| /* SCTP kernel implementation | 
 |  * Copyright (c) 1999-2000 Cisco, Inc. | 
 |  * Copyright (c) 1999-2001 Motorola, Inc. | 
 |  * Copyright (c) 2001-2003 International Business Machines, Corp. | 
 |  * Copyright (c) 2001 Intel Corp. | 
 |  * Copyright (c) 2001 Nokia, Inc. | 
 |  * Copyright (c) 2001 La Monte H.P. Yarroll | 
 |  * | 
 |  * This file is part of the SCTP kernel implementation | 
 |  * | 
 |  * These functions handle all input from the IP layer into SCTP. | 
 |  * | 
 |  * This SCTP implementation is free software; | 
 |  * you can redistribute it and/or modify it under the terms of | 
 |  * the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2, or (at your option) | 
 |  * any later version. | 
 |  * | 
 |  * This SCTP implementation is distributed in the hope that it | 
 |  * will be useful, but WITHOUT ANY WARRANTY; without even the implied | 
 |  *                 ************************ | 
 |  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. | 
 |  * See the GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with GNU CC; see the file COPYING.  If not, write to | 
 |  * the Free Software Foundation, 59 Temple Place - Suite 330, | 
 |  * Boston, MA 02111-1307, USA. | 
 |  * | 
 |  * Please send any bug reports or fixes you make to the | 
 |  * email address(es): | 
 |  *    lksctp developers <lksctp-developers@lists.sourceforge.net> | 
 |  * | 
 |  * Or submit a bug report through the following website: | 
 |  *    http://www.sf.net/projects/lksctp | 
 |  * | 
 |  * Written or modified by: | 
 |  *    La Monte H.P. Yarroll <piggy@acm.org> | 
 |  *    Karl Knutson <karl@athena.chicago.il.us> | 
 |  *    Xingang Guo <xingang.guo@intel.com> | 
 |  *    Jon Grimm <jgrimm@us.ibm.com> | 
 |  *    Hui Huang <hui.huang@nokia.com> | 
 |  *    Daisy Chang <daisyc@us.ibm.com> | 
 |  *    Sridhar Samudrala <sri@us.ibm.com> | 
 |  *    Ardelle Fan <ardelle.fan@intel.com> | 
 |  * | 
 |  * Any bugs reported given to us we will try to fix... any fixes shared will | 
 |  * be incorporated into the next SCTP release. | 
 |  */ | 
 |  | 
 | #include <linux/types.h> | 
 | #include <linux/list.h> /* For struct list_head */ | 
 | #include <linux/socket.h> | 
 | #include <linux/ip.h> | 
 | #include <linux/time.h> /* For struct timeval */ | 
 | #include <linux/slab.h> | 
 | #include <net/ip.h> | 
 | #include <net/icmp.h> | 
 | #include <net/snmp.h> | 
 | #include <net/sock.h> | 
 | #include <net/xfrm.h> | 
 | #include <net/sctp/sctp.h> | 
 | #include <net/sctp/sm.h> | 
 | #include <net/sctp/checksum.h> | 
 | #include <net/net_namespace.h> | 
 |  | 
 | /* Forward declarations for internal helpers. */ | 
 | static int sctp_rcv_ootb(struct sk_buff *); | 
 | static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb, | 
 | 				      const union sctp_addr *laddr, | 
 | 				      const union sctp_addr *paddr, | 
 | 				      struct sctp_transport **transportp); | 
 | static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr); | 
 | static struct sctp_association *__sctp_lookup_association( | 
 | 					const union sctp_addr *local, | 
 | 					const union sctp_addr *peer, | 
 | 					struct sctp_transport **pt); | 
 |  | 
 | static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb); | 
 |  | 
 |  | 
 | /* Calculate the SCTP checksum of an SCTP packet.  */ | 
 | static inline int sctp_rcv_checksum(struct sk_buff *skb) | 
 | { | 
 | 	struct sctphdr *sh = sctp_hdr(skb); | 
 | 	__le32 cmp = sh->checksum; | 
 | 	struct sk_buff *list; | 
 | 	__le32 val; | 
 | 	__u32 tmp = sctp_start_cksum((__u8 *)sh, skb_headlen(skb)); | 
 |  | 
 | 	skb_walk_frags(skb, list) | 
 | 		tmp = sctp_update_cksum((__u8 *)list->data, skb_headlen(list), | 
 | 					tmp); | 
 |  | 
 | 	val = sctp_end_cksum(tmp); | 
 |  | 
 | 	if (val != cmp) { | 
 | 		/* CRC failure, dump it. */ | 
 | 		SCTP_INC_STATS_BH(SCTP_MIB_CHECKSUMERRORS); | 
 | 		return -1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct sctp_input_cb { | 
 | 	union { | 
 | 		struct inet_skb_parm	h4; | 
 | #if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE) | 
 | 		struct inet6_skb_parm	h6; | 
 | #endif | 
 | 	} header; | 
 | 	struct sctp_chunk *chunk; | 
 | }; | 
 | #define SCTP_INPUT_CB(__skb)	((struct sctp_input_cb *)&((__skb)->cb[0])) | 
 |  | 
 | /* | 
 |  * This is the routine which IP calls when receiving an SCTP packet. | 
 |  */ | 
 | int sctp_rcv(struct sk_buff *skb) | 
 | { | 
 | 	struct sock *sk; | 
 | 	struct sctp_association *asoc; | 
 | 	struct sctp_endpoint *ep = NULL; | 
 | 	struct sctp_ep_common *rcvr; | 
 | 	struct sctp_transport *transport = NULL; | 
 | 	struct sctp_chunk *chunk; | 
 | 	struct sctphdr *sh; | 
 | 	union sctp_addr src; | 
 | 	union sctp_addr dest; | 
 | 	int family; | 
 | 	struct sctp_af *af; | 
 |  | 
 | 	if (skb->pkt_type!=PACKET_HOST) | 
