| /* | 
 |  *	linux/mm/filemap.c | 
 |  * | 
 |  * Copyright (C) 1994-1999  Linus Torvalds | 
 |  */ | 
 |  | 
 | /* | 
 |  * This file handles the generic file mmap semantics used by | 
 |  * most "normal" filesystems (but you don't /have/ to use this: | 
 |  * the NFS filesystem used to do this differently, for example) | 
 |  */ | 
 | #include <linux/module.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/compiler.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/aio.h> | 
 | #include <linux/capability.h> | 
 | #include <linux/kernel_stat.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/file.h> | 
 | #include <linux/uio.h> | 
 | #include <linux/hash.h> | 
 | #include <linux/writeback.h> | 
 | #include <linux/pagevec.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/security.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/cpuset.h> | 
 | #include "filemap.h" | 
 | #include "internal.h" | 
 |  | 
 | /* | 
 |  * FIXME: remove all knowledge of the buffer layer from the core VM | 
 |  */ | 
 | #include <linux/buffer_head.h> /* for generic_osync_inode */ | 
 |  | 
 | #include <asm/mman.h> | 
 |  | 
 | static ssize_t | 
 | generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, | 
 | 	loff_t offset, unsigned long nr_segs); | 
 |  | 
 | /* | 
 |  * Shared mappings implemented 30.11.1994. It's not fully working yet, | 
 |  * though. | 
 |  * | 
 |  * Shared mappings now work. 15.8.1995  Bruno. | 
 |  * | 
 |  * finished 'unifying' the page and buffer cache and SMP-threaded the | 
 |  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> | 
 |  * | 
 |  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> | 
 |  */ | 
 |  | 
 | /* | 
 |  * Lock ordering: | 
 |  * | 
 |  *  ->i_mmap_lock		(vmtruncate) | 
 |  *    ->private_lock		(__free_pte->__set_page_dirty_buffers) | 
 |  *      ->swap_lock		(exclusive_swap_page, others) | 
 |  *        ->mapping->tree_lock | 
 |  * | 
 |  *  ->i_mutex | 
 |  *    ->i_mmap_lock		(truncate->unmap_mapping_range) | 
 |  * | 
 |  *  ->mmap_sem | 
 |  *    ->i_mmap_lock | 
 |  *      ->page_table_lock or pte_lock	(various, mainly in memory.c) | 
 |  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock) | 
 |  * | 
 |  *  ->mmap_sem | 
 |  *    ->lock_page		(access_process_vm) | 
 |  * | 
 |  *  ->i_mutex			(generic_file_buffered_write) | 
 |  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault) | 
 |  * | 
 |  *  ->i_mutex | 
 |  *    ->i_alloc_sem             (various) | 
 |  * | 
 |  *  ->inode_lock | 
 |  *    ->sb_lock			(fs/fs-writeback.c) | 
 |  *    ->mapping->tree_lock	(__sync_single_inode) | 
 |  * | 
 |  *  ->i_mmap_lock | 
 |  *    ->anon_vma.lock		(vma_adjust) | 
 |  * | 
 |  *  ->anon_vma.lock | 
 |  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various) | 
 |  * | 
 |  *  ->page_table_lock or pte_lock | 
 |  *    ->swap_lock		(try_to_unmap_one) | 
 |  *    ->private_lock		(try_to_unmap_one) | 
 |  *    ->tree_lock		(try_to_unmap_one) | 
 |  *    ->zone.lru_lock		(follow_page->mark_page_accessed) | 
 |  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page) | 
 |  *    ->private_lock		(page_remove_rmap->set_page_dirty) | 
 |  *    ->tree_lock		(page_remove_rmap->set_page_dirty) | 
 |  *    ->inode_lock		(page_remove_rmap->set_page_dirty) | 
 |  *    ->inode_lock		(zap_pte_range->set_page_dirty) | 
 |  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers) | 
 |  * | 
 |  *  ->task->proc_lock | 
 |  *    ->dcache_lock		(proc_pid_lookup) | 
 |  */ | 
 |  | 
 | /* | 
 |  * Remove a page from the page cache and free it. Caller has to make | 
 |  * sure the page is locked and that nobody else uses it - or that usage | 
 |  * is safe.  The caller must hold a write_lock on the mapping's tree_lock. | 
 |  */ | 
 | void __remove_from_page_cache(struct page *page) | 
 | { | 
 | 	struct address_space *mapping = page->mapping; | 
 |  | 
 | 	radix_tree_delete(&mapping->page_tree, page->index); | 
 | 	page->mapping = NULL; | 
 | 	mapping->nrpages--; | 
 | 	__dec_zone_page_state(page, NR_FILE_PAGES); | 
 | } | 
 |  | 
 | void remove_from_page_cache(struct page *page) | 
 | { | 
 | 	struct address_space *mapping = page->mapping; | 
 |  | 
 | 	BUG_ON(!PageLocked(page)); | 
 |  | 
 | 	write_lock_irq(&mapping->tree_lock); | 
 | 	__remove_from_page_cache(page); | 
 | 	write_unlock_irq(&mapping->tree_lock); | 
 | } | 
 |  | 
 | static int sync_page(void *word) | 
 | { | 
 | 	struct address_space *mapping; | 
 | 	struct page *page; | 
 |  | 
 | 	page = container_of((unsigned long *)word, struct page, flags); | 
 |  | 
 | 	/* | 
 | 	 * page_mapping() is being called without PG_locked held. | 
 | 	 * Some knowledge of the state and use of the page is used to | 
 | 	 * reduce the requirements down to a memory barrier. | 
 | 	 * The danger here is of a stale page_mapping() return value | 
 | 	 * indicating a struct address_space different from the one it's | 
 | 	 * associated with when it is associated with one. | 
 | 	 * After smp_mb(), it's either the correct page_mapping() for | 
 | 	 * the page, or an old page_mapping() and the page's own | 
 | 	 * page_mapping() has gone NULL. | 
 | 	 * The ->sync_page() address_space operation must tolerate | 
 | 	 * page_mapping() going NULL. By an amazing coincidence, | 
 | 	 * this comes about because none of the users of the page | 
 | 	 * in the ->sync_page() methods make essential use of the | 
 | 	 * page_mapping(), merely passing the page down to the backing | 
 | 	 * device's unplug functions when it's non-NULL, which in turn | 
 | 	 * ignore it for all cases but swap, where only page_private(page) is | 
