|  | /* | 
|  | *  linux/arch/arm/mm/dma-mapping.c | 
|  | * | 
|  | *  Copyright (C) 2000-2004 Russell King | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | *  DMA uncached mapping support. | 
|  | */ | 
|  | #include <linux/module.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/dma-mapping.h> | 
|  |  | 
|  | #include <asm/memory.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/sizes.h> | 
|  |  | 
|  | /* Sanity check size */ | 
|  | #if (CONSISTENT_DMA_SIZE % SZ_2M) | 
|  | #error "CONSISTENT_DMA_SIZE must be multiple of 2MiB" | 
|  | #endif | 
|  |  | 
|  | #define CONSISTENT_END	(0xffe00000) | 
|  | #define CONSISTENT_BASE	(CONSISTENT_END - CONSISTENT_DMA_SIZE) | 
|  |  | 
|  | #define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT) | 
|  | #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT) | 
|  | #define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT) | 
|  |  | 
|  |  | 
|  | /* | 
|  | * These are the page tables (2MB each) covering uncached, DMA consistent allocations | 
|  | */ | 
|  | static pte_t *consistent_pte[NUM_CONSISTENT_PTES]; | 
|  | static DEFINE_SPINLOCK(consistent_lock); | 
|  |  | 
|  | /* | 
|  | * VM region handling support. | 
|  | * | 
|  | * This should become something generic, handling VM region allocations for | 
|  | * vmalloc and similar (ioremap, module space, etc). | 
|  | * | 
|  | * I envisage vmalloc()'s supporting vm_struct becoming: | 
|  | * | 
|  | *  struct vm_struct { | 
|  | *    struct vm_region	region; | 
|  | *    unsigned long	flags; | 
|  | *    struct page	**pages; | 
|  | *    unsigned int	nr_pages; | 
|  | *    unsigned long	phys_addr; | 
|  | *  }; | 
|  | * | 
|  | * get_vm_area() would then call vm_region_alloc with an appropriate | 
|  | * struct vm_region head (eg): | 
|  | * | 
|  | *  struct vm_region vmalloc_head = { | 
|  | *	.vm_list	= LIST_HEAD_INIT(vmalloc_head.vm_list), | 
|  | *	.vm_start	= VMALLOC_START, | 
|  | *	.vm_end		= VMALLOC_END, | 
|  | *  }; | 
|  | * | 
|  | * However, vmalloc_head.vm_start is variable (typically, it is dependent on | 
|  | * the amount of RAM found at boot time.)  I would imagine that get_vm_area() | 
|  | * would have to initialise this each time prior to calling vm_region_alloc(). | 
|  | */ | 
|  | struct vm_region { | 
|  | struct list_head	vm_list; | 
|  | unsigned long		vm_start; | 
|  | unsigned long		vm_end; | 
|  | struct page		*vm_pages; | 
|  | int			vm_active; | 
|  | }; | 
|  |  | 
|  | static struct vm_region consistent_head = { | 
|  | .vm_list	= LIST_HEAD_INIT(consistent_head.vm_list), | 
|  | .vm_start	= CONSISTENT_BASE, | 
|  | .vm_end		= CONSISTENT_END, | 
|  | }; | 
|  |  | 
|  | static struct vm_region * | 
|  | vm_region_alloc(struct vm_region *head, size_t size, gfp_t gfp) | 
|  | { | 
|  | unsigned long addr = head->vm_start, end = head->vm_end - size; | 
|  | unsigned long flags; | 
|  | struct vm_region *c, *new; | 
|  |  | 
|  | new = kmalloc(sizeof(struct vm_region), gfp); | 
|  | if (!new) | 
|  | goto out; | 
|  |  | 
|  | spin_lock_irqsave(&consistent_lock, flags); | 
|  |  | 
|  | list_for_each_entry(c, &head->vm_list, vm_list) { | 
|  | if ((addr + size) < addr) | 
|  | goto nospc; | 
|  | if ((addr + size) <= c->vm_start) | 
|  | goto found; | 
|  | addr = c->vm_end; | 
|  | if (addr > end) | 
|  | goto nospc; | 
|  | } | 
|  |  | 
|  | found: | 
|  | /* | 
|  | * Insert this entry _before_ the one we found. | 
|  | */ | 
|  | list_add_tail(&new->vm_list, &c->vm_list); | 
|  | new->vm_start = addr; | 
|  | new->vm_end = addr + size; | 
|  | new->vm_active = 1; | 
|  |  | 
|  | spin_unlock_irqrestore(&consistent_lock, flags); | 
|  | return new; | 
