| /* | 
 |  * Implementation of the kernel access vector cache (AVC). | 
 |  * | 
 |  * Authors:  Stephen Smalley, <sds@epoch.ncsc.mil> | 
 |  *	     James Morris <jmorris@redhat.com> | 
 |  * | 
 |  * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com> | 
 |  *	Replaced the avc_lock spinlock by RCU. | 
 |  * | 
 |  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> | 
 |  * | 
 |  *	This program is free software; you can redistribute it and/or modify | 
 |  *	it under the terms of the GNU General Public License version 2, | 
 |  *	as published by the Free Software Foundation. | 
 |  */ | 
 | #include <linux/types.h> | 
 | #include <linux/stddef.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/dcache.h> | 
 | #include <linux/init.h> | 
 | #include <linux/skbuff.h> | 
 | #include <linux/percpu.h> | 
 | #include <net/sock.h> | 
 | #include <linux/un.h> | 
 | #include <net/af_unix.h> | 
 | #include <linux/ip.h> | 
 | #include <linux/audit.h> | 
 | #include <linux/ipv6.h> | 
 | #include <net/ipv6.h> | 
 | #include "avc.h" | 
 | #include "avc_ss.h" | 
 |  | 
 | static const struct av_perm_to_string av_perm_to_string[] = { | 
 | #define S_(c, v, s) { c, v, s }, | 
 | #include "av_perm_to_string.h" | 
 | #undef S_ | 
 | }; | 
 |  | 
 | static const char *class_to_string[] = { | 
 | #define S_(s) s, | 
 | #include "class_to_string.h" | 
 | #undef S_ | 
 | }; | 
 |  | 
 | #define TB_(s) static const char *s[] = { | 
 | #define TE_(s) }; | 
 | #define S_(s) s, | 
 | #include "common_perm_to_string.h" | 
 | #undef TB_ | 
 | #undef TE_ | 
 | #undef S_ | 
 |  | 
 | static const struct av_inherit av_inherit[] = { | 
 | #define S_(c, i, b) { c, common_##i##_perm_to_string, b }, | 
 | #include "av_inherit.h" | 
 | #undef S_ | 
 | }; | 
 |  | 
 | const struct selinux_class_perm selinux_class_perm = { | 
 | 	av_perm_to_string, | 
 | 	ARRAY_SIZE(av_perm_to_string), | 
 | 	class_to_string, | 
 | 	ARRAY_SIZE(class_to_string), | 
 | 	av_inherit, | 
 | 	ARRAY_SIZE(av_inherit) | 
 | }; | 
 |  | 
 | #define AVC_CACHE_SLOTS			512 | 
 | #define AVC_DEF_CACHE_THRESHOLD		512 | 
 | #define AVC_CACHE_RECLAIM		16 | 
 |  | 
 | #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS | 
 | #define avc_cache_stats_incr(field)				\ | 
 | do {								\ | 
 | 	per_cpu(avc_cache_stats, get_cpu()).field++;		\ | 
 | 	put_cpu();						\ | 
 | } while (0) | 
 | #else | 
 | #define avc_cache_stats_incr(field)	do {} while (0) | 
 | #endif | 
 |  | 
 | struct avc_entry { | 
 | 	u32			ssid; | 
 | 	u32			tsid; | 
 | 	u16			tclass; | 
 | 	struct av_decision	avd; | 
 | 	atomic_t		used;	/* used recently */ | 
 | }; | 
 |  | 
 | struct avc_node { | 
 | 	struct avc_entry	ae; | 
 | 	struct list_head	list; | 
 | 	struct rcu_head		rhead; | 
 | }; | 
 |  | 
 | struct avc_cache { | 
 | 	struct list_head	slots[AVC_CACHE_SLOTS]; | 
 | 	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */ | 
 | 	atomic_t		lru_hint;	/* LRU hint for reclaim scan */ | 
 | 	atomic_t		active_nodes; | 
 | 	u32			latest_notif;	/* latest revocation notification */ | 
 | }; | 
 |  | 
 | struct avc_callback_node { | 
 | 	int (*callback) (u32 event, u32 ssid, u32 tsid, | 
 | 			 u16 tclass, u32 perms, | 
 | 			 u32 *out_retained); | 
 | 	u32 events; | 
 | 	u32 ssid; | 
 | 	u32 tsid; | 
 | 	u16 tclass; | 
 | 	u32 perms; | 
 | 	struct avc_callback_node *next; | 
 | }; | 
 |  | 
 | /* Exported via selinufs */ | 
 | unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD; | 
 |  | 
 | #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS | 
 | DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 }; | 
 | #endif | 
 |  | 
 | static struct avc_cache avc_cache; | 
 | static struct avc_callback_node *avc_callbacks; | 
