|  | /* | 
|  | *  linux/kernel/sys.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992  Linus Torvalds | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/utsname.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/reboot.h> | 
|  | #include <linux/prctl.h> | 
|  | #include <linux/highuid.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/perf_event.h> | 
|  | #include <linux/resource.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/kexec.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/key.h> | 
|  | #include <linux/times.h> | 
|  | #include <linux/posix-timers.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/dcookies.h> | 
|  | #include <linux/suspend.h> | 
|  | #include <linux/tty.h> | 
|  | #include <linux/signal.h> | 
|  | #include <linux/cn_proc.h> | 
|  | #include <linux/getcpu.h> | 
|  | #include <linux/task_io_accounting_ops.h> | 
|  | #include <linux/seccomp.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/personality.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/fs_struct.h> | 
|  | #include <linux/gfp.h> | 
|  |  | 
|  | #include <linux/compat.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/kprobes.h> | 
|  | #include <linux/user_namespace.h> | 
|  |  | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/unistd.h> | 
|  |  | 
|  | #ifndef SET_UNALIGN_CTL | 
|  | # define SET_UNALIGN_CTL(a,b)	(-EINVAL) | 
|  | #endif | 
|  | #ifndef GET_UNALIGN_CTL | 
|  | # define GET_UNALIGN_CTL(a,b)	(-EINVAL) | 
|  | #endif | 
|  | #ifndef SET_FPEMU_CTL | 
|  | # define SET_FPEMU_CTL(a,b)	(-EINVAL) | 
|  | #endif | 
|  | #ifndef GET_FPEMU_CTL | 
|  | # define GET_FPEMU_CTL(a,b)	(-EINVAL) | 
|  | #endif | 
|  | #ifndef SET_FPEXC_CTL | 
|  | # define SET_FPEXC_CTL(a,b)	(-EINVAL) | 
|  | #endif | 
|  | #ifndef GET_FPEXC_CTL | 
|  | # define GET_FPEXC_CTL(a,b)	(-EINVAL) | 
|  | #endif | 
|  | #ifndef GET_ENDIAN | 
|  | # define GET_ENDIAN(a,b)	(-EINVAL) | 
|  | #endif | 
|  | #ifndef SET_ENDIAN | 
|  | # define SET_ENDIAN(a,b)	(-EINVAL) | 
|  | #endif | 
|  | #ifndef GET_TSC_CTL | 
|  | # define GET_TSC_CTL(a)		(-EINVAL) | 
|  | #endif | 
|  | #ifndef SET_TSC_CTL | 
|  | # define SET_TSC_CTL(a)		(-EINVAL) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * this is where the system-wide overflow UID and GID are defined, for | 
|  | * architectures that now have 32-bit UID/GID but didn't in the past | 
|  | */ | 
|  |  | 
|  | int overflowuid = DEFAULT_OVERFLOWUID; | 
|  | int overflowgid = DEFAULT_OVERFLOWGID; | 
|  |  | 
|  | #ifdef CONFIG_UID16 | 
|  | EXPORT_SYMBOL(overflowuid); | 
|  | EXPORT_SYMBOL(overflowgid); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * the same as above, but for filesystems which can only store a 16-bit | 
|  | * UID and GID. as such, this is needed on all architectures | 
|  | */ | 
|  |  | 
|  | int fs_overflowuid = DEFAULT_FS_OVERFLOWUID; | 
|  | int fs_overflowgid = DEFAULT_FS_OVERFLOWUID; | 
|  |  | 
|  | EXPORT_SYMBOL(fs_overflowuid); | 
|  | EXPORT_SYMBOL(fs_overflowgid); | 
|  |  | 
|  | /* | 
|  | * this indicates whether you can reboot with ctrl-alt-del: the default is yes | 
|  | */ | 
|  |  | 
|  | int C_A_D = 1; | 
|  | struct pid *cad_pid; | 
|  | EXPORT_SYMBOL(cad_pid); | 
|  |  | 
|  | /* | 
|  | * If set, this is used for preparing the system to power off. | 
|  | */ | 
|  |  | 
|  | void (*pm_power_off_prepare)(void); | 
|  |  | 
|  | /* | 
|  | * set the priority of a task | 
|  | * - the caller must hold the RCU read lock | 
|  | */ | 
|  | static int set_one_prio(struct task_struct *p, int niceval, int error) | 
|  | { | 
|  | const struct cred *cred = current_cred(), *pcred = __task_cred(p); | 
|  | int no_nice; | 
|  |  | 
|  | if (pcred->uid  != cred->euid && | 
|  | pcred->euid != cred->euid && !capable(CAP_SYS_NICE)) { | 
|  | error = -EPERM; | 
|  | goto out; | 
|  | } | 
|  | if (niceval < task_nice(p) && !can_nice(p, niceval)) { | 
|  | error = -EACCES; | 
|  | goto out; | 
|  | } | 
|  | no_nice = security_task_setnice(p, niceval); | 
|  | if (no_nice) { | 
|  | error = no_nice; | 
|  | goto out; | 
|  | } | 
|  | if (error == -ESRCH) | 
|  | error = 0; | 
|  | set_user_nice(p, niceval); | 
|  | out: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval) | 
|  | { | 
|  | struct task_struct *g, *p; | 
|  | struct user_struct *user; | 
|  | const struct cred *cred = current_cred(); | 
|  | int error = -EINVAL; | 
|  | struct pid *pgrp; | 
|  |  | 
|  | if (which > PRIO_USER || which < PRIO_PROCESS) | 
|  | goto out; | 
|  |  | 
|  | /* normalize: avoid signed division (rounding problems) */ | 
|  | error = -ESRCH; | 
|  | if (niceval < -20) | 
|  | niceval = -20; | 
|  | if (niceval > 19) | 
|  | niceval = 19; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | read_lock(&tasklist_lock); | 
|  | switch (which) { | 
|  | case PRIO_PROCESS: | 
|  | if (who) | 
|  | p = find_task_by_vpid(who); | 
|  | else | 
|  | p = current; | 
|  | if (p) | 
|  | error = set_one_prio(p, niceval, error); | 
|  | break; | 
|  | case PRIO_PGRP: | 
|  | if (who) | 
|  | pgrp = find_vpid(who); | 
|  | else | 
|  | pgrp = task_pgrp(current); | 
|  | do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { | 
|  | error = set_one_prio(p, niceval, error); | 
|  | } while_each_pid_thread(pgrp, PIDTYPE_PGID, p); | 
|  | break; | 
|  | case PRIO_USER: | 
|  | user = (struct user_struct *) cred->user; | 
|  | if (!who) | 
|  | who = cred->uid; | 
|  | else if ((who != cred->uid) && | 
|  | !(user = find_user(who))) | 
|  | goto out_unlock;	/* No processes for this user */ | 
|  |  | 
|  | do_each_thread(g, p) { | 
|  | if (__task_cred(p)->uid == who) | 
|  | error = set_one_prio(p, niceval, error); | 
|  | } while_each_thread(g, p); | 
|  | if (who != cred->uid) | 
|  | free_uid(user);		/* For find_user() */ | 
|  | break; | 
|  | } | 
|  | out_unlock: | 
|  | read_unlock(&tasklist_lock); | 
|  | rcu_read_unlock(); | 
|  | out: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ugh. To avoid negative return values, "getpriority()" will | 
|  | * not return the normal nice-value, but a negated value that | 
|  | * has been offset by 20 (ie it returns 40..1 instead of -20..19) | 
|  | * to stay compatible. | 
|  | */ | 
|  | SYSCALL_DEFINE2(getpriority, int, which, int, who) | 
|  | { | 
|  | struct task_struct *g, *p; | 
|  | struct user_struct *user; | 
|  | const struct cred *cred = current_cred(); | 
|  | long niceval, retval = -ESRCH; | 
|  | struct pid *pgrp; | 
|  |  | 
|  | if (which > PRIO_USER || which < PRIO_PROCESS) | 
