|  | /* | 
|  | * New driver for Marvell Yukon chipset and SysKonnect Gigabit | 
|  | * Ethernet adapters. Based on earlier sk98lin, e100 and | 
|  | * FreeBSD if_sk drivers. | 
|  | * | 
|  | * This driver intentionally does not support all the features | 
|  | * of the original driver such as link fail-over and link management because | 
|  | * those should be done at higher levels. | 
|  | * | 
|  | * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/config.h> | 
|  | #include <linux/in.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/moduleparam.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/etherdevice.h> | 
|  | #include <linux/ethtool.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/if_vlan.h> | 
|  | #include <linux/ip.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/crc32.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/mii.h> | 
|  | #include <asm/irq.h> | 
|  |  | 
|  | #include "skge.h" | 
|  |  | 
|  | #define DRV_NAME		"skge" | 
|  | #define DRV_VERSION		"1.3" | 
|  | #define PFX			DRV_NAME " " | 
|  |  | 
|  | #define DEFAULT_TX_RING_SIZE	128 | 
|  | #define DEFAULT_RX_RING_SIZE	512 | 
|  | #define MAX_TX_RING_SIZE	1024 | 
|  | #define MAX_RX_RING_SIZE	4096 | 
|  | #define RX_COPY_THRESHOLD	128 | 
|  | #define RX_BUF_SIZE		1536 | 
|  | #define PHY_RETRIES	        1000 | 
|  | #define ETH_JUMBO_MTU		9000 | 
|  | #define TX_WATCHDOG		(5 * HZ) | 
|  | #define NAPI_WEIGHT		64 | 
|  | #define BLINK_MS		250 | 
|  |  | 
|  | MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver"); | 
|  | MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>"); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_VERSION(DRV_VERSION); | 
|  |  | 
|  | static const u32 default_msg | 
|  | = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK | 
|  | | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN; | 
|  |  | 
|  | static int debug = -1;	/* defaults above */ | 
|  | module_param(debug, int, 0); | 
|  | MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); | 
|  |  | 
|  | static const struct pci_device_id skge_id_table[] = { | 
|  | { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) }, | 
|  | { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) }, | 
|  | { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) }, | 
|  | { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) }, | 
|  | { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), }, | 
|  | { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) }, | 
|  | { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */ | 
|  | { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) }, | 
|  | { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) }, | 
|  | { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, }, | 
|  | { 0 } | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(pci, skge_id_table); | 
|  |  | 
|  | static int skge_up(struct net_device *dev); | 
|  | static int skge_down(struct net_device *dev); | 
|  | static void skge_phy_reset(struct skge_port *skge); | 
|  | static void skge_tx_clean(struct skge_port *skge); | 
|  | static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val); | 
|  | static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val); | 
|  | static void genesis_get_stats(struct skge_port *skge, u64 *data); | 
|  | static void yukon_get_stats(struct skge_port *skge, u64 *data); | 
|  | static void yukon_init(struct skge_hw *hw, int port); | 
|  | static void genesis_mac_init(struct skge_hw *hw, int port); | 
|  | static void genesis_link_up(struct skge_port *skge); | 
|  |  | 
|  | /* Avoid conditionals by using array */ | 
|  | static const int txqaddr[] = { Q_XA1, Q_XA2 }; | 
|  | static const int rxqaddr[] = { Q_R1, Q_R2 }; | 
|  | static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F }; | 
|  | static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F }; | 
|  | static const u32 portirqmask[] = { IS_PORT_1, IS_PORT_2 }; | 
|  |  | 
|  | static int skge_get_regs_len(struct net_device *dev) | 
|  | { | 
|  | return 0x4000; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns copy of whole control register region | 
|  | * Note: skip RAM address register because accessing it will | 
|  | * 	 cause bus hangs! | 
|  | */ | 
|  | static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs, | 
|  | void *p) | 
|  | { | 
|  | const struct skge_port *skge = netdev_priv(dev); | 
|  | const void __iomem *io = skge->hw->regs; | 
|  |  | 
|  | regs->version = 1; | 
|  | memset(p, 0, regs->len); | 
|  | memcpy_fromio(p, io, B3_RAM_ADDR); | 
|  |  | 
|  | memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1, | 
|  | regs->len - B3_RI_WTO_R1); | 
|  | } | 
|  |  | 
|  | /* Wake on Lan only supported on Yukon chips with rev 1 or above */ | 
|  | static int wol_supported(const struct skge_hw *hw) | 
|  | { | 
|  | return !((hw->chip_id == CHIP_ID_GENESIS || | 
|  | (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0))); | 
|  | } | 
|  |  | 
|  | static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) | 
|  | { | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  |  | 
|  | wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0; | 
|  | wol->wolopts = skge->wol ? WAKE_MAGIC : 0; | 
|  | } | 
|  |  | 
|  | static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) | 
|  | { | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  | struct skge_hw *hw = skge->hw; | 
|  |  | 
|  | if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | skge->wol = wol->wolopts == WAKE_MAGIC; | 
|  |  | 
|  | if (skge->wol) { | 
|  | memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN); | 
|  |  | 
|  | skge_write16(hw, WOL_CTRL_STAT, | 
|  | WOL_CTL_ENA_PME_ON_MAGIC_PKT | | 
|  | WOL_CTL_ENA_MAGIC_PKT_UNIT); | 
|  | } else | 
|  | skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Determine supported/advertised modes based on hardware. | 
|  | * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx | 
|  | */ | 
|  | static u32 skge_supported_modes(const struct skge_hw *hw) | 
|  | { | 
|  | u32 supported; | 
|  |  | 
|  | if (hw->copper) { | 
|  | supported = SUPPORTED_10baseT_Half | 
|  | | SUPPORTED_10baseT_Full | 
|  | | SUPPORTED_100baseT_Half | 
|  | | SUPPORTED_100baseT_Full | 
|  | | SUPPORTED_1000baseT_Half | 
|  | | SUPPORTED_1000baseT_Full | 
|  | | SUPPORTED_Autoneg| SUPPORTED_TP; | 
|  |  | 
|  | if (hw->chip_id == CHIP_ID_GENESIS) | 
|  | supported &= ~(SUPPORTED_10baseT_Half | 
|  | | SUPPORTED_10baseT_Full | 
|  | | SUPPORTED_100baseT_Half | 
|  | | SUPPORTED_100baseT_Full); | 
|  |  | 
|  | else if (hw->chip_id == CHIP_ID_YUKON) | 
|  | supported &= ~SUPPORTED_1000baseT_Half; | 
|  | } else | 
|  | supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE | 
|  | | SUPPORTED_Autoneg; | 
|  |  | 
|  | return supported; | 
|  | } | 
|  |  | 
|  | static int skge_get_settings(struct net_device *dev, | 
|  | struct ethtool_cmd *ecmd) | 
|  | { | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  | struct skge_hw *hw = skge->hw; | 
|  |  | 
|  | ecmd->transceiver = XCVR_INTERNAL; | 
|  | ecmd->supported = skge_supported_modes(hw); | 
|  |  | 
|  | if (hw->copper) { | 
|  | ecmd->port = PORT_TP; | 
|  | ecmd->phy_address = hw->phy_addr; | 
|  | } else | 
|  | ecmd->port = PORT_FIBRE; | 
|  |  | 
|  | ecmd->advertising = skge->advertising; | 
|  | ecmd->autoneg = skge->autoneg; | 
|  | ecmd->speed = skge->speed; | 
|  | ecmd->duplex = skge->duplex; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) | 
|  | { | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  | const struct skge_hw *hw = skge->hw; | 
|  | u32 supported = skge_supported_modes(hw); | 
|  |  | 
|  | if (ecmd->autoneg == AUTONEG_ENABLE) { | 
|  | ecmd->advertising = supported; | 
|  | skge->duplex = -1; | 
|  | skge->speed = -1; | 
|  | } else { | 
|  | u32 setting; | 
|  |  | 
|  | switch (ecmd->speed) { | 
|  | case SPEED_1000: | 
|  | if (ecmd->duplex == DUPLEX_FULL) | 
|  | setting = SUPPORTED_1000baseT_Full; | 
|  | else if (ecmd->duplex == DUPLEX_HALF) | 
|  | setting = SUPPORTED_1000baseT_Half; | 
|  | else | 
|  | return -EINVAL; | 
|  | break; | 
|  | case SPEED_100: | 
|  | if (ecmd->duplex == DUPLEX_FULL) | 
|  | setting = SUPPORTED_100baseT_Full; | 
|  | else if (ecmd->duplex == DUPLEX_HALF) | 
|  | setting = SUPPORTED_100baseT_Half; | 
|  | else | 
|  | return -EINVAL; | 
|  | break; | 
|  |  | 
|  | case SPEED_10: | 
|  | if (ecmd->duplex == DUPLEX_FULL) | 
|  | setting = SUPPORTED_10baseT_Full; | 
|  | else if (ecmd->duplex == DUPLEX_HALF) | 
|  | setting = SUPPORTED_10baseT_Half; | 
|  | else | 
|  | return -EINVAL; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if ((setting & supported) == 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | skge->speed = ecmd->speed; | 
|  | skge->duplex = ecmd->duplex; | 
|  | } | 
|  |  | 
|  | skge->autoneg = ecmd->autoneg; | 
|  | skge->advertising = ecmd->advertising; | 
|  |  | 
|  | if (netif_running(dev)) | 
|  | skge_phy_reset(skge); | 
|  |  | 
|  | return (0); | 
|  | } | 
|  |  | 
|  | static void skge_get_drvinfo(struct net_device *dev, | 
|  | struct ethtool_drvinfo *info) | 
|  | { | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  |  | 
|  | strcpy(info->driver, DRV_NAME); | 
|  | strcpy(info->version, DRV_VERSION); | 
|  | strcpy(info->fw_version, "N/A"); | 
|  | strcpy(info->bus_info, pci_name(skge->hw->pdev)); | 
|  | } | 
|  |  | 
|  | static const struct skge_stat { | 
|  | char 	   name[ETH_GSTRING_LEN]; | 
|  | u16	   xmac_offset; | 
|  | u16	   gma_offset; | 
|  | } skge_stats[] = { | 
|  | { "tx_bytes",		XM_TXO_OK_HI,  GM_TXO_OK_HI }, | 
|  | { "rx_bytes",		XM_RXO_OK_HI,  GM_RXO_OK_HI }, | 
|  |  | 
|  | { "tx_broadcast",	XM_TXF_BC_OK,  GM_TXF_BC_OK }, | 
|  | { "rx_broadcast",	XM_RXF_BC_OK,  GM_RXF_BC_OK }, | 
|  | { "tx_multicast",	XM_TXF_MC_OK,  GM_TXF_MC_OK }, | 
|  | { "rx_multicast",	XM_RXF_MC_OK,  GM_RXF_MC_OK }, | 
|  | { "tx_unicast",		XM_TXF_UC_OK,  GM_TXF_UC_OK }, | 
|  | { "rx_unicast",		XM_RXF_UC_OK,  GM_RXF_UC_OK }, | 
|  | { "tx_mac_pause",	XM_TXF_MPAUSE, GM_TXF_MPAUSE }, | 
|  | { "rx_mac_pause",	XM_RXF_MPAUSE, GM_RXF_MPAUSE }, | 
|  |  | 
|  | { "collisions",		XM_TXF_SNG_COL, GM_TXF_SNG_COL }, | 
|  | { "multi_collisions",	XM_TXF_MUL_COL, GM_TXF_MUL_COL }, | 
|  | { "aborted",		XM_TXF_ABO_COL, GM_TXF_ABO_COL }, | 
|  | { "late_collision",	XM_TXF_LAT_COL, GM_TXF_LAT_COL }, | 
|  | { "fifo_underrun",	XM_TXE_FIFO_UR, GM_TXE_FIFO_UR }, | 
|  | { "fifo_overflow",	XM_RXE_FIFO_OV, GM_RXE_FIFO_OV }, | 
|  |  | 
|  | { "rx_toolong",		XM_RXF_LNG_ERR, GM_RXF_LNG_ERR }, | 
|  | { "rx_jabber",		XM_RXF_JAB_PKT, GM_RXF_JAB_PKT }, | 
|  | { "rx_runt",		XM_RXE_RUNT, 	GM_RXE_FRAG }, | 
|  | { "rx_too_long",	XM_RXF_LNG_ERR, GM_RXF_LNG_ERR }, | 
|  | { "rx_fcs_error",	XM_RXF_FCS_ERR, GM_RXF_FCS_ERR }, | 
|  | }; | 
|  |  | 
|  | static int skge_get_stats_count(struct net_device *dev) | 
|  | { | 
|  | return ARRAY_SIZE(skge_stats); | 
|  | } | 
|  |  | 
|  | static void skge_get_ethtool_stats(struct net_device *dev, | 
|  | struct ethtool_stats *stats, u64 *data) | 
|  | { | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  |  | 
|  | if (skge->hw->chip_id == CHIP_ID_GENESIS) | 
|  | genesis_get_stats(skge, data); | 
|  | else | 
|  | yukon_get_stats(skge, data); | 
|  | } | 
|  |  | 
|  | /* Use hardware MIB variables for critical path statistics and | 
|  | * transmit feedback not reported at interrupt. | 
|  | * Other errors are accounted for in interrupt handler. | 
|  | */ | 
|  | static struct net_device_stats *skge_get_stats(struct net_device *dev) | 
|  | { | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  | u64 data[ARRAY_SIZE(skge_stats)]; | 
|  |  | 
|  | if (skge->hw->chip_id == CHIP_ID_GENESIS) | 
|  | genesis_get_stats(skge, data); | 
|  | else | 
|  | yukon_get_stats(skge, data); | 
|  |  | 
|  | skge->net_stats.tx_bytes = data[0]; | 
|  | skge->net_stats.rx_bytes = data[1]; | 
|  | skge->net_stats.tx_packets = data[2] + data[4] + data[6]; | 
|  | skge->net_stats.rx_packets = data[3] + data[5] + data[7]; | 
|  | skge->net_stats.multicast = data[5] + data[7]; | 
|  | skge->net_stats.collisions = data[10]; | 
|  | skge->net_stats.tx_aborted_errors = data[12]; | 
|  |  | 
|  | return &skge->net_stats; | 
|  | } | 
|  |  | 
|  | static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | switch (stringset) { | 
|  | case ETH_SS_STATS: | 
|  | for (i = 0; i < ARRAY_SIZE(skge_stats); i++) | 
|  | memcpy(data + i * ETH_GSTRING_LEN, | 
|  | skge_stats[i].name, ETH_GSTRING_LEN); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void skge_get_ring_param(struct net_device *dev, | 
|  | struct ethtool_ringparam *p) | 
|  | { | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  |  | 
|  | p->rx_max_pending = MAX_RX_RING_SIZE; | 
|  | p->tx_max_pending = MAX_TX_RING_SIZE; | 
|  | p->rx_mini_max_pending = 0; | 
|  | p->rx_jumbo_max_pending = 0; | 
|  |  | 
|  | p->rx_pending = skge->rx_ring.count; | 
|  | p->tx_pending = skge->tx_ring.count; | 
|  | p->rx_mini_pending = 0; | 
|  | p->rx_jumbo_pending = 0; | 
|  | } | 
|  |  | 
|  | static int skge_set_ring_param(struct net_device *dev, | 
|  | struct ethtool_ringparam *p) | 
|  | { | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  | int err; | 
|  |  | 
|  | if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE || | 
|  | p->tx_pending == 0 || p->tx_pending > MAX_TX_RING_SIZE) | 
|  | return -EINVAL; | 
|  |  | 
|  | skge->rx_ring.count = p->rx_pending; | 
|  | skge->tx_ring.count = p->tx_pending; | 
|  |  | 
|  | if (netif_running(dev)) { | 
|  | skge_down(dev); | 
|  | err = skge_up(dev); | 
|  | if (err) | 
|  | dev_close(dev); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u32 skge_get_msglevel(struct net_device *netdev) | 
|  | { | 
|  | struct skge_port *skge = netdev_priv(netdev); | 
|  | return skge->msg_enable; | 
|  | } | 
|  |  | 
|  | static void skge_set_msglevel(struct net_device *netdev, u32 value) | 
|  | { | 
|  | struct skge_port *skge = netdev_priv(netdev); | 
|  | skge->msg_enable = value; | 
|  | } | 
|  |  | 
|  | static int skge_nway_reset(struct net_device *dev) | 