 | static struct kmem_cache *avc_node_cachep; | 
 |  | 
 | static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass) | 
 | { | 
 | 	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1); | 
 | } | 
 |  | 
 | /** | 
 |  * avc_dump_av - Display an access vector in human-readable form. | 
 |  * @tclass: target security class | 
 |  * @av: access vector | 
 |  */ | 
 | static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av) | 
 | { | 
 | 	const char **common_pts = NULL; | 
 | 	u32 common_base = 0; | 
 | 	int i, i2, perm; | 
 |  | 
 | 	if (av == 0) { | 
 | 		audit_log_format(ab, " null"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(av_inherit); i++) { | 
 | 		if (av_inherit[i].tclass == tclass) { | 
 | 			common_pts = av_inherit[i].common_pts; | 
 | 			common_base = av_inherit[i].common_base; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	audit_log_format(ab, " {"); | 
 | 	i = 0; | 
 | 	perm = 1; | 
 | 	while (perm < common_base) { | 
 | 		if (perm & av) { | 
 | 			audit_log_format(ab, " %s", common_pts[i]); | 
 | 			av &= ~perm; | 
 | 		} | 
 | 		i++; | 
 | 		perm <<= 1; | 
 | 	} | 
 |  | 
 | 	while (i < sizeof(av) * 8) { | 
 | 		if (perm & av) { | 
 | 			for (i2 = 0; i2 < ARRAY_SIZE(av_perm_to_string); i2++) { | 
 | 				if ((av_perm_to_string[i2].tclass == tclass) && | 
 | 				    (av_perm_to_string[i2].value == perm)) | 
 | 					break; | 
 | 			} | 
 | 			if (i2 < ARRAY_SIZE(av_perm_to_string)) { | 
 | 				audit_log_format(ab, " %s", | 
 | 						 av_perm_to_string[i2].name); | 
 | 				av &= ~perm; | 
 | 			} | 
 | 		} | 
 | 		i++; | 
 | 		perm <<= 1; | 
 | 	} | 
 |  | 
 | 	if (av) | 
 | 		audit_log_format(ab, " 0x%x", av); | 
 |  | 
 | 	audit_log_format(ab, " }"); | 
 | } | 
 |  | 
 | /** | 
 |  * avc_dump_query - Display a SID pair and a class in human-readable form. | 
 |  * @ssid: source security identifier | 
 |  * @tsid: target security identifier | 
 |  * @tclass: target security class | 
 |  */ | 
 | static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass) | 
 | { | 
 | 	int rc; | 
 | 	char *scontext; | 
 | 	u32 scontext_len; | 
 |  | 
 | 	rc = security_sid_to_context(ssid, &scontext, &scontext_len); | 
 | 	if (rc) | 
 | 		audit_log_format(ab, "ssid=%d", ssid); | 
 | 	else { | 
 | 		audit_log_format(ab, "scontext=%s", scontext); | 
 | 		kfree(scontext); | 
 | 	} | 
 |  | 
 | 	rc = security_sid_to_context(tsid, &scontext, &scontext_len); | 
 | 	if (rc) | 
 | 		audit_log_format(ab, " tsid=%d", tsid); | 
 | 	else { | 
 | 		audit_log_format(ab, " tcontext=%s", scontext); | 
 | 		kfree(scontext); | 
 | 	} | 
 |  | 
 | 	BUG_ON(tclass >= ARRAY_SIZE(class_to_string) || !class_to_string[tclass]); | 
 | 	audit_log_format(ab, " tclass=%s", class_to_string[tclass]); | 
 | } | 
 |  | 
 | /** | 
 |  * avc_init - Initialize the AVC. | 
 |  * | 
 |  * Initialize the access vector cache. | 
 |  */ | 
 | void __init avc_init(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < AVC_CACHE_SLOTS; i++) { | 
 | 		INIT_LIST_HEAD(&avc_cache.slots[i]); | 
 | 		spin_lock_init(&avc_cache.slots_lock[i]); | 
 | 	} | 
 | 	atomic_set(&avc_cache.active_nodes, 0); | 
 | 	atomic_set(&avc_cache.lru_hint, 0); | 
 |  | 
 | 	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node), | 
 | 					     0, SLAB_PANIC, NULL); | 
 |  | 
 | 	audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n"); | 
 | } | 
 |  | 
 | int avc_get_hash_stats(char *page) | 
 | { | 
 | 	int i, chain_len, max_chain_len, slots_used; | 
 | 	struct avc_node *node; | 
 |  | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	slots_used = 0; | 
 | 	max_chain_len = 0; | 
 | 	for (i = 0; i < AVC_CACHE_SLOTS; i++) { | 
 | 		if (!list_empty(&avc_cache.slots[i])) { | 