|  | return -EINVAL; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | read_lock(&tasklist_lock); | 
|  | switch (which) { | 
|  | case PRIO_PROCESS: | 
|  | if (who) | 
|  | p = find_task_by_vpid(who); | 
|  | else | 
|  | p = current; | 
|  | if (p) { | 
|  | niceval = 20 - task_nice(p); | 
|  | if (niceval > retval) | 
|  | retval = niceval; | 
|  | } | 
|  | break; | 
|  | case PRIO_PGRP: | 
|  | if (who) | 
|  | pgrp = find_vpid(who); | 
|  | else | 
|  | pgrp = task_pgrp(current); | 
|  | do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { | 
|  | niceval = 20 - task_nice(p); | 
|  | if (niceval > retval) | 
|  | retval = niceval; | 
|  | } while_each_pid_thread(pgrp, PIDTYPE_PGID, p); | 
|  | break; | 
|  | case PRIO_USER: | 
|  | user = (struct user_struct *) cred->user; | 
|  | if (!who) | 
|  | who = cred->uid; | 
|  | else if ((who != cred->uid) && | 
|  | !(user = find_user(who))) | 
|  | goto out_unlock;	/* No processes for this user */ | 
|  |  | 
|  | do_each_thread(g, p) { | 
|  | if (__task_cred(p)->uid == who) { | 
|  | niceval = 20 - task_nice(p); | 
|  | if (niceval > retval) | 
|  | retval = niceval; | 
|  | } | 
|  | } while_each_thread(g, p); | 
|  | if (who != cred->uid) | 
|  | free_uid(user);		/* for find_user() */ | 
|  | break; | 
|  | } | 
|  | out_unlock: | 
|  | read_unlock(&tasklist_lock); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	emergency_restart - reboot the system | 
|  | * | 
|  | *	Without shutting down any hardware or taking any locks | 
|  | *	reboot the system.  This is called when we know we are in | 
|  | *	trouble so this is our best effort to reboot.  This is | 
|  | *	safe to call in interrupt context. | 
|  | */ | 
|  | void emergency_restart(void) | 
|  | { | 
|  | machine_emergency_restart(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(emergency_restart); | 
|  |  | 
|  | void kernel_restart_prepare(char *cmd) | 
|  | { | 
|  | blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd); | 
|  | system_state = SYSTEM_RESTART; | 
|  | device_shutdown(); | 
|  | sysdev_shutdown(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	kernel_restart - reboot the system | 
|  | *	@cmd: pointer to buffer containing command to execute for restart | 
|  | *		or %NULL | 
|  | * | 
|  | *	Shutdown everything and perform a clean reboot. | 
|  | *	This is not safe to call in interrupt context. | 
|  | */ | 
|  | void kernel_restart(char *cmd) | 
|  | { | 
|  | kernel_restart_prepare(cmd); | 
|  | if (!cmd) | 
|  | printk(KERN_EMERG "Restarting system.\n"); | 
|  | else | 
|  | printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd); | 
|  | machine_restart(cmd); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kernel_restart); | 
|  |  | 
|  | static void kernel_shutdown_prepare(enum system_states state) | 
|  | { | 
|  | blocking_notifier_call_chain(&reboot_notifier_list, | 
|  | (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL); | 
|  | system_state = state; | 
|  | device_shutdown(); | 
|  | } | 
|  | /** | 
|  | *	kernel_halt - halt the system | 
|  | * | 
|  | *	Shutdown everything and perform a clean system halt. | 
|  | */ | 
|  | void kernel_halt(void) | 
|  | { | 
|  | kernel_shutdown_prepare(SYSTEM_HALT); | 
|  | sysdev_shutdown(); | 
|  | printk(KERN_EMERG "System halted.\n"); | 
|  | machine_halt(); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(kernel_halt); | 
|  |  | 
|  | /** | 
|  | *	kernel_power_off - power_off the system | 
|  | * | 
|  | *	Shutdown everything and perform a clean system power_off. | 
|  | */ | 
|  | void kernel_power_off(void) | 
|  | { | 
|  | kernel_shutdown_prepare(SYSTEM_POWER_OFF); | 
|  | if (pm_power_off_prepare) | 
|  | pm_power_off_prepare(); | 
|  | disable_nonboot_cpus(); | 
|  | sysdev_shutdown(); | 
|  | printk(KERN_EMERG "Power down.\n"); | 
|  | machine_power_off(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kernel_power_off); | 
|  |  | 
|  | static DEFINE_MUTEX(reboot_mutex); | 
|  |  | 
|  | /* | 
|  | * Reboot system call: for obvious reasons only root may call it, | 
|  | * and even root needs to set up some magic numbers in the registers | 
|  | * so that some mistake won't make this reboot the whole machine. | 
|  | * You can also set the meaning of the ctrl-alt-del-key here. | 
|  | * | 
|  | * reboot doesn't sync: do that yourself before calling this. | 
|  | */ | 
|  | SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd, | 
|  | void __user *, arg) | 
|  | { | 
|  | char buffer[256]; | 
|  | int ret = 0; | 
|  |  | 
|  | /* We only trust the superuser with rebooting the system. */ | 
|  | if (!capable(CAP_SYS_BOOT)) | 
|  | return -EPERM; | 
|  |  | 
|  | /* For safety, we require "magic" arguments. */ | 
|  | if (magic1 != LINUX_REBOOT_MAGIC1 || | 
|  | (magic2 != LINUX_REBOOT_MAGIC2 && | 
|  | magic2 != LINUX_REBOOT_MAGIC2A && | 
|  | magic2 != LINUX_REBOOT_MAGIC2B && | 
|  | magic2 != LINUX_REBOOT_MAGIC2C)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Instead of trying to make the power_off code look like | 
|  | * halt when pm_power_off is not set do it the easy way. | 
|  | */ | 
|  | if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off) | 
|  | cmd = LINUX_REBOOT_CMD_HALT; | 
|  |  | 
|  | mutex_lock(&reboot_mutex); | 
|  | switch (cmd) { | 
|  | case LINUX_REBOOT_CMD_RESTART: | 
|  | kernel_restart(NULL); | 
|  | break; | 
|  |  | 
|  | case LINUX_REBOOT_CMD_CAD_ON: | 
|  | C_A_D = 1; | 
|  | break; | 
|  |  | 
|  | case LINUX_REBOOT_CMD_CAD_OFF: | 
|  | C_A_D = 0; | 
|  | break; | 
|  |  | 
|  | case LINUX_REBOOT_CMD_HALT: | 
|  | kernel_halt(); | 
|  | do_exit(0); | 
|  | panic("cannot halt"); | 
|  |  | 
|  | case LINUX_REBOOT_CMD_POWER_OFF: | 
|  | kernel_power_off(); | 
|  | do_exit(0); | 
|  | break; | 
|  |  | 
|  | case LINUX_REBOOT_CMD_RESTART2: | 
|  | if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) { | 
|  | ret = -EFAULT; | 
|  | break; | 
|  | } | 
|  | buffer[sizeof(buffer) - 1] = '\0'; | 
|  |  | 
|  | kernel_restart(buffer); | 
|  | break; | 
|  |  | 
|  | #ifdef CONFIG_KEXEC | 
|  | case LINUX_REBOOT_CMD_KEXEC: | 
|  | ret = kernel_kexec(); | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_HIBERNATION | 
|  | case LINUX_REBOOT_CMD_SW_SUSPEND: | 
|  | ret = hibernate(); | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | default: | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } | 
|  | mutex_unlock(&reboot_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void deferred_cad(struct work_struct *dummy) | 
|  | { | 
