | { | 
|  | uint32 sbaddr = sii->coresba[coreidx]; | 
|  | void *regs; | 
|  |  | 
|  | switch (BUSTYPE(sii->pub.bustype)) { | 
|  | case SI_BUS: | 
|  | /* map new one */ | 
|  | if (!sii->regs[coreidx]) { | 
|  | sii->regs[coreidx] = REG_MAP(sbaddr, SI_CORE_SIZE); | 
|  | ASSERT(GOODREGS(sii->regs[coreidx])); | 
|  | } | 
|  | regs = sii->regs[coreidx]; | 
|  | break; | 
|  |  | 
|  | case PCI_BUS: | 
|  | /* point bar0 window */ | 
|  | OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN, 4, sbaddr); | 
|  | regs = sii->curmap; | 
|  | break; | 
|  |  | 
|  | case PCMCIA_BUS: { | 
|  | uint8 tmp = (sbaddr >> 12) & 0x0f; | 
|  | OSL_PCMCIA_WRITE_ATTR(sii->osh, PCMCIA_ADDR0, &tmp, 1); | 
|  | tmp = (sbaddr >> 16) & 0xff; | 
|  | OSL_PCMCIA_WRITE_ATTR(sii->osh, PCMCIA_ADDR1, &tmp, 1); | 
|  | tmp = (sbaddr >> 24) & 0xff; | 
|  | OSL_PCMCIA_WRITE_ATTR(sii->osh, PCMCIA_ADDR2, &tmp, 1); | 
|  | regs = sii->curmap; | 
|  | break; | 
|  | } | 
|  | case SPI_BUS: | 
|  | case SDIO_BUS: | 
|  | /* map new one */ | 
|  | if (!sii->regs[coreidx]) { | 
|  | sii->regs[coreidx] = (void *)(uintptr)sbaddr; | 
|  | ASSERT(GOODREGS(sii->regs[coreidx])); | 
|  | } | 
|  | regs = sii->regs[coreidx]; | 
|  | break; | 
|  |  | 
|  |  | 
|  | default: | 
|  | ASSERT(0); | 
|  | regs = NULL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return regs; | 
|  | } | 
|  |  | 
|  | /* Return the address of sbadmatch0/1/2/3 register */ | 
|  | static volatile uint32 * | 
|  | sb_admatch(si_info_t *sii, uint asidx) | 
|  | { | 
|  | sbconfig_t *sb; | 
|  | volatile uint32 *addrm; | 
|  |  | 
|  | sb = REGS2SB(sii->curmap); | 
|  |  | 
|  | switch (asidx) { | 
|  | case 0: | 
|  | addrm =  &sb->sbadmatch0; | 
|  | break; | 
|  |  | 
|  | case 1: | 
|  | addrm =  &sb->sbadmatch1; | 
|  | break; | 
|  |  | 
|  | case 2: | 
|  | addrm =  &sb->sbadmatch2; | 
|  | break; | 
|  |  | 
|  | case 3: | 
|  | addrm =  &sb->sbadmatch3; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | SI_ERROR(("%s: Address space index (%d) out of range\n", __FUNCTION__, asidx)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return (addrm); | 
|  | } | 
|  |  | 
|  | /* Return the number of address spaces in current core */ | 
|  | int | 
|  | sb_numaddrspaces(si_t *sih) | 
|  | { | 
|  | si_info_t *sii; | 
|  | sbconfig_t *sb; | 
|  |  | 
|  | sii = SI_INFO(sih); | 
|  | sb = REGS2SB(sii->curmap); | 
|  |  | 
|  | /* + 1 because of enumeration space */ | 
|  | return ((R_SBREG(sii, &sb->sbidlow) & SBIDL_AR_MASK) >> SBIDL_AR_SHIFT) + 1; | 
|  | } | 
|  |  | 
|  | /* Return the address of the nth address space in the current core */ | 
|  | uint32 | 
|  | sb_addrspace(si_t *sih, uint asidx) | 
|  | { | 
|  | si_info_t *sii; | 
|  |  | 
|  | sii = SI_INFO(sih); | 
|  |  | 
|  | return (sb_base(R_SBREG(sii, sb_admatch(sii, asidx)))); | 
|  | } | 
|  |  | 
|  | /* Return the size of the nth address space in the current core */ | 