 | 			slots_used++; | 
 | 			chain_len = 0; | 
 | 			list_for_each_entry_rcu(node, &avc_cache.slots[i], list) | 
 | 				chain_len++; | 
 | 			if (chain_len > max_chain_len) | 
 | 				max_chain_len = chain_len; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n" | 
 | 			 "longest chain: %d\n", | 
 | 			 atomic_read(&avc_cache.active_nodes), | 
 | 			 slots_used, AVC_CACHE_SLOTS, max_chain_len); | 
 | } | 
 |  | 
 | static void avc_node_free(struct rcu_head *rhead) | 
 | { | 
 | 	struct avc_node *node = container_of(rhead, struct avc_node, rhead); | 
 | 	kmem_cache_free(avc_node_cachep, node); | 
 | 	avc_cache_stats_incr(frees); | 
 | } | 
 |  | 
 | static void avc_node_delete(struct avc_node *node) | 
 | { | 
 | 	list_del_rcu(&node->list); | 
 | 	call_rcu(&node->rhead, avc_node_free); | 
 | 	atomic_dec(&avc_cache.active_nodes); | 
 | } | 
 |  | 
 | static void avc_node_kill(struct avc_node *node) | 
 | { | 
 | 	kmem_cache_free(avc_node_cachep, node); | 
 | 	avc_cache_stats_incr(frees); | 
 | 	atomic_dec(&avc_cache.active_nodes); | 
 | } | 
 |  | 
 | static void avc_node_replace(struct avc_node *new, struct avc_node *old) | 
 | { | 
 | 	list_replace_rcu(&old->list, &new->list); | 
 | 	call_rcu(&old->rhead, avc_node_free); | 
 | 	atomic_dec(&avc_cache.active_nodes); | 
 | } | 
 |  | 
 | static inline int avc_reclaim_node(void) | 
 | { | 
 | 	struct avc_node *node; | 
 | 	int hvalue, try, ecx; | 
 | 	unsigned long flags; | 
 |  | 
 | 	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) { | 
 | 		hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1); | 
 |  | 
 | 		if (!spin_trylock_irqsave(&avc_cache.slots_lock[hvalue], flags)) | 
 | 			continue; | 
 |  | 
 | 		rcu_read_lock(); | 
 | 		list_for_each_entry(node, &avc_cache.slots[hvalue], list) { | 
 | 			if (atomic_dec_and_test(&node->ae.used)) { | 
 | 				/* Recently Unused */ | 
 | 				avc_node_delete(node); | 
 | 				avc_cache_stats_incr(reclaims); | 
 | 				ecx++; | 
 | 				if (ecx >= AVC_CACHE_RECLAIM) { | 
 | 					rcu_read_unlock(); | 
 | 					spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags); | 
 | 					goto out; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 		rcu_read_unlock(); | 
 | 		spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags); | 
 | 	} | 
 | out: | 
 | 	return ecx; | 
 | } | 
 |  | 
 | static struct avc_node *avc_alloc_node(void) | 
 | { | 
 | 	struct avc_node *node; | 
 |  | 
 | 	node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC); | 
 | 	if (!node) | 
 | 		goto out; | 
 |  | 
 | 	INIT_RCU_HEAD(&node->rhead); | 
 | 	INIT_LIST_HEAD(&node->list); | 
 | 	atomic_set(&node->ae.used, 1); | 
 | 	avc_cache_stats_incr(allocations); | 
 |  | 
 | 	if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold) | 
 | 		avc_reclaim_node(); | 
 |  | 
 | out: | 
 | 	return node; | 
 | } | 
 |  | 
 | static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae) | 
 | { | 
 | 	node->ae.ssid = ssid; | 
 | 	node->ae.tsid = tsid; | 
 | 	node->ae.tclass = tclass; | 
 | 	memcpy(&node->ae.avd, &ae->avd, sizeof(node->ae.avd)); | 
 | } | 
 |  | 
 | static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass) | 
 | { | 
 | 	struct avc_node *node, *ret = NULL; | 
 | 	int hvalue; | 
 |  | 
 | 	hvalue = avc_hash(ssid, tsid, tclass); | 
 | 	list_for_each_entry_rcu(node, &avc_cache.slots[hvalue], list) { | 
 | 		if (ssid == node->ae.ssid && | 
 | 		    tclass == node->ae.tclass && | 
 | 		    tsid == node->ae.tsid) { | 
 | 			ret = node; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (ret == NULL) { | 
 | 		/* cache miss */ | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* cache hit */ | 
 | 	if (atomic_read(&ret->ae.used) != 1) | 
