| #ifndef _PARISC_PGTABLE_H | 
 | #define _PARISC_PGTABLE_H | 
 |  | 
 | #include <asm-generic/4level-fixup.h> | 
 |  | 
 | #include <linux/config.h> | 
 | #include <asm/fixmap.h> | 
 |  | 
 | #ifndef __ASSEMBLY__ | 
 | /* | 
 |  * we simulate an x86-style page table for the linux mm code | 
 |  */ | 
 |  | 
 | #include <linux/spinlock.h> | 
 | #include <asm/processor.h> | 
 | #include <asm/cache.h> | 
 | #include <asm/bitops.h> | 
 |  | 
 | /* | 
 |  * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel | 
 |  * memory.  For the return value to be meaningful, ADDR must be >= | 
 |  * PAGE_OFFSET.  This operation can be relatively expensive (e.g., | 
 |  * require a hash-, or multi-level tree-lookup or something of that | 
 |  * sort) but it guarantees to return TRUE only if accessing the page | 
 |  * at that address does not cause an error.  Note that there may be | 
 |  * addresses for which kern_addr_valid() returns FALSE even though an | 
 |  * access would not cause an error (e.g., this is typically true for | 
 |  * memory mapped I/O regions. | 
 |  * | 
 |  * XXX Need to implement this for parisc. | 
 |  */ | 
 | #define kern_addr_valid(addr)	(1) | 
 |  | 
 | /* Certain architectures need to do special things when PTEs | 
 |  * within a page table are directly modified.  Thus, the following | 
 |  * hook is made available. | 
 |  */ | 
 | #define set_pte(pteptr, pteval)                                 \ | 
 |         do{                                                     \ | 
 |                 *(pteptr) = (pteval);                           \ | 
 |         } while(0) | 
 | #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) | 
 |  | 
 | #endif /* !__ASSEMBLY__ */ | 
 |  | 
 | #define pte_ERROR(e) \ | 
 | 	printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) | 
 | #define pmd_ERROR(e) \ | 
 | 	printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, (unsigned long)pmd_val(e)) | 
 | #define pgd_ERROR(e) \ | 
 | 	printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, (unsigned long)pgd_val(e)) | 
 |  | 
 |  /* Note: If you change ISTACK_SIZE, you need to change the corresponding | 
 |   * values in vmlinux.lds and vmlinux64.lds (init_istack section). Also, | 
 |   * the "order" and size need to agree. | 
 |   */ | 
 |  | 
 | #define  ISTACK_SIZE  32768 /* Interrupt Stack Size */ | 
 | #define  ISTACK_ORDER 3 | 
 |  | 
 | /* This is the size of the initially mapped kernel memory (i.e. currently | 
 |  * 0 to 1<<23 == 8MB */ | 
 | #ifdef CONFIG_64BIT | 
 | #define KERNEL_INITIAL_ORDER	24 | 
 | #else | 
 | #define KERNEL_INITIAL_ORDER	23 | 
 | #endif | 
 | #define KERNEL_INITIAL_SIZE	(1 << KERNEL_INITIAL_ORDER) | 
 |  | 
 | #ifdef CONFIG_64BIT | 
 | #define PT_NLEVELS	3 | 
 | #define PGD_ORDER	1 /* Number of pages per pgd */ | 
 | #define PMD_ORDER	1 /* Number of pages per pmd */ | 
 | #define PGD_ALLOC_ORDER	2 /* first pgd contains pmd */ | 
 | #else | 
 | #define PT_NLEVELS	2 | 
 | #define PGD_ORDER	1 /* Number of pages per pgd */ | 
 | #define PGD_ALLOC_ORDER	PGD_ORDER | 