|  | uint32 | 
|  | sb_addrspacesize(si_t *sih, uint asidx) | 
|  | { | 
|  | si_info_t *sii; | 
|  |  | 
|  | sii = SI_INFO(sih); | 
|  |  | 
|  | return (sb_size(R_SBREG(sii, sb_admatch(sii, asidx)))); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* do buffered registers update */ | 
|  | void | 
|  | sb_commit(si_t *sih) | 
|  | { | 
|  | si_info_t *sii; | 
|  | uint origidx; | 
|  | uint intr_val = 0; | 
|  |  | 
|  | sii = SI_INFO(sih); | 
|  |  | 
|  | origidx = sii->curidx; | 
|  | ASSERT(GOODIDX(origidx)); | 
|  |  | 
|  | INTR_OFF(sii, intr_val); | 
|  |  | 
|  | /* switch over to chipcommon core if there is one, else use pci */ | 
|  | if (sii->pub.ccrev != NOREV) { | 
|  | chipcregs_t *ccregs = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0); | 
|  | ASSERT(ccregs != NULL); | 
|  |  | 
|  | /* do the buffer registers update */ | 
|  | W_REG(sii->osh, &ccregs->broadcastaddress, SB_COMMIT); | 
|  | W_REG(sii->osh, &ccregs->broadcastdata, 0x0); | 
|  | } else | 
|  | ASSERT(0); | 
|  |  | 
|  | /* restore core index */ | 
|  | sb_setcoreidx(sih, origidx); | 
|  | INTR_RESTORE(sii, intr_val); | 
|  | } | 
|  |  | 
|  | void | 
|  | sb_core_disable(si_t *sih, uint32 bits) | 
|  | { | 
|  | si_info_t *sii; | 
|  | volatile uint32 dummy; | 
|  | sbconfig_t *sb; | 
|  |  | 
|  | sii = SI_INFO(sih); | 
|  |  | 
|  | ASSERT(GOODREGS(sii->curmap)); | 
|  | sb = REGS2SB(sii->curmap); | 
|  |  | 
|  | /* if core is already in reset, just return */ | 
|  | if (R_SBREG(sii, &sb->sbtmstatelow) & SBTML_RESET) | 
|  | return; | 
|  |  | 
|  | /* if clocks are not enabled, put into reset and return */ | 
|  | if ((R_SBREG(sii, &sb->sbtmstatelow) & (SICF_CLOCK_EN << SBTML_SICF_SHIFT)) == 0) | 
|  | goto disable; | 
|  |  | 
|  | /* set target reject and spin until busy is clear (preserve core-specific bits) */ | 
|  | OR_SBREG(sii, &sb->sbtmstatelow, SBTML_REJ); | 
|  | dummy = R_SBREG(sii, &sb->sbtmstatelow); | 
|  | BCM_REFERENCE(dummy); | 
|  | OSL_DELAY(1); | 
|  | SPINWAIT((R_SBREG(sii, &sb->sbtmstatehigh) & SBTMH_BUSY), 100000); | 
|  | if (R_SBREG(sii, &sb->sbtmstatehigh) & SBTMH_BUSY) | 
|  | SI_ERROR(("%s: target state still busy\n", __FUNCTION__)); | 
|  |  | 
|  | if (R_SBREG(sii, &sb->sbidlow) & SBIDL_INIT) { | 
|  | OR_SBREG(sii, &sb->sbimstate, SBIM_RJ); | 
|  | dummy = R_SBREG(sii, &sb->sbimstate); | 
|  | BCM_REFERENCE(dummy); | 
|  | OSL_DELAY(1); | 
|  | SPINWAIT((R_SBREG(sii, &sb->sbimstate) & SBIM_BY), 100000); | 
|  | } | 
|  |  | 
|  | /* set reset and reject while enabling the clocks */ | 
|  | W_SBREG(sii, &sb->sbtmstatelow, | 
|  | (((bits | SICF_FGC | SICF_CLOCK_EN) << SBTML_SICF_SHIFT) | | 
|  | SBTML_REJ | SBTML_RESET)); | 
|  | dummy = R_SBREG(sii, &sb->sbtmstatelow); | 
|  | BCM_REFERENCE(dummy); | 
|  | OSL_DELAY(10); | 
|  |  | 
|  | /* don't forget to clear the initiator reject bit */ | 