|  | { | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  |  | 
|  | if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev)) | 
|  | return -EINVAL; | 
|  |  | 
|  | skge_phy_reset(skge); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int skge_set_sg(struct net_device *dev, u32 data) | 
|  | { | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  | struct skge_hw *hw = skge->hw; | 
|  |  | 
|  | if (hw->chip_id == CHIP_ID_GENESIS && data) | 
|  | return -EOPNOTSUPP; | 
|  | return ethtool_op_set_sg(dev, data); | 
|  | } | 
|  |  | 
|  | static int skge_set_tx_csum(struct net_device *dev, u32 data) | 
|  | { | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  | struct skge_hw *hw = skge->hw; | 
|  |  | 
|  | if (hw->chip_id == CHIP_ID_GENESIS && data) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | return ethtool_op_set_tx_csum(dev, data); | 
|  | } | 
|  |  | 
|  | static u32 skge_get_rx_csum(struct net_device *dev) | 
|  | { | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  |  | 
|  | return skge->rx_csum; | 
|  | } | 
|  |  | 
|  | /* Only Yukon supports checksum offload. */ | 
|  | static int skge_set_rx_csum(struct net_device *dev, u32 data) | 
|  | { | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  |  | 
|  | if (skge->hw->chip_id == CHIP_ID_GENESIS && data) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | skge->rx_csum = data; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void skge_get_pauseparam(struct net_device *dev, | 
|  | struct ethtool_pauseparam *ecmd) | 
|  | { | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  |  | 
|  | ecmd->tx_pause = (skge->flow_control == FLOW_MODE_LOC_SEND) | 
|  | || (skge->flow_control == FLOW_MODE_SYMMETRIC); | 
|  | ecmd->rx_pause = (skge->flow_control == FLOW_MODE_REM_SEND) | 
|  | || (skge->flow_control == FLOW_MODE_SYMMETRIC); | 
|  |  | 
|  | ecmd->autoneg = skge->autoneg; | 
|  | } | 
|  |  | 
|  | static int skge_set_pauseparam(struct net_device *dev, | 
|  | struct ethtool_pauseparam *ecmd) | 
|  | { | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  |  | 
|  | skge->autoneg = ecmd->autoneg; | 
|  | if (ecmd->rx_pause && ecmd->tx_pause) | 
|  | skge->flow_control = FLOW_MODE_SYMMETRIC; | 
|  | else if (ecmd->rx_pause && !ecmd->tx_pause) | 
|  | skge->flow_control = FLOW_MODE_REM_SEND; | 
|  | else if (!ecmd->rx_pause && ecmd->tx_pause) | 
|  | skge->flow_control = FLOW_MODE_LOC_SEND; | 
|  | else | 
|  | skge->flow_control = FLOW_MODE_NONE; | 
|  |  | 
|  | if (netif_running(dev)) | 
|  | skge_phy_reset(skge); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Chip internal frequency for clock calculations */ | 
|  | static inline u32 hwkhz(const struct skge_hw *hw) | 
|  | { | 
|  | if (hw->chip_id == CHIP_ID_GENESIS) | 
|  | return 53215; /* or:  53.125 MHz */ | 
|  | else | 
|  | return 78215; /* or:  78.125 MHz */ | 
|  | } | 
|  |  | 
|  | /* Chip HZ to microseconds */ | 
|  | static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks) | 
|  | { | 
|  | return (ticks * 1000) / hwkhz(hw); | 
|  | } | 
|  |  | 
|  | /* Microseconds to chip HZ */ | 
|  | static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec) | 
|  | { | 
|  | return hwkhz(hw) * usec / 1000; | 
|  | } | 
|  |  | 
|  | static int skge_get_coalesce(struct net_device *dev, | 
|  | struct ethtool_coalesce *ecmd) | 
|  | { | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  | struct skge_hw *hw = skge->hw; | 
|  | int port = skge->port; | 
|  |  | 
|  | ecmd->rx_coalesce_usecs = 0; | 
|  | ecmd->tx_coalesce_usecs = 0; | 
|  |  | 
|  | if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) { | 
|  | u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI)); | 
|  | u32 msk = skge_read32(hw, B2_IRQM_MSK); | 
|  |  | 
|  | if (msk & rxirqmask[port]) | 
|  | ecmd->rx_coalesce_usecs = delay; | 
|  | if (msk & txirqmask[port]) | 
|  | ecmd->tx_coalesce_usecs = delay; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Note: interrupt timer is per board, but can turn on/off per port */ | 
|  | static int skge_set_coalesce(struct net_device *dev, | 
|  | struct ethtool_coalesce *ecmd) | 
|  | { | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  | struct skge_hw *hw = skge->hw; | 
|  | int port = skge->port; | 
|  | u32 msk = skge_read32(hw, B2_IRQM_MSK); | 
|  | u32 delay = 25; | 
|  |  | 
|  | if (ecmd->rx_coalesce_usecs == 0) | 
|  | msk &= ~rxirqmask[port]; | 
|  | else if (ecmd->rx_coalesce_usecs < 25 || | 
|  | ecmd->rx_coalesce_usecs > 33333) | 
|  | return -EINVAL; | 
|  | else { | 
|  | msk |= rxirqmask[port]; | 
|  | delay = ecmd->rx_coalesce_usecs; | 
|  | } | 
|  |  | 
|  | if (ecmd->tx_coalesce_usecs == 0) | 
|  | msk &= ~txirqmask[port]; | 
|  | else if (ecmd->tx_coalesce_usecs < 25 || | 
|  | ecmd->tx_coalesce_usecs > 33333) | 
|  | return -EINVAL; | 
|  | else { | 
|  | msk |= txirqmask[port]; | 
|  | delay = min(delay, ecmd->rx_coalesce_usecs); | 
|  | } | 
|  |  | 
|  | skge_write32(hw, B2_IRQM_MSK, msk); | 
|  | if (msk == 0) | 
|  | skge_write32(hw, B2_IRQM_CTRL, TIM_STOP); | 
|  | else { | 
|  | skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay)); | 
|  | skge_write32(hw, B2_IRQM_CTRL, TIM_START); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST }; | 
|  | static void skge_led(struct skge_port *skge, enum led_mode mode) | 
|  | { | 
|  | struct skge_hw *hw = skge->hw; | 
|  | int port = skge->port; | 
|  |  | 
|  | spin_lock_bh(&hw->phy_lock); | 
|  | if (hw->chip_id == CHIP_ID_GENESIS) { | 
|  | switch (mode) { | 
|  | case LED_MODE_OFF: | 
|  | xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF); | 
|  | skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF); | 
|  | skge_write32(hw, SK_REG(port, RX_LED_VAL), 0); | 
|  | skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF); | 
|  | break; | 
|  |  | 
|  | case LED_MODE_ON: | 
|  | skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON); | 
|  | skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON); | 
|  |  | 
|  | skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START); | 
|  | skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START); | 
|  |  | 
|  | break; | 
|  |  | 
|  | case LED_MODE_TST: | 
|  | skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON); | 
|  | skge_write32(hw, SK_REG(port, RX_LED_VAL), 100); | 
|  | skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START); | 
|  |  | 
|  | xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON); | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | switch (mode) { | 
|  | case LED_MODE_OFF: | 
|  | gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0); | 
|  | gm_phy_write(hw, port, PHY_MARV_LED_OVER, | 
|  | PHY_M_LED_MO_DUP(MO_LED_OFF)  | | 
|  | PHY_M_LED_MO_10(MO_LED_OFF)   | | 
|  | PHY_M_LED_MO_100(MO_LED_OFF)  | | 
|  | PHY_M_LED_MO_1000(MO_LED_OFF) | | 
|  | PHY_M_LED_MO_RX(MO_LED_OFF)); | 
|  | break; | 
|  | case LED_MODE_ON: | 
|  | gm_phy_write(hw, port, PHY_MARV_LED_CTRL, | 
|  | PHY_M_LED_PULS_DUR(PULS_170MS) | | 
|  | PHY_M_LED_BLINK_RT(BLINK_84MS) | | 
|  | PHY_M_LEDC_TX_CTRL | | 
|  | PHY_M_LEDC_DP_CTRL); | 
|  |  | 
|  | gm_phy_write(hw, port, PHY_MARV_LED_OVER, | 
|  | PHY_M_LED_MO_RX(MO_LED_OFF) | | 
|  | (skge->speed == SPEED_100 ? | 
|  | PHY_M_LED_MO_100(MO_LED_ON) : 0)); | 
|  | break; | 
|  | case LED_MODE_TST: | 
|  | gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0); | 
|  | gm_phy_write(hw, port, PHY_MARV_LED_OVER, | 
|  | PHY_M_LED_MO_DUP(MO_LED_ON)  | | 
|  | PHY_M_LED_MO_10(MO_LED_ON)   | | 
|  | PHY_M_LED_MO_100(MO_LED_ON)  | | 
|  | PHY_M_LED_MO_1000(MO_LED_ON) | | 
|  | PHY_M_LED_MO_RX(MO_LED_ON)); | 
|  | } | 
|  | } | 
|  | spin_unlock_bh(&hw->phy_lock); | 
|  | } | 
|  |  | 
|  | /* blink LED's for finding board */ | 
|  | static int skge_phys_id(struct net_device *dev, u32 data) | 
|  | { | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  | unsigned long ms; | 
|  | enum led_mode mode = LED_MODE_TST; | 
|  |  | 
|  | if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ)) | 
|  | ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000; | 
|  | else | 
|  | ms = data * 1000; | 
|  |  | 
|  | while (ms > 0) { | 
|  | skge_led(skge, mode); | 
|  | mode ^= LED_MODE_TST; | 
|  |  | 
|  | if (msleep_interruptible(BLINK_MS)) | 
|  | break; | 
|  | ms -= BLINK_MS; | 
|  | } | 
|  |  | 
|  | /* back to regular LED state */ | 
|  | skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct ethtool_ops skge_ethtool_ops = { | 
|  | .get_settings	= skge_get_settings, | 
|  | .set_settings	= skge_set_settings, | 
|  | .get_drvinfo	= skge_get_drvinfo, | 
|  | .get_regs_len	= skge_get_regs_len, | 
|  | .get_regs	= skge_get_regs, | 
|  | .get_wol	= skge_get_wol, | 
|  | .set_wol	= skge_set_wol, | 
|  | .get_msglevel	= skge_get_msglevel, | 
|  | .set_msglevel	= skge_set_msglevel, | 
|  | .nway_reset	= skge_nway_reset, | 
|  | .get_link	= ethtool_op_get_link, | 
|  | .get_ringparam	= skge_get_ring_param, | 
|  | .set_ringparam	= skge_set_ring_param, | 
|  | .get_pauseparam = skge_get_pauseparam, | 
|  | .set_pauseparam = skge_set_pauseparam, | 
|  | .get_coalesce	= skge_get_coalesce, | 
|  | .set_coalesce	= skge_set_coalesce, | 
|  | .get_sg		= ethtool_op_get_sg, | 
|  | .set_sg		= skge_set_sg, | 
|  | .get_tx_csum	= ethtool_op_get_tx_csum, | 
|  | .set_tx_csum	= skge_set_tx_csum, | 
|  | .get_rx_csum	= skge_get_rx_csum, | 
|  | .set_rx_csum	= skge_set_rx_csum, | 
|  | .get_strings	= skge_get_strings, | 
|  | .phys_id	= skge_phys_id, | 
|  | .get_stats_count = skge_get_stats_count, | 
|  | .get_ethtool_stats = skge_get_ethtool_stats, | 
|  | .get_perm_addr	= ethtool_op_get_perm_addr, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Allocate ring elements and chain them together | 
|  | * One-to-one association of board descriptors with ring elements | 
|  | */ | 
|  | static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u64 base) | 
|  | { | 
|  | struct skge_tx_desc *d; | 
|  | struct skge_element *e; | 
|  | int i; | 
|  |  | 
|  | ring->start = kmalloc(sizeof(*e)*ring->count, GFP_KERNEL); | 
|  | if (!ring->start) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) { | 
|  | e->desc = d; | 
|  | e->skb = NULL; | 
|  | if (i == ring->count - 1) { | 
|  | e->next = ring->start; | 
|  | d->next_offset = base; | 
|  | } else { | 
|  | e->next = e + 1; | 
|  | d->next_offset = base + (i+1) * sizeof(*d); | 
|  | } | 
|  | } | 
|  | ring->to_use = ring->to_clean = ring->start; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Allocate and setup a new buffer for receiving */ | 
|  | static void skge_rx_setup(struct skge_port *skge, struct skge_element *e, | 
|  | struct sk_buff *skb, unsigned int bufsize) | 
|  | { | 
|  | struct skge_rx_desc *rd = e->desc; | 
|  | u64 map; | 
|  |  | 
|  | map = pci_map_single(skge->hw->pdev, skb->data, bufsize, | 
|  | PCI_DMA_FROMDEVICE); | 
|  |  | 
|  | rd->dma_lo = map; | 
|  | rd->dma_hi = map >> 32; | 
|  | e->skb = skb; | 
|  | rd->csum1_start = ETH_HLEN; | 
|  | rd->csum2_start = ETH_HLEN; | 
|  | rd->csum1 = 0; | 
|  | rd->csum2 = 0; | 
|  |  | 
|  | wmb(); | 
|  |  | 
|  | rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize; | 
|  | pci_unmap_addr_set(e, mapaddr, map); | 
|  | pci_unmap_len_set(e, maplen, bufsize); | 
|  | } | 
|  |  | 
|  | /* Resume receiving using existing skb, | 
|  | * Note: DMA address is not changed by chip. | 
|  | * 	 MTU not changed while receiver active. | 
|  | */ | 
|  | static void skge_rx_reuse(struct skge_element *e, unsigned int size) | 
|  | { | 
|  | struct skge_rx_desc *rd = e->desc; | 
|  |  | 
|  | rd->csum2 = 0; | 
|  | rd->csum2_start = ETH_HLEN; | 
|  |  | 
|  | wmb(); | 
|  |  | 
|  | rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Free all  buffers in receive ring, assumes receiver stopped */ | 
|  | static void skge_rx_clean(struct skge_port *skge) | 
|  | { | 
|  | struct skge_hw *hw = skge->hw; | 
|  | struct skge_ring *ring = &skge->rx_ring; | 
|  | struct skge_element *e; | 
|  |  | 
|  | e = ring->start; | 
|  | do { | 
|  | struct skge_rx_desc *rd = e->desc; | 
|  | rd->control = 0; | 
|  | if (e->skb) { | 
|  | pci_unmap_single(hw->pdev, | 
|  | pci_unmap_addr(e, mapaddr), | 
|  | pci_unmap_len(e, maplen), | 
|  | PCI_DMA_FROMDEVICE); | 
|  | dev_kfree_skb(e->skb); | 
|  | e->skb = NULL; | 
|  | } | 
|  | } while ((e = e->next) != ring->start); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Allocate buffers for receive ring | 
|  | * For receive:  to_clean is next received frame. | 
|  | */ | 
|  | static int skge_rx_fill(struct skge_port *skge) | 
|  | { | 
|  | struct skge_ring *ring = &skge->rx_ring; | 
|  | struct skge_element *e; | 
|  |  | 
|  | e = ring->start; | 
|  | do { | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | skb = dev_alloc_skb(skge->rx_buf_size + NET_IP_ALIGN); | 
|  | if (!skb) | 
|  | return -ENOMEM; | 
|  |  | 
|  | skb_reserve(skb, NET_IP_ALIGN); | 
|  | skge_rx_setup(skge, e, skb, skge->rx_buf_size); | 
|  | } while ( (e = e->next) != ring->start); | 
|  |  | 
|  | ring->to_clean = ring->start; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void skge_link_up(struct skge_port *skge) | 
|  | { | 
|  | skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), | 
|  | LED_BLK_OFF|LED_SYNC_OFF|LED_ON); | 
|  |  | 
|  | netif_carrier_on(skge->netdev); | 
|  | if (skge->tx_avail > MAX_SKB_FRAGS + 1) | 
|  | netif_wake_queue(skge->netdev); | 
|  |  | 
|  | if (netif_msg_link(skge)) | 
|  | printk(KERN_INFO PFX | 
|  | "%s: Link is up at %d Mbps, %s duplex, flow control %s\n", | 
|  | skge->netdev->name, skge->speed, | 
|  | skge->duplex == DUPLEX_FULL ? "full" : "half", | 
|  | (skge->flow_control == FLOW_MODE_NONE) ? "none" : | 
|  | (skge->flow_control == FLOW_MODE_LOC_SEND) ? "tx only" : | 
|  | (skge->flow_control == FLOW_MODE_REM_SEND) ? "rx only" : | 
|  | (skge->flow_control == FLOW_MODE_SYMMETRIC) ? "tx and rx" : | 
|  | "unknown"); | 
|  | } | 
|  |  | 
|  | static void skge_link_down(struct skge_port *skge) | 
|  | { | 
|  | skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF); | 
|  | netif_carrier_off(skge->netdev); | 