 | #endif | 
 |  | 
 | /* Definitions for 3rd level (we use PLD here for Page Lower directory | 
 |  * because PTE_SHIFT is used lower down to mean shift that has to be | 
 |  * done to get usable bits out of the PTE) */ | 
 | #define PLD_SHIFT	PAGE_SHIFT | 
 | #define PLD_SIZE	PAGE_SIZE | 
 | #define BITS_PER_PTE	(PAGE_SHIFT - BITS_PER_PTE_ENTRY) | 
 | #define PTRS_PER_PTE    (1UL << BITS_PER_PTE) | 
 |  | 
 | /* Definitions for 2nd level */ | 
 | #define pgtable_cache_init()	do { } while (0) | 
 |  | 
 | #define PMD_SHIFT       (PLD_SHIFT + BITS_PER_PTE) | 
 | #define PMD_SIZE	(1UL << PMD_SHIFT) | 
 | #define PMD_MASK	(~(PMD_SIZE-1)) | 
 | #if PT_NLEVELS == 3 | 
 | #define BITS_PER_PMD	(PAGE_SHIFT + PMD_ORDER - BITS_PER_PMD_ENTRY) | 
 | #else | 
 | #define BITS_PER_PMD	0 | 
 | #endif | 
 | #define PTRS_PER_PMD    (1UL << BITS_PER_PMD) | 
 |  | 
 | /* Definitions for 1st level */ | 
 | #define PGDIR_SHIFT	(PMD_SHIFT + BITS_PER_PMD) | 
 | #define BITS_PER_PGD	(PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY) | 
 | #define PGDIR_SIZE	(1UL << PGDIR_SHIFT) | 
 | #define PGDIR_MASK	(~(PGDIR_SIZE-1)) | 
 | #define PTRS_PER_PGD    (1UL << BITS_PER_PGD) | 
 | #define USER_PTRS_PER_PGD       PTRS_PER_PGD | 
 |  | 
 | #define MAX_ADDRBITS	(PGDIR_SHIFT + BITS_PER_PGD) | 
 | #define MAX_ADDRESS	(1UL << MAX_ADDRBITS) | 
 |  | 
 | #define SPACEID_SHIFT (MAX_ADDRBITS - 32) | 
 |  | 
 | /* This calculates the number of initial pages we need for the initial | 
 |  * page tables */ | 
 | #define PT_INITIAL	(1 << (KERNEL_INITIAL_ORDER - PMD_SHIFT)) | 
 |  | 
 | /* | 
 |  * pgd entries used up by user/kernel: | 
 |  */ | 
 |  | 
 | #define FIRST_USER_ADDRESS	0 | 
 |  | 
 | #ifndef __ASSEMBLY__ | 
 | extern  void *vmalloc_start; | 
 | #define PCXL_DMA_MAP_SIZE   (8*1024*1024) | 
 | #define VMALLOC_START   ((unsigned long)vmalloc_start) | 
 | /* this is a fixmap remnant, see fixmap.h */ | 
 | #define VMALLOC_END	(KERNEL_MAP_END) | 
 | #endif | 
 |  | 
 | /* NB: The tlb miss handlers make certain assumptions about the order */ | 
 | /*     of the following bits, so be careful (One example, bits 25-31  */ | 
 | /*     are moved together in one instruction).                        */ | 
 |  | 
 | #define _PAGE_READ_BIT     31   /* (0x001) read access allowed */ | 
 | #define _PAGE_WRITE_BIT    30   /* (0x002) write access allowed */ | 
 | #define _PAGE_EXEC_BIT     29   /* (0x004) execute access allowed */ | 
 | #define _PAGE_GATEWAY_BIT  28   /* (0x008) privilege promotion allowed */ | 
 | #define _PAGE_DMB_BIT      27   /* (0x010) Data Memory Break enable (B bit) */ | 
 | #define _PAGE_DIRTY_BIT    26   /* (0x020) Page Dirty (D bit) */ | 
 | #define _PAGE_FILE_BIT	_PAGE_DIRTY_BIT	/* overload this bit */ | 
 | #define _PAGE_REFTRAP_BIT  25   /* (0x040) Page Ref. Trap enable (T bit) */ | 
 | #define _PAGE_NO_CACHE_BIT 24   /* (0x080) Uncached Page (U bit) */ | 
 | #define _PAGE_ACCESSED_BIT 23   /* (0x100) Software: Page Accessed */ | 
 | #define _PAGE_PRESENT_BIT  22   /* (0x200) Software: translation valid */ | 