 | 		goto discard_it; | 
 |  | 
 | 	SCTP_INC_STATS_BH(SCTP_MIB_INSCTPPACKS); | 
 |  | 
 | 	if (skb_linearize(skb)) | 
 | 		goto discard_it; | 
 |  | 
 | 	sh = sctp_hdr(skb); | 
 |  | 
 | 	/* Pull up the IP and SCTP headers. */ | 
 | 	__skb_pull(skb, skb_transport_offset(skb)); | 
 | 	if (skb->len < sizeof(struct sctphdr)) | 
 | 		goto discard_it; | 
 | 	if (!sctp_checksum_disable && !skb_csum_unnecessary(skb) && | 
 | 		  sctp_rcv_checksum(skb) < 0) | 
 | 		goto discard_it; | 
 |  | 
 | 	skb_pull(skb, sizeof(struct sctphdr)); | 
 |  | 
 | 	/* Make sure we at least have chunk headers worth of data left. */ | 
 | 	if (skb->len < sizeof(struct sctp_chunkhdr)) | 
 | 		goto discard_it; | 
 |  | 
 | 	family = ipver2af(ip_hdr(skb)->version); | 
 | 	af = sctp_get_af_specific(family); | 
 | 	if (unlikely(!af)) | 
 | 		goto discard_it; | 
 |  | 
 | 	/* Initialize local addresses for lookups. */ | 
 | 	af->from_skb(&src, skb, 1); | 
 | 	af->from_skb(&dest, skb, 0); | 
 |  | 
 | 	/* If the packet is to or from a non-unicast address, | 
 | 	 * silently discard the packet. | 
 | 	 * | 
 | 	 * This is not clearly defined in the RFC except in section | 
 | 	 * 8.4 - OOTB handling.  However, based on the book "Stream Control | 
 | 	 * Transmission Protocol" 2.1, "It is important to note that the | 
 | 	 * IP address of an SCTP transport address must be a routable | 
 | 	 * unicast address.  In other words, IP multicast addresses and | 
 | 	 * IP broadcast addresses cannot be used in an SCTP transport | 
 | 	 * address." | 
 | 	 */ | 
 | 	if (!af->addr_valid(&src, NULL, skb) || | 
 | 	    !af->addr_valid(&dest, NULL, skb)) | 
 | 		goto discard_it; | 
 |  | 
 | 	asoc = __sctp_rcv_lookup(skb, &src, &dest, &transport); | 
 |  | 
 | 	if (!asoc) | 
 | 		ep = __sctp_rcv_lookup_endpoint(&dest); | 
 |  | 
 | 	/* Retrieve the common input handling substructure. */ | 
 | 	rcvr = asoc ? &asoc->base : &ep->base; | 
 | 	sk = rcvr->sk; | 
 |  | 
 | 	/* | 
 | 	 * If a frame arrives on an interface and the receiving socket is | 
 | 	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB | 
 | 	 */ | 
 | 	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) | 
 | 	{ | 
 | 		if (asoc) { | 
 | 			sctp_association_put(asoc); | 
 | 			asoc = NULL; | 
 | 		} else { | 
 | 			sctp_endpoint_put(ep); | 
 | 			ep = NULL; | 
 | 		} | 
 | 		sk = sctp_get_ctl_sock(); | 
 | 		ep = sctp_sk(sk)->ep; | 
 | 		sctp_endpoint_hold(ep); | 
 | 		rcvr = &ep->base; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets. | 
 | 	 * An SCTP packet is called an "out of the blue" (OOTB) | 
 | 	 * packet if it is correctly formed, i.e., passed the | 
 | 	 * receiver's checksum check, but the receiver is not | 
 | 	 * able to identify the association to which this | 
 | 	 * packet belongs. | 
 | 	 */ | 
 | 	if (!asoc) { | 
 | 		if (sctp_rcv_ootb(skb)) { | 
 | 			SCTP_INC_STATS_BH(SCTP_MIB_OUTOFBLUES); | 
 | 			goto discard_release; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family)) | 
 | 		goto discard_release; | 
 | 	nf_reset(skb); | 
 |  | 
 | 	if (sk_filter(sk, skb)) | 
 | 		goto discard_release; | 
 |  | 
 | 	/* Create an SCTP packet structure. */ | 
 | 	chunk = sctp_chunkify(skb, asoc, sk); | 
 | 	if (!chunk) | 
 | 		goto discard_release; | 
 | 	SCTP_INPUT_CB(skb)->chunk = chunk; | 
 |  | 
 | 	/* Remember what endpoint is to handle this packet. */ | 
 | 	chunk->rcvr = rcvr; | 
 |  | 
 | 	/* Remember the SCTP header. */ | 
 | 	chunk->sctp_hdr = sh; | 
 |  | 
 | 	/* Set the source and destination addresses of the incoming chunk.  */ | 
 | 	sctp_init_addrs(chunk, &src, &dest); | 
 |  | 
 | 	/* Remember where we came from.  */ | 
 | 	chunk->transport = transport; | 
 |  | 
 | 	/* Acquire access to the sock lock. Note: We are safe from other | 
 | 	 * bottom halves on this lock, but a user may be in the lock too, | 
 | 	 * so check if it is busy. | 
 | 	 */ | 
 | 	sctp_bh_lock_sock(sk); | 
 |  | 
 | 	if (sk != rcvr->sk) { | 
 | 		/* Our cached sk is different from the rcvr->sk.  This is | 
 | 		 * because migrate()/accept() may have moved the association | 
 | 		 * to a new socket and released all the sockets.  So now we | 
 | 		 * are holding a lock on the old socket while the user may | 
 | 		 * be doing something with the new socket.  Switch our veiw | 
 | 		 * of the current sk. | 
 | 		 */ | 
 | 		sctp_bh_unlock_sock(sk); | 
 | 		sk = rcvr->sk; | 
 | 		sctp_bh_lock_sock(sk); | 
 | 	} | 
 |  | 
 | 	if (sock_owned_by_user(sk)) { | 
 | 		if (sctp_add_backlog(sk, skb)) { | 
 | 			sctp_bh_unlock_sock(sk); | 
 | 			sctp_chunk_free(chunk); | 
 | 			skb = NULL; /* sctp_chunk_free already freed the skb */ | 
 | 			goto discard_release; | 
 | 		} | 
 | 		SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_BACKLOG); | 
 | 	} else { | 
 | 		SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_SOFTIRQ); | 