|  |  | 
|  | nospc: | 
|  | spin_unlock_irqrestore(&consistent_lock, flags); | 
|  | kfree(new); | 
|  | out: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct vm_region *vm_region_find(struct vm_region *head, unsigned long addr) | 
|  | { | 
|  | struct vm_region *c; | 
|  |  | 
|  | list_for_each_entry(c, &head->vm_list, vm_list) { | 
|  | if (c->vm_active && c->vm_start == addr) | 
|  | goto out; | 
|  | } | 
|  | c = NULL; | 
|  | out: | 
|  | return c; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | #error ARM Coherent DMA allocator does not (yet) support huge TLB | 
|  | #endif | 
|  |  | 
|  | static void * | 
|  | __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp, | 
|  | pgprot_t prot) | 
|  | { | 
|  | struct page *page; | 
|  | struct vm_region *c; | 
|  | unsigned long order; | 
|  | u64 mask = ISA_DMA_THRESHOLD, limit; | 
|  |  | 
|  | if (!consistent_pte[0]) { | 
|  | printk(KERN_ERR "%s: not initialised\n", __func__); | 
|  | dump_stack(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (dev) { | 
|  | mask = dev->coherent_dma_mask; | 
|  |  | 
|  | /* | 
|  | * Sanity check the DMA mask - it must be non-zero, and | 
|  | * must be able to be satisfied by a DMA allocation. | 
|  | */ | 
|  | if (mask == 0) { | 
|  | dev_warn(dev, "coherent DMA mask is unset\n"); | 
|  | goto no_page; | 
|  | } | 
|  |  | 
|  | if ((~mask) & ISA_DMA_THRESHOLD) { | 
|  | dev_warn(dev, "coherent DMA mask %#llx is smaller " | 
|  | "than system GFP_DMA mask %#llx\n", | 
|  | mask, (unsigned long long)ISA_DMA_THRESHOLD); | 
|  | goto no_page; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sanity check the allocation size. | 
|  | */ | 
|  | size = PAGE_ALIGN(size); | 
|  | limit = (mask + 1) & ~mask; | 
|  | if ((limit && size >= limit) || | 
|  | size >= (CONSISTENT_END - CONSISTENT_BASE)) { | 
|  | printk(KERN_WARNING "coherent allocation too big " | 
|  | "(requested %#x mask %#llx)\n", size, mask); | 
|  | goto no_page; | 
|  | } | 
|  |  | 
|  | order = get_order(size); | 
|  |  | 
|  | if (mask != 0xffffffff) | 
|  | gfp |= GFP_DMA; | 
|  |  | 
|  | page = alloc_pages(gfp, order); | 
|  | if (!page) | 
|  | goto no_page; | 
|  |  | 
|  | /* | 
|  | * Invalidate any data that might be lurking in the | 
|  | * kernel direct-mapped region for device DMA. | 
|  | */ | 
|  | { | 
|  | void *ptr = page_address(page); | 
|  | memset(ptr, 0, size); | 
|  | dmac_flush_range(ptr, ptr + size); | 
|  | outer_flush_range(__pa(ptr), __pa(ptr) + size); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a virtual address in the consistent mapping region. | 
|  | */ | 
|  | c = vm_region_alloc(&consistent_head, size, | 
|  | gfp & ~(__GFP_DMA | __GFP_HIGHMEM)); | 
|  | if (c) { | 
|  | pte_t *pte; | 
|  | struct page *end = page + (1 << order); | 
|  | int idx = CONSISTENT_PTE_INDEX(c->vm_start); | 
|  | u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1); | 
|  |  | 
|  | pte = consistent_pte[idx] + off; | 
|  | c->vm_pages = page; | 
|  |  | 
|  | split_page(page, order); | 
|  |  | 
|  | /* | 
|  | * Set the "dma handle" | 
|  | */ | 
|  | *handle = page_to_dma(dev, page); | 
|  |  | 
|  | do { | 
|  | BUG_ON(!pte_none(*pte)); | 
|  |  | 
|  | /* | 
|  | * x86 does not mark the pages reserved... | 
|  | */ | 
|  | SetPageReserved(page); | 
|  | set_pte_ext(pte, mk_pte(page, prot), 0); | 
|  | page++; | 
|  | pte++; | 
|  | off++; | 
|  | if (off >= PTRS_PER_PTE) { | 
|  | off = 0; | 
|  | pte = consistent_pte[++idx]; | 
|  | } | 
|  | } while (size -= PAGE_SIZE); | 
|  |  | 
|  | /* | 
|  | * Free the otherwise unused pages. | 
|  | */ | 
|  | while (page < end) { | 
|  | __free_page(page); | 