 | 	 * of interest. When page_mapping() does go NULL, the entire | 
 | 	 * call stack gracefully ignores the page and returns. | 
 | 	 * -- wli | 
 | 	 */ | 
 | 	smp_mb(); | 
 | 	mapping = page_mapping(page); | 
 | 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page) | 
 | 		mapping->a_ops->sync_page(page); | 
 | 	io_schedule(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range | 
 |  * @mapping:	address space structure to write | 
 |  * @start:	offset in bytes where the range starts | 
 |  * @end:	offset in bytes where the range ends (inclusive) | 
 |  * @sync_mode:	enable synchronous operation | 
 |  * | 
 |  * Start writeback against all of a mapping's dirty pages that lie | 
 |  * within the byte offsets <start, end> inclusive. | 
 |  * | 
 |  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as | 
 |  * opposed to a regular memory cleansing writeback.  The difference between | 
 |  * these two operations is that if a dirty page/buffer is encountered, it must | 
 |  * be waited upon, and not just skipped over. | 
 |  */ | 
 | int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, | 
 | 				loff_t end, int sync_mode) | 
 | { | 
 | 	int ret; | 
 | 	struct writeback_control wbc = { | 
 | 		.sync_mode = sync_mode, | 
 | 		.nr_to_write = mapping->nrpages * 2, | 
 | 		.range_start = start, | 
 | 		.range_end = end, | 
 | 	}; | 
 |  | 
 | 	if (!mapping_cap_writeback_dirty(mapping)) | 
 | 		return 0; | 
 |  | 
 | 	ret = do_writepages(mapping, &wbc); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline int __filemap_fdatawrite(struct address_space *mapping, | 
 | 	int sync_mode) | 
 | { | 
 | 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); | 
 | } | 
 |  | 
 | int filemap_fdatawrite(struct address_space *mapping) | 
 | { | 
 | 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL); | 
 | } | 
 | EXPORT_SYMBOL(filemap_fdatawrite); | 
 |  | 
 | static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, | 
 | 				loff_t end) | 
 | { | 
 | 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); | 
 | } | 
 |  | 
 | /** | 
 |  * filemap_flush - mostly a non-blocking flush | 
 |  * @mapping:	target address_space | 
 |  * | 
 |  * This is a mostly non-blocking flush.  Not suitable for data-integrity | 
 |  * purposes - I/O may not be started against all dirty pages. | 
 |  */ | 
 | int filemap_flush(struct address_space *mapping) | 
 | { | 
 | 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE); | 
 | } | 
 | EXPORT_SYMBOL(filemap_flush); | 
 |  | 
 | /** | 
 |  * wait_on_page_writeback_range - wait for writeback to complete | 
 |  * @mapping:	target address_space | 
 |  * @start:	beginning page index | 
 |  * @end:	ending page index | 
 |  * | 
 |  * Wait for writeback to complete against pages indexed by start->end | 
 |  * inclusive | 
 |  */ | 
 | int wait_on_page_writeback_range(struct address_space *mapping, | 
 | 				pgoff_t start, pgoff_t end) | 
 | { | 
 | 	struct pagevec pvec; | 
 | 	int nr_pages; | 
 | 	int ret = 0; | 
 | 	pgoff_t index; | 
 |  | 
 | 	if (end < start) | 
 | 		return 0; | 
 |  | 
 | 	pagevec_init(&pvec, 0); | 
 | 	index = start; | 
 | 	while ((index <= end) && | 
 | 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, | 
 | 			PAGECACHE_TAG_WRITEBACK, | 
 | 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { | 
 | 		unsigned i; | 
 |  | 
 | 		for (i = 0; i < nr_pages; i++) { | 
 | 			struct page *page = pvec.pages[i]; | 
 |  | 
 | 			/* until radix tree lookup accepts end_index */ | 
 | 			if (page->index > end) | 
 | 				continue; | 
 |  | 
 | 			wait_on_page_writeback(page); | 
 | 			if (PageError(page)) | 
 | 				ret = -EIO; | 
 | 		} | 
 | 		pagevec_release(&pvec); | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	/* Check for outstanding write errors */ | 
 | 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) | 
 | 		ret = -ENOSPC; | 
 | 	if (test_and_clear_bit(AS_EIO, &mapping->flags)) | 
 | 		ret = -EIO; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * sync_page_range - write and wait on all pages in the passed range | 
 |  * @inode:	target inode | 
 |  * @mapping:	target address_space | 
 |  * @pos:	beginning offset in pages to write | 
 |  * @count:	number of bytes to write | 
 |  * | 
 |  * Write and wait upon all the pages in the passed range.  This is a "data | 
 |  * integrity" operation.  It waits upon in-flight writeout before starting and | 
 |  * waiting upon new writeout.  If there was an IO error, return it. | 
 |  * | 
 |  * We need to re-take i_mutex during the generic_osync_inode list walk because | 
 |  * it is otherwise livelockable. | 
 |  */ | 
 | int sync_page_range(struct inode *inode, struct address_space *mapping, | 
 | 			loff_t pos, loff_t count) | 
 | { | 
 | 	pgoff_t start = pos >> PAGE_CACHE_SHIFT; | 
 | 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; | 
 | 	int ret; | 
 |  | 
 | 	if (!mapping_cap_writeback_dirty(mapping) || !count) | 
 | 		return 0; | 
 | 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); | 
 | 	if (ret == 0) { | 
 | 		mutex_lock(&inode->i_mutex); | 
 | 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); | 
 | 		mutex_unlock(&inode->i_mutex); | 
 | 	} | 
 | 	if (ret == 0) | 
 | 		ret = wait_on_page_writeback_range(mapping, start, end); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(sync_page_range); | 
 |  | 
 | /** | 
 |  * sync_page_range_nolock | 
 |  * @inode:	target inode | 
 |  * @mapping:	target address_space | 
 |  * @pos:	beginning offset in pages to write | 
 |  * @count:	number of bytes to write | 
 |  * | 
 |  * Note: Holding i_mutex across sync_page_range_nolock is not a good idea | 