 | 		sctp_inq_push(&chunk->rcvr->inqueue, chunk); | 
 | 	} | 
 |  | 
 | 	sctp_bh_unlock_sock(sk); | 
 |  | 
 | 	/* Release the asoc/ep ref we took in the lookup calls. */ | 
 | 	if (asoc) | 
 | 		sctp_association_put(asoc); | 
 | 	else | 
 | 		sctp_endpoint_put(ep); | 
 |  | 
 | 	return 0; | 
 |  | 
 | discard_it: | 
 | 	SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_DISCARDS); | 
 | 	kfree_skb(skb); | 
 | 	return 0; | 
 |  | 
 | discard_release: | 
 | 	/* Release the asoc/ep ref we took in the lookup calls. */ | 
 | 	if (asoc) | 
 | 		sctp_association_put(asoc); | 
 | 	else | 
 | 		sctp_endpoint_put(ep); | 
 |  | 
 | 	goto discard_it; | 
 | } | 
 |  | 
 | /* Process the backlog queue of the socket.  Every skb on | 
 |  * the backlog holds a ref on an association or endpoint. | 
 |  * We hold this ref throughout the state machine to make | 
 |  * sure that the structure we need is still around. | 
 |  */ | 
 | int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb) | 
 | { | 
 | 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk; | 
 | 	struct sctp_inq *inqueue = &chunk->rcvr->inqueue; | 
 | 	struct sctp_ep_common *rcvr = NULL; | 
 | 	int backloged = 0; | 
 |  | 
 | 	rcvr = chunk->rcvr; | 
 |  | 
 | 	/* If the rcvr is dead then the association or endpoint | 
 | 	 * has been deleted and we can safely drop the chunk | 
 | 	 * and refs that we are holding. | 
 | 	 */ | 
 | 	if (rcvr->dead) { | 
 | 		sctp_chunk_free(chunk); | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	if (unlikely(rcvr->sk != sk)) { | 
 | 		/* In this case, the association moved from one socket to | 
 | 		 * another.  We are currently sitting on the backlog of the | 
 | 		 * old socket, so we need to move. | 
 | 		 * However, since we are here in the process context we | 
 | 		 * need to take make sure that the user doesn't own | 
 | 		 * the new socket when we process the packet. | 
 | 		 * If the new socket is user-owned, queue the chunk to the | 
 | 		 * backlog of the new socket without dropping any refs. | 
 | 		 * Otherwise, we can safely push the chunk on the inqueue. | 
 | 		 */ | 
 |  | 
 | 		sk = rcvr->sk; | 
 | 		sctp_bh_lock_sock(sk); | 
 |  | 
 | 		if (sock_owned_by_user(sk)) { | 
 | 			if (sk_add_backlog(sk, skb)) | 
 | 				sctp_chunk_free(chunk); | 
 | 			else | 
 | 				backloged = 1; | 
 | 		} else | 
 | 			sctp_inq_push(inqueue, chunk); | 
 |  | 
 | 		sctp_bh_unlock_sock(sk); | 
 |  | 
 | 		/* If the chunk was backloged again, don't drop refs */ | 
 | 		if (backloged) | 
 | 			return 0; | 
 | 	} else { | 
 | 		sctp_inq_push(inqueue, chunk); | 
 | 	} | 
 |  | 
 | done: | 
 | 	/* Release the refs we took in sctp_add_backlog */ | 
 | 	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type) | 
 | 		sctp_association_put(sctp_assoc(rcvr)); | 
 | 	else if (SCTP_EP_TYPE_SOCKET == rcvr->type) | 
 | 		sctp_endpoint_put(sctp_ep(rcvr)); | 
 | 	else | 
 | 		BUG(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb) | 
 | { | 
 | 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk; | 
 | 	struct sctp_ep_common *rcvr = chunk->rcvr; | 
 | 	int ret; | 
 |  | 
 | 	ret = sk_add_backlog(sk, skb); | 
 | 	if (!ret) { | 
 | 		/* Hold the assoc/ep while hanging on the backlog queue. | 
 | 		 * This way, we know structures we need will not disappear | 
 | 		 * from us | 
 | 		 */ | 
 | 		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type) | 
 | 			sctp_association_hold(sctp_assoc(rcvr)); | 
 | 		else if (SCTP_EP_TYPE_SOCKET == rcvr->type) | 
 | 			sctp_endpoint_hold(sctp_ep(rcvr)); | 
 | 		else | 
 | 			BUG(); | 
 | 	} | 
 | 	return ret; | 
 |  | 
 | } | 
 |  | 
 | /* Handle icmp frag needed error. */ | 
 | void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc, | 
 | 			   struct sctp_transport *t, __u32 pmtu) | 
 | { | 
 | 	if (!t || (t->pathmtu <= pmtu)) | 
 | 		return; | 
 |  | 
 | 	if (sock_owned_by_user(sk)) { | 
 | 		asoc->pmtu_pending = 1; | 
 | 		t->pmtu_pending = 1; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (t->param_flags & SPP_PMTUD_ENABLE) { | 
 | 		/* Update transports view of the MTU */ | 
 | 		sctp_transport_update_pmtu(t, pmtu); | 
 |  | 
 | 		/* Update association pmtu. */ | 
 | 		sctp_assoc_sync_pmtu(asoc); | 
 | 	} | 
 |  | 
 | 	/* Retransmit with the new pmtu setting. | 
 | 	 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation | 
 | 	 * Needed will never be sent, but if a message was sent before | 
 | 	 * PMTU discovery was disabled that was larger than the PMTU, it | 
 | 	 * would not be fragmented, so it must be re-transmitted fragmented. | 
 | 	 */ | 
 | 	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD); | 
 | } | 
 |  | 
 | /* | 
 |  * SCTP Implementer's Guide, 2.37 ICMP handling procedures | 
 |  * | 
 |  * ICMP8) If the ICMP code is a "Unrecognized next header type encountered" | 