|  | if (R_SBREG(sii, &sb->sbidlow) & SBIDL_INIT) | 
|  | AND_SBREG(sii, &sb->sbimstate, ~SBIM_RJ); | 
|  |  | 
|  | disable: | 
|  | /* leave reset and reject asserted */ | 
|  | W_SBREG(sii, &sb->sbtmstatelow, ((bits << SBTML_SICF_SHIFT) | SBTML_REJ | SBTML_RESET)); | 
|  | OSL_DELAY(1); | 
|  | } | 
|  |  | 
|  | /* reset and re-enable a core | 
|  | * inputs: | 
|  | * bits - core specific bits that are set during and after reset sequence | 
|  | * resetbits - core specific bits that are set only during reset sequence | 
|  | */ | 
|  | void | 
|  | sb_core_reset(si_t *sih, uint32 bits, uint32 resetbits) | 
|  | { | 
|  | si_info_t *sii; | 
|  | sbconfig_t *sb; | 
|  | volatile uint32 dummy; | 
|  |  | 
|  | sii = SI_INFO(sih); | 
|  | ASSERT(GOODREGS(sii->curmap)); | 
|  | sb = REGS2SB(sii->curmap); | 
|  |  | 
|  | /* | 
|  | * Must do the disable sequence first to work for arbitrary current core state. | 
|  | */ | 
|  | sb_core_disable(sih, (bits | resetbits)); | 
|  |  | 
|  | /* | 
|  | * Now do the initialization sequence. | 
|  | */ | 
|  |  | 
|  | /* set reset while enabling the clock and forcing them on throughout the core */ | 
|  | W_SBREG(sii, &sb->sbtmstatelow, | 
|  | (((bits | resetbits | SICF_FGC | SICF_CLOCK_EN) << SBTML_SICF_SHIFT) | | 
|  | SBTML_RESET)); | 
|  | dummy = R_SBREG(sii, &sb->sbtmstatelow); | 
|  | BCM_REFERENCE(dummy); | 
|  | OSL_DELAY(1); | 
|  |  | 
|  | if (R_SBREG(sii, &sb->sbtmstatehigh) & SBTMH_SERR) { | 
|  | W_SBREG(sii, &sb->sbtmstatehigh, 0); | 
|  | } | 
|  | if ((dummy = R_SBREG(sii, &sb->sbimstate)) & (SBIM_IBE | SBIM_TO)) { | 
|  | AND_SBREG(sii, &sb->sbimstate, ~(SBIM_IBE | SBIM_TO)); | 
|  | } | 
|  |  | 
|  | /* clear reset and allow it to propagate throughout the core */ | 
|  | W_SBREG(sii, &sb->sbtmstatelow, | 
|  | ((bits | resetbits | SICF_FGC | SICF_CLOCK_EN) << SBTML_SICF_SHIFT)); | 
|  | dummy = R_SBREG(sii, &sb->sbtmstatelow); | 
|  | BCM_REFERENCE(dummy); | 
|  | OSL_DELAY(1); | 
|  |  | 
|  | /* leave clock enabled */ | 
|  | W_SBREG(sii, &sb->sbtmstatelow, ((bits | SICF_CLOCK_EN) << SBTML_SICF_SHIFT)); | 
|  | dummy = R_SBREG(sii, &sb->sbtmstatelow); | 
|  | BCM_REFERENCE(dummy); | 
|  | OSL_DELAY(1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the initiator timeout for the "master core". | 
|  | * The master core is defined to be the core in control | 
|  | * of the chip and so it issues accesses to non-memory | 
|  | * locations (Because of dma *any* core can access memeory). | 
|  | * | 
|  | * The routine uses the bus to decide who is the master: | 
|  | *	SI_BUS => mips | 
|  | *	JTAG_BUS => chipc | 
|  | *	PCI_BUS => pci or pcie | 
|  | *	PCMCIA_BUS => pcmcia | 
|  | *	SDIO_BUS => pcmcia | 
|  | * | 
|  | * This routine exists so callers can disable initiator | 
|  | * timeouts so accesses to very slow devices like otp | 
|  | * won't cause an abort. The routine allows arbitrary | 