|  | page++; | 
|  | } | 
|  |  | 
|  | return (void *)c->vm_start; | 
|  | } | 
|  |  | 
|  | if (page) | 
|  | __free_pages(page, order); | 
|  | no_page: | 
|  | *handle = ~0; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate DMA-coherent memory space and return both the kernel remapped | 
|  | * virtual and bus address for that space. | 
|  | */ | 
|  | void * | 
|  | dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp) | 
|  | { | 
|  | void *memory; | 
|  |  | 
|  | if (dma_alloc_from_coherent(dev, size, handle, &memory)) | 
|  | return memory; | 
|  |  | 
|  | if (arch_is_coherent()) { | 
|  | void *virt; | 
|  |  | 
|  | virt = kmalloc(size, gfp); | 
|  | if (!virt) | 
|  | return NULL; | 
|  | *handle =  virt_to_dma(dev, virt); | 
|  |  | 
|  | return virt; | 
|  | } | 
|  |  | 
|  | return __dma_alloc(dev, size, handle, gfp, | 
|  | pgprot_noncached(pgprot_kernel)); | 
|  | } | 
|  | EXPORT_SYMBOL(dma_alloc_coherent); | 
|  |  | 
|  | /* | 
|  | * Allocate a writecombining region, in much the same way as | 
|  | * dma_alloc_coherent above. | 
|  | */ | 
|  | void * | 
|  | dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp) | 
|  | { | 
|  | return __dma_alloc(dev, size, handle, gfp, | 
|  | pgprot_writecombine(pgprot_kernel)); | 
|  | } | 
|  | EXPORT_SYMBOL(dma_alloc_writecombine); | 
|  |  | 
|  | static int dma_mmap(struct device *dev, struct vm_area_struct *vma, | 
|  | void *cpu_addr, dma_addr_t dma_addr, size_t size) | 
|  | { | 
|  | unsigned long flags, user_size, kern_size; | 
|  | struct vm_region *c; | 
|  | int ret = -ENXIO; | 
|  |  | 
|  | user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; | 
|  |  | 
|  | spin_lock_irqsave(&consistent_lock, flags); | 
|  | c = vm_region_find(&consistent_head, (unsigned long)cpu_addr); | 
|  | spin_unlock_irqrestore(&consistent_lock, flags); | 
|  |  | 
|  | if (c) { | 
|  | unsigned long off = vma->vm_pgoff; | 
|  |  | 
|  | kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT; | 
|  |  | 
|  | if (off < kern_size && | 
|  | user_size <= (kern_size - off)) { | 
|  | ret = remap_pfn_range(vma, vma->vm_start, | 
|  | page_to_pfn(c->vm_pages) + off, | 
|  | user_size << PAGE_SHIFT, | 
|  | vma->vm_page_prot); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma, | 
|  | void *cpu_addr, dma_addr_t dma_addr, size_t size) | 
|  | { | 
|  | vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); | 
|  | return dma_mmap(dev, vma, cpu_addr, dma_addr, size); | 
|  | } | 
|  | EXPORT_SYMBOL(dma_mmap_coherent); | 
|  |  | 
|  | int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma, | 
|  | void *cpu_addr, dma_addr_t dma_addr, size_t size) | 
|  | { | 
|  | vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); | 
|  | return dma_mmap(dev, vma, cpu_addr, dma_addr, size); | 
|  | } | 
|  | EXPORT_SYMBOL(dma_mmap_writecombine); | 
|  |  | 
|  | /* | 
|  | * free a page as defined by the above mapping. | 
|  | * Must not be called with IRQs disabled. | 
|  | */ | 
|  | void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle) | 
|  | { | 
|  | struct vm_region *c; | 
|  | unsigned long flags, addr; | 
|  | pte_t *ptep; | 
|  | int idx; | 
|  | u32 off; | 
|  |  | 
|  | WARN_ON(irqs_disabled()); | 
|  |  | 
|  | if (dma_release_from_coherent(dev, get_order(size), cpu_addr)) | 
|  | return; | 
|  |  | 
|  | if (arch_is_coherent()) { | 
|  | kfree(cpu_addr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | size = PAGE_ALIGN(size); | 
|  |  | 
|  | spin_lock_irqsave(&consistent_lock, flags); | 
|  | c = vm_region_find(&consistent_head, (unsigned long)cpu_addr); | 
|  | if (!c) | 
|  | goto no_area; | 
|  |  | 