 | 		atomic_set(&ret->ae.used, 1); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * avc_lookup - Look up an AVC entry. | 
 |  * @ssid: source security identifier | 
 |  * @tsid: target security identifier | 
 |  * @tclass: target security class | 
 |  * @requested: requested permissions, interpreted based on @tclass | 
 |  * | 
 |  * Look up an AVC entry that is valid for the | 
 |  * @requested permissions between the SID pair | 
 |  * (@ssid, @tsid), interpreting the permissions | 
 |  * based on @tclass.  If a valid AVC entry exists, | 
 |  * then this function return the avc_node. | 
 |  * Otherwise, this function returns NULL. | 
 |  */ | 
 | static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass, u32 requested) | 
 | { | 
 | 	struct avc_node *node; | 
 |  | 
 | 	avc_cache_stats_incr(lookups); | 
 | 	node = avc_search_node(ssid, tsid, tclass); | 
 |  | 
 | 	if (node && ((node->ae.avd.decided & requested) == requested)) { | 
 | 		avc_cache_stats_incr(hits); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	node = NULL; | 
 | 	avc_cache_stats_incr(misses); | 
 | out: | 
 | 	return node; | 
 | } | 
 |  | 
 | static int avc_latest_notif_update(int seqno, int is_insert) | 
 | { | 
 | 	int ret = 0; | 
 | 	static DEFINE_SPINLOCK(notif_lock); | 
 | 	unsigned long flag; | 
 |  | 
 | 	spin_lock_irqsave(¬if_lock, flag); | 
 | 	if (is_insert) { | 
 | 		if (seqno < avc_cache.latest_notif) { | 
 | 			printk(KERN_WARNING "SELinux: avc:  seqno %d < latest_notif %d\n", | 
 | 			       seqno, avc_cache.latest_notif); | 
 | 			ret = -EAGAIN; | 
 | 		} | 
 | 	} else { | 
 | 		if (seqno > avc_cache.latest_notif) | 
 | 			avc_cache.latest_notif = seqno; | 
 | 	} | 
 | 	spin_unlock_irqrestore(¬if_lock, flag); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * avc_insert - Insert an AVC entry. | 
 |  * @ssid: source security identifier | 
 |  * @tsid: target security identifier | 
 |  * @tclass: target security class | 
 |  * @ae: AVC entry | 
 |  * | 
 |  * Insert an AVC entry for the SID pair | 
 |  * (@ssid, @tsid) and class @tclass. | 
 |  * The access vectors and the sequence number are | 
 |  * normally provided by the security server in | 
 |  * response to a security_compute_av() call.  If the | 
 |  * sequence number @ae->avd.seqno is not less than the latest | 
 |  * revocation notification, then the function copies | 
 |  * the access vectors into a cache entry, returns | 
 |  * avc_node inserted. Otherwise, this function returns NULL. | 
 |  */ | 
 | static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae) | 
 | { | 
 | 	struct avc_node *pos, *node = NULL; | 
 | 	int hvalue; | 
 | 	unsigned long flag; | 
 |  | 
 | 	if (avc_latest_notif_update(ae->avd.seqno, 1)) | 
 | 		goto out; | 
 |  | 
 | 	node = avc_alloc_node(); | 
 | 	if (node) { | 
 | 		hvalue = avc_hash(ssid, tsid, tclass); | 
 | 		avc_node_populate(node, ssid, tsid, tclass, ae); | 
 |  | 
 | 		spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag); | 
 | 		list_for_each_entry(pos, &avc_cache.slots[hvalue], list) { | 
 | 			if (pos->ae.ssid == ssid && | 
 | 			    pos->ae.tsid == tsid && | 
 | 			    pos->ae.tclass == tclass) { | 
 | 				avc_node_replace(node, pos); | 
 | 				goto found; | 
 | 			} | 
 | 		} | 
 | 		list_add_rcu(&node->list, &avc_cache.slots[hvalue]); | 
 | found: | 
 | 		spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag); | 
 | 	} | 
 | out: | 
 | 	return node; | 
 | } | 
 |  | 
 | static inline void avc_print_ipv6_addr(struct audit_buffer *ab, | 
 | 				       struct in6_addr *addr, __be16 port, | 
 | 				       char *name1, char *name2) | 
 | { | 
 | 	if (!ipv6_addr_any(addr)) | 
 | 		audit_log_format(ab, " %s=" NIP6_FMT, name1, NIP6(*addr)); | 