|  | * settings of the service and request timeouts, though. | 
|  | * | 
|  | * Returns the timeout state before changing it or -1 | 
|  | * on error. | 
|  | */ | 
|  |  | 
|  | #define	TO_MASK	(SBIMCL_RTO_MASK | SBIMCL_STO_MASK) | 
|  |  | 
|  | uint32 | 
|  | sb_set_initiator_to(si_t *sih, uint32 to, uint idx) | 
|  | { | 
|  | si_info_t *sii; | 
|  | uint origidx; | 
|  | uint intr_val = 0; | 
|  | uint32 tmp, ret = 0xffffffff; | 
|  | sbconfig_t *sb; | 
|  |  | 
|  | sii = SI_INFO(sih); | 
|  |  | 
|  | if ((to & ~TO_MASK) != 0) | 
|  | return ret; | 
|  |  | 
|  | /* Figure out the master core */ | 
|  | if (idx == BADIDX) { | 
|  | switch (BUSTYPE(sii->pub.bustype)) { | 
|  | case PCI_BUS: | 
|  | idx = sii->pub.buscoreidx; | 
|  | break; | 
|  | case JTAG_BUS: | 
|  | idx = SI_CC_IDX; | 
|  | break; | 
|  | case PCMCIA_BUS: | 
|  | case SDIO_BUS: | 
|  | idx = si_findcoreidx(sih, PCMCIA_CORE_ID, 0); | 
|  | break; | 
|  | case SI_BUS: | 
|  | idx = si_findcoreidx(sih, MIPS33_CORE_ID, 0); | 
|  | break; | 
|  | default: | 
|  | ASSERT(0); | 
|  | } | 
|  | if (idx == BADIDX) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | INTR_OFF(sii, intr_val); | 
|  | origidx = si_coreidx(sih); | 
|  |  | 
|  | sb = REGS2SB(sb_setcoreidx(sih, idx)); | 
|  |  | 
|  | tmp = R_SBREG(sii, &sb->sbimconfiglow); | 
|  | ret = tmp & TO_MASK; | 
|  | W_SBREG(sii, &sb->sbimconfiglow, (tmp & ~TO_MASK) | to); | 
|  |  | 
|  | sb_commit(sih); | 
|  | sb_setcoreidx(sih, origidx); | 
|  | INTR_RESTORE(sii, intr_val); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint32 | 
|  | sb_base(uint32 admatch) | 
|  | { | 
|  | uint32 base; | 
|  | uint type; | 
|  |  | 
|  | type = admatch & SBAM_TYPE_MASK; | 
|  | ASSERT(type < 3); | 
|  |  | 
|  | base = 0; | 
|  |  | 
|  | if (type == 0) { | 
|  | base = admatch & SBAM_BASE0_MASK; | 
|  | } else if (type == 1) { | 
|  | ASSERT(!(admatch & SBAM_ADNEG));	/* neg not supported */ | 
|  | base = admatch & SBAM_BASE1_MASK; | 
|  | } else if (type == 2) { | 
|  | ASSERT(!(admatch & SBAM_ADNEG));	/* neg not supported */ | 
|  | base = admatch & SBAM_BASE2_MASK; | 
|  | } | 
|  |  | 
|  | return (base); | 
|  | } | 
|  |  | 
|  | uint32 | 
|  | sb_size(uint32 admatch) | 
|  | { | 
|  | uint32 size; | 
|  | uint type; | 
|  |  | 
|  | type = admatch & SBAM_TYPE_MASK; | 
|  | ASSERT(type < 3); | 
|  |  | 
|  | size = 0; | 
|  |  | 
|  | if (type == 0) { | 
|  | size = 1 << (((admatch & SBAM_ADINT0_MASK) >> SBAM_ADINT0_SHIFT) + 1); | 
|  | } else if (type == 1) { | 
|  | ASSERT(!(admatch & SBAM_ADNEG));	/* neg not supported */ | 
|  | size = 1 << (((admatch & SBAM_ADINT1_MASK) >> SBAM_ADINT1_SHIFT) + 1); | 
|  | } else if (type == 2) { | 
|  | ASSERT(!(admatch & SBAM_ADNEG));	/* neg not supported */ | 
|  | size = 1 << (((admatch & SBAM_ADINT2_MASK) >> SBAM_ADINT2_SHIFT) + 1); | 
|  | } | 
|  |  | 
|  | return (size); | 
|  | } |