|  | c->vm_active = 0; | 
|  | spin_unlock_irqrestore(&consistent_lock, flags); | 
|  |  | 
|  | if ((c->vm_end - c->vm_start) != size) { | 
|  | printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n", | 
|  | __func__, c->vm_end - c->vm_start, size); | 
|  | dump_stack(); | 
|  | size = c->vm_end - c->vm_start; | 
|  | } | 
|  |  | 
|  | idx = CONSISTENT_PTE_INDEX(c->vm_start); | 
|  | off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1); | 
|  | ptep = consistent_pte[idx] + off; | 
|  | addr = c->vm_start; | 
|  | do { | 
|  | pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep); | 
|  | unsigned long pfn; | 
|  |  | 
|  | ptep++; | 
|  | addr += PAGE_SIZE; | 
|  | off++; | 
|  | if (off >= PTRS_PER_PTE) { | 
|  | off = 0; | 
|  | ptep = consistent_pte[++idx]; | 
|  | } | 
|  |  | 
|  | if (!pte_none(pte) && pte_present(pte)) { | 
|  | pfn = pte_pfn(pte); | 
|  |  | 
|  | if (pfn_valid(pfn)) { | 
|  | struct page *page = pfn_to_page(pfn); | 
|  |  | 
|  | /* | 
|  | * x86 does not mark the pages reserved... | 
|  | */ | 
|  | ClearPageReserved(page); | 
|  |  | 
|  | __free_page(page); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | printk(KERN_CRIT "%s: bad page in kernel page table\n", | 
|  | __func__); | 
|  | } while (size -= PAGE_SIZE); | 
|  |  | 
|  | flush_tlb_kernel_range(c->vm_start, c->vm_end); | 
|  |  | 
|  | spin_lock_irqsave(&consistent_lock, flags); | 
|  | list_del(&c->vm_list); | 
|  | spin_unlock_irqrestore(&consistent_lock, flags); | 
|  |  | 
|  | kfree(c); | 
|  | return; | 
|  |  | 
|  | no_area: | 
|  | spin_unlock_irqrestore(&consistent_lock, flags); | 
|  | printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n", | 
|  | __func__, cpu_addr); | 
|  | dump_stack(); | 
|  | } | 
|  | EXPORT_SYMBOL(dma_free_coherent); | 
|  |  | 
|  | /* | 
|  | * Initialise the consistent memory allocation. | 
|  | */ | 
|  | static int __init consistent_init(void) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  | int ret = 0, i = 0; | 
|  | u32 base = CONSISTENT_BASE; | 
|  |  | 
|  | do { | 
|  | pgd = pgd_offset(&init_mm, base); | 
|  | pmd = pmd_alloc(&init_mm, pgd, base); | 
|  | if (!pmd) { | 
|  | printk(KERN_ERR "%s: no pmd tables\n", __func__); | 
|  | ret = -ENOMEM; | 
|  | break; | 
|  | } | 
|  | WARN_ON(!pmd_none(*pmd)); | 
|  |  | 
|  | pte = pte_alloc_kernel(pmd, base); | 
|  | if (!pte) { | 
|  | printk(KERN_ERR "%s: no pte tables\n", __func__); | 
|  | ret = -ENOMEM; | 
|  | break; | 
|  | } | 
|  |  | 
|  | consistent_pte[i++] = pte; | 
|  | base += (1 << PGDIR_SHIFT); | 
|  | } while (base < CONSISTENT_END); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | core_initcall(consistent_init); | 
|  |  | 
|  | /* | 
|  | * Make an area consistent for devices. | 
|  | * Note: Drivers should NOT use this function directly, as it will break | 
|  | * platforms with CONFIG_DMABOUNCE. | 
|  | * Use the driver DMA support - see dma-mapping.h (dma_sync_*) | 
|  | */ | 
|  | void dma_cache_maint(const void *start, size_t size, int direction) | 
|  | { | 
|  | const void *end = start + size; | 
|  |  | 
|  | BUG_ON(!virt_addr_valid(start) || !virt_addr_valid(end - 1)); | 
|  |  | 
|  | switch (direction) { | 
|  | case DMA_FROM_DEVICE:		/* invalidate only */ | 
|  | dmac_inv_range(start, end); | 
|  | outer_inv_range(__pa(start), __pa(end)); | 
|  | break; | 
|  | case DMA_TO_DEVICE:		/* writeback only */ | 
|  | dmac_clean_range(start, end); | 
|  | outer_clean_range(__pa(start), __pa(end)); | 
|  | break; | 
|  | case DMA_BIDIRECTIONAL:		/* writeback and invalidate */ | 
|  | dmac_flush_range(start, end); | 