|  | netif_stop_queue(skge->netdev); | 
|  |  | 
|  | if (netif_msg_link(skge)) | 
|  | printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name); | 
|  | } | 
|  |  | 
|  | static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr); | 
|  | xm_read16(hw, port, XM_PHY_DATA); | 
|  |  | 
|  | /* Need to wait for external PHY */ | 
|  | for (i = 0; i < PHY_RETRIES; i++) { | 
|  | udelay(1); | 
|  | if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY) | 
|  | goto ready; | 
|  | } | 
|  |  | 
|  | return -ETIMEDOUT; | 
|  | ready: | 
|  | *val = xm_read16(hw, port, XM_PHY_DATA); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg) | 
|  | { | 
|  | u16 v = 0; | 
|  | if (__xm_phy_read(hw, port, reg, &v)) | 
|  | printk(KERN_WARNING PFX "%s: phy read timed out\n", | 
|  | hw->dev[port]->name); | 
|  | return v; | 
|  | } | 
|  |  | 
|  | static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr); | 
|  | for (i = 0; i < PHY_RETRIES; i++) { | 
|  | if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY)) | 
|  | goto ready; | 
|  | udelay(1); | 
|  | } | 
|  | return -EIO; | 
|  |  | 
|  | ready: | 
|  | xm_write16(hw, port, XM_PHY_DATA, val); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void genesis_init(struct skge_hw *hw) | 
|  | { | 
|  | /* set blink source counter */ | 
|  | skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100); | 
|  | skge_write8(hw, B2_BSC_CTRL, BSC_START); | 
|  |  | 
|  | /* configure mac arbiter */ | 
|  | skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR); | 
|  |  | 
|  | /* configure mac arbiter timeout values */ | 
|  | skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53); | 
|  | skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53); | 
|  | skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53); | 
|  | skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53); | 
|  |  | 
|  | skge_write8(hw, B3_MA_RCINI_RX1, 0); | 
|  | skge_write8(hw, B3_MA_RCINI_RX2, 0); | 
|  | skge_write8(hw, B3_MA_RCINI_TX1, 0); | 
|  | skge_write8(hw, B3_MA_RCINI_TX2, 0); | 
|  |  | 
|  | /* configure packet arbiter timeout */ | 
|  | skge_write16(hw, B3_PA_CTRL, PA_RST_CLR); | 
|  | skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX); | 
|  | skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX); | 
|  | skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX); | 
|  | skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX); | 
|  | } | 
|  |  | 
|  | static void genesis_reset(struct skge_hw *hw, int port) | 
|  | { | 
|  | const u8 zero[8]  = { 0 }; | 
|  |  | 
|  | skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0); | 
|  |  | 
|  | /* reset the statistics module */ | 
|  | xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT); | 
|  | xm_write16(hw, port, XM_IMSK, 0xffff);	/* disable XMAC IRQs */ | 
|  | xm_write32(hw, port, XM_MODE, 0);		/* clear Mode Reg */ | 
|  | xm_write16(hw, port, XM_TX_CMD, 0);	/* reset TX CMD Reg */ | 
|  | xm_write16(hw, port, XM_RX_CMD, 0);	/* reset RX CMD Reg */ | 
|  |  | 
|  | /* disable Broadcom PHY IRQ */ | 
|  | xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff); | 
|  |  | 
|  | xm_outhash(hw, port, XM_HSM, zero); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Convert mode to MII values  */ | 
|  | static const u16 phy_pause_map[] = { | 
|  | [FLOW_MODE_NONE] =	0, | 
|  | [FLOW_MODE_LOC_SEND] =	PHY_AN_PAUSE_ASYM, | 
|  | [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP, | 
|  | [FLOW_MODE_REM_SEND]  = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM, | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* Check status of Broadcom phy link */ | 
|  | static void bcom_check_link(struct skge_hw *hw, int port) | 
|  | { | 
|  | struct net_device *dev = hw->dev[port]; | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  | u16 status; | 
|  |  | 
|  | /* read twice because of latch */ | 
|  | (void) xm_phy_read(hw, port, PHY_BCOM_STAT); | 
|  | status = xm_phy_read(hw, port, PHY_BCOM_STAT); | 
|  |  | 
|  | if ((status & PHY_ST_LSYNC) == 0) { | 
|  | u16 cmd = xm_read16(hw, port, XM_MMU_CMD); | 
|  | cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX); | 
|  | xm_write16(hw, port, XM_MMU_CMD, cmd); | 
|  | /* dummy read to ensure writing */ | 
|  | (void) xm_read16(hw, port, XM_MMU_CMD); | 
|  |  | 
|  | if (netif_carrier_ok(dev)) | 
|  | skge_link_down(skge); | 
|  | } else { | 
|  | if (skge->autoneg == AUTONEG_ENABLE && | 
|  | (status & PHY_ST_AN_OVER)) { | 
|  | u16 lpa = xm_phy_read(hw, port, PHY_BCOM_AUNE_LP); | 
|  | u16 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT); | 
|  |  | 
|  | if (lpa & PHY_B_AN_RF) { | 
|  | printk(KERN_NOTICE PFX "%s: remote fault\n", | 
|  | dev->name); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Check Duplex mismatch */ | 
|  | switch (aux & PHY_B_AS_AN_RES_MSK) { | 
|  | case PHY_B_RES_1000FD: | 
|  | skge->duplex = DUPLEX_FULL; | 
|  | break; | 
|  | case PHY_B_RES_1000HD: | 
|  | skge->duplex = DUPLEX_HALF; | 
|  | break; | 
|  | default: | 
|  | printk(KERN_NOTICE PFX "%s: duplex mismatch\n", | 
|  | dev->name); | 
|  | return; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* We are using IEEE 802.3z/D5.0 Table 37-4 */ | 
|  | switch (aux & PHY_B_AS_PAUSE_MSK) { | 
|  | case PHY_B_AS_PAUSE_MSK: | 
|  | skge->flow_control = FLOW_MODE_SYMMETRIC; | 
|  | break; | 
|  | case PHY_B_AS_PRR: | 
|  | skge->flow_control = FLOW_MODE_REM_SEND; | 
|  | break; | 
|  | case PHY_B_AS_PRT: | 
|  | skge->flow_control = FLOW_MODE_LOC_SEND; | 
|  | break; | 
|  | default: | 
|  | skge->flow_control = FLOW_MODE_NONE; | 
|  | } | 
|  |  | 
|  | skge->speed = SPEED_1000; | 
|  | } | 
|  |  | 
|  | if (!netif_carrier_ok(dev)) | 
|  | genesis_link_up(skge); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional | 
|  | * Phy on for 100 or 10Mbit operation | 
|  | */ | 
|  | static void bcom_phy_init(struct skge_port *skge, int jumbo) | 
|  | { | 
|  | struct skge_hw *hw = skge->hw; | 
|  | int port = skge->port; | 
|  | int i; | 
|  | u16 id1, r, ext, ctl; | 
|  |  | 
|  | /* magic workaround patterns for Broadcom */ | 
|  | static const struct { | 
|  | u16 reg; | 
|  | u16 val; | 
|  | } A1hack[] = { | 
|  | { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, | 
|  | { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 }, | 
|  | { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 }, | 
|  | { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 }, | 
|  | }, C0hack[] = { | 
|  | { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 }, | 
|  | { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 }, | 
|  | }; | 
|  |  | 
|  | /* read Id from external PHY (all have the same address) */ | 
|  | id1 = xm_phy_read(hw, port, PHY_XMAC_ID1); | 
|  |  | 
|  | /* Optimize MDIO transfer by suppressing preamble. */ | 
|  | r = xm_read16(hw, port, XM_MMU_CMD); | 
|  | r |=  XM_MMU_NO_PRE; | 
|  | xm_write16(hw, port, XM_MMU_CMD,r); | 
|  |  | 
|  | switch (id1) { | 
|  | case PHY_BCOM_ID1_C0: | 
|  | /* | 
|  | * Workaround BCOM Errata for the C0 type. | 
|  | * Write magic patterns to reserved registers. | 
|  | */ | 
|  | for (i = 0; i < ARRAY_SIZE(C0hack); i++) | 
|  | xm_phy_write(hw, port, | 
|  | C0hack[i].reg, C0hack[i].val); | 
|  |  | 
|  | break; | 
|  | case PHY_BCOM_ID1_A1: | 
|  | /* | 
|  | * Workaround BCOM Errata for the A1 type. | 
|  | * Write magic patterns to reserved registers. | 
|  | */ | 
|  | for (i = 0; i < ARRAY_SIZE(A1hack); i++) | 
|  | xm_phy_write(hw, port, | 
|  | A1hack[i].reg, A1hack[i].val); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Workaround BCOM Errata (#10523) for all BCom PHYs. | 
|  | * Disable Power Management after reset. | 
|  | */ | 
|  | r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL); | 
|  | r |= PHY_B_AC_DIS_PM; | 
|  | xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r); | 
|  |  | 
|  | /* Dummy read */ | 
|  | xm_read16(hw, port, XM_ISRC); | 
|  |  | 
|  | ext = PHY_B_PEC_EN_LTR; /* enable tx led */ | 
|  | ctl = PHY_CT_SP1000;	/* always 1000mbit */ | 
|  |  | 
|  | if (skge->autoneg == AUTONEG_ENABLE) { | 
|  | /* | 
|  | * Workaround BCOM Errata #1 for the C5 type. | 
|  | * 1000Base-T Link Acquisition Failure in Slave Mode | 
|  | * Set Repeater/DTE bit 10 of the 1000Base-T Control Register | 
|  | */ | 
|  | u16 adv = PHY_B_1000C_RD; | 
|  | if (skge->advertising & ADVERTISED_1000baseT_Half) | 
|  | adv |= PHY_B_1000C_AHD; | 
|  | if (skge->advertising & ADVERTISED_1000baseT_Full) | 
|  | adv |= PHY_B_1000C_AFD; | 
|  | xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv); | 
|  |  | 
|  | ctl |= PHY_CT_ANE | PHY_CT_RE_CFG; | 
|  | } else { | 
|  | if (skge->duplex == DUPLEX_FULL) | 
|  | ctl |= PHY_CT_DUP_MD; | 
|  | /* Force to slave */ | 
|  | xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE); | 
|  | } | 
|  |  | 
|  | /* Set autonegotiation pause parameters */ | 
|  | xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV, | 
|  | phy_pause_map[skge->flow_control] | PHY_AN_CSMA); | 
|  |  | 
|  | /* Handle Jumbo frames */ | 
|  | if (jumbo) { | 
|  | xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, | 
|  | PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK); | 
|  |  | 
|  | ext |= PHY_B_PEC_HIGH_LA; | 
|  |  | 
|  | } | 
|  |  | 
|  | xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext); | 
|  | xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl); | 
|  |  | 
|  | /* Use link status change interrupt */ | 
|  | xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK); | 
|  |  | 
|  | bcom_check_link(hw, port); | 
|  | } | 
|  |  | 
|  | static void genesis_mac_init(struct skge_hw *hw, int port) | 
|  | { | 
|  | struct net_device *dev = hw->dev[port]; | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  | int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN; | 
|  | int i; | 
|  | u32 r; | 
|  | const u8 zero[6]  = { 0 }; | 
|  |  | 
|  | /* Clear MIB counters */ | 
|  | xm_write16(hw, port, XM_STAT_CMD, | 
|  | XM_SC_CLR_RXC | XM_SC_CLR_TXC); | 
|  | /* Clear two times according to Errata #3 */ | 
|  | xm_write16(hw, port, XM_STAT_CMD, | 
|  | XM_SC_CLR_RXC | XM_SC_CLR_TXC); | 
|  |  | 
|  | /* Unreset the XMAC. */ | 
|  | skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST); | 
|  |  | 
|  | /* | 
|  | * Perform additional initialization for external PHYs, | 
|  | * namely for the 1000baseTX cards that use the XMAC's | 
|  | * GMII mode. | 
|  | */ | 
|  | /* Take external Phy out of reset */ | 
|  | r = skge_read32(hw, B2_GP_IO); | 
|  | if (port == 0) | 
|  | r |= GP_DIR_0|GP_IO_0; | 
|  | else | 
|  | r |= GP_DIR_2|GP_IO_2; | 
|  |  | 
|  | skge_write32(hw, B2_GP_IO, r); | 
|  | skge_read32(hw, B2_GP_IO); | 
|  |  | 
|  | /* Enable GMII interface */ | 
|  | xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD); | 
|  |  | 
|  | bcom_phy_init(skge, jumbo); | 
|  |  | 
|  | /* Set Station Address */ | 
|  | xm_outaddr(hw, port, XM_SA, dev->dev_addr); | 
|  |  | 
|  | /* We don't use match addresses so clear */ | 
|  | for (i = 1; i < 16; i++) | 
|  | xm_outaddr(hw, port, XM_EXM(i), zero); | 
|  |  | 
|  | /* configure Rx High Water Mark (XM_RX_HI_WM) */ | 
|  | xm_write16(hw, port, XM_RX_HI_WM, 1450); | 
|  |  | 
|  | /* We don't need the FCS appended to the packet. */ | 
|  | r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS; | 
|  | if (jumbo) | 
|  | r |= XM_RX_BIG_PK_OK; | 
|  |  | 
|  | if (skge->duplex == DUPLEX_HALF) { | 
|  | /* | 
|  | * If in manual half duplex mode the other side might be in | 
|  | * full duplex mode, so ignore if a carrier extension is not seen | 
|  | * on frames received | 
|  | */ | 
|  | r |= XM_RX_DIS_CEXT; | 
|  | } | 
|  | xm_write16(hw, port, XM_RX_CMD, r); | 
|  |  | 
|  |  | 
|  | /* We want short frames padded to 60 bytes. */ | 
|  | xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD); | 
|  |  | 
|  | /* | 
|  | * Bump up the transmit threshold. This helps hold off transmit | 
|  | * underruns when we're blasting traffic from both ports at once. | 
|  | */ | 
|  | xm_write16(hw, port, XM_TX_THR, 512); | 
|  |  | 
|  | /* | 
|  | * Enable the reception of all error frames. This is is | 
|  | * a necessary evil due to the design of the XMAC. The | 
|  | * XMAC's receive FIFO is only 8K in size, however jumbo | 
|  | * frames can be up to 9000 bytes in length. When bad | 
|  | * frame filtering is enabled, the XMAC's RX FIFO operates | 
|  | * in 'store and forward' mode. For this to work, the | 
|  | * entire frame has to fit into the FIFO, but that means | 
|  | * that jumbo frames larger than 8192 bytes will be | 
|  | * truncated. Disabling all bad frame filtering causes | 
|  | * the RX FIFO to operate in streaming mode, in which | 
|  | * case the XMAC will start transferring frames out of the | 
|  | * RX FIFO as soon as the FIFO threshold is reached. | 
|  | */ | 
|  | xm_write32(hw, port, XM_MODE, XM_DEF_MODE); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK) | 
|  | *	- Enable all bits excepting 'Octets Rx OK Low CntOv' | 
|  | *	  and 'Octets Rx OK Hi Cnt Ov'. | 
|  | */ | 
|  | xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK); | 
|  |  | 
|  | /* | 
|  | * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK) | 
|  | *	- Enable all bits excepting 'Octets Tx OK Low CntOv' | 
|  | *	  and 'Octets Tx OK Hi Cnt Ov'. | 
|  | */ | 
|  | xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK); | 
|  |  | 
|  | /* Configure MAC arbiter */ | 
|  | skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR); | 
|  |  | 
|  | /* configure timeout values */ | 
|  | skge_write8(hw, B3_MA_TOINI_RX1, 72); | 
|  | skge_write8(hw, B3_MA_TOINI_RX2, 72); | 
|  | skge_write8(hw, B3_MA_TOINI_TX1, 72); | 
|  | skge_write8(hw, B3_MA_TOINI_TX2, 72); | 
|  |  | 
|  | skge_write8(hw, B3_MA_RCINI_RX1, 0); | 
|  | skge_write8(hw, B3_MA_RCINI_RX2, 0); | 
|  | skge_write8(hw, B3_MA_RCINI_TX1, 0); | 
|  | skge_write8(hw, B3_MA_RCINI_TX2, 0); | 
|  |  | 
|  | /* Configure Rx MAC FIFO */ | 
|  | skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR); | 
|  | skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT); | 