 | #define _PAGE_FLUSH_BIT    21   /* (0x400) Software: translation valid */ | 
 | 				/*             for cache flushing only */ | 
 | #define _PAGE_USER_BIT     20   /* (0x800) Software: User accessible page */ | 
 |  | 
 | /* N.B. The bits are defined in terms of a 32 bit word above, so the */ | 
 | /*      following macro is ok for both 32 and 64 bit.                */ | 
 |  | 
 | #define xlate_pabit(x) (31 - x) | 
 |  | 
 | /* this defines the shift to the usable bits in the PTE it is set so | 
 |  * that the valid bits _PAGE_PRESENT_BIT and _PAGE_USER_BIT are set | 
 |  * to zero */ | 
 | #define PTE_SHIFT	   	xlate_pabit(_PAGE_USER_BIT) | 
 |  | 
 | /* this is how many bits may be used by the file functions */ | 
 | #define PTE_FILE_MAX_BITS	(BITS_PER_LONG - PTE_SHIFT) | 
 |  | 
 | #define pte_to_pgoff(pte) (pte_val(pte) >> PTE_SHIFT) | 
 | #define pgoff_to_pte(off) ((pte_t) { ((off) << PTE_SHIFT) | _PAGE_FILE }) | 
 |  | 
 | #define _PAGE_READ     (1 << xlate_pabit(_PAGE_READ_BIT)) | 
 | #define _PAGE_WRITE    (1 << xlate_pabit(_PAGE_WRITE_BIT)) | 
 | #define _PAGE_RW       (_PAGE_READ | _PAGE_WRITE) | 
 | #define _PAGE_EXEC     (1 << xlate_pabit(_PAGE_EXEC_BIT)) | 
 | #define _PAGE_GATEWAY  (1 << xlate_pabit(_PAGE_GATEWAY_BIT)) | 
 | #define _PAGE_DMB      (1 << xlate_pabit(_PAGE_DMB_BIT)) | 
 | #define _PAGE_DIRTY    (1 << xlate_pabit(_PAGE_DIRTY_BIT)) | 
 | #define _PAGE_REFTRAP  (1 << xlate_pabit(_PAGE_REFTRAP_BIT)) | 
 | #define _PAGE_NO_CACHE (1 << xlate_pabit(_PAGE_NO_CACHE_BIT)) | 
 | #define _PAGE_ACCESSED (1 << xlate_pabit(_PAGE_ACCESSED_BIT)) | 
 | #define _PAGE_PRESENT  (1 << xlate_pabit(_PAGE_PRESENT_BIT)) | 
 | #define _PAGE_FLUSH    (1 << xlate_pabit(_PAGE_FLUSH_BIT)) | 
 | #define _PAGE_USER     (1 << xlate_pabit(_PAGE_USER_BIT)) | 
 | #define _PAGE_FILE     (1 << xlate_pabit(_PAGE_FILE_BIT)) | 
 |  | 
 | #define _PAGE_TABLE	(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE |  _PAGE_DIRTY | _PAGE_ACCESSED) | 
 | #define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) | 
 | #define _PAGE_KERNEL	(_PAGE_PRESENT | _PAGE_EXEC | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED) | 
 |  | 
 | /* The pgd/pmd contains a ptr (in phys addr space); since all pgds/pmds | 
 |  * are page-aligned, we don't care about the PAGE_OFFSET bits, except | 
 |  * for a few meta-information bits, so we shift the address to be | 
 |  * able to effectively address 40-bits of physical address space. */ | 
 | #define _PxD_PRESENT_BIT   31 | 
 | #define _PxD_ATTACHED_BIT  30 | 
 | #define _PxD_VALID_BIT     29 | 
 |  | 
 | #define PxD_FLAG_PRESENT  (1 << xlate_pabit(_PxD_PRESENT_BIT)) | 
 | #define PxD_FLAG_ATTACHED (1 << xlate_pabit(_PxD_ATTACHED_BIT)) | 
 | #define PxD_FLAG_VALID    (1 << xlate_pabit(_PxD_VALID_BIT)) | 
 | #define PxD_FLAG_MASK     (0xf) | 
 | #define PxD_FLAG_SHIFT    (4) | 
 | #define PxD_VALUE_SHIFT   (8) | 
 |  | 
 | #ifndef __ASSEMBLY__ | 
 |  | 
 | #define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) | 
 | #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_ACCESSED) | 