 |  * as it forces O_SYNC writers to different parts of the same file | 
 |  * to be serialised right until io completion. | 
 |  */ | 
 | int sync_page_range_nolock(struct inode *inode, struct address_space *mapping, | 
 | 			   loff_t pos, loff_t count) | 
 | { | 
 | 	pgoff_t start = pos >> PAGE_CACHE_SHIFT; | 
 | 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; | 
 | 	int ret; | 
 |  | 
 | 	if (!mapping_cap_writeback_dirty(mapping) || !count) | 
 | 		return 0; | 
 | 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); | 
 | 	if (ret == 0) | 
 | 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); | 
 | 	if (ret == 0) | 
 | 		ret = wait_on_page_writeback_range(mapping, start, end); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(sync_page_range_nolock); | 
 |  | 
 | /** | 
 |  * filemap_fdatawait - wait for all under-writeback pages to complete | 
 |  * @mapping: address space structure to wait for | 
 |  * | 
 |  * Walk the list of under-writeback pages of the given address space | 
 |  * and wait for all of them. | 
 |  */ | 
 | int filemap_fdatawait(struct address_space *mapping) | 
 | { | 
 | 	loff_t i_size = i_size_read(mapping->host); | 
 |  | 
 | 	if (i_size == 0) | 
 | 		return 0; | 
 |  | 
 | 	return wait_on_page_writeback_range(mapping, 0, | 
 | 				(i_size - 1) >> PAGE_CACHE_SHIFT); | 
 | } | 
 | EXPORT_SYMBOL(filemap_fdatawait); | 
 |  | 
 | int filemap_write_and_wait(struct address_space *mapping) | 
 | { | 
 | 	int err = 0; | 
 |  | 
 | 	if (mapping->nrpages) { | 
 | 		err = filemap_fdatawrite(mapping); | 
 | 		/* | 
 | 		 * Even if the above returned error, the pages may be | 
 | 		 * written partially (e.g. -ENOSPC), so we wait for it. | 
 | 		 * But the -EIO is special case, it may indicate the worst | 
 | 		 * thing (e.g. bug) happened, so we avoid waiting for it. | 
 | 		 */ | 
 | 		if (err != -EIO) { | 
 | 			int err2 = filemap_fdatawait(mapping); | 
 | 			if (!err) | 
 | 				err = err2; | 
 | 		} | 
 | 	} | 
 | 	return err; | 
 | } | 
 | EXPORT_SYMBOL(filemap_write_and_wait); | 
 |  | 
 | /** | 
 |  * filemap_write_and_wait_range - write out & wait on a file range | 
 |  * @mapping:	the address_space for the pages | 
 |  * @lstart:	offset in bytes where the range starts | 
 |  * @lend:	offset in bytes where the range ends (inclusive) | 
 |  * | 
 |  * Write out and wait upon file offsets lstart->lend, inclusive. | 
 |  * | 
 |  * Note that `lend' is inclusive (describes the last byte to be written) so | 
 |  * that this function can be used to write to the very end-of-file (end = -1). | 
 |  */ | 
 | int filemap_write_and_wait_range(struct address_space *mapping, | 
 | 				 loff_t lstart, loff_t lend) | 
 | { | 
 | 	int err = 0; | 
 |  | 
 | 	if (mapping->nrpages) { | 
 | 		err = __filemap_fdatawrite_range(mapping, lstart, lend, | 
 | 						 WB_SYNC_ALL); | 
 | 		/* See comment of filemap_write_and_wait() */ | 
 | 		if (err != -EIO) { | 
 | 			int err2 = wait_on_page_writeback_range(mapping, | 
 | 						lstart >> PAGE_CACHE_SHIFT, | 
 | 						lend >> PAGE_CACHE_SHIFT); | 
 | 			if (!err) | 
 | 				err = err2; | 
 | 		} | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * add_to_page_cache - add newly allocated pagecache pages | 
 |  * @page:	page to add | 
 |  * @mapping:	the page's address_space | 
 |  * @offset:	page index | 
 |  * @gfp_mask:	page allocation mode | 
 |  * | 
 |  * This function is used to add newly allocated pagecache pages; | 
 |  * the page is new, so we can just run SetPageLocked() against it. | 
 |  * The other page state flags were set by rmqueue(). | 
 |  * | 
 |  * This function does not add the page to the LRU.  The caller must do that. | 
 |  */ | 
 | int add_to_page_cache(struct page *page, struct address_space *mapping, | 
 | 		pgoff_t offset, gfp_t gfp_mask) | 
 | { | 
 | 	int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); | 
 |  | 
 | 	if (error == 0) { | 
 | 		write_lock_irq(&mapping->tree_lock); | 
 | 		error = radix_tree_insert(&mapping->page_tree, offset, page); | 
 | 		if (!error) { | 
 | 			page_cache_get(page); | 
 | 			SetPageLocked(page); | 
 | 			page->mapping = mapping; | 
 | 			page->index = offset; | 
 | 			mapping->nrpages++; | 
 | 			__inc_zone_page_state(page, NR_FILE_PAGES); | 
 | 		} | 
 | 		write_unlock_irq(&mapping->tree_lock); | 
 | 		radix_tree_preload_end(); | 
 | 	} | 
 | 	return error; | 
 | } | 
 | EXPORT_SYMBOL(add_to_page_cache); | 
 |  | 
 | int add_to_page_cache_lru(struct page *page, struct address_space *mapping, | 
 | 				pgoff_t offset, gfp_t gfp_mask) | 
 | { | 
 | 	int ret = add_to_page_cache(page, mapping, offset, gfp_mask); | 
 | 	if (ret == 0) | 
 | 		lru_cache_add(page); | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | struct page *__page_cache_alloc(gfp_t gfp) | 
 | { | 
 | 	if (cpuset_do_page_mem_spread()) { | 
 | 		int n = cpuset_mem_spread_node(); | 
 | 		return alloc_pages_node(n, gfp, 0); | 
 | 	} | 
 | 	return alloc_pages(gfp, 0); | 
 | } | 
 | EXPORT_SYMBOL(__page_cache_alloc); | 
 | #endif | 
 |  | 
 | static int __sleep_on_page_lock(void *word) | 
 | { | 
 | 	io_schedule(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * In order to wait for pages to become available there must be | 
 |  * waitqueues associated with pages. By using a hash table of | 
 |  * waitqueues where the bucket discipline is to maintain all | 
 |  * waiters on the same queue and wake all when any of the pages | 
 |  * become available, and for the woken contexts to check to be | 
 |  * sure the appropriate page became available, this saves space | 
