| /* | 
 |  *	linux/mm/mincore.c | 
 |  * | 
 |  * Copyright (C) 1994-2006  Linus Torvalds | 
 |  */ | 
 |  | 
 | /* | 
 |  * The mincore() system call. | 
 |  */ | 
 | #include <linux/slab.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/syscalls.h> | 
 |  | 
 | #include <asm/uaccess.h> | 
 | #include <asm/pgtable.h> | 
 |  | 
 | /* | 
 |  * Later we can get more picky about what "in core" means precisely. | 
 |  * For now, simply check to see if the page is in the page cache, | 
 |  * and is up to date; i.e. that no page-in operation would be required | 
 |  * at this time if an application were to map and access this page. | 
 |  */ | 
 | static unsigned char mincore_page(struct vm_area_struct * vma, | 
 | 	unsigned long pgoff) | 
 | { | 
 | 	unsigned char present = 0; | 
 | 	struct address_space * as = vma->vm_file->f_mapping; | 
 | 	struct page * page; | 
 |  | 
 | 	page = find_get_page(as, pgoff); | 
 | 	if (page) { | 
 | 		present = PageUptodate(page); | 
 | 		page_cache_release(page); | 
 | 	} | 
 |  | 
 | 	return present; | 
 | } | 
 |  | 
 | /* | 
 |  * Do a chunk of "sys_mincore()". We've already checked | 
 |  * all the arguments, we hold the mmap semaphore: we should | 
 |  * just return the amount of info we're asked for. | 
 |  */ | 
 | static long do_mincore(unsigned long addr, unsigned char *vec, unsigned long pages) | 
 | { | 
 | 	unsigned long i, nr, pgoff; | 
 | 	struct vm_area_struct *vma = find_vma(current->mm, addr); | 
 |  | 
 | 	/* | 
 | 	 * find_vma() didn't find anything above us, or we're | 
 | 	 * in an unmapped hole in the address space: ENOMEM. | 
 | 	 */ | 
 | 	if (!vma || addr < vma->vm_start) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* | 
 | 	 * Ok, got it. But check whether it's a segment we support | 
 | 	 * mincore() on. Right now, we don't do any anonymous mappings. | 
 | 	 * | 
 | 	 * FIXME: This is just stupid. And returning ENOMEM is  | 
 | 	 * stupid too. We should just look at the page tables. But | 
 | 	 * this is what we've traditionally done, so we'll just | 
 | 	 * continue doing it. | 
 | 	 */ | 
 | 	if (!vma->vm_file) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* | 
 | 	 * Calculate how many pages there are left in the vma, and | 
 | 	 * what the pgoff is for our address. | 
 | 	 */ | 
 | 	nr = (vma->vm_end - addr) >> PAGE_SHIFT; | 
 | 	if (nr > pages) | 
 | 		nr = pages; | 
 |  | 
 | 	pgoff = (addr - vma->vm_start) >> PAGE_SHIFT; | 
 | 	pgoff += vma->vm_pgoff; | 
 |  | 
 | 	/* And then we just fill the sucker in.. */ | 
 | 	for (i = 0 ; i < nr; i++, pgoff++) | 
 | 		vec[i] = mincore_page(vma, pgoff); | 
 |  | 
 | 	return nr; | 
 | } | 
 |  | 
 | /* | 
 |  * The mincore(2) system call. | 
 |  * | 
 |  * mincore() returns the memory residency status of the pages in the | 
 |  * current process's address space specified by [addr, addr + len). | 
 |  * The status is returned in a vector of bytes.  The least significant | 
 |  * bit of each byte is 1 if the referenced page is in memory, otherwise | 
 |  * it is zero. | 
 |  * | 
 |  * Because the status of a page can change after mincore() checks it | 
 |  * but before it returns to the application, the returned vector may | 
 |  * contain stale information.  Only locked pages are guaranteed to | 
 |  * remain in memory. | 
 |  * | 
 |  * return values: | 
 |  *  zero    - success | 
 |  *  -EFAULT - vec points to an illegal address | 
 |  *  -EINVAL - addr is not a multiple of PAGE_CACHE_SIZE | 
 |  *  -ENOMEM - Addresses in the range [addr, addr + len] are | 
 |  *		invalid for the address space of this process, or | 
 |  *		specify one or more pages which are not currently | 
 |  *		mapped | 
 |  *  -EAGAIN - A kernel resource was temporarily unavailable. | 
 |  */ | 
 | asmlinkage long sys_mincore(unsigned long start, size_t len, | 
 | 	unsigned char __user * vec) | 
 | { | 
 | 	long retval; | 
 | 	unsigned long pages; | 
 | 	unsigned char *tmp; | 
 |  | 
 | 	/* Check the start address: needs to be page-aligned.. */ | 
 |  	if (start & ~PAGE_CACHE_MASK) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* ..and we need to be passed a valid user-space range */ | 
 | 	if (!access_ok(VERIFY_READ, (void __user *) start, len)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* This also avoids any overflows on PAGE_CACHE_ALIGN */ | 
 | 	pages = len >> PAGE_SHIFT; | 
 | 	pages += (len & ~PAGE_MASK) != 0; | 
 |  | 
 | 	if (!access_ok(VERIFY_WRITE, vec, pages)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	tmp = (void *) __get_free_page(GFP_USER); | 
 | 	if (!tmp) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	retval = 0; | 
 | 	while (pages) { | 
 | 		/* | 
 | 		 * Do at most PAGE_SIZE entries per iteration, due to | 
 | 		 * the temporary buffer size. | 
 | 		 */ | 
 | 		down_read(¤t->mm->mmap_sem); | 
 | 		retval = do_mincore(start, tmp, min(pages, PAGE_SIZE)); | 
 | 		up_read(¤t->mm->mmap_sem); | 
 |  | 
 | 		if (retval <= 0) | 
 | 			break; | 
 | 		if (copy_to_user(vec, tmp, retval)) { | 
 | 			retval = -EFAULT; | 
 | 			break; | 
 | 		} | 
 | 		pages -= retval; | 
 | 		vec += retval; | 
 | 		start += retval << PAGE_SHIFT; | 
 | 		retval = 0; | 
 | 	} | 
 | 	free_page((unsigned long) tmp); | 
 | 	return retval; | 
 | } |