 | /* Others seem to make this executable, I don't know if that's correct | 
 |    or not.  The stack is mapped this way though so this is necessary | 
 |    in the short term - dhd@linuxcare.com, 2000-08-08 */ | 
 | #define PAGE_READONLY	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_ACCESSED) | 
 | #define PAGE_WRITEONLY  __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITE | _PAGE_ACCESSED) | 
 | #define PAGE_EXECREAD   __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_EXEC |_PAGE_ACCESSED) | 
 | #define PAGE_COPY       PAGE_EXECREAD | 
 | #define PAGE_RWX        __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_EXEC |_PAGE_ACCESSED) | 
 | #define PAGE_KERNEL	__pgprot(_PAGE_KERNEL) | 
 | #define PAGE_KERNEL_RO	__pgprot(_PAGE_PRESENT | _PAGE_EXEC | _PAGE_READ | _PAGE_DIRTY | _PAGE_ACCESSED) | 
 | #define PAGE_KERNEL_UNC	__pgprot(_PAGE_KERNEL | _PAGE_NO_CACHE) | 
 | #define PAGE_GATEWAY    __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_GATEWAY| _PAGE_READ) | 
 | #define PAGE_FLUSH      __pgprot(_PAGE_FLUSH) | 
 |  | 
 |  | 
 | /* | 
 |  * We could have an execute only page using "gateway - promote to priv | 
 |  * level 3", but that is kind of silly. So, the way things are defined | 
 |  * now, we must always have read permission for pages with execute | 
 |  * permission. For the fun of it we'll go ahead and support write only | 
 |  * pages. | 
 |  */ | 
 |  | 
 | 	 /*xwr*/ | 
 | #define __P000  PAGE_NONE | 
 | #define __P001  PAGE_READONLY | 
 | #define __P010  __P000 /* copy on write */ | 
 | #define __P011  __P001 /* copy on write */ | 
 | #define __P100  PAGE_EXECREAD | 
 | #define __P101  PAGE_EXECREAD | 
 | #define __P110  __P100 /* copy on write */ | 
 | #define __P111  __P101 /* copy on write */ | 
 |  | 
 | #define __S000  PAGE_NONE | 
 | #define __S001  PAGE_READONLY | 
 | #define __S010  PAGE_WRITEONLY | 
 | #define __S011  PAGE_SHARED | 
 | #define __S100  PAGE_EXECREAD | 
 | #define __S101  PAGE_EXECREAD | 
 | #define __S110  PAGE_RWX | 
 | #define __S111  PAGE_RWX | 
 |  | 
 | extern pgd_t swapper_pg_dir[]; /* declared in init_task.c */ | 
 |  | 
 | /* initial page tables for 0-8MB for kernel */ | 
 |  | 
 | extern pte_t pg0[]; | 
 |  | 
 | /* zero page used for uninitialized stuff */ | 
 |  | 
 | extern unsigned long *empty_zero_page; | 
 |  | 
 | /* | 
 |  * ZERO_PAGE is a global shared page that is always zero: used | 
 |  * for zero-mapped memory areas etc.. | 
 |  */ | 
 |  | 
 | #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) | 
 |  | 
 | #define pte_none(x)     ((pte_val(x) == 0) || (pte_val(x) & _PAGE_FLUSH)) | 
 | #define pte_present(x)	(pte_val(x) & _PAGE_PRESENT) | 
 | #define pte_clear(mm,addr,xp)	do { pte_val(*(xp)) = 0; } while (0) | 
 |  | 
 | #define pmd_flag(x)	(pmd_val(x) & PxD_FLAG_MASK) | 
 | #define pmd_address(x)	((unsigned long)(pmd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT) | 
 | #define pgd_flag(x)	(pgd_val(x) & PxD_FLAG_MASK) | 
 | #define pgd_address(x)	((unsigned long)(pgd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT) | 