|  | skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD); | 
|  |  | 
|  | /* Configure Tx MAC FIFO */ | 
|  | skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR); | 
|  | skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF); | 
|  | skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD); | 
|  |  | 
|  | if (jumbo) { | 
|  | /* Enable frame flushing if jumbo frames used */ | 
|  | skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH); | 
|  | } else { | 
|  | /* enable timeout timers if normal frames */ | 
|  | skge_write16(hw, B3_PA_CTRL, | 
|  | (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void genesis_stop(struct skge_port *skge) | 
|  | { | 
|  | struct skge_hw *hw = skge->hw; | 
|  | int port = skge->port; | 
|  | u32 reg; | 
|  |  | 
|  | genesis_reset(hw, port); | 
|  |  | 
|  | /* Clear Tx packet arbiter timeout IRQ */ | 
|  | skge_write16(hw, B3_PA_CTRL, | 
|  | port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2); | 
|  |  | 
|  | /* | 
|  | * If the transfer sticks at the MAC the STOP command will not | 
|  | * terminate if we don't flush the XMAC's transmit FIFO ! | 
|  | */ | 
|  | xm_write32(hw, port, XM_MODE, | 
|  | xm_read32(hw, port, XM_MODE)|XM_MD_FTF); | 
|  |  | 
|  |  | 
|  | /* Reset the MAC */ | 
|  | skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST); | 
|  |  | 
|  | /* For external PHYs there must be special handling */ | 
|  | reg = skge_read32(hw, B2_GP_IO); | 
|  | if (port == 0) { | 
|  | reg |= GP_DIR_0; | 
|  | reg &= ~GP_IO_0; | 
|  | } else { | 
|  | reg |= GP_DIR_2; | 
|  | reg &= ~GP_IO_2; | 
|  | } | 
|  | skge_write32(hw, B2_GP_IO, reg); | 
|  | skge_read32(hw, B2_GP_IO); | 
|  |  | 
|  | xm_write16(hw, port, XM_MMU_CMD, | 
|  | xm_read16(hw, port, XM_MMU_CMD) | 
|  | & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX)); | 
|  |  | 
|  | xm_read16(hw, port, XM_MMU_CMD); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void genesis_get_stats(struct skge_port *skge, u64 *data) | 
|  | { | 
|  | struct skge_hw *hw = skge->hw; | 
|  | int port = skge->port; | 
|  | int i; | 
|  | unsigned long timeout = jiffies + HZ; | 
|  |  | 
|  | xm_write16(hw, port, | 
|  | XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC); | 
|  |  | 
|  | /* wait for update to complete */ | 
|  | while (xm_read16(hw, port, XM_STAT_CMD) | 
|  | & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) { | 
|  | if (time_after(jiffies, timeout)) | 
|  | break; | 
|  | udelay(10); | 
|  | } | 
|  |  | 
|  | /* special case for 64 bit octet counter */ | 
|  | data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32 | 
|  | | xm_read32(hw, port, XM_TXO_OK_LO); | 
|  | data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32 | 
|  | | xm_read32(hw, port, XM_RXO_OK_LO); | 
|  |  | 
|  | for (i = 2; i < ARRAY_SIZE(skge_stats); i++) | 
|  | data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset); | 
|  | } | 
|  |  | 
|  | static void genesis_mac_intr(struct skge_hw *hw, int port) | 
|  | { | 
|  | struct skge_port *skge = netdev_priv(hw->dev[port]); | 
|  | u16 status = xm_read16(hw, port, XM_ISRC); | 
|  |  | 
|  | if (netif_msg_intr(skge)) | 
|  | printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n", | 
|  | skge->netdev->name, status); | 
|  |  | 
|  | if (status & XM_IS_TXF_UR) { | 
|  | xm_write32(hw, port, XM_MODE, XM_MD_FTF); | 
|  | ++skge->net_stats.tx_fifo_errors; | 
|  | } | 
|  | if (status & XM_IS_RXF_OV) { | 
|  | xm_write32(hw, port, XM_MODE, XM_MD_FRF); | 
|  | ++skge->net_stats.rx_fifo_errors; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void genesis_link_up(struct skge_port *skge) | 
|  | { | 
|  | struct skge_hw *hw = skge->hw; | 
|  | int port = skge->port; | 
|  | u16 cmd; | 
|  | u32 mode, msk; | 
|  |  | 
|  | cmd = xm_read16(hw, port, XM_MMU_CMD); | 
|  |  | 
|  | /* | 
|  | * enabling pause frame reception is required for 1000BT | 
|  | * because the XMAC is not reset if the link is going down | 
|  | */ | 
|  | if (skge->flow_control == FLOW_MODE_NONE || | 
|  | skge->flow_control == FLOW_MODE_LOC_SEND) | 
|  | /* Disable Pause Frame Reception */ | 
|  | cmd |= XM_MMU_IGN_PF; | 
|  | else | 
|  | /* Enable Pause Frame Reception */ | 
|  | cmd &= ~XM_MMU_IGN_PF; | 
|  |  | 
|  | xm_write16(hw, port, XM_MMU_CMD, cmd); | 
|  |  | 
|  | mode = xm_read32(hw, port, XM_MODE); | 
|  | if (skge->flow_control == FLOW_MODE_SYMMETRIC || | 
|  | skge->flow_control == FLOW_MODE_LOC_SEND) { | 
|  | /* | 
|  | * Configure Pause Frame Generation | 
|  | * Use internal and external Pause Frame Generation. | 
|  | * Sending pause frames is edge triggered. | 
|  | * Send a Pause frame with the maximum pause time if | 
|  | * internal oder external FIFO full condition occurs. | 
|  | * Send a zero pause time frame to re-start transmission. | 
|  | */ | 
|  | /* XM_PAUSE_DA = '010000C28001' (default) */ | 
|  | /* XM_MAC_PTIME = 0xffff (maximum) */ | 
|  | /* remember this value is defined in big endian (!) */ | 
|  | xm_write16(hw, port, XM_MAC_PTIME, 0xffff); | 
|  |  | 
|  | mode |= XM_PAUSE_MODE; | 
|  | skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE); | 
|  | } else { | 
|  | /* | 
|  | * disable pause frame generation is required for 1000BT | 
|  | * because the XMAC is not reset if the link is going down | 
|  | */ | 
|  | /* Disable Pause Mode in Mode Register */ | 
|  | mode &= ~XM_PAUSE_MODE; | 
|  |  | 
|  | skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE); | 
|  | } | 
|  |  | 
|  | xm_write32(hw, port, XM_MODE, mode); | 
|  |  | 
|  | msk = XM_DEF_MSK; | 
|  | /* disable GP0 interrupt bit for external Phy */ | 
|  | msk |= XM_IS_INP_ASS; | 
|  |  | 
|  | xm_write16(hw, port, XM_IMSK, msk); | 
|  | xm_read16(hw, port, XM_ISRC); | 
|  |  | 
|  | /* get MMU Command Reg. */ | 
|  | cmd = xm_read16(hw, port, XM_MMU_CMD); | 
|  | if (skge->duplex == DUPLEX_FULL) | 
|  | cmd |= XM_MMU_GMII_FD; | 
|  |  | 
|  | /* | 
|  | * Workaround BCOM Errata (#10523) for all BCom Phys | 
|  | * Enable Power Management after link up | 
|  | */ | 
|  | xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, | 
|  | xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL) | 
|  | & ~PHY_B_AC_DIS_PM); | 
|  | xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK); | 
|  |  | 
|  | /* enable Rx/Tx */ | 
|  | xm_write16(hw, port, XM_MMU_CMD, | 
|  | cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX); | 
|  | skge_link_up(skge); | 
|  | } | 
|  |  | 
|  |  | 
|  | static inline void bcom_phy_intr(struct skge_port *skge) | 
|  | { | 
|  | struct skge_hw *hw = skge->hw; | 
|  | int port = skge->port; | 
|  | u16 isrc; | 
|  |  | 
|  | isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT); | 
|  | if (netif_msg_intr(skge)) | 
|  | printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n", | 
|  | skge->netdev->name, isrc); | 
|  |  | 
|  | if (isrc & PHY_B_IS_PSE) | 
|  | printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n", | 
|  | hw->dev[port]->name); | 
|  |  | 
|  | /* Workaround BCom Errata: | 
|  | *	enable and disable loopback mode if "NO HCD" occurs. | 
|  | */ | 
|  | if (isrc & PHY_B_IS_NO_HDCL) { | 
|  | u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL); | 
|  | xm_phy_write(hw, port, PHY_BCOM_CTRL, | 
|  | ctrl | PHY_CT_LOOP); | 
|  | xm_phy_write(hw, port, PHY_BCOM_CTRL, | 
|  | ctrl & ~PHY_CT_LOOP); | 
|  | } | 
|  |  | 
|  | if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE)) | 
|  | bcom_check_link(hw, port); | 
|  |  | 
|  | } | 
|  |  | 
|  | static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | gma_write16(hw, port, GM_SMI_DATA, val); | 
|  | gma_write16(hw, port, GM_SMI_CTRL, | 
|  | GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg)); | 
|  | for (i = 0; i < PHY_RETRIES; i++) { | 
|  | udelay(1); | 
|  |  | 
|  | if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | printk(KERN_WARNING PFX "%s: phy write timeout\n", | 
|  | hw->dev[port]->name); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | gma_write16(hw, port, GM_SMI_CTRL, | 
|  | GM_SMI_CT_PHY_AD(hw->phy_addr) | 
|  | | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD); | 
|  |  | 
|  | for (i = 0; i < PHY_RETRIES; i++) { | 
|  | udelay(1); | 
|  | if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL) | 
|  | goto ready; | 
|  | } | 
|  |  | 
|  | return -ETIMEDOUT; | 
|  | ready: | 
|  | *val = gma_read16(hw, port, GM_SMI_DATA); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg) | 
|  | { | 
|  | u16 v = 0; | 
|  | if (__gm_phy_read(hw, port, reg, &v)) | 
|  | printk(KERN_WARNING PFX "%s: phy read timeout\n", | 
|  | hw->dev[port]->name); | 
|  | return v; | 
|  | } | 
|  |  | 
|  | /* Marvell Phy Initialization */ | 
|  | static void yukon_init(struct skge_hw *hw, int port) | 
|  | { | 
|  | struct skge_port *skge = netdev_priv(hw->dev[port]); | 
|  | u16 ctrl, ct1000, adv; | 
|  |  | 
|  | if (skge->autoneg == AUTONEG_ENABLE) { | 
|  | u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL); | 
|  |  | 
|  | ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK | | 
|  | PHY_M_EC_MAC_S_MSK); | 
|  | ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ); | 
|  |  | 
|  | ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1); | 
|  |  | 
|  | gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl); | 
|  | } | 
|  |  | 
|  | ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); | 
|  | if (skge->autoneg == AUTONEG_DISABLE) | 
|  | ctrl &= ~PHY_CT_ANE; | 
|  |  | 
|  | ctrl |= PHY_CT_RESET; | 
|  | gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); | 
|  |  | 
|  | ctrl = 0; | 
|  | ct1000 = 0; | 
|  | adv = PHY_AN_CSMA; | 
|  |  | 
|  | if (skge->autoneg == AUTONEG_ENABLE) { | 
|  | if (hw->copper) { | 
|  | if (skge->advertising & ADVERTISED_1000baseT_Full) | 
|  | ct1000 |= PHY_M_1000C_AFD; | 
|  | if (skge->advertising & ADVERTISED_1000baseT_Half) | 
|  | ct1000 |= PHY_M_1000C_AHD; | 
|  | if (skge->advertising & ADVERTISED_100baseT_Full) | 
|  | adv |= PHY_M_AN_100_FD; | 
|  | if (skge->advertising & ADVERTISED_100baseT_Half) | 
|  | adv |= PHY_M_AN_100_HD; | 
|  | if (skge->advertising & ADVERTISED_10baseT_Full) | 
|  | adv |= PHY_M_AN_10_FD; | 
|  | if (skge->advertising & ADVERTISED_10baseT_Half) | 
|  | adv |= PHY_M_AN_10_HD; | 
|  | } else	/* special defines for FIBER (88E1011S only) */ | 
|  | adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD; | 
|  |  | 
|  | /* Set Flow-control capabilities */ | 
|  | adv |= phy_pause_map[skge->flow_control]; | 
|  |  | 
|  | /* Restart Auto-negotiation */ | 
|  | ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG; | 
|  | } else { | 
|  | /* forced speed/duplex settings */ | 
|  | ct1000 = PHY_M_1000C_MSE; | 
|  |  | 
|  | if (skge->duplex == DUPLEX_FULL) | 
|  | ctrl |= PHY_CT_DUP_MD; | 
|  |  | 
|  | switch (skge->speed) { | 
|  | case SPEED_1000: | 
|  | ctrl |= PHY_CT_SP1000; | 
|  | break; | 
|  | case SPEED_100: | 
|  | ctrl |= PHY_CT_SP100; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ctrl |= PHY_CT_RESET; | 
|  | } | 
|  |  | 
|  | gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000); | 
|  |  | 
|  | gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv); | 
|  | gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); | 
|  |  | 
|  | /* Enable phy interrupt on autonegotiation complete (or link up) */ | 
|  | if (skge->autoneg == AUTONEG_ENABLE) | 
|  | gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK); | 
|  | else | 
|  | gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK); | 
|  | } | 
|  |  | 
|  | static void yukon_reset(struct skge_hw *hw, int port) | 
|  | { | 
|  | gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */ | 
|  | gma_write16(hw, port, GM_MC_ADDR_H1, 0);	/* clear MC hash */ | 
|  | gma_write16(hw, port, GM_MC_ADDR_H2, 0); | 
|  | gma_write16(hw, port, GM_MC_ADDR_H3, 0); | 
|  | gma_write16(hw, port, GM_MC_ADDR_H4, 0); | 
|  |  | 
|  | gma_write16(hw, port, GM_RX_CTRL, | 
|  | gma_read16(hw, port, GM_RX_CTRL) | 
|  | | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); | 
|  | } | 
|  |  | 
|  | /* Apparently, early versions of Yukon-Lite had wrong chip_id? */ | 
|  | static int is_yukon_lite_a0(struct skge_hw *hw) | 
|  | { | 
|  | u32 reg; | 
|  | int ret; | 
|  |  | 
|  | if (hw->chip_id != CHIP_ID_YUKON) | 
|  | return 0; | 
|  |  | 
|  | reg = skge_read32(hw, B2_FAR); | 
|  | skge_write8(hw, B2_FAR + 3, 0xff); | 
|  | ret = (skge_read8(hw, B2_FAR + 3) != 0); | 
|  | skge_write32(hw, B2_FAR, reg); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void yukon_mac_init(struct skge_hw *hw, int port) | 
|  | { | 
|  | struct skge_port *skge = netdev_priv(hw->dev[port]); | 
|  | int i; | 
|  | u32 reg; | 
|  | const u8 *addr = hw->dev[port]->dev_addr; | 
|  |  | 
|  | /* WA code for COMA mode -- set PHY reset */ | 
|  | if (hw->chip_id == CHIP_ID_YUKON_LITE && | 
|  | hw->chip_rev >= CHIP_REV_YU_LITE_A3) { | 
|  | reg = skge_read32(hw, B2_GP_IO); | 
|  | reg |= GP_DIR_9 | GP_IO_9; | 
|  | skge_write32(hw, B2_GP_IO, reg); | 
|  | } | 
|  |  | 
|  | /* hard reset */ | 
|  | skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET); | 
|  | skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET); | 
|  |  | 
|  | /* WA code for COMA mode -- clear PHY reset */ | 
|  | if (hw->chip_id == CHIP_ID_YUKON_LITE && | 
|  | hw->chip_rev >= CHIP_REV_YU_LITE_A3) { | 
|  | reg = skge_read32(hw, B2_GP_IO); | 
|  | reg |= GP_DIR_9; | 
|  | reg &= ~GP_IO_9; | 
|  | skge_write32(hw, B2_GP_IO, reg); | 
|  | } | 
|  |  | 
|  | /* Set hardware config mode */ | 
|  | reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP | | 
|  | GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE; | 
|  | reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB; | 
|  |  | 
|  | /* Clear GMC reset */ | 
|  | skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET); | 
|  | skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR); | 
|  | skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR); | 
|  | if (skge->autoneg == AUTONEG_DISABLE) { | 
|  | reg = GM_GPCR_AU_ALL_DIS; | 
|  | gma_write16(hw, port, GM_GP_CTRL, | 
|  | gma_read16(hw, port, GM_GP_CTRL) | reg); | 