|  | kernel_restart(NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function gets called by ctrl-alt-del - ie the keyboard interrupt. | 
|  | * As it's called within an interrupt, it may NOT sync: the only choice | 
|  | * is whether to reboot at once, or just ignore the ctrl-alt-del. | 
|  | */ | 
|  | void ctrl_alt_del(void) | 
|  | { | 
|  | static DECLARE_WORK(cad_work, deferred_cad); | 
|  |  | 
|  | if (C_A_D) | 
|  | schedule_work(&cad_work); | 
|  | else | 
|  | kill_cad_pid(SIGINT, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unprivileged users may change the real gid to the effective gid | 
|  | * or vice versa.  (BSD-style) | 
|  | * | 
|  | * If you set the real gid at all, or set the effective gid to a value not | 
|  | * equal to the real gid, then the saved gid is set to the new effective gid. | 
|  | * | 
|  | * This makes it possible for a setgid program to completely drop its | 
|  | * privileges, which is often a useful assertion to make when you are doing | 
|  | * a security audit over a program. | 
|  | * | 
|  | * The general idea is that a program which uses just setregid() will be | 
|  | * 100% compatible with BSD.  A program which uses just setgid() will be | 
|  | * 100% compatible with POSIX with saved IDs. | 
|  | * | 
|  | * SMP: There are not races, the GIDs are checked only by filesystem | 
|  | *      operations (as far as semantic preservation is concerned). | 
|  | */ | 
|  | SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid) | 
|  | { | 
|  | const struct cred *old; | 
|  | struct cred *new; | 
|  | int retval; | 
|  |  | 
|  | new = prepare_creds(); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  | old = current_cred(); | 
|  |  | 
|  | retval = -EPERM; | 
|  | if (rgid != (gid_t) -1) { | 
|  | if (old->gid == rgid || | 
|  | old->egid == rgid || | 
|  | capable(CAP_SETGID)) | 
|  | new->gid = rgid; | 
|  | else | 
|  | goto error; | 
|  | } | 
|  | if (egid != (gid_t) -1) { | 
|  | if (old->gid == egid || | 
|  | old->egid == egid || | 
|  | old->sgid == egid || | 
|  | capable(CAP_SETGID)) | 
|  | new->egid = egid; | 
|  | else | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | if (rgid != (gid_t) -1 || | 
|  | (egid != (gid_t) -1 && egid != old->gid)) | 
|  | new->sgid = new->egid; | 
|  | new->fsgid = new->egid; | 
|  |  | 
|  | return commit_creds(new); | 
|  |  | 
|  | error: | 
|  | abort_creds(new); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * setgid() is implemented like SysV w/ SAVED_IDS | 
|  | * | 
|  | * SMP: Same implicit races as above. | 
|  | */ | 
|  | SYSCALL_DEFINE1(setgid, gid_t, gid) | 
|  | { | 
|  | const struct cred *old; | 
|  | struct cred *new; | 
|  | int retval; | 
|  |  | 
|  | new = prepare_creds(); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  | old = current_cred(); | 
|  |  | 
|  | retval = -EPERM; | 
|  | if (capable(CAP_SETGID)) | 
|  | new->gid = new->egid = new->sgid = new->fsgid = gid; | 
|  | else if (gid == old->gid || gid == old->sgid) | 
|  | new->egid = new->fsgid = gid; | 
|  | else | 
|  | goto error; | 
|  |  | 
|  | return commit_creds(new); | 
|  |  | 
|  | error: | 
|  | abort_creds(new); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * change the user struct in a credentials set to match the new UID | 
|  | */ | 
|  | static int set_user(struct cred *new) | 
|  | { | 
|  | struct user_struct *new_user; | 
|  |  | 
|  | new_user = alloc_uid(current_user_ns(), new->uid); | 
|  | if (!new_user) | 
|  | return -EAGAIN; | 
|  |  | 
|  | if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) && | 
|  | new_user != INIT_USER) { | 
|  | free_uid(new_user); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | free_uid(new->user); | 
|  | new->user = new_user; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unprivileged users may change the real uid to the effective uid | 
|  | * or vice versa.  (BSD-style) | 
|  | * | 
|  | * If you set the real uid at all, or set the effective uid to a value not | 
|  | * equal to the real uid, then the saved uid is set to the new effective uid. | 
|  | * | 
|  | * This makes it possible for a setuid program to completely drop its | 
|  | * privileges, which is often a useful assertion to make when you are doing | 
|  | * a security audit over a program. | 
|  | * | 
|  | * The general idea is that a program which uses just setreuid() will be | 
|  | * 100% compatible with BSD.  A program which uses just setuid() will be | 
|  | * 100% compatible with POSIX with saved IDs. | 
|  | */ | 
|  | SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid) | 
|  | { | 
|  | const struct cred *old; | 
|  | struct cred *new; | 
|  | int retval; | 
|  |  | 
|  | new = prepare_creds(); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  | old = current_cred(); | 
|  |  | 
|  | retval = -EPERM; | 
|  | if (ruid != (uid_t) -1) { | 
|  | new->uid = ruid; | 
|  | if (old->uid != ruid && | 
|  | old->euid != ruid && | 
|  | !capable(CAP_SETUID)) | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | if (euid != (uid_t) -1) { | 
|  | new->euid = euid; | 
|  | if (old->uid != euid && | 
|  | old->euid != euid && | 
|  | old->suid != euid && | 
|  | !capable(CAP_SETUID)) | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | if (new->uid != old->uid) { | 
|  | retval = set_user(new); | 
|  | if (retval < 0) | 
|  | goto error; | 
|  | } | 
|  | if (ruid != (uid_t) -1 || | 
|  | (euid != (uid_t) -1 && euid != old->uid)) | 
|  | new->suid = new->euid; | 
|  | new->fsuid = new->euid; | 
|  |  | 
|  | retval = security_task_fix_setuid(new, old, LSM_SETID_RE); | 
|  | if (retval < 0) | 
|  | goto error; | 
|  |  | 
|  | return commit_creds(new); | 
|  |  | 
|  | error: | 
|  | abort_creds(new); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * setuid() is implemented like SysV with SAVED_IDS | 
|  | * | 
|  | * Note that SAVED_ID's is deficient in that a setuid root program | 
|  | * like sendmail, for example, cannot set its uid to be a normal | 
|  | * user and then switch back, because if you're root, setuid() sets | 
|  | * the saved uid too.  If you don't like this, blame the bright people | 
|  | * in the POSIX committee and/or USG.  Note that the BSD-style setreuid() | 
|  | * will allow a root program to temporarily drop privileges and be able to | 
|  | * regain them by swapping the real and effective uid. | 
|  | */ | 
|  | SYSCALL_DEFINE1(setuid, uid_t, uid) | 
|  | { | 
|  | const struct cred *old; | 
|  | struct cred *new; | 
|  | int retval; | 
|  |  | 
|  | new = prepare_creds(); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  | old = current_cred(); | 