 |  * at a cost of "thundering herd" phenomena during rare hash | 
 |  * collisions. | 
 |  */ | 
 | static wait_queue_head_t *page_waitqueue(struct page *page) | 
 | { | 
 | 	const struct zone *zone = page_zone(page); | 
 |  | 
 | 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; | 
 | } | 
 |  | 
 | static inline void wake_up_page(struct page *page, int bit) | 
 | { | 
 | 	__wake_up_bit(page_waitqueue(page), &page->flags, bit); | 
 | } | 
 |  | 
 | void fastcall wait_on_page_bit(struct page *page, int bit_nr) | 
 | { | 
 | 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); | 
 |  | 
 | 	if (test_bit(bit_nr, &page->flags)) | 
 | 		__wait_on_bit(page_waitqueue(page), &wait, sync_page, | 
 | 							TASK_UNINTERRUPTIBLE); | 
 | } | 
 | EXPORT_SYMBOL(wait_on_page_bit); | 
 |  | 
 | /** | 
 |  * unlock_page - unlock a locked page | 
 |  * @page: the page | 
 |  * | 
 |  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). | 
 |  * Also wakes sleepers in wait_on_page_writeback() because the wakeup | 
 |  * mechananism between PageLocked pages and PageWriteback pages is shared. | 
 |  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. | 
 |  * | 
 |  * The first mb is necessary to safely close the critical section opened by the | 
 |  * TestSetPageLocked(), the second mb is necessary to enforce ordering between | 
 |  * the clear_bit and the read of the waitqueue (to avoid SMP races with a | 
 |  * parallel wait_on_page_locked()). | 
 |  */ | 
 | void fastcall unlock_page(struct page *page) | 
 | { | 
 | 	smp_mb__before_clear_bit(); | 
 | 	if (!TestClearPageLocked(page)) | 
 | 		BUG(); | 
 | 	smp_mb__after_clear_bit();  | 
 | 	wake_up_page(page, PG_locked); | 
 | } | 
 | EXPORT_SYMBOL(unlock_page); | 
 |  | 
 | /** | 
 |  * end_page_writeback - end writeback against a page | 
 |  * @page: the page | 
 |  */ | 
 | void end_page_writeback(struct page *page) | 
 | { | 
 | 	if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) { | 
 | 		if (!test_clear_page_writeback(page)) | 
 | 			BUG(); | 
 | 	} | 
 | 	smp_mb__after_clear_bit(); | 
 | 	wake_up_page(page, PG_writeback); | 
 | } | 
 | EXPORT_SYMBOL(end_page_writeback); | 
 |  | 
 | /** | 
 |  * __lock_page - get a lock on the page, assuming we need to sleep to get it | 
 |  * @page: the page to lock | 
 |  * | 
 |  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some | 
 |  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However | 
 |  * chances are that on the second loop, the block layer's plug list is empty, | 
 |  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE. | 
 |  */ | 
 | void fastcall __lock_page(struct page *page) | 
 | { | 
 | 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); | 
 |  | 
 | 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page, | 
 | 							TASK_UNINTERRUPTIBLE); | 
 | } | 
 | EXPORT_SYMBOL(__lock_page); | 
 |  | 
 | /* | 
 |  * Variant of lock_page that does not require the caller to hold a reference | 
 |  * on the page's mapping. | 
 |  */ | 
 | void fastcall __lock_page_nosync(struct page *page) | 
 | { | 
 | 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); | 
 | 	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock, | 
 | 							TASK_UNINTERRUPTIBLE); | 
 | } | 
 |  | 
 | /** | 
 |  * find_get_page - find and get a page reference | 
 |  * @mapping: the address_space to search | 
 |  * @offset: the page index | 
 |  * | 
 |  * Is there a pagecache struct page at the given (mapping, offset) tuple? | 
 |  * If yes, increment its refcount and return it; if no, return NULL. | 
 |  */ | 
 | struct page * find_get_page(struct address_space *mapping, unsigned long offset) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	read_lock_irq(&mapping->tree_lock); | 
 | 	page = radix_tree_lookup(&mapping->page_tree, offset); | 
 | 	if (page) | 
 | 		page_cache_get(page); | 
 | 	read_unlock_irq(&mapping->tree_lock); | 
 | 	return page; | 
 | } | 
 | EXPORT_SYMBOL(find_get_page); | 
 |  | 
 | /** | 
 |  * find_trylock_page - find and lock a page | 
 |  * @mapping: the address_space to search | 
 |  * @offset: the page index | 
 |  * | 
 |  * Same as find_get_page(), but trylock it instead of incrementing the count. | 
 |  */ | 
 | struct page *find_trylock_page(struct address_space *mapping, unsigned long offset) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	read_lock_irq(&mapping->tree_lock); | 
 | 	page = radix_tree_lookup(&mapping->page_tree, offset); | 
 | 	if (page && TestSetPageLocked(page)) | 
 | 		page = NULL; | 
 | 	read_unlock_irq(&mapping->tree_lock); | 
 | 	return page; | 
 | } | 
 | EXPORT_SYMBOL(find_trylock_page); | 
 |  | 
 | /** | 
 |  * find_lock_page - locate, pin and lock a pagecache page | 
 |  * @mapping: the address_space to search | 
 |  * @offset: the page index | 
 |  * | 
 |  * Locates the desired pagecache page, locks it, increments its reference | 
 |  * count and returns its address. | 
 |  * | 
 |  * Returns zero if the page was not present. find_lock_page() may sleep. | 
 |  */ | 
 | struct page *find_lock_page(struct address_space *mapping, | 
 | 				unsigned long offset) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	read_lock_irq(&mapping->tree_lock); | 
 | repeat: | 
 | 	page = radix_tree_lookup(&mapping->page_tree, offset); | 
 | 	if (page) { | 
 | 		page_cache_get(page); | 
 | 		if (TestSetPageLocked(page)) { | 
 | 			read_unlock_irq(&mapping->tree_lock); | 
 | 			__lock_page(page); | 
 | 			read_lock_irq(&mapping->tree_lock); | 
 |  | 
 | 			/* Has the page been truncated while we slept? */ | 
 | 			if (unlikely(page->mapping != mapping || | 