 | 	if (port) | 
 | 		audit_log_format(ab, " %s=%d", name2, ntohs(port)); | 
 | } | 
 |  | 
 | static inline void avc_print_ipv4_addr(struct audit_buffer *ab, __be32 addr, | 
 | 				       __be16 port, char *name1, char *name2) | 
 | { | 
 | 	if (addr) | 
 | 		audit_log_format(ab, " %s=" NIPQUAD_FMT, name1, NIPQUAD(addr)); | 
 | 	if (port) | 
 | 		audit_log_format(ab, " %s=%d", name2, ntohs(port)); | 
 | } | 
 |  | 
 | /** | 
 |  * avc_audit - Audit the granting or denial of permissions. | 
 |  * @ssid: source security identifier | 
 |  * @tsid: target security identifier | 
 |  * @tclass: target security class | 
 |  * @requested: requested permissions | 
 |  * @avd: access vector decisions | 
 |  * @result: result from avc_has_perm_noaudit | 
 |  * @a:  auxiliary audit data | 
 |  * | 
 |  * Audit the granting or denial of permissions in accordance | 
 |  * with the policy.  This function is typically called by | 
 |  * avc_has_perm() after a permission check, but can also be | 
 |  * called directly by callers who use avc_has_perm_noaudit() | 
 |  * in order to separate the permission check from the auditing. | 
 |  * For example, this separation is useful when the permission check must | 
 |  * be performed under a lock, to allow the lock to be released | 
 |  * before calling the auditing code. | 
 |  */ | 
 | void avc_audit(u32 ssid, u32 tsid, | 
 | 	       u16 tclass, u32 requested, | 
 | 	       struct av_decision *avd, int result, struct avc_audit_data *a) | 
 | { | 
 | 	struct task_struct *tsk = current; | 
 | 	struct inode *inode = NULL; | 
 | 	u32 denied, audited; | 
 | 	struct audit_buffer *ab; | 
 |  | 
 | 	denied = requested & ~avd->allowed; | 
 | 	if (denied) { | 
 | 		audited = denied; | 
 | 		if (!(audited & avd->auditdeny)) | 
 | 			return; | 
 | 	} else if (result) { | 
 | 		audited = denied = requested; | 
 | 	} else { | 
 | 		audited = requested; | 
 | 		if (!(audited & avd->auditallow)) | 
 | 			return; | 
 | 	} | 
 |  | 
 | 	ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_AVC); | 
 | 	if (!ab) | 
 | 		return;		/* audit_panic has been called */ | 
 | 	audit_log_format(ab, "avc:  %s ", denied ? "denied" : "granted"); | 
 | 	avc_dump_av(ab, tclass, audited); | 
 | 	audit_log_format(ab, " for "); | 
 | 	if (a && a->tsk) | 
 | 		tsk = a->tsk; | 
 | 	if (tsk && tsk->pid) { | 
 | 		audit_log_format(ab, " pid=%d comm=", tsk->pid); | 
 | 		audit_log_untrustedstring(ab, tsk->comm); | 
 | 	} | 
 | 	if (a) { | 
 | 		switch (a->type) { | 
 | 		case AVC_AUDIT_DATA_IPC: | 
 | 			audit_log_format(ab, " key=%d", a->u.ipc_id); | 
 | 			break; | 
 | 		case AVC_AUDIT_DATA_CAP: | 
 | 			audit_log_format(ab, " capability=%d", a->u.cap); | 
 | 			break; | 
 | 		case AVC_AUDIT_DATA_FS: | 
 | 			if (a->u.fs.path.dentry) { | 
 | 				struct dentry *dentry = a->u.fs.path.dentry; | 
 | 				if (a->u.fs.path.mnt) { | 
 | 					audit_log_d_path(ab, "path=", | 
 | 							 &a->u.fs.path); | 
 | 				} else { | 
 | 					audit_log_format(ab, " name="); | 
 | 					audit_log_untrustedstring(ab, dentry->d_name.name); | 
 | 				} | 
 | 				inode = dentry->d_inode; | 
 | 			} else if (a->u.fs.inode) { | 
 | 				struct dentry *dentry; | 
 | 				inode = a->u.fs.inode; | 
 | 				dentry = d_find_alias(inode); | 
 | 				if (dentry) { | 
 | 					audit_log_format(ab, " name="); | 
 | 					audit_log_untrustedstring(ab, dentry->d_name.name); | 
 | 					dput(dentry); | 
 | 				} | 
 | 			} | 
 | 			if (inode) | 
 | 				audit_log_format(ab, " dev=%s ino=%lu", | 
 | 						 inode->i_sb->s_id, | 
 | 						 inode->i_ino); | 
 | 			break; | 
 | 		case AVC_AUDIT_DATA_NET: | 
 | 			if (a->u.net.sk) { | 
 | 				struct sock *sk = a->u.net.sk; | 
 | 				struct unix_sock *u; | 