|  |  | 
|  | retval = -EPERM; | 
|  | if (capable(CAP_SETUID)) { | 
|  | new->suid = new->uid = uid; | 
|  | if (uid != old->uid) { | 
|  | retval = set_user(new); | 
|  | if (retval < 0) | 
|  | goto error; | 
|  | } | 
|  | } else if (uid != old->uid && uid != new->suid) { | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | new->fsuid = new->euid = uid; | 
|  |  | 
|  | retval = security_task_fix_setuid(new, old, LSM_SETID_ID); | 
|  | if (retval < 0) | 
|  | goto error; | 
|  |  | 
|  | return commit_creds(new); | 
|  |  | 
|  | error: | 
|  | abort_creds(new); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * This function implements a generic ability to update ruid, euid, | 
|  | * and suid.  This allows you to implement the 4.4 compatible seteuid(). | 
|  | */ | 
|  | SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid) | 
|  | { | 
|  | const struct cred *old; | 
|  | struct cred *new; | 
|  | int retval; | 
|  |  | 
|  | new = prepare_creds(); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  |  | 
|  | old = current_cred(); | 
|  |  | 
|  | retval = -EPERM; | 
|  | if (!capable(CAP_SETUID)) { | 
|  | if (ruid != (uid_t) -1 && ruid != old->uid && | 
|  | ruid != old->euid  && ruid != old->suid) | 
|  | goto error; | 
|  | if (euid != (uid_t) -1 && euid != old->uid && | 
|  | euid != old->euid  && euid != old->suid) | 
|  | goto error; | 
|  | if (suid != (uid_t) -1 && suid != old->uid && | 
|  | suid != old->euid  && suid != old->suid) | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | if (ruid != (uid_t) -1) { | 
|  | new->uid = ruid; | 
|  | if (ruid != old->uid) { | 
|  | retval = set_user(new); | 
|  | if (retval < 0) | 
|  | goto error; | 
|  | } | 
|  | } | 
|  | if (euid != (uid_t) -1) | 
|  | new->euid = euid; | 
|  | if (suid != (uid_t) -1) | 
|  | new->suid = suid; | 
|  | new->fsuid = new->euid; | 
|  |  | 
|  | retval = security_task_fix_setuid(new, old, LSM_SETID_RES); | 
|  | if (retval < 0) | 
|  | goto error; | 
|  |  | 
|  | return commit_creds(new); | 
|  |  | 
|  | error: | 
|  | abort_creds(new); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid) | 
|  | { | 
|  | const struct cred *cred = current_cred(); | 
|  | int retval; | 
|  |  | 
|  | if (!(retval   = put_user(cred->uid,  ruid)) && | 
|  | !(retval   = put_user(cred->euid, euid))) | 
|  | retval = put_user(cred->suid, suid); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Same as above, but for rgid, egid, sgid. | 
|  | */ | 
|  | SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid) | 
|  | { | 
|  | const struct cred *old; | 
|  | struct cred *new; | 
|  | int retval; | 
|  |  | 
|  | new = prepare_creds(); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  | old = current_cred(); | 
|  |  | 
|  | retval = -EPERM; | 
|  | if (!capable(CAP_SETGID)) { | 
|  | if (rgid != (gid_t) -1 && rgid != old->gid && | 
|  | rgid != old->egid  && rgid != old->sgid) | 
|  | goto error; | 
|  | if (egid != (gid_t) -1 && egid != old->gid && | 
|  | egid != old->egid  && egid != old->sgid) | 
|  | goto error; | 
|  | if (sgid != (gid_t) -1 && sgid != old->gid && | 
|  | sgid != old->egid  && sgid != old->sgid) | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | if (rgid != (gid_t) -1) | 
|  | new->gid = rgid; | 
|  | if (egid != (gid_t) -1) | 
|  | new->egid = egid; | 
|  | if (sgid != (gid_t) -1) | 
|  | new->sgid = sgid; | 
|  | new->fsgid = new->egid; | 
|  |  | 
|  | return commit_creds(new); | 
|  |  | 
|  | error: | 
|  | abort_creds(new); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid) | 
|  | { | 
|  | const struct cred *cred = current_cred(); | 
|  | int retval; | 
|  |  | 
|  | if (!(retval   = put_user(cred->gid,  rgid)) && | 
|  | !(retval   = put_user(cred->egid, egid))) | 
|  | retval = put_user(cred->sgid, sgid); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This | 
|  | * is used for "access()" and for the NFS daemon (letting nfsd stay at | 
|  | * whatever uid it wants to). It normally shadows "euid", except when | 
|  | * explicitly set by setfsuid() or for access.. | 
|  | */ | 
|  | SYSCALL_DEFINE1(setfsuid, uid_t, uid) | 
|  | { | 
|  | const struct cred *old; | 
|  | struct cred *new; | 
|  | uid_t old_fsuid; | 
|  |  | 
|  | new = prepare_creds(); | 
|  | if (!new) | 
|  | return current_fsuid(); | 
|  | old = current_cred(); | 
|  | old_fsuid = old->fsuid; | 
|  |  | 
|  | if (uid == old->uid  || uid == old->euid  || | 
|  | uid == old->suid || uid == old->fsuid || | 
|  | capable(CAP_SETUID)) { | 
|  | if (uid != old_fsuid) { | 
|  | new->fsuid = uid; | 
|  | if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0) | 
|  | goto change_okay; | 
|  | } | 
|  | } | 
|  |  | 
|  | abort_creds(new); | 
|  | return old_fsuid; | 
|  |  | 
|  | change_okay: | 
|  | commit_creds(new); | 
|  | return old_fsuid; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Samma på svenska.. | 
|  | */ | 
|  | SYSCALL_DEFINE1(setfsgid, gid_t, gid) | 
|  | { | 
|  | const struct cred *old; | 
|  | struct cred *new; | 
|  | gid_t old_fsgid; | 
|  |  | 
|  | new = prepare_creds(); | 
|  | if (!new) | 
|  | return current_fsgid(); | 
|  | old = current_cred(); | 
|  | old_fsgid = old->fsgid; | 
|  |  | 
|  | if (gid == old->gid  || gid == old->egid  || | 
|  | gid == old->sgid || gid == old->fsgid || | 
|  | capable(CAP_SETGID)) { | 
|  | if (gid != old_fsgid) { | 
|  | new->fsgid = gid; | 
|  | goto change_okay; | 
|  | } | 
|  | } | 
|  |  | 
|  | abort_creds(new); | 
|  | return old_fsgid; | 
|  |  | 
|  | change_okay: | 
|  | commit_creds(new); | 
|  | return old_fsgid; | 
|  | } | 
|  |  | 
|  | void do_sys_times(struct tms *tms) | 
|  | { | 
|  | cputime_t tgutime, tgstime, cutime, cstime; | 
|  |  | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | thread_group_times(current, &tgutime, &tgstime); | 
|  | cutime = current->signal->cutime; | 
|  | cstime = current->signal->cstime; | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | tms->tms_utime = cputime_to_clock_t(tgutime); | 
|  | tms->tms_stime = cputime_to_clock_t(tgstime); | 
|  | tms->tms_cutime = cputime_to_clock_t(cutime); | 
|  | tms->tms_cstime = cputime_to_clock_t(cstime); | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE1(times, struct tms __user *, tbuf) | 
|  | { | 
|  | if (tbuf) { | 
|  | struct tms tmp; | 
|  |  | 
|  | do_sys_times(&tmp); | 
|  | if (copy_to_user(tbuf, &tmp, sizeof(struct tms))) | 
|  | return -EFAULT; | 
|  | } | 
|  | force_successful_syscall_return(); | 