 | 				     page->index != offset)) { | 
 | 				unlock_page(page); | 
 | 				page_cache_release(page); | 
 | 				goto repeat; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	read_unlock_irq(&mapping->tree_lock); | 
 | 	return page; | 
 | } | 
 | EXPORT_SYMBOL(find_lock_page); | 
 |  | 
 | /** | 
 |  * find_or_create_page - locate or add a pagecache page | 
 |  * @mapping: the page's address_space | 
 |  * @index: the page's index into the mapping | 
 |  * @gfp_mask: page allocation mode | 
 |  * | 
 |  * Locates a page in the pagecache.  If the page is not present, a new page | 
 |  * is allocated using @gfp_mask and is added to the pagecache and to the VM's | 
 |  * LRU list.  The returned page is locked and has its reference count | 
 |  * incremented. | 
 |  * | 
 |  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic | 
 |  * allocation! | 
 |  * | 
 |  * find_or_create_page() returns the desired page's address, or zero on | 
 |  * memory exhaustion. | 
 |  */ | 
 | struct page *find_or_create_page(struct address_space *mapping, | 
 | 		unsigned long index, gfp_t gfp_mask) | 
 | { | 
 | 	struct page *page, *cached_page = NULL; | 
 | 	int err; | 
 | repeat: | 
 | 	page = find_lock_page(mapping, index); | 
 | 	if (!page) { | 
 | 		if (!cached_page) { | 
 | 			cached_page = alloc_page(gfp_mask); | 
 | 			if (!cached_page) | 
 | 				return NULL; | 
 | 		} | 
 | 		err = add_to_page_cache_lru(cached_page, mapping, | 
 | 					index, gfp_mask); | 
 | 		if (!err) { | 
 | 			page = cached_page; | 
 | 			cached_page = NULL; | 
 | 		} else if (err == -EEXIST) | 
 | 			goto repeat; | 
 | 	} | 
 | 	if (cached_page) | 
 | 		page_cache_release(cached_page); | 
 | 	return page; | 
 | } | 
 | EXPORT_SYMBOL(find_or_create_page); | 
 |  | 
 | /** | 
 |  * find_get_pages - gang pagecache lookup | 
 |  * @mapping:	The address_space to search | 
 |  * @start:	The starting page index | 
 |  * @nr_pages:	The maximum number of pages | 
 |  * @pages:	Where the resulting pages are placed | 
 |  * | 
 |  * find_get_pages() will search for and return a group of up to | 
 |  * @nr_pages pages in the mapping.  The pages are placed at @pages. | 
 |  * find_get_pages() takes a reference against the returned pages. | 
 |  * | 
 |  * The search returns a group of mapping-contiguous pages with ascending | 
 |  * indexes.  There may be holes in the indices due to not-present pages. | 
 |  * | 
 |  * find_get_pages() returns the number of pages which were found. | 
 |  */ | 
 | unsigned find_get_pages(struct address_space *mapping, pgoff_t start, | 
 | 			    unsigned int nr_pages, struct page **pages) | 
 | { | 
 | 	unsigned int i; | 
 | 	unsigned int ret; | 
 |  | 
 | 	read_lock_irq(&mapping->tree_lock); | 
 | 	ret = radix_tree_gang_lookup(&mapping->page_tree, | 
 | 				(void **)pages, start, nr_pages); | 
 | 	for (i = 0; i < ret; i++) | 
 | 		page_cache_get(pages[i]); | 
 | 	read_unlock_irq(&mapping->tree_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * find_get_pages_contig - gang contiguous pagecache lookup | 
 |  * @mapping:	The address_space to search | 
 |  * @index:	The starting page index | 
 |  * @nr_pages:	The maximum number of pages | 
 |  * @pages:	Where the resulting pages are placed | 
 |  * | 
 |  * find_get_pages_contig() works exactly like find_get_pages(), except | 
 |  * that the returned number of pages are guaranteed to be contiguous. | 
 |  * | 
 |  * find_get_pages_contig() returns the number of pages which were found. | 
 |  */ | 
 | unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, | 
 | 			       unsigned int nr_pages, struct page **pages) | 
 | { | 
 | 	unsigned int i; | 
 | 	unsigned int ret; | 
 |  | 
 | 	read_lock_irq(&mapping->tree_lock); | 
 | 	ret = radix_tree_gang_lookup(&mapping->page_tree, | 
 | 				(void **)pages, index, nr_pages); | 
 | 	for (i = 0; i < ret; i++) { | 
 | 		if (pages[i]->mapping == NULL || pages[i]->index != index) | 
 | 			break; | 
 |  | 
 | 		page_cache_get(pages[i]); | 
 | 		index++; | 
 | 	} | 
 | 	read_unlock_irq(&mapping->tree_lock); | 
 | 	return i; | 
 | } | 
 |  | 
 | /** | 
 |  * find_get_pages_tag - find and return pages that match @tag | 
 |  * @mapping:	the address_space to search | 
 |  * @index:	the starting page index | 
 |  * @tag:	the tag index | 
 |  * @nr_pages:	the maximum number of pages | 
 |  * @pages:	where the resulting pages are placed | 
 |  * | 
 |  * Like find_get_pages, except we only return pages which are tagged with | 
 |  * @tag.   We update @index to index the next page for the traversal. | 
 |  */ | 
 | unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, | 
 | 			int tag, unsigned int nr_pages, struct page **pages) | 
 | { | 
 | 	unsigned int i; | 
 | 	unsigned int ret; | 
 |  | 
 | 	read_lock_irq(&mapping->tree_lock); | 
 | 	ret = radix_tree_gang_lookup_tag(&mapping->page_tree, | 
 | 				(void **)pages, *index, nr_pages, tag); | 
 | 	for (i = 0; i < ret; i++) | 
 | 		page_cache_get(pages[i]); | 
 | 	if (ret) | 
 | 		*index = pages[ret - 1]->index + 1; | 
 | 	read_unlock_irq(&mapping->tree_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * grab_cache_page_nowait - returns locked page at given index in given cache | 
 |  * @mapping: target address_space | 
 |  * @index: the page index | 
 |  * | 
 |  * Same as grab_cache_page, but do not wait if the page is unavailable. | 
 |  * This is intended for speculative data generators, where the data can | 
 |  * be regenerated if the page couldn't be grabbed.  This routine should | 
 |  * be safe to call while holding the lock for another page. | 
 |  * | 
 |  * Clear __GFP_FS when allocating the page to avoid recursion into the fs | 