|  | outer_flush_range(__pa(start), __pa(end)); | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(dma_cache_maint); | 
|  |  | 
|  | /** | 
|  | * dma_map_sg - map a set of SG buffers for streaming mode DMA | 
|  | * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices | 
|  | * @sg: list of buffers | 
|  | * @nents: number of buffers to map | 
|  | * @dir: DMA transfer direction | 
|  | * | 
|  | * Map a set of buffers described by scatterlist in streaming mode for DMA. | 
|  | * This is the scatter-gather version of the dma_map_single interface. | 
|  | * Here the scatter gather list elements are each tagged with the | 
|  | * appropriate dma address and length.  They are obtained via | 
|  | * sg_dma_{address,length}. | 
|  | * | 
|  | * Device ownership issues as mentioned for dma_map_single are the same | 
|  | * here. | 
|  | */ | 
|  | int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, | 
|  | enum dma_data_direction dir) | 
|  | { | 
|  | struct scatterlist *s; | 
|  | int i, j; | 
|  |  | 
|  | for_each_sg(sg, s, nents, i) { | 
|  | s->dma_address = dma_map_page(dev, sg_page(s), s->offset, | 
|  | s->length, dir); | 
|  | if (dma_mapping_error(dev, s->dma_address)) | 
|  | goto bad_mapping; | 
|  | } | 
|  | return nents; | 
|  |  | 
|  | bad_mapping: | 
|  | for_each_sg(sg, s, i, j) | 
|  | dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(dma_map_sg); | 
|  |  | 
|  | /** | 
|  | * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg | 
|  | * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices | 
|  | * @sg: list of buffers | 
|  | * @nents: number of buffers to unmap (returned from dma_map_sg) | 
|  | * @dir: DMA transfer direction (same as was passed to dma_map_sg) | 
|  | * | 
|  | * Unmap a set of streaming mode DMA translations.  Again, CPU access | 
|  | * rules concerning calls here are the same as for dma_unmap_single(). | 
|  | */ | 
|  | void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, | 
|  | enum dma_data_direction dir) | 
|  | { | 
|  | struct scatterlist *s; | 
|  | int i; | 
|  |  | 
|  | for_each_sg(sg, s, nents, i) | 
|  | dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir); | 
|  | } | 
|  | EXPORT_SYMBOL(dma_unmap_sg); | 
|  |  | 
|  | /** | 
|  | * dma_sync_sg_for_cpu | 
|  | * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices | 
|  | * @sg: list of buffers | 
|  | * @nents: number of buffers to map (returned from dma_map_sg) | 
|  | * @dir: DMA transfer direction (same as was passed to dma_map_sg) | 
|  | */ | 
|  | void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, | 
|  | int nents, enum dma_data_direction dir) | 
|  | { | 
|  | struct scatterlist *s; | 
|  | int i; | 
|  |  | 
|  | for_each_sg(sg, s, nents, i) { | 
|  | dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0, | 
|  | sg_dma_len(s), dir); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(dma_sync_sg_for_cpu); | 
|  |  | 
|  | /** | 
|  | * dma_sync_sg_for_device | 
|  | * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices | 
|  | * @sg: list of buffers | 
|  | * @nents: number of buffers to map (returned from dma_map_sg) | 
|  | * @dir: DMA transfer direction (same as was passed to dma_map_sg) | 
|  | */ | 
|  | void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, | 
|  | int nents, enum dma_data_direction dir) | 
|  | { | 
|  | struct scatterlist *s; | 
|  | int i; | 
|  |  | 
|  | for_each_sg(sg, s, nents, i) { | 
|  | if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0, | 
|  | sg_dma_len(s), dir)) | 
|  | continue; | 
|  |  | 
|  | if (!arch_is_coherent()) | 
|  | dma_cache_maint(sg_virt(s), s->length, dir); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(dma_sync_sg_for_device); |