|  | return (long) jiffies_64_to_clock_t(get_jiffies_64()); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This needs some heavy checking ... | 
|  | * I just haven't the stomach for it. I also don't fully | 
|  | * understand sessions/pgrp etc. Let somebody who does explain it. | 
|  | * | 
|  | * OK, I think I have the protection semantics right.... this is really | 
|  | * only important on a multi-user system anyway, to make sure one user | 
|  | * can't send a signal to a process owned by another.  -TYT, 12/12/91 | 
|  | * | 
|  | * Auch. Had to add the 'did_exec' flag to conform completely to POSIX. | 
|  | * LBT 04.03.94 | 
|  | */ | 
|  | SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid) | 
|  | { | 
|  | struct task_struct *p; | 
|  | struct task_struct *group_leader = current->group_leader; | 
|  | struct pid *pgrp; | 
|  | int err; | 
|  |  | 
|  | if (!pid) | 
|  | pid = task_pid_vnr(group_leader); | 
|  | if (!pgid) | 
|  | pgid = pid; | 
|  | if (pgid < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* From this point forward we keep holding onto the tasklist lock | 
|  | * so that our parent does not change from under us. -DaveM | 
|  | */ | 
|  | write_lock_irq(&tasklist_lock); | 
|  |  | 
|  | err = -ESRCH; | 
|  | p = find_task_by_vpid(pid); | 
|  | if (!p) | 
|  | goto out; | 
|  |  | 
|  | err = -EINVAL; | 
|  | if (!thread_group_leader(p)) | 
|  | goto out; | 
|  |  | 
|  | if (same_thread_group(p->real_parent, group_leader)) { | 
|  | err = -EPERM; | 
|  | if (task_session(p) != task_session(group_leader)) | 
|  | goto out; | 
|  | err = -EACCES; | 
|  | if (p->did_exec) | 
|  | goto out; | 
|  | } else { | 
|  | err = -ESRCH; | 
|  | if (p != group_leader) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | err = -EPERM; | 
|  | if (p->signal->leader) | 
|  | goto out; | 
|  |  | 
|  | pgrp = task_pid(p); | 
|  | if (pgid != pid) { | 
|  | struct task_struct *g; | 
|  |  | 
|  | pgrp = find_vpid(pgid); | 
|  | g = pid_task(pgrp, PIDTYPE_PGID); | 
|  | if (!g || task_session(g) != task_session(group_leader)) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | err = security_task_setpgid(p, pgid); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | if (task_pgrp(p) != pgrp) | 
|  | change_pid(p, PIDTYPE_PGID, pgrp); | 
|  |  | 
|  | err = 0; | 
|  | out: | 
|  | /* All paths lead to here, thus we are safe. -DaveM */ | 
|  | write_unlock_irq(&tasklist_lock); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE1(getpgid, pid_t, pid) | 
|  | { | 
|  | struct task_struct *p; | 
|  | struct pid *grp; | 
|  | int retval; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | if (!pid) | 
|  | grp = task_pgrp(current); | 
|  | else { | 
|  | retval = -ESRCH; | 
|  | p = find_task_by_vpid(pid); | 
|  | if (!p) | 
|  | goto out; | 
|  | grp = task_pgrp(p); | 
|  | if (!grp) | 
|  | goto out; | 
|  |  | 
|  | retval = security_task_getpgid(p); | 
|  | if (retval) | 
|  | goto out; | 
|  | } | 
|  | retval = pid_vnr(grp); | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_GETPGRP | 
|  |  | 
|  | SYSCALL_DEFINE0(getpgrp) | 
|  | { | 
|  | return sys_getpgid(0); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | SYSCALL_DEFINE1(getsid, pid_t, pid) | 
|  | { | 
|  | struct task_struct *p; | 
|  | struct pid *sid; | 
|  | int retval; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | if (!pid) | 
|  | sid = task_session(current); | 
|  | else { | 
|  | retval = -ESRCH; | 
|  | p = find_task_by_vpid(pid); | 
|  | if (!p) | 
|  | goto out; | 
|  | sid = task_session(p); | 
|  | if (!sid) | 
|  | goto out; | 
|  |  | 
|  | retval = security_task_getsid(p); | 
|  | if (retval) | 
|  | goto out; | 
|  | } | 
|  | retval = pid_vnr(sid); | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE0(setsid) | 
|  | { | 
|  | struct task_struct *group_leader = current->group_leader; | 
|  | struct pid *sid = task_pid(group_leader); | 
|  | pid_t session = pid_vnr(sid); | 
|  | int err = -EPERM; | 
|  |  | 
|  | write_lock_irq(&tasklist_lock); | 
|  | /* Fail if I am already a session leader */ | 
|  | if (group_leader->signal->leader) | 
|  | goto out; | 
|  |  | 
|  | /* Fail if a process group id already exists that equals the | 
|  | * proposed session id. | 
|  | */ | 
|  | if (pid_task(sid, PIDTYPE_PGID)) | 
|  | goto out; | 
|  |  | 
|  | group_leader->signal->leader = 1; | 
|  | __set_special_pids(sid); | 
|  |  | 
|  | proc_clear_tty(group_leader); | 
|  |  | 
|  | err = session; | 
|  | out: | 
|  | write_unlock_irq(&tasklist_lock); | 
|  | if (err > 0) | 
|  | proc_sid_connector(group_leader); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | DECLARE_RWSEM(uts_sem); | 
|  |  | 
|  | #ifdef COMPAT_UTS_MACHINE | 
|  | #define override_architecture(name) \ | 
|  | (personality(current->personality) == PER_LINUX32 && \ | 
|  | copy_to_user(name->machine, COMPAT_UTS_MACHINE, \ | 
|  | sizeof(COMPAT_UTS_MACHINE))) | 
|  | #else | 
|  | #define override_architecture(name)	0 | 
|  | #endif | 
|  |  | 
|  | SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name) | 
|  | { | 
|  | int errno = 0; | 
|  |  | 
|  | down_read(&uts_sem); | 
|  | if (copy_to_user(name, utsname(), sizeof *name)) | 
|  | errno = -EFAULT; | 
|  | up_read(&uts_sem); | 
|  |  | 
|  | if (!errno && override_architecture(name)) | 
|  | errno = -EFAULT; | 
|  | return errno; | 
|  | } | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_OLD_UNAME | 
|  | /* | 
|  | * Old cruft | 
|  | */ | 
|  | SYSCALL_DEFINE1(uname, struct old_utsname __user *, name) | 
|  | { | 
|  | int error = 0; | 
|  |  | 
|  | if (!name) | 
|  | return -EFAULT; | 
|  |  | 
|  | down_read(&uts_sem); | 
|  | if (copy_to_user(name, utsname(), sizeof(*name))) | 
|  | error = -EFAULT; | 
|  | up_read(&uts_sem); | 
|  |  | 
|  | if (!error && override_architecture(name)) | 
|  | error = -EFAULT; | 
|  | return error; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name) | 
|  | { | 
|  | int error; | 
|  |  | 
|  | if (!name) | 
|  | return -EFAULT; | 
|  | if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname))) | 
|  | return -EFAULT; | 
|  |  | 
|  | down_read(&uts_sem); | 
|  | error = __copy_to_user(&name->sysname, &utsname()->sysname, | 
|  | __OLD_UTS_LEN); | 
|  | error |= __put_user(0, name->sysname + __OLD_UTS_LEN); | 
|  | error |= __copy_to_user(&name->nodename, &utsname()->nodename, | 
|  | __OLD_UTS_LEN); | 
|  | error |= __put_user(0, name->nodename + __OLD_UTS_LEN); | 
|  | error |= __copy_to_user(&name->release, &utsname()->release, | 
|  | __OLD_UTS_LEN); | 
|  | error |= __put_user(0, name->release + __OLD_UTS_LEN); | 