 |  * and deadlock against the caller's locked page. | 
 |  */ | 
 | struct page * | 
 | grab_cache_page_nowait(struct address_space *mapping, unsigned long index) | 
 | { | 
 | 	struct page *page = find_get_page(mapping, index); | 
 |  | 
 | 	if (page) { | 
 | 		if (!TestSetPageLocked(page)) | 
 | 			return page; | 
 | 		page_cache_release(page); | 
 | 		return NULL; | 
 | 	} | 
 | 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS); | 
 | 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) { | 
 | 		page_cache_release(page); | 
 | 		page = NULL; | 
 | 	} | 
 | 	return page; | 
 | } | 
 | EXPORT_SYMBOL(grab_cache_page_nowait); | 
 |  | 
 | /* | 
 |  * CD/DVDs are error prone. When a medium error occurs, the driver may fail | 
 |  * a _large_ part of the i/o request. Imagine the worst scenario: | 
 |  * | 
 |  *      ---R__________________________________________B__________ | 
 |  *         ^ reading here                             ^ bad block(assume 4k) | 
 |  * | 
 |  * read(R) => miss => readahead(R...B) => media error => frustrating retries | 
 |  * => failing the whole request => read(R) => read(R+1) => | 
 |  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => | 
 |  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => | 
 |  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... | 
 |  * | 
 |  * It is going insane. Fix it by quickly scaling down the readahead size. | 
 |  */ | 
 | static void shrink_readahead_size_eio(struct file *filp, | 
 | 					struct file_ra_state *ra) | 
 | { | 
 | 	if (!ra->ra_pages) | 
 | 		return; | 
 |  | 
 | 	ra->ra_pages /= 4; | 
 | } | 
 |  | 
 | /** | 
 |  * do_generic_mapping_read - generic file read routine | 
 |  * @mapping:	address_space to be read | 
 |  * @_ra:	file's readahead state | 
 |  * @filp:	the file to read | 
 |  * @ppos:	current file position | 
 |  * @desc:	read_descriptor | 
 |  * @actor:	read method | 
 |  * | 
 |  * This is a generic file read routine, and uses the | 
 |  * mapping->a_ops->readpage() function for the actual low-level stuff. | 
 |  * | 
 |  * This is really ugly. But the goto's actually try to clarify some | 
 |  * of the logic when it comes to error handling etc. | 
 |  * | 
 |  * Note the struct file* is only passed for the use of readpage. | 
 |  * It may be NULL. | 
 |  */ | 
 | void do_generic_mapping_read(struct address_space *mapping, | 
 | 			     struct file_ra_state *_ra, | 
 | 			     struct file *filp, | 
 | 			     loff_t *ppos, | 
 | 			     read_descriptor_t *desc, | 
 | 			     read_actor_t actor) | 
 | { | 
 | 	struct inode *inode = mapping->host; | 
 | 	unsigned long index; | 
 | 	unsigned long end_index; | 
 | 	unsigned long offset; | 
 | 	unsigned long last_index; | 
 | 	unsigned long next_index; | 
 | 	unsigned long prev_index; | 
 | 	loff_t isize; | 
 | 	struct page *cached_page; | 
 | 	int error; | 
 | 	struct file_ra_state ra = *_ra; | 
 |  | 
 | 	cached_page = NULL; | 
 | 	index = *ppos >> PAGE_CACHE_SHIFT; | 
 | 	next_index = index; | 
 | 	prev_index = ra.prev_page; | 
 | 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; | 
 | 	offset = *ppos & ~PAGE_CACHE_MASK; | 
 |  | 
 | 	isize = i_size_read(inode); | 
 | 	if (!isize) | 
 | 		goto out; | 
 |  | 
 | 	end_index = (isize - 1) >> PAGE_CACHE_SHIFT; | 
 | 	for (;;) { | 
 | 		struct page *page; | 
 | 		unsigned long nr, ret; | 
 |  | 
 | 		/* nr is the maximum number of bytes to copy from this page */ | 
 | 		nr = PAGE_CACHE_SIZE; | 
 | 		if (index >= end_index) { | 
 | 			if (index > end_index) | 
 | 				goto out; | 
 | 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; | 
 | 			if (nr <= offset) { | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 | 		nr = nr - offset; | 
 |  | 
 | 		cond_resched(); | 
 | 		if (index == next_index) | 
 | 			next_index = page_cache_readahead(mapping, &ra, filp, | 
 | 					index, last_index - index); | 
 |  | 
 | find_page: | 
 | 		page = find_get_page(mapping, index); | 
 | 		if (unlikely(page == NULL)) { | 
 | 			handle_ra_miss(mapping, &ra, index); | 
 | 			goto no_cached_page; | 
 | 		} | 
 | 		if (!PageUptodate(page)) | 
 | 			goto page_not_up_to_date; | 
 | page_ok: | 
 |  | 
 | 		/* If users can be writing to this page using arbitrary | 
 | 		 * virtual addresses, take care about potential aliasing | 
 | 		 * before reading the page on the kernel side. | 
 | 		 */ | 
 | 		if (mapping_writably_mapped(mapping)) | 
 | 			flush_dcache_page(page); | 
 |  | 
 | 		/* | 
 | 		 * When (part of) the same page is read multiple times | 
 | 		 * in succession, only mark it as accessed the first time. | 
 | 		 */ | 
 | 		if (prev_index != index) | 
 | 			mark_page_accessed(page); | 
 | 		prev_index = index; | 
 |  | 
 | 		/* | 
 | 		 * Ok, we have the page, and it's up-to-date, so | 
 | 		 * now we can copy it to user space... | 
 | 		 * | 
 | 		 * The actor routine returns how many bytes were actually used.. | 
 | 		 * NOTE! This may not be the same as how much of a user buffer | 
 | 		 * we filled up (we may be padding etc), so we can only update | 
 | 		 * "pos" here (the actor routine has to update the user buffer | 
 | 		 * pointers and the remaining count). | 
 | 		 */ | 
 | 		ret = actor(desc, page, offset, nr); | 
 | 		offset += ret; | 
 | 		index += offset >> PAGE_CACHE_SHIFT; | 
 | 		offset &= ~PAGE_CACHE_MASK; | 
 |  | 
 | 		page_cache_release(page); | 
 | 		if (ret == nr && desc->count) | 
 | 			continue; | 
 | 		goto out; | 
 |  | 
 | page_not_up_to_date: | 
 | 		/* Get exclusive access to the page ... */ | 
 | 		lock_page(page); | 
 |  | 