 |  *        or a "Protocol Unreachable" treat this message as an abort | 
 |  *        with the T bit set. | 
 |  * | 
 |  * This function sends an event to the state machine, which will abort the | 
 |  * association. | 
 |  * | 
 |  */ | 
 | void sctp_icmp_proto_unreachable(struct sock *sk, | 
 | 			   struct sctp_association *asoc, | 
 | 			   struct sctp_transport *t) | 
 | { | 
 | 	SCTP_DEBUG_PRINTK("%s\n",  __func__); | 
 |  | 
 | 	if (sock_owned_by_user(sk)) { | 
 | 		if (timer_pending(&t->proto_unreach_timer)) | 
 | 			return; | 
 | 		else { | 
 | 			if (!mod_timer(&t->proto_unreach_timer, | 
 | 						jiffies + (HZ/20))) | 
 | 				sctp_association_hold(asoc); | 
 | 		} | 
 | 			 | 
 | 	} else { | 
 | 		if (timer_pending(&t->proto_unreach_timer) && | 
 | 		    del_timer(&t->proto_unreach_timer)) | 
 | 			sctp_association_put(asoc); | 
 |  | 
 | 		sctp_do_sm(SCTP_EVENT_T_OTHER, | 
 | 			   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH), | 
 | 			   asoc->state, asoc->ep, asoc, t, | 
 | 			   GFP_ATOMIC); | 
 | 	} | 
 | } | 
 |  | 
 | /* Common lookup code for icmp/icmpv6 error handler. */ | 
 | struct sock *sctp_err_lookup(int family, struct sk_buff *skb, | 
 | 			     struct sctphdr *sctphdr, | 
 | 			     struct sctp_association **app, | 
 | 			     struct sctp_transport **tpp) | 
 | { | 
 | 	union sctp_addr saddr; | 
 | 	union sctp_addr daddr; | 
 | 	struct sctp_af *af; | 
 | 	struct sock *sk = NULL; | 
 | 	struct sctp_association *asoc; | 
 | 	struct sctp_transport *transport = NULL; | 
 | 	struct sctp_init_chunk *chunkhdr; | 
 | 	__u32 vtag = ntohl(sctphdr->vtag); | 
 | 	int len = skb->len - ((void *)sctphdr - (void *)skb->data); | 
 |  | 
 | 	*app = NULL; *tpp = NULL; | 
 |  | 
 | 	af = sctp_get_af_specific(family); | 
 | 	if (unlikely(!af)) { | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* Initialize local addresses for lookups. */ | 
 | 	af->from_skb(&saddr, skb, 1); | 
 | 	af->from_skb(&daddr, skb, 0); | 
 |  | 
 | 	/* Look for an association that matches the incoming ICMP error | 
 | 	 * packet. | 
 | 	 */ | 
 | 	asoc = __sctp_lookup_association(&saddr, &daddr, &transport); | 
 | 	if (!asoc) | 
 | 		return NULL; | 
 |  | 
 | 	sk = asoc->base.sk; | 
 |  | 
 | 	/* RFC 4960, Appendix C. ICMP Handling | 
 | 	 * | 
 | 	 * ICMP6) An implementation MUST validate that the Verification Tag | 
 | 	 * contained in the ICMP message matches the Verification Tag of | 
 | 	 * the peer.  If the Verification Tag is not 0 and does NOT | 
 | 	 * match, discard the ICMP message.  If it is 0 and the ICMP | 
 | 	 * message contains enough bytes to verify that the chunk type is | 
 | 	 * an INIT chunk and that the Initiate Tag matches the tag of the | 
 | 	 * peer, continue with ICMP7.  If the ICMP message is too short | 
 | 	 * or the chunk type or the Initiate Tag does not match, silently | 
 | 	 * discard the packet. | 
 | 	 */ | 
 | 	if (vtag == 0) { | 
 | 		chunkhdr = (struct sctp_init_chunk *)((void *)sctphdr | 
 | 				+ sizeof(struct sctphdr)); | 
 | 		if (len < sizeof(struct sctphdr) + sizeof(sctp_chunkhdr_t) | 
 | 			  + sizeof(__be32) || | 
 | 		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT || | 
 | 		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) { | 
 | 			goto out; | 
 | 		} | 
 | 	} else if (vtag != asoc->c.peer_vtag) { | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	sctp_bh_lock_sock(sk); | 
 |  | 
 | 	/* If too many ICMPs get dropped on busy | 
 | 	 * servers this needs to be solved differently. | 
 | 	 */ | 
 | 	if (sock_owned_by_user(sk)) | 
 | 		NET_INC_STATS_BH(&init_net, LINUX_MIB_LOCKDROPPEDICMPS); | 
 |  | 
 | 	*app = asoc; | 
 | 	*tpp = transport; | 
 | 	return sk; | 
 |  | 
 | out: | 
 | 	if (asoc) | 
 | 		sctp_association_put(asoc); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* Common cleanup code for icmp/icmpv6 error handler. */ | 
 | void sctp_err_finish(struct sock *sk, struct sctp_association *asoc) | 
 | { | 
 | 	sctp_bh_unlock_sock(sk); | 
 | 	if (asoc) | 
 | 		sctp_association_put(asoc); | 
 | } | 
 |  | 
 | /* | 
 |  * This routine is called by the ICMP module when it gets some | 
 |  * sort of error condition.  If err < 0 then the socket should | 
 |  * be closed and the error returned to the user.  If err > 0 | 
 |  * it's just the icmp type << 8 | icmp code.  After adjustment | 
 |  * header points to the first 8 bytes of the sctp header.  We need | 
 |  * to find the appropriate port. | 
 |  * | 
 |  * The locking strategy used here is very "optimistic". When | 
 |  * someone else accesses the socket the ICMP is just dropped | 
 |  * and for some paths there is no check at all. | 
 |  * A more general error queue to queue errors for later handling | 
 |  * is probably better. | 
 |  * | 
 |  */ | 
 | void sctp_v4_err(struct sk_buff *skb, __u32 info) | 