 | 				int len = 0; | 
 | 				char *p = NULL; | 
 |  | 
 | 				switch (sk->sk_family) { | 
 | 				case AF_INET: { | 
 | 					struct inet_sock *inet = inet_sk(sk); | 
 |  | 
 | 					avc_print_ipv4_addr(ab, inet->rcv_saddr, | 
 | 							    inet->sport, | 
 | 							    "laddr", "lport"); | 
 | 					avc_print_ipv4_addr(ab, inet->daddr, | 
 | 							    inet->dport, | 
 | 							    "faddr", "fport"); | 
 | 					break; | 
 | 				} | 
 | 				case AF_INET6: { | 
 | 					struct inet_sock *inet = inet_sk(sk); | 
 | 					struct ipv6_pinfo *inet6 = inet6_sk(sk); | 
 |  | 
 | 					avc_print_ipv6_addr(ab, &inet6->rcv_saddr, | 
 | 							    inet->sport, | 
 | 							    "laddr", "lport"); | 
 | 					avc_print_ipv6_addr(ab, &inet6->daddr, | 
 | 							    inet->dport, | 
 | 							    "faddr", "fport"); | 
 | 					break; | 
 | 				} | 
 | 				case AF_UNIX: | 
 | 					u = unix_sk(sk); | 
 | 					if (u->dentry) { | 
 | 						struct path path = { | 
 | 							.dentry = u->dentry, | 
 | 							.mnt = u->mnt | 
 | 						}; | 
 | 						audit_log_d_path(ab, "path=", | 
 | 								 &path); | 
 | 						break; | 
 | 					} | 
 | 					if (!u->addr) | 
 | 						break; | 
 | 					len = u->addr->len-sizeof(short); | 
 | 					p = &u->addr->name->sun_path[0]; | 
 | 					audit_log_format(ab, " path="); | 
 | 					if (*p) | 
 | 						audit_log_untrustedstring(ab, p); | 
 | 					else | 
 | 						audit_log_n_hex(ab, p, len); | 
 | 					break; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			switch (a->u.net.family) { | 
 | 			case AF_INET: | 
 | 				avc_print_ipv4_addr(ab, a->u.net.v4info.saddr, | 
 | 						    a->u.net.sport, | 
 | 						    "saddr", "src"); | 
 | 				avc_print_ipv4_addr(ab, a->u.net.v4info.daddr, | 
 | 						    a->u.net.dport, | 
 | 						    "daddr", "dest"); | 
 | 				break; | 
 | 			case AF_INET6: | 
 | 				avc_print_ipv6_addr(ab, &a->u.net.v6info.saddr, | 
 | 						    a->u.net.sport, | 
 | 						    "saddr", "src"); | 
 | 				avc_print_ipv6_addr(ab, &a->u.net.v6info.daddr, | 
 | 						    a->u.net.dport, | 
 | 						    "daddr", "dest"); | 
 | 				break; | 
 | 			} | 
 | 			if (a->u.net.netif > 0) { | 
 | 				struct net_device *dev; | 
 |  | 
 | 				/* NOTE: we always use init's namespace */ | 
 | 				dev = dev_get_by_index(&init_net, | 
 | 						       a->u.net.netif); | 
 | 				if (dev) { | 
 | 					audit_log_format(ab, " netif=%s", | 
 | 							 dev->name); | 
 | 					dev_put(dev); | 
 | 				} | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	audit_log_format(ab, " "); | 
 | 	avc_dump_query(ab, ssid, tsid, tclass); | 
 | 	audit_log_end(ab); | 
 | } | 
 |  | 
 | /** | 
 |  * avc_add_callback - Register a callback for security events. | 
 |  * @callback: callback function | 
 |  * @events: security events | 
 |  * @ssid: source security identifier or %SECSID_WILD | 
 |  * @tsid: target security identifier or %SECSID_WILD | 
 |  * @tclass: target security class | 
 |  * @perms: permissions | 
 |  * | 
 |  * Register a callback function for events in the set @events | 
 |  * related to the SID pair (@ssid, @tsid) and | 
 |  * and the permissions @perms, interpreting | 
 |  * @perms based on @tclass.  Returns %0 on success or | 
 |  * -%ENOMEM if insufficient memory exists to add the callback. | 
 |  */ | 
 | int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid, | 
 | 				     u16 tclass, u32 perms, | 
 | 				     u32 *out_retained), | 
 | 		     u32 events, u32 ssid, u32 tsid, | 
 | 		     u16 tclass, u32 perms) | 
 | { | 
 | 	struct avc_callback_node *c; | 
 | 	int rc = 0; | 
 |  | 
 | 	c = kmalloc(sizeof(*c), GFP_ATOMIC); | 
 | 	if (!c) { | 
 | 		rc = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	c->callback = callback; | 