 | 		/* Did it get truncated before we got the lock? */ | 
 | 		if (!page->mapping) { | 
 | 			unlock_page(page); | 
 | 			page_cache_release(page); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* Did somebody else fill it already? */ | 
 | 		if (PageUptodate(page)) { | 
 | 			unlock_page(page); | 
 | 			goto page_ok; | 
 | 		} | 
 |  | 
 | readpage: | 
 | 		/* Start the actual read. The read will unlock the page. */ | 
 | 		error = mapping->a_ops->readpage(filp, page); | 
 |  | 
 | 		if (unlikely(error)) { | 
 | 			if (error == AOP_TRUNCATED_PAGE) { | 
 | 				page_cache_release(page); | 
 | 				goto find_page; | 
 | 			} | 
 | 			goto readpage_error; | 
 | 		} | 
 |  | 
 | 		if (!PageUptodate(page)) { | 
 | 			lock_page(page); | 
 | 			if (!PageUptodate(page)) { | 
 | 				if (page->mapping == NULL) { | 
 | 					/* | 
 | 					 * invalidate_inode_pages got it | 
 | 					 */ | 
 | 					unlock_page(page); | 
 | 					page_cache_release(page); | 
 | 					goto find_page; | 
 | 				} | 
 | 				unlock_page(page); | 
 | 				error = -EIO; | 
 | 				shrink_readahead_size_eio(filp, &ra); | 
 | 				goto readpage_error; | 
 | 			} | 
 | 			unlock_page(page); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * i_size must be checked after we have done ->readpage. | 
 | 		 * | 
 | 		 * Checking i_size after the readpage allows us to calculate | 
 | 		 * the correct value for "nr", which means the zero-filled | 
 | 		 * part of the page is not copied back to userspace (unless | 
 | 		 * another truncate extends the file - this is desired though). | 
 | 		 */ | 
 | 		isize = i_size_read(inode); | 
 | 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT; | 
 | 		if (unlikely(!isize || index > end_index)) { | 
 | 			page_cache_release(page); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		/* nr is the maximum number of bytes to copy from this page */ | 
 | 		nr = PAGE_CACHE_SIZE; | 
 | 		if (index == end_index) { | 
 | 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; | 
 | 			if (nr <= offset) { | 
 | 				page_cache_release(page); | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 | 		nr = nr - offset; | 
 | 		goto page_ok; | 
 |  | 
 | readpage_error: | 
 | 		/* UHHUH! A synchronous read error occurred. Report it */ | 
 | 		desc->error = error; | 
 | 		page_cache_release(page); | 
 | 		goto out; | 
 |  | 
 | no_cached_page: | 
 | 		/* | 
 | 		 * Ok, it wasn't cached, so we need to create a new | 
 | 		 * page.. | 
 | 		 */ | 
 | 		if (!cached_page) { | 
 | 			cached_page = page_cache_alloc_cold(mapping); | 
 | 			if (!cached_page) { | 
 | 				desc->error = -ENOMEM; | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 | 		error = add_to_page_cache_lru(cached_page, mapping, | 
 | 						index, GFP_KERNEL); | 
 | 		if (error) { | 
 | 			if (error == -EEXIST) | 
 | 				goto find_page; | 
 | 			desc->error = error; | 
 | 			goto out; | 
 | 		} | 
 | 		page = cached_page; | 
 | 		cached_page = NULL; | 
 | 		goto readpage; | 
 | 	} | 
 |  | 
 | out: | 
 | 	*_ra = ra; | 
 |  | 
 | 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; | 
 | 	if (cached_page) | 
 | 		page_cache_release(cached_page); | 
 | 	if (filp) | 
 | 		file_accessed(filp); | 
 | } | 
 | EXPORT_SYMBOL(do_generic_mapping_read); | 
 |  | 
 | int file_read_actor(read_descriptor_t *desc, struct page *page, | 
 | 			unsigned long offset, unsigned long size) | 
 | { | 
 | 	char *kaddr; | 
 | 	unsigned long left, count = desc->count; | 
 |  | 
 | 	if (size > count) | 
 | 		size = count; | 
 |  | 
 | 	/* | 
 | 	 * Faults on the destination of a read are common, so do it before | 
 | 	 * taking the kmap. | 
 | 	 */ | 
 | 	if (!fault_in_pages_writeable(desc->arg.buf, size)) { | 
 | 		kaddr = kmap_atomic(page, KM_USER0); | 
 | 		left = __copy_to_user_inatomic(desc->arg.buf, | 
 | 						kaddr + offset, size); | 
 | 		kunmap_atomic(kaddr, KM_USER0); | 
 | 		if (left == 0) | 
 | 			goto success; | 
 | 	} | 
 |  | 
 | 	/* Do it the slow way */ | 
 | 	kaddr = kmap(page); | 
 | 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size); | 
 | 	kunmap(page); | 
 |  | 
 | 	if (left) { | 
 | 		size -= left; | 
 | 		desc->error = -EFAULT; | 
 | 	} | 
 | success: | 
 | 	desc->count = count - size; | 
 | 	desc->written += size; | 
 | 	desc->arg.buf += size; | 
 | 	return size; | 
 | } | 
 |  | 
 | /** | 
 |  * generic_file_aio_read - generic filesystem read routine | 
 |  * @iocb:	kernel I/O control block | 
 |  * @iov:	io vector request | 
 |  * @nr_segs:	number of segments in the iovec | 
 |  * @pos:	current file position | 
 |  * | 
 |  * This is the "read()" routine for all filesystems | 
 |  * that can use the page cache directly. | 
 |  */ | 
 | ssize_t | 
 | generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, | 
 | 		unsigned long nr_segs, loff_t pos) | 
 | { | 
 | 	struct file *filp = iocb->ki_filp; | 
 | 	ssize_t retval; | 
 | 	unsigned long seg; | 
 | 	size_t count; | 
 | 	loff_t *ppos = &iocb->ki_pos; | 
 |  | 
 | 	count = 0; | 
 | 	for (seg = 0; seg < nr_segs; seg++) { | 
 | 		const struct iovec *iv = &iov[seg]; | 
 |  | 
 | 		/* | 
 | 		 * If any segment has a negative length, or the cumulative | 
 | 		 * length ever wraps negative then return -EINVAL. | 
 | 		 */ | 
 | 		count += iv->iov_len; | 
 | 		if (unlikely((ssize_t)(count|iv->iov_len) < 0)) | 
 | 			return -EINVAL; | 
 | 		if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len)) | 
 | 			continue; | 
 | 		if (seg == 0) | 
 | 			return -EFAULT; | 
 | 		nr_segs = seg; | 
 | 		count -= iv->iov_len;	/* This segment is no good */ | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ | 
 | 	if (filp->f_flags & O_DIRECT) { | 