 | { | 
 | 	struct iphdr *iph = (struct iphdr *)skb->data; | 
 | 	const int ihlen = iph->ihl * 4; | 
 | 	const int type = icmp_hdr(skb)->type; | 
 | 	const int code = icmp_hdr(skb)->code; | 
 | 	struct sock *sk; | 
 | 	struct sctp_association *asoc = NULL; | 
 | 	struct sctp_transport *transport; | 
 | 	struct inet_sock *inet; | 
 | 	sk_buff_data_t saveip, savesctp; | 
 | 	int err; | 
 |  | 
 | 	if (skb->len < ihlen + 8) { | 
 | 		ICMP_INC_STATS_BH(&init_net, ICMP_MIB_INERRORS); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Fix up skb to look at the embedded net header. */ | 
 | 	saveip = skb->network_header; | 
 | 	savesctp = skb->transport_header; | 
 | 	skb_reset_network_header(skb); | 
 | 	skb_set_transport_header(skb, ihlen); | 
 | 	sk = sctp_err_lookup(AF_INET, skb, sctp_hdr(skb), &asoc, &transport); | 
 | 	/* Put back, the original values. */ | 
 | 	skb->network_header = saveip; | 
 | 	skb->transport_header = savesctp; | 
 | 	if (!sk) { | 
 | 		ICMP_INC_STATS_BH(&init_net, ICMP_MIB_INERRORS); | 
 | 		return; | 
 | 	} | 
 | 	/* Warning:  The sock lock is held.  Remember to call | 
 | 	 * sctp_err_finish! | 
 | 	 */ | 
 |  | 
 | 	switch (type) { | 
 | 	case ICMP_PARAMETERPROB: | 
 | 		err = EPROTO; | 
 | 		break; | 
 | 	case ICMP_DEST_UNREACH: | 
 | 		if (code > NR_ICMP_UNREACH) | 
 | 			goto out_unlock; | 
 |  | 
 | 		/* PMTU discovery (RFC1191) */ | 
 | 		if (ICMP_FRAG_NEEDED == code) { | 
 | 			sctp_icmp_frag_needed(sk, asoc, transport, info); | 
 | 			goto out_unlock; | 
 | 		} | 
 | 		else { | 
 | 			if (ICMP_PROT_UNREACH == code) { | 
 | 				sctp_icmp_proto_unreachable(sk, asoc, | 
 | 							    transport); | 
 | 				goto out_unlock; | 
 | 			} | 
 | 		} | 
 | 		err = icmp_err_convert[code].errno; | 
 | 		break; | 
 | 	case ICMP_TIME_EXCEEDED: | 
 | 		/* Ignore any time exceeded errors due to fragment reassembly | 
 | 		 * timeouts. | 
 | 		 */ | 
 | 		if (ICMP_EXC_FRAGTIME == code) | 
 | 			goto out_unlock; | 
 |  | 
 | 		err = EHOSTUNREACH; | 
 | 		break; | 
 | 	default: | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	inet = inet_sk(sk); | 
 | 	if (!sock_owned_by_user(sk) && inet->recverr) { | 
 | 		sk->sk_err = err; | 
 | 		sk->sk_error_report(sk); | 
 | 	} else {  /* Only an error on timeout */ | 
 | 		sk->sk_err_soft = err; | 
 | 	} | 
 |  | 
 | out_unlock: | 
 | 	sctp_err_finish(sk, asoc); | 
 | } | 
 |  | 
 | /* | 
 |  * RFC 2960, 8.4 - Handle "Out of the blue" Packets. | 
 |  * | 
 |  * This function scans all the chunks in the OOTB packet to determine if | 
 |  * the packet should be discarded right away.  If a response might be needed | 
 |  * for this packet, or, if further processing is possible, the packet will | 
 |  * be queued to a proper inqueue for the next phase of handling. | 
 |  * | 
 |  * Output: | 
 |  * Return 0 - If further processing is needed. | 
 |  * Return 1 - If the packet can be discarded right away. | 
 |  */ | 
 | static int sctp_rcv_ootb(struct sk_buff *skb) | 
 | { | 
 | 	sctp_chunkhdr_t *ch; | 
 | 	__u8 *ch_end; | 
 | 	sctp_errhdr_t *err; | 
 |  | 
 | 	ch = (sctp_chunkhdr_t *) skb->data; | 
 |  | 
 | 	/* Scan through all the chunks in the packet.  */ | 
 | 	do { | 
 | 		/* Break out if chunk length is less then minimal. */ | 
 | 		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t)) | 
 | 			break; | 
 |  | 
 | 		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length)); | 
 | 		if (ch_end > skb_tail_pointer(skb)) | 
 | 			break; | 
 |  | 
 | 		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the | 
 | 		 * receiver MUST silently discard the OOTB packet and take no | 
 | 		 * further action. | 
 | 		 */ | 
 | 		if (SCTP_CID_ABORT == ch->type) | 
 | 			goto discard; | 
 |  | 
 | 		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE | 
 | 		 * chunk, the receiver should silently discard the packet | 
 | 		 * and take no further action. | 
 | 		 */ | 
 | 		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type) | 
 | 			goto discard; | 
 |  | 
 | 		/* RFC 4460, 2.11.2 | 
 | 		 * This will discard packets with INIT chunk bundled as | 
 | 		 * subsequent chunks in the packet.  When INIT is first, | 
 | 		 * the normal INIT processing will discard the chunk. | 
 | 		 */ | 
 | 		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data) | 
 | 			goto discard; | 
 |  | 
 | 		/* RFC 8.4, 7) If the packet contains a "Stale cookie" ERROR | 
 | 		 * or a COOKIE ACK the SCTP Packet should be silently | 
 | 		 * discarded. | 
 | 		 */ | 
 | 		if (SCTP_CID_COOKIE_ACK == ch->type) | 
 | 			goto discard; | 
 |  | 
 | 		if (SCTP_CID_ERROR == ch->type) { | 
 | 			sctp_walk_errors(err, ch) { | 
 | 				if (SCTP_ERROR_STALE_COOKIE == err->cause) | 
 | 					goto discard; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		ch = (sctp_chunkhdr_t *) ch_end; | 