 |  | 
 | #ifdef CONFIG_64BIT | 
 | /* The first entry of the permanent pmd is not there if it contains | 
 |  * the gateway marker */ | 
 | #define pmd_none(x)	(!pmd_val(x) || pmd_flag(x) == PxD_FLAG_ATTACHED) | 
 | #else | 
 | #define pmd_none(x)	(!pmd_val(x)) | 
 | #endif | 
 | #define pmd_bad(x)	(!(pmd_flag(x) & PxD_FLAG_VALID)) | 
 | #define pmd_present(x)	(pmd_flag(x) & PxD_FLAG_PRESENT) | 
 | static inline void pmd_clear(pmd_t *pmd) { | 
 | #ifdef CONFIG_64BIT | 
 | 	if (pmd_flag(*pmd) & PxD_FLAG_ATTACHED) | 
 | 		/* This is the entry pointing to the permanent pmd | 
 | 		 * attached to the pgd; cannot clear it */ | 
 | 		__pmd_val_set(*pmd, PxD_FLAG_ATTACHED); | 
 | 	else | 
 | #endif | 
 | 		__pmd_val_set(*pmd,  0); | 
 | } | 
 |  | 
 |  | 
 |  | 
 | #if PT_NLEVELS == 3 | 
 | #define pgd_page(pgd) ((unsigned long) __va(pgd_address(pgd))) | 
 |  | 
 | /* For 64 bit we have three level tables */ | 
 |  | 
 | #define pgd_none(x)     (!pgd_val(x)) | 
 | #define pgd_bad(x)      (!(pgd_flag(x) & PxD_FLAG_VALID)) | 
 | #define pgd_present(x)  (pgd_flag(x) & PxD_FLAG_PRESENT) | 
 | static inline void pgd_clear(pgd_t *pgd) { | 
 | #ifdef CONFIG_64BIT | 
 | 	if(pgd_flag(*pgd) & PxD_FLAG_ATTACHED) | 
 | 		/* This is the permanent pmd attached to the pgd; cannot | 
 | 		 * free it */ | 
 | 		return; | 
 | #endif | 
 | 	__pgd_val_set(*pgd, 0); | 
 | } | 
 | #else | 
 | /* | 
 |  * The "pgd_xxx()" functions here are trivial for a folded two-level | 
 |  * setup: the pgd is never bad, and a pmd always exists (as it's folded | 
 |  * into the pgd entry) | 
 |  */ | 
 | extern inline int pgd_none(pgd_t pgd)		{ return 0; } | 
 | extern inline int pgd_bad(pgd_t pgd)		{ return 0; } | 
 | extern inline int pgd_present(pgd_t pgd)	{ return 1; } | 
 | extern inline void pgd_clear(pgd_t * pgdp)	{ } | 
 | #endif | 
 |  | 
 | /* | 
 |  * The following only work if pte_present() is true. | 
 |  * Undefined behaviour if not.. | 
 |  */ | 
 | extern inline int pte_read(pte_t pte)		{ return pte_val(pte) & _PAGE_READ; } | 
 | extern inline int pte_dirty(pte_t pte)		{ return pte_val(pte) & _PAGE_DIRTY; } | 
 | extern inline int pte_young(pte_t pte)		{ return pte_val(pte) & _PAGE_ACCESSED; } | 
 | extern inline int pte_write(pte_t pte)		{ return pte_val(pte) & _PAGE_WRITE; } | 
 | extern inline int pte_file(pte_t pte)		{ return pte_val(pte) & _PAGE_FILE; } | 
 | extern inline int pte_user(pte_t pte) 		{ return pte_val(pte) & _PAGE_USER; } | 
 |  | 
 | extern inline pte_t pte_rdprotect(pte_t pte)	{ pte_val(pte) &= ~_PAGE_READ; return pte; } | 
 | extern inline pte_t pte_mkclean(pte_t pte)	{ pte_val(pte) &= ~_PAGE_DIRTY; return pte; } | 
 | extern inline pte_t pte_mkold(pte_t pte)	{ pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } | 
 | extern inline pte_t pte_wrprotect(pte_t pte)	{ pte_val(pte) &= ~_PAGE_WRITE; return pte; } | 
 | extern inline pte_t pte_mkread(pte_t pte)	{ pte_val(pte) |= _PAGE_READ; return pte; } | 
 | extern inline pte_t pte_mkdirty(pte_t pte)	{ pte_val(pte) |= _PAGE_DIRTY; return pte; } | 