|  |  | 
|  | switch (skge->speed) { | 
|  | case SPEED_1000: | 
|  | reg |= GM_GPCR_SPEED_1000; | 
|  | /* fallthru */ | 
|  | case SPEED_100: | 
|  | reg |= GM_GPCR_SPEED_100; | 
|  | } | 
|  |  | 
|  | if (skge->duplex == DUPLEX_FULL) | 
|  | reg |= GM_GPCR_DUP_FULL; | 
|  | } else | 
|  | reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL; | 
|  | switch (skge->flow_control) { | 
|  | case FLOW_MODE_NONE: | 
|  | skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); | 
|  | reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS; | 
|  | break; | 
|  | case FLOW_MODE_LOC_SEND: | 
|  | /* disable Rx flow-control */ | 
|  | reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS; | 
|  | } | 
|  |  | 
|  | gma_write16(hw, port, GM_GP_CTRL, reg); | 
|  | skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC)); | 
|  |  | 
|  | yukon_init(hw, port); | 
|  |  | 
|  | /* MIB clear */ | 
|  | reg = gma_read16(hw, port, GM_PHY_ADDR); | 
|  | gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR); | 
|  |  | 
|  | for (i = 0; i < GM_MIB_CNT_SIZE; i++) | 
|  | gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i); | 
|  | gma_write16(hw, port, GM_PHY_ADDR, reg); | 
|  |  | 
|  | /* transmit control */ | 
|  | gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF)); | 
|  |  | 
|  | /* receive control reg: unicast + multicast + no FCS  */ | 
|  | gma_write16(hw, port, GM_RX_CTRL, | 
|  | GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA); | 
|  |  | 
|  | /* transmit flow control */ | 
|  | gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff); | 
|  |  | 
|  | /* transmit parameter */ | 
|  | gma_write16(hw, port, GM_TX_PARAM, | 
|  | TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | | 
|  | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) | | 
|  | TX_IPG_JAM_DATA(TX_IPG_JAM_DEF)); | 
|  |  | 
|  | /* serial mode register */ | 
|  | reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF); | 
|  | if (hw->dev[port]->mtu > 1500) | 
|  | reg |= GM_SMOD_JUMBO_ENA; | 
|  |  | 
|  | gma_write16(hw, port, GM_SERIAL_MODE, reg); | 
|  |  | 
|  | /* physical address: used for pause frames */ | 
|  | gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr); | 
|  | /* virtual address for data */ | 
|  | gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr); | 
|  |  | 
|  | /* enable interrupt mask for counter overflows */ | 
|  | gma_write16(hw, port, GM_TX_IRQ_MSK, 0); | 
|  | gma_write16(hw, port, GM_RX_IRQ_MSK, 0); | 
|  | gma_write16(hw, port, GM_TR_IRQ_MSK, 0); | 
|  |  | 
|  | /* Initialize Mac Fifo */ | 
|  |  | 
|  | /* Configure Rx MAC FIFO */ | 
|  | skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK); | 
|  | reg = GMF_OPER_ON | GMF_RX_F_FL_ON; | 
|  |  | 
|  | /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */ | 
|  | if (is_yukon_lite_a0(hw)) | 
|  | reg &= ~GMF_RX_F_FL_ON; | 
|  |  | 
|  | skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR); | 
|  | skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg); | 
|  | /* | 
|  | * because Pause Packet Truncation in GMAC is not working | 
|  | * we have to increase the Flush Threshold to 64 bytes | 
|  | * in order to flush pause packets in Rx FIFO on Yukon-1 | 
|  | */ | 
|  | skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1); | 
|  |  | 
|  | /* Configure Tx MAC FIFO */ | 
|  | skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR); | 
|  | skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON); | 
|  | } | 
|  |  | 
|  | /* Go into power down mode */ | 
|  | static void yukon_suspend(struct skge_hw *hw, int port) | 
|  | { | 
|  | u16 ctrl; | 
|  |  | 
|  | ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL); | 
|  | ctrl |= PHY_M_PC_POL_R_DIS; | 
|  | gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl); | 
|  |  | 
|  | ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); | 
|  | ctrl |= PHY_CT_RESET; | 
|  | gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); | 
|  |  | 
|  | /* switch IEEE compatible power down mode on */ | 
|  | ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); | 
|  | ctrl |= PHY_CT_PDOWN; | 
|  | gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); | 
|  | } | 
|  |  | 
|  | static void yukon_stop(struct skge_port *skge) | 
|  | { | 
|  | struct skge_hw *hw = skge->hw; | 
|  | int port = skge->port; | 
|  |  | 
|  | skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0); | 
|  | yukon_reset(hw, port); | 
|  |  | 
|  | gma_write16(hw, port, GM_GP_CTRL, | 
|  | gma_read16(hw, port, GM_GP_CTRL) | 
|  | & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA)); | 
|  | gma_read16(hw, port, GM_GP_CTRL); | 
|  |  | 
|  | yukon_suspend(hw, port); | 
|  |  | 
|  | /* set GPHY Control reset */ | 
|  | skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET); | 
|  | skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET); | 
|  | } | 
|  |  | 
|  | static void yukon_get_stats(struct skge_port *skge, u64 *data) | 
|  | { | 
|  | struct skge_hw *hw = skge->hw; | 
|  | int port = skge->port; | 
|  | int i; | 
|  |  | 
|  | data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32 | 
|  | | gma_read32(hw, port, GM_TXO_OK_LO); | 
|  | data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32 | 
|  | | gma_read32(hw, port, GM_RXO_OK_LO); | 
|  |  | 
|  | for (i = 2; i < ARRAY_SIZE(skge_stats); i++) | 
|  | data[i] = gma_read32(hw, port, | 
|  | skge_stats[i].gma_offset); | 
|  | } | 
|  |  | 
|  | static void yukon_mac_intr(struct skge_hw *hw, int port) | 
|  | { | 
|  | struct net_device *dev = hw->dev[port]; | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  | u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC)); | 
|  |  | 
|  | if (netif_msg_intr(skge)) | 
|  | printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n", | 
|  | dev->name, status); | 
|  |  | 
|  | if (status & GM_IS_RX_FF_OR) { | 
|  | ++skge->net_stats.rx_fifo_errors; | 
|  | skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO); | 
|  | } | 
|  |  | 
|  | if (status & GM_IS_TX_FF_UR) { | 
|  | ++skge->net_stats.tx_fifo_errors; | 
|  | skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | static u16 yukon_speed(const struct skge_hw *hw, u16 aux) | 
|  | { | 
|  | switch (aux & PHY_M_PS_SPEED_MSK) { | 
|  | case PHY_M_PS_SPEED_1000: | 
|  | return SPEED_1000; | 
|  | case PHY_M_PS_SPEED_100: | 
|  | return SPEED_100; | 
|  | default: | 
|  | return SPEED_10; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void yukon_link_up(struct skge_port *skge) | 
|  | { | 
|  | struct skge_hw *hw = skge->hw; | 
|  | int port = skge->port; | 
|  | u16 reg; | 
|  |  | 
|  | /* Enable Transmit FIFO Underrun */ | 
|  | skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK); | 
|  |  | 
|  | reg = gma_read16(hw, port, GM_GP_CTRL); | 
|  | if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE) | 
|  | reg |= GM_GPCR_DUP_FULL; | 
|  |  | 
|  | /* enable Rx/Tx */ | 
|  | reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA; | 
|  | gma_write16(hw, port, GM_GP_CTRL, reg); | 
|  |  | 
|  | gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK); | 
|  | skge_link_up(skge); | 
|  | } | 
|  |  | 
|  | static void yukon_link_down(struct skge_port *skge) | 
|  | { | 
|  | struct skge_hw *hw = skge->hw; | 
|  | int port = skge->port; | 
|  | u16 ctrl; | 
|  |  | 
|  | gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0); | 
|  |  | 
|  | ctrl = gma_read16(hw, port, GM_GP_CTRL); | 
|  | ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA); | 
|  | gma_write16(hw, port, GM_GP_CTRL, ctrl); | 
|  |  | 
|  | if (skge->flow_control == FLOW_MODE_REM_SEND) { | 
|  | /* restore Asymmetric Pause bit */ | 
|  | gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, | 
|  | gm_phy_read(hw, port, | 
|  | PHY_MARV_AUNE_ADV) | 
|  | | PHY_M_AN_ASP); | 
|  |  | 
|  | } | 
|  |  | 
|  | yukon_reset(hw, port); | 
|  | skge_link_down(skge); | 
|  |  | 
|  | yukon_init(hw, port); | 
|  | } | 
|  |  | 
|  | static void yukon_phy_intr(struct skge_port *skge) | 
|  | { | 
|  | struct skge_hw *hw = skge->hw; | 
|  | int port = skge->port; | 
|  | const char *reason = NULL; | 
|  | u16 istatus, phystat; | 
|  |  | 
|  | istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT); | 
|  | phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT); | 
|  |  | 
|  | if (netif_msg_intr(skge)) | 
|  | printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n", | 
|  | skge->netdev->name, istatus, phystat); | 
|  |  | 
|  | if (istatus & PHY_M_IS_AN_COMPL) { | 
|  | if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP) | 
|  | & PHY_M_AN_RF) { | 
|  | reason = "remote fault"; | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) { | 
|  | reason = "master/slave fault"; | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | if (!(phystat & PHY_M_PS_SPDUP_RES)) { | 
|  | reason = "speed/duplex"; | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | skge->duplex = (phystat & PHY_M_PS_FULL_DUP) | 
|  | ? DUPLEX_FULL : DUPLEX_HALF; | 
|  | skge->speed = yukon_speed(hw, phystat); | 
|  |  | 
|  | /* We are using IEEE 802.3z/D5.0 Table 37-4 */ | 
|  | switch (phystat & PHY_M_PS_PAUSE_MSK) { | 
|  | case PHY_M_PS_PAUSE_MSK: | 
|  | skge->flow_control = FLOW_MODE_SYMMETRIC; | 
|  | break; | 
|  | case PHY_M_PS_RX_P_EN: | 
|  | skge->flow_control = FLOW_MODE_REM_SEND; | 
|  | break; | 
|  | case PHY_M_PS_TX_P_EN: | 
|  | skge->flow_control = FLOW_MODE_LOC_SEND; | 
|  | break; | 
|  | default: | 
|  | skge->flow_control = FLOW_MODE_NONE; | 
|  | } | 
|  |  | 
|  | if (skge->flow_control == FLOW_MODE_NONE || | 
|  | (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF)) | 
|  | skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); | 
|  | else | 
|  | skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON); | 
|  | yukon_link_up(skge); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (istatus & PHY_M_IS_LSP_CHANGE) | 
|  | skge->speed = yukon_speed(hw, phystat); | 
|  |  | 
|  | if (istatus & PHY_M_IS_DUP_CHANGE) | 
|  | skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF; | 
|  | if (istatus & PHY_M_IS_LST_CHANGE) { | 
|  | if (phystat & PHY_M_PS_LINK_UP) | 
|  | yukon_link_up(skge); | 
|  | else | 
|  | yukon_link_down(skge); | 
|  | } | 
|  | return; | 
|  | failed: | 
|  | printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n", | 
|  | skge->netdev->name, reason); | 
|  |  | 
|  | /* XXX restart autonegotiation? */ | 
|  | } | 
|  |  | 
|  | static void skge_phy_reset(struct skge_port *skge) | 
|  | { | 
|  | struct skge_hw *hw = skge->hw; | 
|  | int port = skge->port; | 
|  |  | 
|  | netif_stop_queue(skge->netdev); | 
|  | netif_carrier_off(skge->netdev); | 
|  |  | 
|  | spin_lock_bh(&hw->phy_lock); | 
|  | if (hw->chip_id == CHIP_ID_GENESIS) { | 
|  | genesis_reset(hw, port); | 
|  | genesis_mac_init(hw, port); | 
|  | } else { | 
|  | yukon_reset(hw, port); | 
|  | yukon_init(hw, port); | 
|  | } | 
|  | spin_unlock_bh(&hw->phy_lock); | 
|  | } | 
|  |  | 
|  | /* Basic MII support */ | 
|  | static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) | 
|  | { | 
|  | struct mii_ioctl_data *data = if_mii(ifr); | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  | struct skge_hw *hw = skge->hw; | 
|  | int err = -EOPNOTSUPP; | 
|  |  | 
|  | if (!netif_running(dev)) | 
|  | return -ENODEV;	/* Phy still in reset */ | 
|  |  | 
|  | switch(cmd) { | 
|  | case SIOCGMIIPHY: | 
|  | data->phy_id = hw->phy_addr; | 
|  |  | 
|  | /* fallthru */ | 
|  | case SIOCGMIIREG: { | 
|  | u16 val = 0; | 
|  | spin_lock_bh(&hw->phy_lock); | 
|  | if (hw->chip_id == CHIP_ID_GENESIS) | 
|  | err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val); | 
|  | else | 
|  | err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val); | 
|  | spin_unlock_bh(&hw->phy_lock); | 
|  | data->val_out = val; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case SIOCSMIIREG: | 
|  | if (!capable(CAP_NET_ADMIN)) | 
|  | return -EPERM; | 
|  |  | 
|  | spin_lock_bh(&hw->phy_lock); | 
|  | if (hw->chip_id == CHIP_ID_GENESIS) | 
|  | err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f, | 
|  | data->val_in); | 
|  | else | 
|  | err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f, | 
|  | data->val_in); | 
|  | spin_unlock_bh(&hw->phy_lock); | 
|  | break; | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len) | 
|  | { | 
|  | u32 end; | 
|  |  | 
|  | start /= 8; | 
|  | len /= 8; | 
|  | end = start + len - 1; | 
|  |  | 
|  | skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR); | 
|  | skge_write32(hw, RB_ADDR(q, RB_START), start); | 
|  | skge_write32(hw, RB_ADDR(q, RB_WP), start); | 
|  | skge_write32(hw, RB_ADDR(q, RB_RP), start); | 
|  | skge_write32(hw, RB_ADDR(q, RB_END), end); | 
|  |  | 
|  | if (q == Q_R1 || q == Q_R2) { | 
|  | /* Set thresholds on receive queue's */ | 
|  | skge_write32(hw, RB_ADDR(q, RB_RX_UTPP), | 
|  | start + (2*len)/3); | 
|  | skge_write32(hw, RB_ADDR(q, RB_RX_LTPP), | 
|  | start + (len/3)); | 
|  | } else { | 
|  | /* Enable store & forward on Tx queue's because | 
|  | * Tx FIFO is only 4K on Genesis and 1K on Yukon | 
|  | */ | 
|  | skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD); | 
|  | } | 
|  |  | 
|  | skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD); | 
|  | } | 
|  |  | 
|  | /* Setup Bus Memory Interface */ | 
|  | static void skge_qset(struct skge_port *skge, u16 q, | 
|  | const struct skge_element *e) | 
|  | { | 
|  | struct skge_hw *hw = skge->hw; | 
|  | u32 watermark = 0x600; | 
|  | u64 base = skge->dma + (e->desc - skge->mem); | 
|  |  | 
|  | /* optimization to reduce window on 32bit/33mhz */ | 
|  | if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0) | 
|  | watermark /= 2; | 
|  |  | 
|  | skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET); | 
|  | skge_write32(hw, Q_ADDR(q, Q_F), watermark); | 
|  | skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32)); | 
|  | skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base); | 
|  | } | 
|  |  | 
|  | static int skge_up(struct net_device *dev) | 