 | 	} while (ch_end < skb_tail_pointer(skb)); | 
 |  | 
 | 	return 0; | 
 |  | 
 | discard: | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* Insert endpoint into the hash table.  */ | 
 | static void __sctp_hash_endpoint(struct sctp_endpoint *ep) | 
 | { | 
 | 	struct sctp_ep_common *epb; | 
 | 	struct sctp_hashbucket *head; | 
 |  | 
 | 	epb = &ep->base; | 
 |  | 
 | 	epb->hashent = sctp_ep_hashfn(epb->bind_addr.port); | 
 | 	head = &sctp_ep_hashtable[epb->hashent]; | 
 |  | 
 | 	sctp_write_lock(&head->lock); | 
 | 	hlist_add_head(&epb->node, &head->chain); | 
 | 	sctp_write_unlock(&head->lock); | 
 | } | 
 |  | 
 | /* Add an endpoint to the hash. Local BH-safe. */ | 
 | void sctp_hash_endpoint(struct sctp_endpoint *ep) | 
 | { | 
 | 	sctp_local_bh_disable(); | 
 | 	__sctp_hash_endpoint(ep); | 
 | 	sctp_local_bh_enable(); | 
 | } | 
 |  | 
 | /* Remove endpoint from the hash table.  */ | 
 | static void __sctp_unhash_endpoint(struct sctp_endpoint *ep) | 
 | { | 
 | 	struct sctp_hashbucket *head; | 
 | 	struct sctp_ep_common *epb; | 
 |  | 
 | 	epb = &ep->base; | 
 |  | 
 | 	if (hlist_unhashed(&epb->node)) | 
 | 		return; | 
 |  | 
 | 	epb->hashent = sctp_ep_hashfn(epb->bind_addr.port); | 
 |  | 
 | 	head = &sctp_ep_hashtable[epb->hashent]; | 
 |  | 
 | 	sctp_write_lock(&head->lock); | 
 | 	__hlist_del(&epb->node); | 
 | 	sctp_write_unlock(&head->lock); | 
 | } | 
 |  | 
 | /* Remove endpoint from the hash.  Local BH-safe. */ | 
 | void sctp_unhash_endpoint(struct sctp_endpoint *ep) | 
 | { | 
 | 	sctp_local_bh_disable(); | 
 | 	__sctp_unhash_endpoint(ep); | 
 | 	sctp_local_bh_enable(); | 
 | } | 
 |  | 
 | /* Look up an endpoint. */ | 
 | static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr) | 
 | { | 
 | 	struct sctp_hashbucket *head; | 
 | 	struct sctp_ep_common *epb; | 
 | 	struct sctp_endpoint *ep; | 
 | 	struct hlist_node *node; | 
 | 	int hash; | 
 |  | 
 | 	hash = sctp_ep_hashfn(ntohs(laddr->v4.sin_port)); | 
 | 	head = &sctp_ep_hashtable[hash]; | 
 | 	read_lock(&head->lock); | 
 | 	sctp_for_each_hentry(epb, node, &head->chain) { | 
 | 		ep = sctp_ep(epb); | 
 | 		if (sctp_endpoint_is_match(ep, laddr)) | 
 | 			goto hit; | 
 | 	} | 
 |  | 
 | 	ep = sctp_sk((sctp_get_ctl_sock()))->ep; | 
 |  | 
 | hit: | 
 | 	sctp_endpoint_hold(ep); | 
 | 	read_unlock(&head->lock); | 
 | 	return ep; | 
 | } | 
 |  | 
 | /* Insert association into the hash table.  */ | 
 | static void __sctp_hash_established(struct sctp_association *asoc) | 
 | { | 
 | 	struct sctp_ep_common *epb; | 
 | 	struct sctp_hashbucket *head; | 
 |  | 
 | 	epb = &asoc->base; | 
 |  | 
 | 	/* Calculate which chain this entry will belong to. */ | 
 | 	epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port, asoc->peer.port); | 
 |  | 
 | 	head = &sctp_assoc_hashtable[epb->hashent]; | 
 |  | 
 | 	sctp_write_lock(&head->lock); | 
 | 	hlist_add_head(&epb->node, &head->chain); | 
 | 	sctp_write_unlock(&head->lock); | 
 | } | 
 |  | 
 | /* Add an association to the hash. Local BH-safe. */ | 
 | void sctp_hash_established(struct sctp_association *asoc) | 
 | { | 
 | 	if (asoc->temp) | 
 | 		return; | 
 |  | 
 | 	sctp_local_bh_disable(); | 
 | 	__sctp_hash_established(asoc); | 
 | 	sctp_local_bh_enable(); | 
 | } | 
 |  | 
 | /* Remove association from the hash table.  */ | 
 | static void __sctp_unhash_established(struct sctp_association *asoc) | 
 | { | 
 | 	struct sctp_hashbucket *head; | 
 | 	struct sctp_ep_common *epb; | 
 |  | 
 | 	epb = &asoc->base; | 
 |  | 
 | 	epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port, | 
 | 					 asoc->peer.port); | 
 |  | 
 | 	head = &sctp_assoc_hashtable[epb->hashent]; | 
 |  | 
 | 	sctp_write_lock(&head->lock); | 
 | 	__hlist_del(&epb->node); | 
 | 	sctp_write_unlock(&head->lock); | 
 | } | 
 |  | 
 | /* Remove association from the hash table.  Local BH-safe. */ | 
 | void sctp_unhash_established(struct sctp_association *asoc) | 
 | { | 
 | 	if (asoc->temp) | 
 | 		return; | 
 |  | 
 | 	sctp_local_bh_disable(); | 
 | 	__sctp_unhash_established(asoc); | 
 | 	sctp_local_bh_enable(); | 
 | } | 
 |  | 
 | /* Look up an association. */ | 
 | static struct sctp_association *__sctp_lookup_association( | 
 | 					const union sctp_addr *local, | 
 | 					const union sctp_addr *peer, | 
 | 					struct sctp_transport **pt) | 
 | { | 
 | 	struct sctp_hashbucket *head; | 
 | 	struct sctp_ep_common *epb; | 
 | 	struct sctp_association *asoc; | 
 | 	struct sctp_transport *transport; | 
 | 	struct hlist_node *node; | 
 | 	int hash; | 
 |  | 
 | 	/* Optimize here for direct hit, only listening connections can | 
 | 	 * have wildcards anyways. | 
 | 	 */ | 
 | 	hash = sctp_assoc_hashfn(ntohs(local->v4.sin_port), ntohs(peer->v4.sin_port)); | 
 | 	head = &sctp_assoc_hashtable[hash]; | 
 | 	read_lock(&head->lock); | 