 | extern inline pte_t pte_mkyoung(pte_t pte)	{ pte_val(pte) |= _PAGE_ACCESSED; return pte; } | 
 | extern inline pte_t pte_mkwrite(pte_t pte)	{ pte_val(pte) |= _PAGE_WRITE; return pte; } | 
 |  | 
 | /* | 
 |  * Conversion functions: convert a page and protection to a page entry, | 
 |  * and a page entry and page directory to the page they refer to. | 
 |  */ | 
 | #define __mk_pte(addr,pgprot) \ | 
 | ({									\ | 
 | 	pte_t __pte;							\ | 
 | 									\ | 
 | 	pte_val(__pte) = ((addr)+pgprot_val(pgprot));			\ | 
 | 									\ | 
 | 	__pte;								\ | 
 | }) | 
 |  | 
 | #define mk_pte(page, pgprot)	pfn_pte(page_to_pfn(page), (pgprot)) | 
 |  | 
 | static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) | 
 | { | 
 | 	pte_t pte; | 
 | 	pte_val(pte) = (pfn << PAGE_SHIFT) | pgprot_val(pgprot); | 
 | 	return pte; | 
 | } | 
 |  | 
 | /* This takes a physical page address that is used by the remapping functions */ | 
 | #define mk_pte_phys(physpage, pgprot) \ | 
 | ({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; }) | 
 |  | 
 | extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot) | 
 | { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; } | 
 |  | 
 | /* Permanent address of a page.  On parisc we don't have highmem. */ | 
 |  | 
 | #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT) | 
 |  | 
 | #define pte_page(pte)		(pfn_to_page(pte_pfn(pte))) | 
 |  | 
 | #define pmd_page_kernel(pmd)	((unsigned long) __va(pmd_address(pmd))) | 
 |  | 
 | #define __pmd_page(pmd) ((unsigned long) __va(pmd_address(pmd))) | 
 | #define pmd_page(pmd)	virt_to_page((void *)__pmd_page(pmd)) | 
 |  | 
 | #define pgd_index(address) ((address) >> PGDIR_SHIFT) | 
 |  | 
 | /* to find an entry in a page-table-directory */ | 
 | #define pgd_offset(mm, address) \ | 
 | ((mm)->pgd + ((address) >> PGDIR_SHIFT)) | 
 |  | 
 | /* to find an entry in a kernel page-table-directory */ | 
 | #define pgd_offset_k(address) pgd_offset(&init_mm, address) | 
 |  | 
 | /* Find an entry in the second-level page table.. */ | 
 |  | 
 | #if PT_NLEVELS == 3 | 
 | #define pmd_offset(dir,address) \ | 
 | ((pmd_t *) pgd_page(*(dir)) + (((address)>>PMD_SHIFT) & (PTRS_PER_PMD-1))) | 
 | #else | 
 | #define pmd_offset(dir,addr) ((pmd_t *) dir) | 
 | #endif | 
 |  | 
 | /* Find an entry in the third-level page table.. */  | 
 | #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1)) | 
 | #define pte_offset_kernel(pmd, address) \ | 
 | 	((pte_t *) pmd_page_kernel(*(pmd)) + pte_index(address)) | 
 | #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address) | 
 | #define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address) | 
 | #define pte_unmap(pte) do { } while (0) | 
 | #define pte_unmap_nested(pte) do { } while (0) | 
 |  | 
 | #define pte_unmap(pte)			do { } while (0) | 
 | #define pte_unmap_nested(pte)		do { } while (0) | 
 |  | 
 | extern void paging_init (void); | 
 |  | 
 | /* Used for deferring calls to flush_dcache_page() */ | 
 |  | 
 | #define PG_dcache_dirty         PG_arch_1 | 
 |  | 