|  | { | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  | struct skge_hw *hw = skge->hw; | 
|  | int port = skge->port; | 
|  | u32 chunk, ram_addr; | 
|  | size_t rx_size, tx_size; | 
|  | int err; | 
|  |  | 
|  | if (netif_msg_ifup(skge)) | 
|  | printk(KERN_INFO PFX "%s: enabling interface\n", dev->name); | 
|  |  | 
|  | if (dev->mtu > RX_BUF_SIZE) | 
|  | skge->rx_buf_size = dev->mtu + ETH_HLEN + NET_IP_ALIGN; | 
|  | else | 
|  | skge->rx_buf_size = RX_BUF_SIZE; | 
|  |  | 
|  |  | 
|  | rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc); | 
|  | tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc); | 
|  | skge->mem_size = tx_size + rx_size; | 
|  | skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma); | 
|  | if (!skge->mem) | 
|  | return -ENOMEM; | 
|  |  | 
|  | memset(skge->mem, 0, skge->mem_size); | 
|  |  | 
|  | if ((err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma))) | 
|  | goto free_pci_mem; | 
|  |  | 
|  | err = skge_rx_fill(skge); | 
|  | if (err) | 
|  | goto free_rx_ring; | 
|  |  | 
|  | if ((err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size, | 
|  | skge->dma + rx_size))) | 
|  | goto free_rx_ring; | 
|  |  | 
|  | skge->tx_avail = skge->tx_ring.count - 1; | 
|  |  | 
|  | /* Enable IRQ from port */ | 
|  | hw->intr_mask |= portirqmask[port]; | 
|  | skge_write32(hw, B0_IMSK, hw->intr_mask); | 
|  |  | 
|  | /* Initialize MAC */ | 
|  | spin_lock_bh(&hw->phy_lock); | 
|  | if (hw->chip_id == CHIP_ID_GENESIS) | 
|  | genesis_mac_init(hw, port); | 
|  | else | 
|  | yukon_mac_init(hw, port); | 
|  | spin_unlock_bh(&hw->phy_lock); | 
|  |  | 
|  | /* Configure RAMbuffers */ | 
|  | chunk = hw->ram_size / ((hw->ports + 1)*2); | 
|  | ram_addr = hw->ram_offset + 2 * chunk * port; | 
|  |  | 
|  | skge_ramset(hw, rxqaddr[port], ram_addr, chunk); | 
|  | skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean); | 
|  |  | 
|  | BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean); | 
|  | skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk); | 
|  | skge_qset(skge, txqaddr[port], skge->tx_ring.to_use); | 
|  |  | 
|  | /* Start receiver BMU */ | 
|  | wmb(); | 
|  | skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F); | 
|  | skge_led(skge, LED_MODE_ON); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | free_rx_ring: | 
|  | skge_rx_clean(skge); | 
|  | kfree(skge->rx_ring.start); | 
|  | free_pci_mem: | 
|  | pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma); | 
|  | skge->mem = NULL; | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int skge_down(struct net_device *dev) | 
|  | { | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  | struct skge_hw *hw = skge->hw; | 
|  | int port = skge->port; | 
|  |  | 
|  | if (skge->mem == NULL) | 
|  | return 0; | 
|  |  | 
|  | if (netif_msg_ifdown(skge)) | 
|  | printk(KERN_INFO PFX "%s: disabling interface\n", dev->name); | 
|  |  | 
|  | netif_stop_queue(dev); | 
|  |  | 
|  | skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF); | 
|  | if (hw->chip_id == CHIP_ID_GENESIS) | 
|  | genesis_stop(skge); | 
|  | else | 
|  | yukon_stop(skge); | 
|  |  | 
|  | hw->intr_mask &= ~portirqmask[skge->port]; | 
|  | skge_write32(hw, B0_IMSK, hw->intr_mask); | 
|  |  | 
|  | /* Stop transmitter */ | 
|  | skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP); | 
|  | skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), | 
|  | RB_RST_SET|RB_DIS_OP_MD); | 
|  |  | 
|  |  | 
|  | /* Disable Force Sync bit and Enable Alloc bit */ | 
|  | skge_write8(hw, SK_REG(port, TXA_CTRL), | 
|  | TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC); | 
|  |  | 
|  | /* Stop Interval Timer and Limit Counter of Tx Arbiter */ | 
|  | skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L); | 
|  | skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L); | 
|  |  | 
|  | /* Reset PCI FIFO */ | 
|  | skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET); | 
|  | skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET); | 
|  |  | 
|  | /* Reset the RAM Buffer async Tx queue */ | 
|  | skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET); | 
|  | /* stop receiver */ | 
|  | skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP); | 
|  | skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL), | 
|  | RB_RST_SET|RB_DIS_OP_MD); | 
|  | skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET); | 
|  |  | 
|  | if (hw->chip_id == CHIP_ID_GENESIS) { | 
|  | skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET); | 
|  | skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET); | 
|  | } else { | 
|  | skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET); | 
|  | skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET); | 
|  | } | 
|  |  | 
|  | skge_led(skge, LED_MODE_OFF); | 
|  |  | 
|  | skge_tx_clean(skge); | 
|  | skge_rx_clean(skge); | 
|  |  | 
|  | kfree(skge->rx_ring.start); | 
|  | kfree(skge->tx_ring.start); | 
|  | pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma); | 
|  | skge->mem = NULL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev) | 
|  | { | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  | struct skge_hw *hw = skge->hw; | 
|  | struct skge_ring *ring = &skge->tx_ring; | 
|  | struct skge_element *e; | 
|  | struct skge_tx_desc *td; | 
|  | int i; | 
|  | u32 control, len; | 
|  | u64 map; | 
|  | unsigned long flags; | 
|  |  | 
|  | skb = skb_padto(skb, ETH_ZLEN); | 
|  | if (!skb) | 
|  | return NETDEV_TX_OK; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | if (!spin_trylock(&skge->tx_lock)) { | 
|  | /* Collision - tell upper layer to requeue */ | 
|  | local_irq_restore(flags); | 
|  | return NETDEV_TX_LOCKED; | 
|  | } | 
|  |  | 
|  | if (unlikely(skge->tx_avail < skb_shinfo(skb)->nr_frags +1)) { | 
|  | if (!netif_queue_stopped(dev)) { | 
|  | netif_stop_queue(dev); | 
|  |  | 
|  | printk(KERN_WARNING PFX "%s: ring full when queue awake!\n", | 
|  | dev->name); | 
|  | } | 
|  | spin_unlock_irqrestore(&skge->tx_lock, flags); | 
|  | return NETDEV_TX_BUSY; | 
|  | } | 
|  |  | 
|  | e = ring->to_use; | 
|  | td = e->desc; | 
|  | e->skb = skb; | 
|  | len = skb_headlen(skb); | 
|  | map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE); | 
|  | pci_unmap_addr_set(e, mapaddr, map); | 
|  | pci_unmap_len_set(e, maplen, len); | 
|  |  | 
|  | td->dma_lo = map; | 
|  | td->dma_hi = map >> 32; | 
|  |  | 
|  | if (skb->ip_summed == CHECKSUM_HW) { | 
|  | int offset = skb->h.raw - skb->data; | 
|  |  | 
|  | /* This seems backwards, but it is what the sk98lin | 
|  | * does.  Looks like hardware is wrong? | 
|  | */ | 
|  | if (skb->h.ipiph->protocol == IPPROTO_UDP | 
|  | && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON) | 
|  | control = BMU_TCP_CHECK; | 
|  | else | 
|  | control = BMU_UDP_CHECK; | 
|  |  | 
|  | td->csum_offs = 0; | 
|  | td->csum_start = offset; | 
|  | td->csum_write = offset + skb->csum; | 
|  | } else | 
|  | control = BMU_CHECK; | 
|  |  | 
|  | if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */ | 
|  | control |= BMU_EOF| BMU_IRQ_EOF; | 
|  | else { | 
|  | struct skge_tx_desc *tf = td; | 
|  |  | 
|  | control |= BMU_STFWD; | 
|  | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { | 
|  | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | 
|  |  | 
|  | map = pci_map_page(hw->pdev, frag->page, frag->page_offset, | 
|  | frag->size, PCI_DMA_TODEVICE); | 
|  |  | 
|  | e = e->next; | 
|  | e->skb = NULL; | 
|  | tf = e->desc; | 
|  | tf->dma_lo = map; | 
|  | tf->dma_hi = (u64) map >> 32; | 
|  | pci_unmap_addr_set(e, mapaddr, map); | 
|  | pci_unmap_len_set(e, maplen, frag->size); | 
|  |  | 
|  | tf->control = BMU_OWN | BMU_SW | control | frag->size; | 
|  | } | 
|  | tf->control |= BMU_EOF | BMU_IRQ_EOF; | 
|  | } | 
|  | /* Make sure all the descriptors written */ | 
|  | wmb(); | 
|  | td->control = BMU_OWN | BMU_SW | BMU_STF | control | len; | 
|  | wmb(); | 
|  |  | 
|  | skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START); | 
|  |  | 
|  | if (netif_msg_tx_queued(skge)) | 
|  | printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n", | 
|  | dev->name, e - ring->start, skb->len); | 
|  |  | 
|  | ring->to_use = e->next; | 
|  | skge->tx_avail -= skb_shinfo(skb)->nr_frags + 1; | 
|  | if (skge->tx_avail <= MAX_SKB_FRAGS + 1) { | 
|  | pr_debug("%s: transmit queue full\n", dev->name); | 
|  | netif_stop_queue(dev); | 
|  | } | 
|  |  | 
|  | dev->trans_start = jiffies; | 
|  | spin_unlock_irqrestore(&skge->tx_lock, flags); | 
|  |  | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  |  | 
|  | static inline void skge_tx_free(struct skge_hw *hw, struct skge_element *e) | 
|  | { | 
|  | /* This ring element can be skb or fragment */ | 
|  | if (e->skb) { | 
|  | pci_unmap_single(hw->pdev, | 
|  | pci_unmap_addr(e, mapaddr), | 
|  | pci_unmap_len(e, maplen), | 
|  | PCI_DMA_TODEVICE); | 
|  | dev_kfree_skb_any(e->skb); | 
|  | e->skb = NULL; | 
|  | } else { | 
|  | pci_unmap_page(hw->pdev, | 
|  | pci_unmap_addr(e, mapaddr), | 
|  | pci_unmap_len(e, maplen), | 
|  | PCI_DMA_TODEVICE); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void skge_tx_clean(struct skge_port *skge) | 
|  | { | 
|  | struct skge_ring *ring = &skge->tx_ring; | 
|  | struct skge_element *e; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&skge->tx_lock, flags); | 
|  | for (e = ring->to_clean; e != ring->to_use; e = e->next) { | 
|  | ++skge->tx_avail; | 
|  | skge_tx_free(skge->hw, e); | 
|  | } | 
|  | ring->to_clean = e; | 
|  | spin_unlock_irqrestore(&skge->tx_lock, flags); | 
|  | } | 
|  |  | 
|  | static void skge_tx_timeout(struct net_device *dev) | 
|  | { | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  |  | 
|  | if (netif_msg_timer(skge)) | 
|  | printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name); | 
|  |  | 
|  | skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP); | 
|  | skge_tx_clean(skge); | 
|  | } | 
|  |  | 
|  | static int skge_change_mtu(struct net_device *dev, int new_mtu) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!netif_running(dev)) { | 
|  | dev->mtu = new_mtu; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | skge_down(dev); | 
|  |  | 
|  | dev->mtu = new_mtu; | 
|  |  | 
|  | err = skge_up(dev); | 
|  | if (err) | 
|  | dev_close(dev); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void genesis_set_multicast(struct net_device *dev) | 
|  | { | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  | struct skge_hw *hw = skge->hw; | 
|  | int port = skge->port; | 
|  | int i, count = dev->mc_count; | 
|  | struct dev_mc_list *list = dev->mc_list; | 
|  | u32 mode; | 
|  | u8 filter[8]; | 
|  |  | 
|  | mode = xm_read32(hw, port, XM_MODE); | 
|  | mode |= XM_MD_ENA_HASH; | 
|  | if (dev->flags & IFF_PROMISC) | 
|  | mode |= XM_MD_ENA_PROM; | 
|  | else | 
|  | mode &= ~XM_MD_ENA_PROM; | 
|  |  | 
|  | if (dev->flags & IFF_ALLMULTI) | 
|  | memset(filter, 0xff, sizeof(filter)); | 
|  | else { | 
|  | memset(filter, 0, sizeof(filter)); | 
|  | for (i = 0; list && i < count; i++, list = list->next) { | 
|  | u32 crc, bit; | 
|  | crc = ether_crc_le(ETH_ALEN, list->dmi_addr); | 
|  | bit = ~crc & 0x3f; | 
|  | filter[bit/8] |= 1 << (bit%8); | 
|  | } | 
|  | } | 
|  |  | 
|  | xm_write32(hw, port, XM_MODE, mode); | 
|  | xm_outhash(hw, port, XM_HSM, filter); | 
|  | } | 
|  |  | 
|  | static void yukon_set_multicast(struct net_device *dev) | 
|  | { | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  | struct skge_hw *hw = skge->hw; | 
|  | int port = skge->port; | 
|  | struct dev_mc_list *list = dev->mc_list; | 
|  | u16 reg; | 
|  | u8 filter[8]; | 
|  |  | 
|  | memset(filter, 0, sizeof(filter)); | 
|  |  | 
|  | reg = gma_read16(hw, port, GM_RX_CTRL); | 
|  | reg |= GM_RXCR_UCF_ENA; | 
|  |  | 
|  | if (dev->flags & IFF_PROMISC) 		/* promiscuous */ | 
|  | reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); | 
|  | else if (dev->flags & IFF_ALLMULTI)	/* all multicast */ | 
|  | memset(filter, 0xff, sizeof(filter)); | 
|  | else if (dev->mc_count == 0)		/* no multicast */ | 
|  | reg &= ~GM_RXCR_MCF_ENA; | 
|  | else { | 
|  | int i; | 
|  | reg |= GM_RXCR_MCF_ENA; | 
|  |  | 
|  | for (i = 0; list && i < dev->mc_count; i++, list = list->next) { | 
|  | u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f; | 
|  | filter[bit/8] |= 1 << (bit%8); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | gma_write16(hw, port, GM_MC_ADDR_H1, | 
|  | (u16)filter[0] | ((u16)filter[1] << 8)); | 
|  | gma_write16(hw, port, GM_MC_ADDR_H2, | 
|  | (u16)filter[2] | ((u16)filter[3] << 8)); | 
|  | gma_write16(hw, port, GM_MC_ADDR_H3, | 
|  | (u16)filter[4] | ((u16)filter[5] << 8)); | 
|  | gma_write16(hw, port, GM_MC_ADDR_H4, | 
|  | (u16)filter[6] | ((u16)filter[7] << 8)); | 
|  |  | 
|  | gma_write16(hw, port, GM_RX_CTRL, reg); | 
|  | } | 
|  |  | 
|  | static inline u16 phy_length(const struct skge_hw *hw, u32 status) | 
|  | { | 
|  | if (hw->chip_id == CHIP_ID_GENESIS) | 
|  | return status >> XMR_FS_LEN_SHIFT; | 
|  | else | 
|  | return status >> GMR_FS_LEN_SHIFT; | 
|  | } | 
|  |  | 
|  | static inline int bad_phy_status(const struct skge_hw *hw, u32 status) | 
|  | { | 
|  | if (hw->chip_id == CHIP_ID_GENESIS) | 
|  | return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0; | 
|  | else | 
|  | return (status & GMR_FS_ANY_ERR) || | 
|  | (status & GMR_FS_RX_OK) == 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Get receive buffer from descriptor. | 
|  | * Handles copy of small buffers and reallocation failures | 
|  | */ | 
|  | static inline struct sk_buff *skge_rx_get(struct skge_port *skge, | 
|  | struct skge_element *e, | 
|  | u32 control, u32 status, u16 csum) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  | u16 len = control & BMU_BBC; | 
|  |  | 
|  | if (unlikely(netif_msg_rx_status(skge))) | 
|  | printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n", | 
|  | skge->netdev->name, e - skge->rx_ring.start, | 
|  | status, len); | 
|  |  | 
|  | if (len > skge->rx_buf_size) | 
|  | goto error; | 
|  |  | 
|  | if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF)) | 