 | 	sctp_for_each_hentry(epb, node, &head->chain) { | 
 | 		asoc = sctp_assoc(epb); | 
 | 		transport = sctp_assoc_is_match(asoc, local, peer); | 
 | 		if (transport) | 
 | 			goto hit; | 
 | 	} | 
 |  | 
 | 	read_unlock(&head->lock); | 
 |  | 
 | 	return NULL; | 
 |  | 
 | hit: | 
 | 	*pt = transport; | 
 | 	sctp_association_hold(asoc); | 
 | 	read_unlock(&head->lock); | 
 | 	return asoc; | 
 | } | 
 |  | 
 | /* Look up an association. BH-safe. */ | 
 | SCTP_STATIC | 
 | struct sctp_association *sctp_lookup_association(const union sctp_addr *laddr, | 
 | 						 const union sctp_addr *paddr, | 
 | 					    struct sctp_transport **transportp) | 
 | { | 
 | 	struct sctp_association *asoc; | 
 |  | 
 | 	sctp_local_bh_disable(); | 
 | 	asoc = __sctp_lookup_association(laddr, paddr, transportp); | 
 | 	sctp_local_bh_enable(); | 
 |  | 
 | 	return asoc; | 
 | } | 
 |  | 
 | /* Is there an association matching the given local and peer addresses? */ | 
 | int sctp_has_association(const union sctp_addr *laddr, | 
 | 			 const union sctp_addr *paddr) | 
 | { | 
 | 	struct sctp_association *asoc; | 
 | 	struct sctp_transport *transport; | 
 |  | 
 | 	if ((asoc = sctp_lookup_association(laddr, paddr, &transport))) { | 
 | 		sctp_association_put(asoc); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * SCTP Implementors Guide, 2.18 Handling of address | 
 |  * parameters within the INIT or INIT-ACK. | 
 |  * | 
 |  * D) When searching for a matching TCB upon reception of an INIT | 
 |  *    or INIT-ACK chunk the receiver SHOULD use not only the | 
 |  *    source address of the packet (containing the INIT or | 
 |  *    INIT-ACK) but the receiver SHOULD also use all valid | 
 |  *    address parameters contained within the chunk. | 
 |  * | 
 |  * 2.18.3 Solution description | 
 |  * | 
 |  * This new text clearly specifies to an implementor the need | 
 |  * to look within the INIT or INIT-ACK. Any implementation that | 
 |  * does not do this, may not be able to establish associations | 
 |  * in certain circumstances. | 
 |  * | 
 |  */ | 
 | static struct sctp_association *__sctp_rcv_init_lookup(struct sk_buff *skb, | 
 | 	const union sctp_addr *laddr, struct sctp_transport **transportp) | 
 | { | 
 | 	struct sctp_association *asoc; | 
 | 	union sctp_addr addr; | 
 | 	union sctp_addr *paddr = &addr; | 
 | 	struct sctphdr *sh = sctp_hdr(skb); | 
 | 	sctp_chunkhdr_t *ch; | 
 | 	union sctp_params params; | 
 | 	sctp_init_chunk_t *init; | 
 | 	struct sctp_transport *transport; | 
 | 	struct sctp_af *af; | 
 |  | 
 | 	ch = (sctp_chunkhdr_t *) skb->data; | 
 |  | 
 | 	/* | 
 | 	 * This code will NOT touch anything inside the chunk--it is | 
 | 	 * strictly READ-ONLY. | 
 | 	 * | 
 | 	 * RFC 2960 3  SCTP packet Format | 
 | 	 * | 
 | 	 * Multiple chunks can be bundled into one SCTP packet up to | 
 | 	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN | 
 | 	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any | 
 | 	 * other chunk in a packet.  See Section 6.10 for more details | 
 | 	 * on chunk bundling. | 
 | 	 */ | 
 |  | 
 | 	/* Find the start of the TLVs and the end of the chunk.  This is | 
 | 	 * the region we search for address parameters. | 
 | 	 */ | 
 | 	init = (sctp_init_chunk_t *)skb->data; | 
 |  | 
 | 	/* Walk the parameters looking for embedded addresses. */ | 
 | 	sctp_walk_params(params, init, init_hdr.params) { | 
 |  | 
 | 		/* Note: Ignoring hostname addresses. */ | 
 | 		af = sctp_get_af_specific(param_type2af(params.p->type)); | 
 | 		if (!af) | 
 | 			continue; | 
 |  | 
 | 		af->from_addr_param(paddr, params.addr, sh->source, 0); | 
 |  | 
 | 		asoc = __sctp_lookup_association(laddr, paddr, &transport); | 
 | 		if (asoc) | 
 | 			return asoc; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* ADD-IP, Section 5.2 | 
 |  * When an endpoint receives an ASCONF Chunk from the remote peer | 
 |  * special procedures may be needed to identify the association the | 
 |  * ASCONF Chunk is associated with. To properly find the association | 
 |  * the following procedures SHOULD be followed: | 
 |  * | 
 |  * D2) If the association is not found, use the address found in the | 
 |  * Address Parameter TLV combined with the port number found in the | 
 |  * SCTP common header. If found proceed to rule D4. | 
 |  * | 
 |  * D2-ext) If more than one ASCONF Chunks are packed together, use the | 
 |  * address found in the ASCONF Address Parameter TLV of each of the | 
 |  * subsequent ASCONF Chunks. If found, proceed to rule D4. | 
 |  */ | 
 | static struct sctp_association *__sctp_rcv_asconf_lookup( | 
 | 					sctp_chunkhdr_t *ch, | 
 | 					const union sctp_addr *laddr, | 
 | 					__be16 peer_port, | 
 | 					struct sctp_transport **transportp) | 
 | { | 
 | 	sctp_addip_chunk_t *asconf = (struct sctp_addip_chunk *)ch; | 