|  | error |= __copy_to_user(&name->version, &utsname()->version, | 
|  | __OLD_UTS_LEN); | 
|  | error |= __put_user(0, name->version + __OLD_UTS_LEN); | 
|  | error |= __copy_to_user(&name->machine, &utsname()->machine, | 
|  | __OLD_UTS_LEN); | 
|  | error |= __put_user(0, name->machine + __OLD_UTS_LEN); | 
|  | up_read(&uts_sem); | 
|  |  | 
|  | if (!error && override_architecture(name)) | 
|  | error = -EFAULT; | 
|  | return error ? -EFAULT : 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | SYSCALL_DEFINE2(sethostname, char __user *, name, int, len) | 
|  | { | 
|  | int errno; | 
|  | char tmp[__NEW_UTS_LEN]; | 
|  |  | 
|  | if (!capable(CAP_SYS_ADMIN)) | 
|  | return -EPERM; | 
|  | if (len < 0 || len > __NEW_UTS_LEN) | 
|  | return -EINVAL; | 
|  | down_write(&uts_sem); | 
|  | errno = -EFAULT; | 
|  | if (!copy_from_user(tmp, name, len)) { | 
|  | struct new_utsname *u = utsname(); | 
|  |  | 
|  | memcpy(u->nodename, tmp, len); | 
|  | memset(u->nodename + len, 0, sizeof(u->nodename) - len); | 
|  | errno = 0; | 
|  | } | 
|  | up_write(&uts_sem); | 
|  | return errno; | 
|  | } | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_GETHOSTNAME | 
|  |  | 
|  | SYSCALL_DEFINE2(gethostname, char __user *, name, int, len) | 
|  | { | 
|  | int i, errno; | 
|  | struct new_utsname *u; | 
|  |  | 
|  | if (len < 0) | 
|  | return -EINVAL; | 
|  | down_read(&uts_sem); | 
|  | u = utsname(); | 
|  | i = 1 + strlen(u->nodename); | 
|  | if (i > len) | 
|  | i = len; | 
|  | errno = 0; | 
|  | if (copy_to_user(name, u->nodename, i)) | 
|  | errno = -EFAULT; | 
|  | up_read(&uts_sem); | 
|  | return errno; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Only setdomainname; getdomainname can be implemented by calling | 
|  | * uname() | 
|  | */ | 
|  | SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len) | 
|  | { | 
|  | int errno; | 
|  | char tmp[__NEW_UTS_LEN]; | 
|  |  | 
|  | if (!capable(CAP_SYS_ADMIN)) | 
|  | return -EPERM; | 
|  | if (len < 0 || len > __NEW_UTS_LEN) | 
|  | return -EINVAL; | 
|  |  | 
|  | down_write(&uts_sem); | 
|  | errno = -EFAULT; | 
|  | if (!copy_from_user(tmp, name, len)) { | 
|  | struct new_utsname *u = utsname(); | 
|  |  | 
|  | memcpy(u->domainname, tmp, len); | 
|  | memset(u->domainname + len, 0, sizeof(u->domainname) - len); | 
|  | errno = 0; | 
|  | } | 
|  | up_write(&uts_sem); | 
|  | return errno; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim) | 
|  | { | 
|  | struct rlimit value; | 
|  | int ret; | 
|  |  | 
|  | ret = do_prlimit(current, resource, NULL, &value); | 
|  | if (!ret) | 
|  | ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT | 
|  |  | 
|  | /* | 
|  | *	Back compatibility for getrlimit. Needed for some apps. | 
|  | */ | 
|  |  | 
|  | SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource, | 
|  | struct rlimit __user *, rlim) | 
|  | { | 
|  | struct rlimit x; | 
|  | if (resource >= RLIM_NLIMITS) | 
|  | return -EINVAL; | 
|  |  | 
|  | task_lock(current->group_leader); | 
|  | x = current->signal->rlim[resource]; | 
|  | task_unlock(current->group_leader); | 
|  | if (x.rlim_cur > 0x7FFFFFFF) | 
|  | x.rlim_cur = 0x7FFFFFFF; | 
|  | if (x.rlim_max > 0x7FFFFFFF) | 
|  | x.rlim_max = 0x7FFFFFFF; | 
|  | return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static inline bool rlim64_is_infinity(__u64 rlim64) | 
|  | { | 
|  | #if BITS_PER_LONG < 64 | 
|  | return rlim64 >= ULONG_MAX; | 
|  | #else | 
|  | return rlim64 == RLIM64_INFINITY; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64) | 
|  | { | 
|  | if (rlim->rlim_cur == RLIM_INFINITY) | 
|  | rlim64->rlim_cur = RLIM64_INFINITY; | 
|  | else | 
|  | rlim64->rlim_cur = rlim->rlim_cur; | 
|  | if (rlim->rlim_max == RLIM_INFINITY) | 
|  | rlim64->rlim_max = RLIM64_INFINITY; | 
|  | else | 
|  | rlim64->rlim_max = rlim->rlim_max; | 
|  | } | 
|  |  | 
|  | static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim) | 
|  | { | 
|  | if (rlim64_is_infinity(rlim64->rlim_cur)) | 
|  | rlim->rlim_cur = RLIM_INFINITY; | 
|  | else | 
|  | rlim->rlim_cur = (unsigned long)rlim64->rlim_cur; | 
|  | if (rlim64_is_infinity(rlim64->rlim_max)) | 
|  | rlim->rlim_max = RLIM_INFINITY; | 
|  | else | 
|  | rlim->rlim_max = (unsigned long)rlim64->rlim_max; | 
|  | } | 
|  |  | 
|  | /* make sure you are allowed to change @tsk limits before calling this */ | 
|  | int do_prlimit(struct task_struct *tsk, unsigned int resource, | 
|  | struct rlimit *new_rlim, struct rlimit *old_rlim) | 
|  | { | 
|  | struct rlimit *rlim; | 
|  | int retval = 0; | 
|  |  | 
|  | if (resource >= RLIM_NLIMITS) | 
|  | return -EINVAL; | 
|  | if (new_rlim) { | 
|  | if (new_rlim->rlim_cur > new_rlim->rlim_max) | 
|  | return -EINVAL; | 
|  | if (resource == RLIMIT_NOFILE && | 
|  | new_rlim->rlim_max > sysctl_nr_open) | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | /* protect tsk->signal and tsk->sighand from disappearing */ | 
|  | read_lock(&tasklist_lock); | 
|  | if (!tsk->sighand) { | 
|  | retval = -ESRCH; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | rlim = tsk->signal->rlim + resource; | 
|  | task_lock(tsk->group_leader); | 
|  | if (new_rlim) { | 
|  | if (new_rlim->rlim_max > rlim->rlim_max && | 
|  | !capable(CAP_SYS_RESOURCE)) | 
|  | retval = -EPERM; | 
|  | if (!retval) | 
|  | retval = security_task_setrlimit(tsk->group_leader, | 
|  | resource, new_rlim); | 
|  | if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) { | 
|  | /* | 
|  | * The caller is asking for an immediate RLIMIT_CPU | 
|  | * expiry.  But we use the zero value to mean "it was | 
|  | * never set".  So let's cheat and make it one second | 
|  | * instead | 
|  | */ | 
|  | new_rlim->rlim_cur = 1; | 
|  | } | 
|  | } | 
|  | if (!retval) { | 
|  | if (old_rlim) | 
|  | *old_rlim = *rlim; | 
|  | if (new_rlim) | 
|  | *rlim = *new_rlim; | 
|  | } | 
|  | task_unlock(tsk->group_leader); | 
|  |  | 
|  | /* | 
|  | * RLIMIT_CPU handling.   Note that the kernel fails to return an error | 
|  | * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a | 
|  | * very long-standing error, and fixing it now risks breakage of | 
|  | * applications, so we live with it | 
|  | */ | 
|  | if (!retval && new_rlim && resource == RLIMIT_CPU && | 
|  | new_rlim->rlim_cur != RLIM_INFINITY) | 
|  | update_rlimit_cpu(tsk, new_rlim->rlim_cur); | 
|  | out: | 
|  | read_unlock(&tasklist_lock); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* rcu lock must be held */ | 
|  | static int check_prlimit_permission(struct task_struct *task) | 