 | struct vm_area_struct; /* forward declaration (include/linux/mm.h) */ | 
 | extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t); | 
 |  | 
 | /* Encode and de-code a swap entry */ | 
 |  | 
 | #define __swp_type(x)                     ((x).val & 0x1f) | 
 | #define __swp_offset(x)                   ( (((x).val >> 6) &  0x7) | \ | 
 | 					  (((x).val >> 8) & ~0x7) ) | 
 | #define __swp_entry(type, offset)         ((swp_entry_t) { (type) | \ | 
 | 					    ((offset &  0x7) << 6) | \ | 
 | 					    ((offset & ~0x7) << 8) }) | 
 | #define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) }) | 
 | #define __swp_entry_to_pte(x)		((pte_t) { (x).val }) | 
 |  | 
 | static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	if (!pte_young(*ptep)) | 
 | 		return 0; | 
 | 	return test_and_clear_bit(xlate_pabit(_PAGE_ACCESSED_BIT), &pte_val(*ptep)); | 
 | #else | 
 | 	pte_t pte = *ptep; | 
 | 	if (!pte_young(pte)) | 
 | 		return 0; | 
 | 	set_pte_at(vma->vm_mm, addr, ptep, pte_mkold(pte)); | 
 | 	return 1; | 
 | #endif | 
 | } | 
 |  | 
 | static inline int ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	if (!pte_dirty(*ptep)) | 
 | 		return 0; | 
 | 	return test_and_clear_bit(xlate_pabit(_PAGE_DIRTY_BIT), &pte_val(*ptep)); | 
 | #else | 
 | 	pte_t pte = *ptep; | 
 | 	if (!pte_dirty(pte)) | 
 | 		return 0; | 
 | 	set_pte_at(vma->vm_mm, addr, ptep, pte_mkclean(pte)); | 
 | 	return 1; | 
 | #endif | 
 | } | 
 |  | 
 | extern spinlock_t pa_dbit_lock; | 
 |  | 
 | static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) | 
 | { | 
 | 	pte_t old_pte; | 
 | 	pte_t pte; | 
 |  | 
 | 	spin_lock(&pa_dbit_lock); | 
 | 	pte = old_pte = *ptep; | 
 | 	pte_val(pte) &= ~_PAGE_PRESENT; | 
 | 	pte_val(pte) |= _PAGE_FLUSH; | 
 | 	set_pte_at(mm,addr,ptep,pte); | 
 | 	spin_unlock(&pa_dbit_lock); | 
 |  | 
 | 	return old_pte; | 
 | } | 
 |  | 
 | static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	unsigned long new, old; | 
 |  | 
 | 	do { | 
 | 		old = pte_val(*ptep); | 
 | 		new = pte_val(pte_wrprotect(__pte (old))); | 
 | 	} while (cmpxchg((unsigned long *) ptep, old, new) != old); | 
 | #else | 
 | 	pte_t old_pte = *ptep; | 
 | 	set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte)); | 
 | #endif | 
 | } | 
 |  | 
 | #define pte_same(A,B)	(pte_val(A) == pte_val(B)) | 
 |  | 
 | #endif /* !__ASSEMBLY__ */ | 
 |  | 
 | #define io_remap_pfn_range(vma, vaddr, pfn, size, prot)		\ | 
 | 		remap_pfn_range(vma, vaddr, pfn, size, prot) | 
 |  | 
 | #define MK_IOSPACE_PFN(space, pfn)	(pfn) | 
 | #define GET_IOSPACE(pfn)		0 | 
 | #define GET_PFN(pfn)			(pfn) | 
 |  | 
 | /* We provide our own get_unmapped_area to provide cache coherency */ | 
 |  | 
 | #define HAVE_ARCH_UNMAPPED_AREA | 
 |  | 
 | #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG | 
 | #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY | 
 | #define __HAVE_ARCH_PTEP_GET_AND_CLEAR | 
 | #define __HAVE_ARCH_PTEP_SET_WRPROTECT | 
 | #define __HAVE_ARCH_PTE_SAME | 
 | #include <asm-generic/pgtable.h> | 
 |  | 
 | #endif /* _PARISC_PGTABLE_H */ |