 | 	c->events = events; | 
 | 	c->ssid = ssid; | 
 | 	c->tsid = tsid; | 
 | 	c->perms = perms; | 
 | 	c->next = avc_callbacks; | 
 | 	avc_callbacks = c; | 
 | out: | 
 | 	return rc; | 
 | } | 
 |  | 
 | static inline int avc_sidcmp(u32 x, u32 y) | 
 | { | 
 | 	return (x == y || x == SECSID_WILD || y == SECSID_WILD); | 
 | } | 
 |  | 
 | /** | 
 |  * avc_update_node Update an AVC entry | 
 |  * @event : Updating event | 
 |  * @perms : Permission mask bits | 
 |  * @ssid,@tsid,@tclass : identifier of an AVC entry | 
 |  * | 
 |  * if a valid AVC entry doesn't exist,this function returns -ENOENT. | 
 |  * if kmalloc() called internal returns NULL, this function returns -ENOMEM. | 
 |  * otherwise, this function update the AVC entry. The original AVC-entry object | 
 |  * will release later by RCU. | 
 |  */ | 
 | static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass) | 
 | { | 
 | 	int hvalue, rc = 0; | 
 | 	unsigned long flag; | 
 | 	struct avc_node *pos, *node, *orig = NULL; | 
 |  | 
 | 	node = avc_alloc_node(); | 
 | 	if (!node) { | 
 | 		rc = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Lock the target slot */ | 
 | 	hvalue = avc_hash(ssid, tsid, tclass); | 
 | 	spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag); | 
 |  | 
 | 	list_for_each_entry(pos, &avc_cache.slots[hvalue], list) { | 
 | 		if (ssid == pos->ae.ssid && | 
 | 		    tsid == pos->ae.tsid && | 
 | 		    tclass == pos->ae.tclass){ | 
 | 			orig = pos; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!orig) { | 
 | 		rc = -ENOENT; | 
 | 		avc_node_kill(node); | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Copy and replace original node. | 
 | 	 */ | 
 |  | 
 | 	avc_node_populate(node, ssid, tsid, tclass, &orig->ae); | 
 |  | 
 | 	switch (event) { | 
 | 	case AVC_CALLBACK_GRANT: | 
 | 		node->ae.avd.allowed |= perms; | 
 | 		break; | 
 | 	case AVC_CALLBACK_TRY_REVOKE: | 
 | 	case AVC_CALLBACK_REVOKE: | 
 | 		node->ae.avd.allowed &= ~perms; | 
 | 		break; | 
 | 	case AVC_CALLBACK_AUDITALLOW_ENABLE: | 
 | 		node->ae.avd.auditallow |= perms; | 
 | 		break; | 
 | 	case AVC_CALLBACK_AUDITALLOW_DISABLE: | 
 | 		node->ae.avd.auditallow &= ~perms; | 
 | 		break; | 
 | 	case AVC_CALLBACK_AUDITDENY_ENABLE: | 
 | 		node->ae.avd.auditdeny |= perms; | 
 | 		break; | 
 | 	case AVC_CALLBACK_AUDITDENY_DISABLE: | 
 | 		node->ae.avd.auditdeny &= ~perms; | 
 | 		break; | 
 | 	} | 
 | 	avc_node_replace(node, orig); | 
 | out_unlock: | 
 | 	spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag); | 
 | out: | 
 | 	return rc; | 
 | } | 
 |  | 
 | /** | 
 |  * avc_ss_reset - Flush the cache and revalidate migrated permissions. | 
 |  * @seqno: policy sequence number | 
 |  */ | 
 | int avc_ss_reset(u32 seqno) | 
 | { | 
 | 	struct avc_callback_node *c; | 
 | 	int i, rc = 0, tmprc; | 
 | 	unsigned long flag; | 
 | 	struct avc_node *node; | 
 |  | 
 | 	for (i = 0; i < AVC_CACHE_SLOTS; i++) { | 
 | 		spin_lock_irqsave(&avc_cache.slots_lock[i], flag); | 
 | 		/* | 
 | 		 * With preemptable RCU, the outer spinlock does not | 
 | 		 * prevent RCU grace periods from ending. | 
 | 		 */ | 
 | 		rcu_read_lock(); | 
 | 		list_for_each_entry(node, &avc_cache.slots[i], list) | 
 | 			avc_node_delete(node); | 
 | 		rcu_read_unlock(); | 
 | 		spin_unlock_irqrestore(&avc_cache.slots_lock[i], flag); | 
 | 	} | 
 |  | 
 | 	for (c = avc_callbacks; c; c = c->next) { | 
 | 		if (c->events & AVC_CALLBACK_RESET) { | 
 | 			tmprc = c->callback(AVC_CALLBACK_RESET, | 
 | 					    0, 0, 0, 0, NULL); | 
 | 			/* save the first error encountered for the return | 
 | 			   value and continue processing the callbacks */ | 
 | 			if (!rc) | 