|  | { | 
|  | const struct cred *cred = current_cred(), *tcred; | 
|  |  | 
|  | tcred = __task_cred(task); | 
|  | if ((cred->uid != tcred->euid || | 
|  | cred->uid != tcred->suid || | 
|  | cred->uid != tcred->uid  || | 
|  | cred->gid != tcred->egid || | 
|  | cred->gid != tcred->sgid || | 
|  | cred->gid != tcred->gid) && | 
|  | !capable(CAP_SYS_RESOURCE)) { | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource, | 
|  | const struct rlimit64 __user *, new_rlim, | 
|  | struct rlimit64 __user *, old_rlim) | 
|  | { | 
|  | struct rlimit64 old64, new64; | 
|  | struct rlimit old, new; | 
|  | struct task_struct *tsk; | 
|  | int ret; | 
|  |  | 
|  | if (new_rlim) { | 
|  | if (copy_from_user(&new64, new_rlim, sizeof(new64))) | 
|  | return -EFAULT; | 
|  | rlim64_to_rlim(&new64, &new); | 
|  | } | 
|  |  | 
|  | rcu_read_lock(); | 
|  | tsk = pid ? find_task_by_vpid(pid) : current; | 
|  | if (!tsk) { | 
|  | rcu_read_unlock(); | 
|  | return -ESRCH; | 
|  | } | 
|  | ret = check_prlimit_permission(tsk); | 
|  | if (ret) { | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  | get_task_struct(tsk); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL, | 
|  | old_rlim ? &old : NULL); | 
|  |  | 
|  | if (!ret && old_rlim) { | 
|  | rlim_to_rlim64(&old, &old64); | 
|  | if (copy_to_user(old_rlim, &old64, sizeof(old64))) | 
|  | ret = -EFAULT; | 
|  | } | 
|  |  | 
|  | put_task_struct(tsk); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim) | 
|  | { | 
|  | struct rlimit new_rlim; | 
|  |  | 
|  | if (copy_from_user(&new_rlim, rlim, sizeof(*rlim))) | 
|  | return -EFAULT; | 
|  | return do_prlimit(current, resource, &new_rlim, NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It would make sense to put struct rusage in the task_struct, | 
|  | * except that would make the task_struct be *really big*.  After | 
|  | * task_struct gets moved into malloc'ed memory, it would | 
|  | * make sense to do this.  It will make moving the rest of the information | 
|  | * a lot simpler!  (Which we're not doing right now because we're not | 
|  | * measuring them yet). | 
|  | * | 
|  | * When sampling multiple threads for RUSAGE_SELF, under SMP we might have | 
|  | * races with threads incrementing their own counters.  But since word | 
|  | * reads are atomic, we either get new values or old values and we don't | 
|  | * care which for the sums.  We always take the siglock to protect reading | 
|  | * the c* fields from p->signal from races with exit.c updating those | 
|  | * fields when reaping, so a sample either gets all the additions of a | 
|  | * given child after it's reaped, or none so this sample is before reaping. | 
|  | * | 
|  | * Locking: | 
|  | * We need to take the siglock for CHILDEREN, SELF and BOTH | 
|  | * for  the cases current multithreaded, non-current single threaded | 
|  | * non-current multithreaded.  Thread traversal is now safe with | 
|  | * the siglock held. | 
|  | * Strictly speaking, we donot need to take the siglock if we are current and | 
|  | * single threaded,  as no one else can take our signal_struct away, no one | 
|  | * else can  reap the  children to update signal->c* counters, and no one else | 
|  | * can race with the signal-> fields. If we do not take any lock, the | 
|  | * signal-> fields could be read out of order while another thread was just | 
|  | * exiting. So we should  place a read memory barrier when we avoid the lock. | 
|  | * On the writer side,  write memory barrier is implied in  __exit_signal | 
|  | * as __exit_signal releases  the siglock spinlock after updating the signal-> | 
|  | * fields. But we don't do this yet to keep things simple. | 
|  | * | 
|  | */ | 
|  |  | 
|  | static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r) | 
|  | { | 
|  | r->ru_nvcsw += t->nvcsw; | 
|  | r->ru_nivcsw += t->nivcsw; | 
|  | r->ru_minflt += t->min_flt; | 
|  | r->ru_majflt += t->maj_flt; | 
|  | r->ru_inblock += task_io_get_inblock(t); | 
|  | r->ru_oublock += task_io_get_oublock(t); | 
|  | } | 
|  |  | 
|  | static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | 
|  | { | 
|  | struct task_struct *t; | 
|  | unsigned long flags; | 
|  | cputime_t tgutime, tgstime, utime, stime; | 
|  | unsigned long maxrss = 0; | 
|  |  | 
|  | memset((char *) r, 0, sizeof *r); | 
|  | utime = stime = cputime_zero; | 
|  |  | 
|  | if (who == RUSAGE_THREAD) { | 
|  | task_times(current, &utime, &stime); | 
|  | accumulate_thread_rusage(p, r); | 
|  | maxrss = p->signal->maxrss; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!lock_task_sighand(p, &flags)) | 
|  | return; | 
|  |  | 
|  | switch (who) { | 
|  | case RUSAGE_BOTH: | 
|  | case RUSAGE_CHILDREN: | 
|  | utime = p->signal->cutime; | 
|  | stime = p->signal->cstime; | 
|  | r->ru_nvcsw = p->signal->cnvcsw; | 
|  | r->ru_nivcsw = p->signal->cnivcsw; | 
|  | r->ru_minflt = p->signal->cmin_flt; | 
|  | r->ru_majflt = p->signal->cmaj_flt; | 
|  | r->ru_inblock = p->signal->cinblock; | 
|  | r->ru_oublock = p->signal->coublock; | 
|  | maxrss = p->signal->cmaxrss; | 
|  |  | 
|  | if (who == RUSAGE_CHILDREN) | 
|  | break; | 
|  |  | 
|  | case RUSAGE_SELF: | 
|  | thread_group_times(p, &tgutime, &tgstime); | 
|  | utime = cputime_add(utime, tgutime); | 
|  | stime = cputime_add(stime, tgstime); | 
|  | r->ru_nvcsw += p->signal->nvcsw; | 
|  | r->ru_nivcsw += p->signal->nivcsw; | 
|  | r->ru_minflt += p->signal->min_flt; | 
|  | r->ru_majflt += p->signal->maj_flt; | 
|  | r->ru_inblock += p->signal->inblock; | 
|  | r->ru_oublock += p->signal->oublock; | 
|  | if (maxrss < p->signal->maxrss) | 
|  | maxrss = p->signal->maxrss; | 
|  | t = p; | 
|  | do { | 
|  | accumulate_thread_rusage(t, r); | 
|  | t = next_thread(t); | 
|  | } while (t != p); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | unlock_task_sighand(p, &flags); | 
|  |  | 
|  | out: | 
|  | cputime_to_timeval(utime, &r->ru_utime); | 
|  | cputime_to_timeval(stime, &r->ru_stime); | 
|  |  | 
|  | if (who != RUSAGE_CHILDREN) { | 
|  | struct mm_struct *mm = get_task_mm(p); | 
|  | if (mm) { | 
|  | setmax_mm_hiwater_rss(&maxrss, mm); | 
|  | mmput(mm); | 
|  | } | 
|  | } | 
|  | r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */ | 
|  | } | 
|  |  | 
|  | int getrusage(struct task_struct *p, int who, struct rusage __user *ru) | 
|  | { | 
|  | struct rusage r; | 
|  | k_getrusage(p, who, &r); | 
|  | return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru) | 
|  | { | 
|  | if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN && | 