|  | goto error; | 
|  |  | 
|  | if (bad_phy_status(skge->hw, status)) | 
|  | goto error; | 
|  |  | 
|  | if (phy_length(skge->hw, status) != len) | 
|  | goto error; | 
|  |  | 
|  | if (len < RX_COPY_THRESHOLD) { | 
|  | skb = dev_alloc_skb(len + 2); | 
|  | if (!skb) | 
|  | goto resubmit; | 
|  |  | 
|  | skb_reserve(skb, 2); | 
|  | pci_dma_sync_single_for_cpu(skge->hw->pdev, | 
|  | pci_unmap_addr(e, mapaddr), | 
|  | len, PCI_DMA_FROMDEVICE); | 
|  | memcpy(skb->data, e->skb->data, len); | 
|  | pci_dma_sync_single_for_device(skge->hw->pdev, | 
|  | pci_unmap_addr(e, mapaddr), | 
|  | len, PCI_DMA_FROMDEVICE); | 
|  | skge_rx_reuse(e, skge->rx_buf_size); | 
|  | } else { | 
|  | struct sk_buff *nskb; | 
|  | nskb = dev_alloc_skb(skge->rx_buf_size + NET_IP_ALIGN); | 
|  | if (!nskb) | 
|  | goto resubmit; | 
|  |  | 
|  | pci_unmap_single(skge->hw->pdev, | 
|  | pci_unmap_addr(e, mapaddr), | 
|  | pci_unmap_len(e, maplen), | 
|  | PCI_DMA_FROMDEVICE); | 
|  | skb = e->skb; | 
|  | prefetch(skb->data); | 
|  | skge_rx_setup(skge, e, nskb, skge->rx_buf_size); | 
|  | } | 
|  |  | 
|  | skb_put(skb, len); | 
|  | skb->dev = skge->netdev; | 
|  | if (skge->rx_csum) { | 
|  | skb->csum = csum; | 
|  | skb->ip_summed = CHECKSUM_HW; | 
|  | } | 
|  |  | 
|  | skb->protocol = eth_type_trans(skb, skge->netdev); | 
|  |  | 
|  | return skb; | 
|  | error: | 
|  |  | 
|  | if (netif_msg_rx_err(skge)) | 
|  | printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n", | 
|  | skge->netdev->name, e - skge->rx_ring.start, | 
|  | control, status); | 
|  |  | 
|  | if (skge->hw->chip_id == CHIP_ID_GENESIS) { | 
|  | if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR)) | 
|  | skge->net_stats.rx_length_errors++; | 
|  | if (status & XMR_FS_FRA_ERR) | 
|  | skge->net_stats.rx_frame_errors++; | 
|  | if (status & XMR_FS_FCS_ERR) | 
|  | skge->net_stats.rx_crc_errors++; | 
|  | } else { | 
|  | if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE)) | 
|  | skge->net_stats.rx_length_errors++; | 
|  | if (status & GMR_FS_FRAGMENT) | 
|  | skge->net_stats.rx_frame_errors++; | 
|  | if (status & GMR_FS_CRC_ERR) | 
|  | skge->net_stats.rx_crc_errors++; | 
|  | } | 
|  |  | 
|  | resubmit: | 
|  | skge_rx_reuse(e, skge->rx_buf_size); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int skge_poll(struct net_device *dev, int *budget) | 
|  | { | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  | struct skge_hw *hw = skge->hw; | 
|  | struct skge_ring *ring = &skge->rx_ring; | 
|  | struct skge_element *e; | 
|  | unsigned int to_do = min(dev->quota, *budget); | 
|  | unsigned int work_done = 0; | 
|  |  | 
|  | for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) { | 
|  | struct skge_rx_desc *rd = e->desc; | 
|  | struct sk_buff *skb; | 
|  | u32 control; | 
|  |  | 
|  | rmb(); | 
|  | control = rd->control; | 
|  | if (control & BMU_OWN) | 
|  | break; | 
|  |  | 
|  | skb = skge_rx_get(skge, e, control, rd->status, | 
|  | le16_to_cpu(rd->csum2)); | 
|  | if (likely(skb)) { | 
|  | dev->last_rx = jiffies; | 
|  | netif_receive_skb(skb); | 
|  |  | 
|  | ++work_done; | 
|  | } else | 
|  | skge_rx_reuse(e, skge->rx_buf_size); | 
|  | } | 
|  | ring->to_clean = e; | 
|  |  | 
|  | /* restart receiver */ | 
|  | wmb(); | 
|  | skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), | 
|  | CSR_START | CSR_IRQ_CL_F); | 
|  |  | 
|  | *budget -= work_done; | 
|  | dev->quota -= work_done; | 
|  |  | 
|  | if (work_done >=  to_do) | 
|  | return 1; /* not done */ | 
|  |  | 
|  | netif_rx_complete(dev); | 
|  | hw->intr_mask |= portirqmask[skge->port]; | 
|  | skge_write32(hw, B0_IMSK, hw->intr_mask); | 
|  | skge_read32(hw, B0_IMSK); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void skge_tx_intr(struct net_device *dev) | 
|  | { | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  | struct skge_hw *hw = skge->hw; | 
|  | struct skge_ring *ring = &skge->tx_ring; | 
|  | struct skge_element *e; | 
|  |  | 
|  | spin_lock(&skge->tx_lock); | 
|  | for (e = ring->to_clean; prefetch(e->next), e != ring->to_use; e = e->next) { | 
|  | struct skge_tx_desc *td = e->desc; | 
|  | u32 control; | 
|  |  | 
|  | rmb(); | 
|  | control = td->control; | 
|  | if (control & BMU_OWN) | 
|  | break; | 
|  |  | 
|  | if (unlikely(netif_msg_tx_done(skge))) | 
|  | printk(KERN_DEBUG PFX "%s: tx done slot %td status 0x%x\n", | 
|  | dev->name, e - ring->start, td->status); | 
|  |  | 
|  | skge_tx_free(hw, e); | 
|  | e->skb = NULL; | 
|  | ++skge->tx_avail; | 
|  | } | 
|  | ring->to_clean = e; | 
|  | skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F); | 
|  |  | 
|  | if (skge->tx_avail > MAX_SKB_FRAGS + 1) | 
|  | netif_wake_queue(dev); | 
|  |  | 
|  | spin_unlock(&skge->tx_lock); | 
|  | } | 
|  |  | 
|  | /* Parity errors seem to happen when Genesis is connected to a switch | 
|  | * with no other ports present. Heartbeat error?? | 
|  | */ | 
|  | static void skge_mac_parity(struct skge_hw *hw, int port) | 
|  | { | 
|  | struct net_device *dev = hw->dev[port]; | 
|  |  | 
|  | if (dev) { | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  | ++skge->net_stats.tx_heartbeat_errors; | 
|  | } | 
|  |  | 
|  | if (hw->chip_id == CHIP_ID_GENESIS) | 
|  | skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), | 
|  | MFF_CLR_PERR); | 
|  | else | 
|  | /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */ | 
|  | skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), | 
|  | (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0) | 
|  | ? GMF_CLI_TX_FC : GMF_CLI_TX_PE); | 
|  | } | 
|  |  | 
|  | static void skge_pci_clear(struct skge_hw *hw) | 
|  | { | 
|  | u16 status; | 
|  |  | 
|  | pci_read_config_word(hw->pdev, PCI_STATUS, &status); | 
|  | skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); | 
|  | pci_write_config_word(hw->pdev, PCI_STATUS, | 
|  | status | PCI_STATUS_ERROR_BITS); | 
|  | skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); | 
|  | } | 
|  |  | 
|  | static void skge_mac_intr(struct skge_hw *hw, int port) | 
|  | { | 
|  | if (hw->chip_id == CHIP_ID_GENESIS) | 
|  | genesis_mac_intr(hw, port); | 
|  | else | 
|  | yukon_mac_intr(hw, port); | 
|  | } | 
|  |  | 
|  | /* Handle device specific framing and timeout interrupts */ | 
|  | static void skge_error_irq(struct skge_hw *hw) | 
|  | { | 
|  | u32 hwstatus = skge_read32(hw, B0_HWE_ISRC); | 
|  |  | 
|  | if (hw->chip_id == CHIP_ID_GENESIS) { | 
|  | /* clear xmac errors */ | 
|  | if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1)) | 
|  | skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT); | 
|  | if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2)) | 
|  | skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT); | 
|  | } else { | 
|  | /* Timestamp (unused) overflow */ | 
|  | if (hwstatus & IS_IRQ_TIST_OV) | 
|  | skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ); | 
|  | } | 
|  |  | 
|  | if (hwstatus & IS_RAM_RD_PAR) { | 
|  | printk(KERN_ERR PFX "Ram read data parity error\n"); | 
|  | skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR); | 
|  | } | 
|  |  | 
|  | if (hwstatus & IS_RAM_WR_PAR) { | 
|  | printk(KERN_ERR PFX "Ram write data parity error\n"); | 
|  | skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR); | 
|  | } | 
|  |  | 
|  | if (hwstatus & IS_M1_PAR_ERR) | 
|  | skge_mac_parity(hw, 0); | 
|  |  | 
|  | if (hwstatus & IS_M2_PAR_ERR) | 
|  | skge_mac_parity(hw, 1); | 
|  |  | 
|  | if (hwstatus & IS_R1_PAR_ERR) | 
|  | skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P); | 
|  |  | 
|  | if (hwstatus & IS_R2_PAR_ERR) | 
|  | skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P); | 
|  |  | 
|  | if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) { | 
|  | printk(KERN_ERR PFX "hardware error detected (status 0x%x)\n", | 
|  | hwstatus); | 
|  |  | 
|  | skge_pci_clear(hw); | 
|  |  | 
|  | /* if error still set then just ignore it */ | 
|  | hwstatus = skge_read32(hw, B0_HWE_ISRC); | 
|  | if (hwstatus & IS_IRQ_STAT) { | 
|  | pr_debug("IRQ status %x: still set ignoring hardware errors\n", | 
|  | hwstatus); | 
|  | hw->intr_mask &= ~IS_HW_ERR; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Interrupt from PHY are handled in tasklet (soft irq) | 
|  | * because accessing phy registers requires spin wait which might | 
|  | * cause excess interrupt latency. | 
|  | */ | 
|  | static void skge_extirq(unsigned long data) | 
|  | { | 
|  | struct skge_hw *hw = (struct skge_hw *) data; | 
|  | int port; | 
|  |  | 
|  | spin_lock(&hw->phy_lock); | 
|  | for (port = 0; port < 2; port++) { | 
|  | struct net_device *dev = hw->dev[port]; | 
|  |  | 
|  | if (dev && netif_running(dev)) { | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  |  | 
|  | if (hw->chip_id != CHIP_ID_GENESIS) | 
|  | yukon_phy_intr(skge); | 
|  | else | 
|  | bcom_phy_intr(skge); | 
|  | } | 
|  | } | 
|  | spin_unlock(&hw->phy_lock); | 
|  |  | 
|  | local_irq_disable(); | 
|  | hw->intr_mask |= IS_EXT_REG; | 
|  | skge_write32(hw, B0_IMSK, hw->intr_mask); | 
|  | local_irq_enable(); | 
|  | } | 
|  |  | 
|  | static inline void skge_wakeup(struct net_device *dev) | 
|  | { | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  |  | 
|  | prefetch(skge->rx_ring.to_clean); | 
|  | netif_rx_schedule(dev); | 
|  | } | 
|  |  | 
|  | static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs) | 
|  | { | 
|  | struct skge_hw *hw = dev_id; | 
|  | u32 status = skge_read32(hw, B0_SP_ISRC); | 
|  |  | 
|  | if (status == 0 || status == ~0) /* hotplug or shared irq */ | 
|  | return IRQ_NONE; | 
|  |  | 
|  | status &= hw->intr_mask; | 
|  | if (status & IS_R1_F) { | 
|  | hw->intr_mask &= ~IS_R1_F; | 
|  | skge_wakeup(hw->dev[0]); | 
|  | } | 
|  |  | 
|  | if (status & IS_R2_F) { | 
|  | hw->intr_mask &= ~IS_R2_F; | 
|  | skge_wakeup(hw->dev[1]); | 
|  | } | 
|  |  | 
|  | if (status & IS_XA1_F) | 
|  | skge_tx_intr(hw->dev[0]); | 
|  |  | 
|  | if (status & IS_XA2_F) | 
|  | skge_tx_intr(hw->dev[1]); | 
|  |  | 
|  | if (status & IS_PA_TO_RX1) { | 
|  | struct skge_port *skge = netdev_priv(hw->dev[0]); | 
|  | ++skge->net_stats.rx_over_errors; | 
|  | skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1); | 
|  | } | 
|  |  | 
|  | if (status & IS_PA_TO_RX2) { | 
|  | struct skge_port *skge = netdev_priv(hw->dev[1]); | 
|  | ++skge->net_stats.rx_over_errors; | 
|  | skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2); | 
|  | } | 
|  |  | 
|  | if (status & IS_PA_TO_TX1) | 
|  | skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1); | 
|  |  | 
|  | if (status & IS_PA_TO_TX2) | 
|  | skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2); | 
|  |  | 
|  | if (status & IS_MAC1) | 
|  | skge_mac_intr(hw, 0); | 
|  |  | 
|  | if (status & IS_MAC2) | 
|  | skge_mac_intr(hw, 1); | 
|  |  | 
|  | if (status & IS_HW_ERR) | 
|  | skge_error_irq(hw); | 
|  |  | 
|  | if (status & IS_EXT_REG) { | 
|  | hw->intr_mask &= ~IS_EXT_REG; | 
|  | tasklet_schedule(&hw->ext_tasklet); | 
|  | } | 
|  |  | 
|  | skge_write32(hw, B0_IMSK, hw->intr_mask); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NET_POLL_CONTROLLER | 
|  | static void skge_netpoll(struct net_device *dev) | 
|  | { | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  |  | 
|  | disable_irq(dev->irq); | 
|  | skge_intr(dev->irq, skge->hw, NULL); | 
|  | enable_irq(dev->irq); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int skge_set_mac_address(struct net_device *dev, void *p) | 
|  | { | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  | struct skge_hw *hw = skge->hw; | 
|  | unsigned port = skge->port; | 
|  | const struct sockaddr *addr = p; | 
|  |  | 
|  | if (!is_valid_ether_addr(addr->sa_data)) | 
|  | return -EADDRNOTAVAIL; | 
|  |  | 
|  | spin_lock_bh(&hw->phy_lock); | 
|  | memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); | 
|  | memcpy_toio(hw->regs + B2_MAC_1 + port*8, | 
|  | dev->dev_addr, ETH_ALEN); | 
|  | memcpy_toio(hw->regs + B2_MAC_2 + port*8, | 
|  | dev->dev_addr, ETH_ALEN); | 
|  |  | 
|  | if (hw->chip_id == CHIP_ID_GENESIS) | 
|  | xm_outaddr(hw, port, XM_SA, dev->dev_addr); | 
|  | else { | 
|  | gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr); | 
|  | gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr); | 
|  | } | 
|  | spin_unlock_bh(&hw->phy_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct { | 
|  | u8 id; | 
|  | const char *name; | 
|  | } skge_chips[] = { | 
|  | { CHIP_ID_GENESIS,	"Genesis" }, | 
|  | { CHIP_ID_YUKON,	 "Yukon" }, | 
|  | { CHIP_ID_YUKON_LITE,	 "Yukon-Lite"}, | 
|  | { CHIP_ID_YUKON_LP,	 "Yukon-LP"}, | 
|  | }; | 
|  |  | 
|  | static const char *skge_board_name(const struct skge_hw *hw) | 
|  | { | 
|  | int i; | 
|  | static char buf[16]; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(skge_chips); i++) | 
|  | if (skge_chips[i].id == hw->chip_id) | 
|  | return skge_chips[i].name; | 
|  |  | 
|  | snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id); | 
|  | return buf; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Setup the board data structure, but don't bring up | 
|  | * the port(s) | 
|  | */ | 
|  | static int skge_reset(struct skge_hw *hw) | 
|  | { | 
|  | u32 reg; | 
|  | u16 ctst; | 
|  | u8 t8, mac_cfg, pmd_type, phy_type; | 
|  | int i; | 
|  |  | 
|  | ctst = skge_read16(hw, B0_CTST); | 
|  |  | 
|  | /* do a SW reset */ | 
|  | skge_write8(hw, B0_CTST, CS_RST_SET); | 
|  | skge_write8(hw, B0_CTST, CS_RST_CLR); | 
|  |  | 
|  | /* clear PCI errors, if any */ | 
|  | skge_pci_clear(hw); | 
|  |  | 
|  | skge_write8(hw, B0_CTST, CS_MRST_CLR); | 
|  |  | 
|  | /* restore CLK_RUN bits (for Yukon-Lite) */ | 
|  | skge_write16(hw, B0_CTST, | 
|  | ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA)); | 
|  |  | 
|  | hw->chip_id = skge_read8(hw, B2_CHIP_ID); | 
|  | phy_type = skge_read8(hw, B2_E_1) & 0xf; | 
|  | pmd_type = skge_read8(hw, B2_PMD_TYP); | 
|  | hw->copper = (pmd_type == 'T' || pmd_type == '1'); | 
|  |  | 
|  | switch (hw->chip_id) { | 
|  | case CHIP_ID_GENESIS: | 
|  | switch (phy_type) { | 