 | 	struct sctp_af *af; | 
 | 	union sctp_addr_param *param; | 
 | 	union sctp_addr paddr; | 
 |  | 
 | 	/* Skip over the ADDIP header and find the Address parameter */ | 
 | 	param = (union sctp_addr_param *)(asconf + 1); | 
 |  | 
 | 	af = sctp_get_af_specific(param_type2af(param->v4.param_hdr.type)); | 
 | 	if (unlikely(!af)) | 
 | 		return NULL; | 
 |  | 
 | 	af->from_addr_param(&paddr, param, peer_port, 0); | 
 |  | 
 | 	return __sctp_lookup_association(laddr, &paddr, transportp); | 
 | } | 
 |  | 
 |  | 
 | /* SCTP-AUTH, Section 6.3: | 
 | *    If the receiver does not find a STCB for a packet containing an AUTH | 
 | *    chunk as the first chunk and not a COOKIE-ECHO chunk as the second | 
 | *    chunk, it MUST use the chunks after the AUTH chunk to look up an existing | 
 | *    association. | 
 | * | 
 | * This means that any chunks that can help us identify the association need | 
 | * to be looked at to find this assocation. | 
 | */ | 
 | static struct sctp_association *__sctp_rcv_walk_lookup(struct sk_buff *skb, | 
 | 				      const union sctp_addr *laddr, | 
 | 				      struct sctp_transport **transportp) | 
 | { | 
 | 	struct sctp_association *asoc = NULL; | 
 | 	sctp_chunkhdr_t *ch; | 
 | 	int have_auth = 0; | 
 | 	unsigned int chunk_num = 1; | 
 | 	__u8 *ch_end; | 
 |  | 
 | 	/* Walk through the chunks looking for AUTH or ASCONF chunks | 
 | 	 * to help us find the association. | 
 | 	 */ | 
 | 	ch = (sctp_chunkhdr_t *) skb->data; | 
 | 	do { | 
 | 		/* Break out if chunk length is less then minimal. */ | 
 | 		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t)) | 
 | 			break; | 
 |  | 
 | 		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length)); | 
 | 		if (ch_end > skb_tail_pointer(skb)) | 
 | 			break; | 
 |  | 
 | 		switch(ch->type) { | 
 | 		    case SCTP_CID_AUTH: | 
 | 			    have_auth = chunk_num; | 
 | 			    break; | 
 |  | 
 | 		    case SCTP_CID_COOKIE_ECHO: | 
 | 			    /* If a packet arrives containing an AUTH chunk as | 
 | 			     * a first chunk, a COOKIE-ECHO chunk as the second | 
 | 			     * chunk, and possibly more chunks after them, and | 
 | 			     * the receiver does not have an STCB for that | 
 | 			     * packet, then authentication is based on | 
 | 			     * the contents of the COOKIE- ECHO chunk. | 
 | 			     */ | 
 | 			    if (have_auth == 1 && chunk_num == 2) | 
 | 				    return NULL; | 
 | 			    break; | 
 |  | 
 | 		    case SCTP_CID_ASCONF: | 
 | 			    if (have_auth || sctp_addip_noauth) | 
 | 				    asoc = __sctp_rcv_asconf_lookup(ch, laddr, | 
 | 							sctp_hdr(skb)->source, | 
 | 							transportp); | 
 | 		    default: | 
 | 			    break; | 
 | 		} | 
 |  | 
 | 		if (asoc) | 
 | 			break; | 
 |  | 
 | 		ch = (sctp_chunkhdr_t *) ch_end; | 
 | 		chunk_num++; | 
 | 	} while (ch_end < skb_tail_pointer(skb)); | 
 |  | 
 | 	return asoc; | 
 | } | 
 |  | 
 | /* | 
 |  * There are circumstances when we need to look inside the SCTP packet | 
 |  * for information to help us find the association.   Examples | 
 |  * include looking inside of INIT/INIT-ACK chunks or after the AUTH | 
 |  * chunks. | 
 |  */ | 
 | static struct sctp_association *__sctp_rcv_lookup_harder(struct sk_buff *skb, | 
 | 				      const union sctp_addr *laddr, | 
 | 				      struct sctp_transport **transportp) | 
 | { | 
 | 	sctp_chunkhdr_t *ch; | 
 |  | 
 | 	ch = (sctp_chunkhdr_t *) skb->data; | 
 |  | 
 | 	/* The code below will attempt to walk the chunk and extract | 
 | 	 * parameter information.  Before we do that, we need to verify | 
 | 	 * that the chunk length doesn't cause overflow.  Otherwise, we'll | 
 | 	 * walk off the end. | 
 | 	 */ | 
 | 	if (WORD_ROUND(ntohs(ch->length)) > skb->len) | 
 | 		return NULL; | 
 |  | 
 | 	/* If this is INIT/INIT-ACK look inside the chunk too. */ | 
 | 	switch (ch->type) { | 
 | 	case SCTP_CID_INIT: | 
 | 	case SCTP_CID_INIT_ACK: | 
 | 		return __sctp_rcv_init_lookup(skb, laddr, transportp); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		return __sctp_rcv_walk_lookup(skb, laddr, transportp); | 
 | 		break; | 
 | 	} | 
 |  | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* Lookup an association for an inbound skb. */ | 
 | static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb, | 
 | 				      const union sctp_addr *paddr, | 
 | 				      const union sctp_addr *laddr, | 
 | 				      struct sctp_transport **transportp) | 
 | { | 
 | 	struct sctp_association *asoc; | 
 |  | 
 | 	asoc = __sctp_lookup_association(laddr, paddr, transportp); | 
 |  | 
 | 	/* Further lookup for INIT/INIT-ACK packets. | 
 | 	 * SCTP Implementors Guide, 2.18 Handling of address | 
 | 	 * parameters within the INIT or INIT-ACK. | 
 | 	 */ | 
 | 	if (!asoc) | 
 | 		asoc = __sctp_rcv_lookup_harder(skb, laddr, transportp); | 
 |  | 
 | 	return asoc; | 
 | } |