|  | who != RUSAGE_THREAD) | 
|  | return -EINVAL; | 
|  | return getrusage(current, who, ru); | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE1(umask, int, mask) | 
|  | { | 
|  | mask = xchg(¤t->fs->umask, mask & S_IRWXUGO); | 
|  | return mask; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3, | 
|  | unsigned long, arg4, unsigned long, arg5) | 
|  | { | 
|  | struct task_struct *me = current; | 
|  | unsigned char comm[sizeof(me->comm)]; | 
|  | long error; | 
|  |  | 
|  | error = security_task_prctl(option, arg2, arg3, arg4, arg5); | 
|  | if (error != -ENOSYS) | 
|  | return error; | 
|  |  | 
|  | error = 0; | 
|  | switch (option) { | 
|  | case PR_SET_PDEATHSIG: | 
|  | if (!valid_signal(arg2)) { | 
|  | error = -EINVAL; | 
|  | break; | 
|  | } | 
|  | me->pdeath_signal = arg2; | 
|  | error = 0; | 
|  | break; | 
|  | case PR_GET_PDEATHSIG: | 
|  | error = put_user(me->pdeath_signal, (int __user *)arg2); | 
|  | break; | 
|  | case PR_GET_DUMPABLE: | 
|  | error = get_dumpable(me->mm); | 
|  | break; | 
|  | case PR_SET_DUMPABLE: | 
|  | if (arg2 < 0 || arg2 > 1) { | 
|  | error = -EINVAL; | 
|  | break; | 
|  | } | 
|  | set_dumpable(me->mm, arg2); | 
|  | error = 0; | 
|  | break; | 
|  |  | 
|  | case PR_SET_UNALIGN: | 
|  | error = SET_UNALIGN_CTL(me, arg2); | 
|  | break; | 
|  | case PR_GET_UNALIGN: | 
|  | error = GET_UNALIGN_CTL(me, arg2); | 
|  | break; | 
|  | case PR_SET_FPEMU: | 
|  | error = SET_FPEMU_CTL(me, arg2); | 
|  | break; | 
|  | case PR_GET_FPEMU: | 
|  | error = GET_FPEMU_CTL(me, arg2); | 
|  | break; | 
|  | case PR_SET_FPEXC: | 
|  | error = SET_FPEXC_CTL(me, arg2); | 
|  | break; | 
|  | case PR_GET_FPEXC: | 
|  | error = GET_FPEXC_CTL(me, arg2); | 
|  | break; | 
|  | case PR_GET_TIMING: | 
|  | error = PR_TIMING_STATISTICAL; | 
|  | break; | 
|  | case PR_SET_TIMING: | 
|  | if (arg2 != PR_TIMING_STATISTICAL) | 
|  | error = -EINVAL; | 
|  | else | 
|  | error = 0; | 
|  | break; | 
|  |  | 
|  | case PR_SET_NAME: | 
|  | comm[sizeof(me->comm)-1] = 0; | 
|  | if (strncpy_from_user(comm, (char __user *)arg2, | 
|  | sizeof(me->comm) - 1) < 0) | 
|  | return -EFAULT; | 
|  | set_task_comm(me, comm); | 
|  | return 0; | 
|  | case PR_GET_NAME: | 
|  | get_task_comm(comm, me); | 
|  | if (copy_to_user((char __user *)arg2, comm, | 
|  | sizeof(comm))) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  | case PR_GET_ENDIAN: | 
|  | error = GET_ENDIAN(me, arg2); | 
|  | break; | 
|  | case PR_SET_ENDIAN: | 
|  | error = SET_ENDIAN(me, arg2); | 
|  | break; | 
|  |  | 
|  | case PR_GET_SECCOMP: | 
|  | error = prctl_get_seccomp(); | 
|  | break; | 
|  | case PR_SET_SECCOMP: | 
|  | error = prctl_set_seccomp(arg2); | 
|  | break; | 
|  | case PR_GET_TSC: | 
|  | error = GET_TSC_CTL(arg2); | 
|  | break; | 
|  | case PR_SET_TSC: | 
|  | error = SET_TSC_CTL(arg2); | 
|  | break; | 
|  | case PR_TASK_PERF_EVENTS_DISABLE: | 
|  | error = perf_event_task_disable(); | 
|  | break; | 
|  | case PR_TASK_PERF_EVENTS_ENABLE: | 
|  | error = perf_event_task_enable(); | 
|  | break; | 
|  | case PR_GET_TIMERSLACK: | 
|  | error = current->timer_slack_ns; | 
|  | break; | 
|  | case PR_SET_TIMERSLACK: | 
|  | if (arg2 <= 0) | 
|  | current->timer_slack_ns = | 
|  | current->default_timer_slack_ns; | 
|  | else | 
|  | current->timer_slack_ns = arg2; | 
|  | error = 0; | 
|  | break; | 
|  | case PR_MCE_KILL: | 
|  | if (arg4 | arg5) | 
|  | return -EINVAL; | 
|  | switch (arg2) { | 
|  | case PR_MCE_KILL_CLEAR: | 
|  | if (arg3 != 0) | 
|  | return -EINVAL; | 
|  | current->flags &= ~PF_MCE_PROCESS; | 
|  | break; | 
|  | case PR_MCE_KILL_SET: | 
|  | current->flags |= PF_MCE_PROCESS; | 
|  | if (arg3 == PR_MCE_KILL_EARLY) | 
|  | current->flags |= PF_MCE_EARLY; | 
|  | else if (arg3 == PR_MCE_KILL_LATE) | 
|  | current->flags &= ~PF_MCE_EARLY; | 
|  | else if (arg3 == PR_MCE_KILL_DEFAULT) | 
|  | current->flags &= | 
|  | ~(PF_MCE_EARLY|PF_MCE_PROCESS); | 
|  | else | 
|  | return -EINVAL; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | error = 0; | 
|  | break; | 
|  | case PR_MCE_KILL_GET: | 
|  | if (arg2 | arg3 | arg4 | arg5) | 
|  | return -EINVAL; | 
|  | if (current->flags & PF_MCE_PROCESS) | 
|  | error = (current->flags & PF_MCE_EARLY) ? | 
|  | PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE; | 
|  | else | 
|  | error = PR_MCE_KILL_DEFAULT; | 
|  | break; | 
|  | default: | 
|  | error = -EINVAL; | 
|  | break; | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep, | 
|  | struct getcpu_cache __user *, unused) | 
|  | { | 
|  | int err = 0; | 
|  | int cpu = raw_smp_processor_id(); | 
|  | if (cpup) | 
|  | err |= put_user(cpu, cpup); | 
|  | if (nodep) | 
|  | err |= put_user(cpu_to_node(cpu), nodep); | 
|  | return err ? -EFAULT : 0; | 
|  | } | 
|  |  | 
|  | char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff"; | 
|  |  | 
|  | static void argv_cleanup(struct subprocess_info *info) | 
|  | { | 
|  | argv_free(info->argv); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * orderly_poweroff - Trigger an orderly system poweroff | 
|  | * @force: force poweroff if command execution fails | 
|  | * | 
|  | * This may be called from any context to trigger a system shutdown. | 
|  | * If the orderly shutdown fails, it will force an immediate shutdown. | 
|  | */ | 
|  | int orderly_poweroff(bool force) | 
|  | { | 
|  | int argc; | 
|  | char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc); | 
|  | static char *envp[] = { | 
|  | "HOME=/", | 
|  | "PATH=/sbin:/bin:/usr/sbin:/usr/bin", | 
|  | NULL | 
|  | }; | 
|  | int ret = -ENOMEM; | 
|  | struct subprocess_info *info; | 
|  |  | 
|  | if (argv == NULL) { | 
|  | printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n", | 
|  | __func__, poweroff_cmd); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC); | 
|  | if (info == NULL) { | 
|  | argv_free(argv); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | call_usermodehelper_setfns(info, NULL, argv_cleanup, NULL); | 
|  |  | 
|  | ret = call_usermodehelper_exec(info, UMH_NO_WAIT); | 
|  |  | 
|  | out: | 
|  | if (ret && force) { | 
|  | printk(KERN_WARNING "Failed to start orderly shutdown: " | 
|  | "forcing the issue\n"); | 
|  |  | 
|  | /* I guess this should try to kick off some daemon to | 
|  | sync and poweroff asap.  Or not even bother syncing | 
|  | if we're doing an emergency shutdown? */ | 
|  | emergency_sync(); | 
|  | kernel_power_off(); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(orderly_poweroff); |