|  | case SK_PHY_BCOM: | 
|  | hw->phy_addr = PHY_ADDR_BCOM; | 
|  | break; | 
|  | default: | 
|  | printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n", | 
|  | pci_name(hw->pdev), phy_type); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case CHIP_ID_YUKON: | 
|  | case CHIP_ID_YUKON_LITE: | 
|  | case CHIP_ID_YUKON_LP: | 
|  | if (phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S') | 
|  | hw->copper = 1; | 
|  |  | 
|  | hw->phy_addr = PHY_ADDR_MARV; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n", | 
|  | pci_name(hw->pdev), hw->chip_id); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | mac_cfg = skge_read8(hw, B2_MAC_CFG); | 
|  | hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2; | 
|  | hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4; | 
|  |  | 
|  | /* read the adapters RAM size */ | 
|  | t8 = skge_read8(hw, B2_E_0); | 
|  | if (hw->chip_id == CHIP_ID_GENESIS) { | 
|  | if (t8 == 3) { | 
|  | /* special case: 4 x 64k x 36, offset = 0x80000 */ | 
|  | hw->ram_size = 0x100000; | 
|  | hw->ram_offset = 0x80000; | 
|  | } else | 
|  | hw->ram_size = t8 * 512; | 
|  | } | 
|  | else if (t8 == 0) | 
|  | hw->ram_size = 0x20000; | 
|  | else | 
|  | hw->ram_size = t8 * 4096; | 
|  |  | 
|  | hw->intr_mask = IS_HW_ERR | IS_EXT_REG; | 
|  | if (hw->chip_id == CHIP_ID_GENESIS) | 
|  | genesis_init(hw); | 
|  | else { | 
|  | /* switch power to VCC (WA for VAUX problem) */ | 
|  | skge_write8(hw, B0_POWER_CTRL, | 
|  | PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON); | 
|  |  | 
|  | /* avoid boards with stuck Hardware error bits */ | 
|  | if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) && | 
|  | (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) { | 
|  | printk(KERN_WARNING PFX "stuck hardware sensor bit\n"); | 
|  | hw->intr_mask &= ~IS_HW_ERR; | 
|  | } | 
|  |  | 
|  | /* Clear PHY COMA */ | 
|  | skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); | 
|  | pci_read_config_dword(hw->pdev, PCI_DEV_REG1, ®); | 
|  | reg &= ~PCI_PHY_COMA; | 
|  | pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg); | 
|  | skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); | 
|  |  | 
|  |  | 
|  | for (i = 0; i < hw->ports; i++) { | 
|  | skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET); | 
|  | skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* turn off hardware timer (unused) */ | 
|  | skge_write8(hw, B2_TI_CTRL, TIM_STOP); | 
|  | skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ); | 
|  | skge_write8(hw, B0_LED, LED_STAT_ON); | 
|  |  | 
|  | /* enable the Tx Arbiters */ | 
|  | for (i = 0; i < hw->ports; i++) | 
|  | skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB); | 
|  |  | 
|  | /* Initialize ram interface */ | 
|  | skge_write16(hw, B3_RI_CTRL, RI_RST_CLR); | 
|  |  | 
|  | skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53); | 
|  | skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53); | 
|  | skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53); | 
|  | skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53); | 
|  | skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53); | 
|  | skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53); | 
|  | skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53); | 
|  | skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53); | 
|  | skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53); | 
|  | skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53); | 
|  | skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53); | 
|  | skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53); | 
|  |  | 
|  | skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK); | 
|  |  | 
|  | /* Set interrupt moderation for Transmit only | 
|  | * Receive interrupts avoided by NAPI | 
|  | */ | 
|  | skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F); | 
|  | skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100)); | 
|  | skge_write32(hw, B2_IRQM_CTRL, TIM_START); | 
|  |  | 
|  | skge_write32(hw, B0_IMSK, hw->intr_mask); | 
|  |  | 
|  | spin_lock_bh(&hw->phy_lock); | 
|  | for (i = 0; i < hw->ports; i++) { | 
|  | if (hw->chip_id == CHIP_ID_GENESIS) | 
|  | genesis_reset(hw, i); | 
|  | else | 
|  | yukon_reset(hw, i); | 
|  | } | 
|  | spin_unlock_bh(&hw->phy_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Initialize network device */ | 
|  | static struct net_device *skge_devinit(struct skge_hw *hw, int port, | 
|  | int highmem) | 
|  | { | 
|  | struct skge_port *skge; | 
|  | struct net_device *dev = alloc_etherdev(sizeof(*skge)); | 
|  |  | 
|  | if (!dev) { | 
|  | printk(KERN_ERR "skge etherdev alloc failed"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | SET_MODULE_OWNER(dev); | 
|  | SET_NETDEV_DEV(dev, &hw->pdev->dev); | 
|  | dev->open = skge_up; | 
|  | dev->stop = skge_down; | 
|  | dev->do_ioctl = skge_ioctl; | 
|  | dev->hard_start_xmit = skge_xmit_frame; | 
|  | dev->get_stats = skge_get_stats; | 
|  | if (hw->chip_id == CHIP_ID_GENESIS) | 
|  | dev->set_multicast_list = genesis_set_multicast; | 
|  | else | 
|  | dev->set_multicast_list = yukon_set_multicast; | 
|  |  | 
|  | dev->set_mac_address = skge_set_mac_address; | 
|  | dev->change_mtu = skge_change_mtu; | 
|  | SET_ETHTOOL_OPS(dev, &skge_ethtool_ops); | 
|  | dev->tx_timeout = skge_tx_timeout; | 
|  | dev->watchdog_timeo = TX_WATCHDOG; | 
|  | dev->poll = skge_poll; | 
|  | dev->weight = NAPI_WEIGHT; | 
|  | #ifdef CONFIG_NET_POLL_CONTROLLER | 
|  | dev->poll_controller = skge_netpoll; | 
|  | #endif | 
|  | dev->irq = hw->pdev->irq; | 
|  | dev->features = NETIF_F_LLTX; | 
|  | if (highmem) | 
|  | dev->features |= NETIF_F_HIGHDMA; | 
|  |  | 
|  | skge = netdev_priv(dev); | 
|  | skge->netdev = dev; | 
|  | skge->hw = hw; | 
|  | skge->msg_enable = netif_msg_init(debug, default_msg); | 
|  | skge->tx_ring.count = DEFAULT_TX_RING_SIZE; | 
|  | skge->rx_ring.count = DEFAULT_RX_RING_SIZE; | 
|  |  | 
|  | /* Auto speed and flow control */ | 
|  | skge->autoneg = AUTONEG_ENABLE; | 
|  | skge->flow_control = FLOW_MODE_SYMMETRIC; | 
|  | skge->duplex = -1; | 
|  | skge->speed = -1; | 
|  | skge->advertising = skge_supported_modes(hw); | 
|  |  | 
|  | hw->dev[port] = dev; | 
|  |  | 
|  | skge->port = port; | 
|  |  | 
|  | spin_lock_init(&skge->tx_lock); | 
|  |  | 
|  | if (hw->chip_id != CHIP_ID_GENESIS) { | 
|  | dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG; | 
|  | skge->rx_csum = 1; | 
|  | } | 
|  |  | 
|  | /* read the mac address */ | 
|  | memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN); | 
|  | memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); | 
|  |  | 
|  | /* device is off until link detection */ | 
|  | netif_carrier_off(dev); | 
|  | netif_stop_queue(dev); | 
|  |  | 
|  | return dev; | 
|  | } | 
|  |  | 
|  | static void __devinit skge_show_addr(struct net_device *dev) | 
|  | { | 
|  | const struct skge_port *skge = netdev_priv(dev); | 
|  |  | 
|  | if (netif_msg_probe(skge)) | 
|  | printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n", | 
|  | dev->name, | 
|  | dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2], | 
|  | dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]); | 
|  | } | 
|  |  | 
|  | static int __devinit skge_probe(struct pci_dev *pdev, | 
|  | const struct pci_device_id *ent) | 
|  | { | 
|  | struct net_device *dev, *dev1; | 
|  | struct skge_hw *hw; | 
|  | int err, using_dac = 0; | 
|  |  | 
|  | if ((err = pci_enable_device(pdev))) { | 
|  | printk(KERN_ERR PFX "%s cannot enable PCI device\n", | 
|  | pci_name(pdev)); | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | if ((err = pci_request_regions(pdev, DRV_NAME))) { | 
|  | printk(KERN_ERR PFX "%s cannot obtain PCI resources\n", | 
|  | pci_name(pdev)); | 
|  | goto err_out_disable_pdev; | 
|  | } | 
|  |  | 
|  | pci_set_master(pdev); | 
|  |  | 
|  | if (sizeof(dma_addr_t) > sizeof(u32) && | 
|  | !(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) { | 
|  | using_dac = 1; | 
|  | err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK); | 
|  | if (err < 0) { | 
|  | printk(KERN_ERR PFX "%s unable to obtain 64 bit DMA " | 
|  | "for consistent allocations\n", pci_name(pdev)); | 
|  | goto err_out_free_regions; | 
|  | } | 
|  | } else { | 
|  | err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); | 
|  | if (err) { | 
|  | printk(KERN_ERR PFX "%s no usable DMA configuration\n", | 
|  | pci_name(pdev)); | 
|  | goto err_out_free_regions; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef __BIG_ENDIAN | 
|  | /* byte swap descriptors in hardware */ | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | pci_read_config_dword(pdev, PCI_DEV_REG2, ®); | 
|  | reg |= PCI_REV_DESC; | 
|  | pci_write_config_dword(pdev, PCI_DEV_REG2, reg); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | err = -ENOMEM; | 
|  | hw = kzalloc(sizeof(*hw), GFP_KERNEL); | 
|  | if (!hw) { | 
|  | printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n", | 
|  | pci_name(pdev)); | 
|  | goto err_out_free_regions; | 
|  | } | 
|  |  | 
|  | hw->pdev = pdev; | 
|  | spin_lock_init(&hw->phy_lock); | 
|  | tasklet_init(&hw->ext_tasklet, skge_extirq, (unsigned long) hw); | 
|  |  | 
|  | hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000); | 
|  | if (!hw->regs) { | 
|  | printk(KERN_ERR PFX "%s: cannot map device registers\n", | 
|  | pci_name(pdev)); | 
|  | goto err_out_free_hw; | 
|  | } | 
|  |  | 
|  | if ((err = request_irq(pdev->irq, skge_intr, SA_SHIRQ, DRV_NAME, hw))) { | 
|  | printk(KERN_ERR PFX "%s: cannot assign irq %d\n", | 
|  | pci_name(pdev), pdev->irq); | 
|  | goto err_out_iounmap; | 
|  | } | 
|  | pci_set_drvdata(pdev, hw); | 
|  |  | 
|  | err = skge_reset(hw); | 
|  | if (err) | 
|  | goto err_out_free_irq; | 
|  |  | 
|  | printk(KERN_INFO PFX DRV_VERSION " addr 0x%lx irq %d chip %s rev %d\n", | 
|  | pci_resource_start(pdev, 0), pdev->irq, | 
|  | skge_board_name(hw), hw->chip_rev); | 
|  |  | 
|  | if ((dev = skge_devinit(hw, 0, using_dac)) == NULL) | 
|  | goto err_out_led_off; | 
|  |  | 
|  | if ((err = register_netdev(dev))) { | 
|  | printk(KERN_ERR PFX "%s: cannot register net device\n", | 
|  | pci_name(pdev)); | 
|  | goto err_out_free_netdev; | 
|  | } | 
|  |  | 
|  | skge_show_addr(dev); | 
|  |  | 
|  | if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) { | 
|  | if (register_netdev(dev1) == 0) | 
|  | skge_show_addr(dev1); | 
|  | else { | 
|  | /* Failure to register second port need not be fatal */ | 
|  | printk(KERN_WARNING PFX "register of second port failed\n"); | 
|  | hw->dev[1] = NULL; | 
|  | free_netdev(dev1); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_out_free_netdev: | 
|  | free_netdev(dev); | 
|  | err_out_led_off: | 
|  | skge_write16(hw, B0_LED, LED_STAT_OFF); | 
|  | err_out_free_irq: | 
|  | free_irq(pdev->irq, hw); | 
|  | err_out_iounmap: | 
|  | iounmap(hw->regs); | 
|  | err_out_free_hw: | 
|  | kfree(hw); | 
|  | err_out_free_regions: | 
|  | pci_release_regions(pdev); | 
|  | err_out_disable_pdev: | 
|  | pci_disable_device(pdev); | 
|  | pci_set_drvdata(pdev, NULL); | 
|  | err_out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void __devexit skge_remove(struct pci_dev *pdev) | 
|  | { | 
|  | struct skge_hw *hw  = pci_get_drvdata(pdev); | 
|  | struct net_device *dev0, *dev1; | 
|  |  | 
|  | if (!hw) | 
|  | return; | 
|  |  | 
|  | if ((dev1 = hw->dev[1])) | 
|  | unregister_netdev(dev1); | 
|  | dev0 = hw->dev[0]; | 
|  | unregister_netdev(dev0); | 
|  |  | 
|  | skge_write32(hw, B0_IMSK, 0); | 
|  | skge_write16(hw, B0_LED, LED_STAT_OFF); | 
|  | skge_pci_clear(hw); | 
|  | skge_write8(hw, B0_CTST, CS_RST_SET); | 
|  |  | 
|  | tasklet_kill(&hw->ext_tasklet); | 
|  |  | 
|  | free_irq(pdev->irq, hw); | 
|  | pci_release_regions(pdev); | 
|  | pci_disable_device(pdev); | 
|  | if (dev1) | 
|  | free_netdev(dev1); | 
|  | free_netdev(dev0); | 
|  |  | 
|  | iounmap(hw->regs); | 
|  | kfree(hw); | 
|  | pci_set_drvdata(pdev, NULL); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | static int skge_suspend(struct pci_dev *pdev, pm_message_t state) | 
|  | { | 
|  | struct skge_hw *hw  = pci_get_drvdata(pdev); | 
|  | int i, wol = 0; | 
|  |  | 
|  | for (i = 0; i < 2; i++) { | 
|  | struct net_device *dev = hw->dev[i]; | 
|  |  | 
|  | if (dev) { | 
|  | struct skge_port *skge = netdev_priv(dev); | 
|  | if (netif_running(dev)) { | 
|  | netif_carrier_off(dev); | 
|  | if (skge->wol) | 
|  | netif_stop_queue(dev); | 
|  | else | 
|  | skge_down(dev); | 
|  | } | 
|  | netif_device_detach(dev); | 
|  | wol |= skge->wol; | 
|  | } | 
|  | } | 
|  |  | 
|  | pci_save_state(pdev); | 
|  | pci_enable_wake(pdev, pci_choose_state(pdev, state), wol); | 
|  | pci_disable_device(pdev); | 
|  | pci_set_power_state(pdev, pci_choose_state(pdev, state)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int skge_resume(struct pci_dev *pdev) | 
|  | { | 
|  | struct skge_hw *hw  = pci_get_drvdata(pdev); | 
|  | int i; | 
|  |  | 
|  | pci_set_power_state(pdev, PCI_D0); | 
|  | pci_restore_state(pdev); | 
|  | pci_enable_wake(pdev, PCI_D0, 0); | 
|  |  | 
|  | skge_reset(hw); | 
|  |  | 
|  | for (i = 0; i < 2; i++) { | 
|  | struct net_device *dev = hw->dev[i]; | 
|  | if (dev) { | 
|  | netif_device_attach(dev); | 
|  | if (netif_running(dev) && skge_up(dev)) | 
|  | dev_close(dev); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static struct pci_driver skge_driver = { | 
|  | .name =         DRV_NAME, | 
|  | .id_table =     skge_id_table, | 
|  | .probe =        skge_probe, | 
|  | .remove =       __devexit_p(skge_remove), | 
|  | #ifdef CONFIG_PM | 
|  | .suspend = 	skge_suspend, | 
|  | .resume = 	skge_resume, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static int __init skge_init_module(void) | 
|  | { | 
|  | return pci_module_init(&skge_driver); | 
|  | } | 
|  |  | 
|  | static void __exit skge_cleanup_module(void) | 
|  | { | 
|  | pci_unregister_driver(&skge_driver); | 
|  | } | 
|  |  | 
|  | module_init(skge_init_module); | 
|  | module_exit(skge_cleanup_module); |