 | 				rc = tmprc; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	avc_latest_notif_update(seqno, 0); | 
 | 	return rc; | 
 | } | 
 |  | 
 | /** | 
 |  * avc_has_perm_noaudit - Check permissions but perform no auditing. | 
 |  * @ssid: source security identifier | 
 |  * @tsid: target security identifier | 
 |  * @tclass: target security class | 
 |  * @requested: requested permissions, interpreted based on @tclass | 
 |  * @flags:  AVC_STRICT or 0 | 
 |  * @avd: access vector decisions | 
 |  * | 
 |  * Check the AVC to determine whether the @requested permissions are granted | 
 |  * for the SID pair (@ssid, @tsid), interpreting the permissions | 
 |  * based on @tclass, and call the security server on a cache miss to obtain | 
 |  * a new decision and add it to the cache.  Return a copy of the decisions | 
 |  * in @avd.  Return %0 if all @requested permissions are granted, | 
 |  * -%EACCES if any permissions are denied, or another -errno upon | 
 |  * other errors.  This function is typically called by avc_has_perm(), | 
 |  * but may also be called directly to separate permission checking from | 
 |  * auditing, e.g. in cases where a lock must be held for the check but | 
 |  * should be released for the auditing. | 
 |  */ | 
 | int avc_has_perm_noaudit(u32 ssid, u32 tsid, | 
 | 			 u16 tclass, u32 requested, | 
 | 			 unsigned flags, | 
 | 			 struct av_decision *avd) | 
 | { | 
 | 	struct avc_node *node; | 
 | 	struct avc_entry entry, *p_ae; | 
 | 	int rc = 0; | 
 | 	u32 denied; | 
 |  | 
 | 	BUG_ON(!requested); | 
 |  | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	node = avc_lookup(ssid, tsid, tclass, requested); | 
 | 	if (!node) { | 
 | 		rcu_read_unlock(); | 
 | 		rc = security_compute_av(ssid, tsid, tclass, requested, &entry.avd); | 
 | 		if (rc) | 
 | 			goto out; | 
 | 		rcu_read_lock(); | 
 | 		node = avc_insert(ssid, tsid, tclass, &entry); | 
 | 	} | 
 |  | 
 | 	p_ae = node ? &node->ae : &entry; | 
 |  | 
 | 	if (avd) | 
 | 		memcpy(avd, &p_ae->avd, sizeof(*avd)); | 
 |  | 
 | 	denied = requested & ~(p_ae->avd.allowed); | 
 |  | 
 | 	if (denied) { | 
 | 		if (flags & AVC_STRICT) | 
 | 			rc = -EACCES; | 
 | 		else if (!selinux_enforcing || security_permissive_sid(ssid)) | 
 | 			avc_update_node(AVC_CALLBACK_GRANT, requested, ssid, | 
 | 					tsid, tclass); | 
 | 		else | 
 | 			rc = -EACCES; | 
 | 	} | 
 |  | 
 | 	rcu_read_unlock(); | 
 | out: | 
 | 	return rc; | 
 | } | 
 |  | 
 | /** | 
 |  * avc_has_perm - Check permissions and perform any appropriate auditing. | 
 |  * @ssid: source security identifier | 
 |  * @tsid: target security identifier | 
 |  * @tclass: target security class | 
 |  * @requested: requested permissions, interpreted based on @tclass | 
 |  * @auditdata: auxiliary audit data | 
 |  * | 
 |  * Check the AVC to determine whether the @requested permissions are granted | 
 |  * for the SID pair (@ssid, @tsid), interpreting the permissions | 
 |  * based on @tclass, and call the security server on a cache miss to obtain | 
 |  * a new decision and add it to the cache.  Audit the granting or denial of | 
 |  * permissions in accordance with the policy.  Return %0 if all @requested | 
 |  * permissions are granted, -%EACCES if any permissions are denied, or | 
 |  * another -errno upon other errors. | 
 |  */ | 
 | int avc_has_perm(u32 ssid, u32 tsid, u16 tclass, | 
 | 		 u32 requested, struct avc_audit_data *auditdata) | 
 | { | 
 | 	struct av_decision avd; | 
 | 	int rc; | 
 |  | 
 | 	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd); | 
 | 	avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata); | 
 | 	return rc; | 
 | } | 
 |  | 
 | u32 avc_policy_seqno(void) | 
 | { | 
 | 	return avc_cache.latest_notif; | 
 | } |