 | 		loff_t size; | 
 | 		struct address_space *mapping; | 
 | 		struct inode *inode; | 
 |  | 
 | 		mapping = filp->f_mapping; | 
 | 		inode = mapping->host; | 
 | 		retval = 0; | 
 | 		if (!count) | 
 | 			goto out; /* skip atime */ | 
 | 		size = i_size_read(inode); | 
 | 		if (pos < size) { | 
 | 			retval = generic_file_direct_IO(READ, iocb, | 
 | 						iov, pos, nr_segs); | 
 | 			if (retval > 0) | 
 | 				*ppos = pos + retval; | 
 | 		} | 
 | 		if (likely(retval != 0)) { | 
 | 			file_accessed(filp); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	retval = 0; | 
 | 	if (count) { | 
 | 		for (seg = 0; seg < nr_segs; seg++) { | 
 | 			read_descriptor_t desc; | 
 |  | 
 | 			desc.written = 0; | 
 | 			desc.arg.buf = iov[seg].iov_base; | 
 | 			desc.count = iov[seg].iov_len; | 
 | 			if (desc.count == 0) | 
 | 				continue; | 
 | 			desc.error = 0; | 
 | 			do_generic_file_read(filp,ppos,&desc,file_read_actor); | 
 | 			retval += desc.written; | 
 | 			if (desc.error) { | 
 | 				retval = retval ?: desc.error; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	return retval; | 
 | } | 
 | EXPORT_SYMBOL(generic_file_aio_read); | 
 |  | 
 | int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size) | 
 | { | 
 | 	ssize_t written; | 
 | 	unsigned long count = desc->count; | 
 | 	struct file *file = desc->arg.data; | 
 |  | 
 | 	if (size > count) | 
 | 		size = count; | 
 |  | 
 | 	written = file->f_op->sendpage(file, page, offset, | 
 | 				       size, &file->f_pos, size<count); | 
 | 	if (written < 0) { | 
 | 		desc->error = written; | 
 | 		written = 0; | 
 | 	} | 
 | 	desc->count = count - written; | 
 | 	desc->written += written; | 
 | 	return written; | 
 | } | 
 |  | 
 | ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos, | 
 | 			 size_t count, read_actor_t actor, void *target) | 
 | { | 
 | 	read_descriptor_t desc; | 
 |  | 
 | 	if (!count) | 
 | 		return 0; | 
 |  | 
 | 	desc.written = 0; | 
 | 	desc.count = count; | 
 | 	desc.arg.data = target; | 
 | 	desc.error = 0; | 
 |  | 
 | 	do_generic_file_read(in_file, ppos, &desc, actor); | 
 | 	if (desc.written) | 
 | 		return desc.written; | 
 | 	return desc.error; | 
 | } | 
 | EXPORT_SYMBOL(generic_file_sendfile); | 
 |  | 
 | static ssize_t | 
 | do_readahead(struct address_space *mapping, struct file *filp, | 
 | 	     unsigned long index, unsigned long nr) | 
 | { | 
 | 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage) | 
 | 		return -EINVAL; | 
 |  | 
 | 	force_page_cache_readahead(mapping, filp, index, | 
 | 					max_sane_readahead(nr)); | 
 | 	return 0; | 
 | } | 
 |  | 
 | asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count) | 
 | { | 
 | 	ssize_t ret; | 
 | 	struct file *file; | 
 |  | 
 | 	ret = -EBADF; | 
 | 	file = fget(fd); | 
 | 	if (file) { | 
 | 		if (file->f_mode & FMODE_READ) { | 
 | 			struct address_space *mapping = file->f_mapping; | 
 | 			unsigned long start = offset >> PAGE_CACHE_SHIFT; | 
 | 			unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT; | 
 | 			unsigned long len = end - start + 1; | 
 | 			ret = do_readahead(mapping, file, start, len); | 
 | 		} | 
 | 		fput(file); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef CONFIG_MMU | 
 | static int FASTCALL(page_cache_read(struct file * file, unsigned long offset)); | 
 | /** | 
 |  * page_cache_read - adds requested page to the page cache if not already there | 
 |  * @file:	file to read | 
 |  * @offset:	page index | 
 |  * | 
 |  * This adds the requested page to the page cache if it isn't already there, | 
 |  * and schedules an I/O to read in its contents from disk. | 
 |  */ | 
 | static int fastcall page_cache_read(struct file * file, unsigned long offset) | 
 | { | 
 | 	struct address_space *mapping = file->f_mapping; | 
 | 	struct page *page;  | 
 | 	int ret; | 
 |  | 
 | 	do { | 
 | 		page = page_cache_alloc_cold(mapping); | 
 | 		if (!page) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); | 
 | 		if (ret == 0) | 
 | 			ret = mapping->a_ops->readpage(file, page); | 
 | 		else if (ret == -EEXIST) | 
 | 			ret = 0; /* losing race to add is OK */ | 
 |  | 
 | 		page_cache_release(page); | 
 |  | 
 | 	} while (ret == AOP_TRUNCATED_PAGE); | 
 | 		 | 
 | 	return ret; | 
 | } | 
 |  | 
 | #define MMAP_LOTSAMISS  (100) | 
 |  | 
 | /** | 
 |  * filemap_nopage - read in file data for page fault handling | 
 |  * @area:	the applicable vm_area | 
 |  * @address:	target address to read in | 
 |  * @type:	returned with VM_FAULT_{MINOR,MAJOR} if not %NULL | 
 |  * | 
 |  * filemap_nopage() is invoked via the vma operations vector for a | 
 |  * mapped memory region to read in file data during a page fault. | 
 |  * | 
 |  * The goto's are kind of ugly, but this streamlines the normal case of having | 
 |  * it in the page cache, and handles the special cases reasonably without | 
 |  * having a lot of duplicated code. | 
 |  */ | 
 | struct page *filemap_nopage(struct vm_area_struct *area, | 
 | 				unsigned long address, int *type) | 
 | { | 
 | 	int error; | 
 | 	struct file *file = area->vm_file; | 
 | 	struct address_space *mapping = file->f_mapping; | 
 | 	struct file_ra_state *ra = &file->f_ra; | 
 | 	struct inode *inode = mapping->host; | 
 | 	struct page *page; | 
 | 	unsigned long size, pgoff; | 
 | 	int did_readaround = 0, majmin = VM_FAULT_MINOR; | 
 |  | 
 | 	pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff; | 
 |  | 
 | retry_all: | 
 | 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; | 
 | 	if (pgoff >= size) | 
 | 		goto outside_data_content; | 
 |  | 
 | 	/* If we don't want any read-ahead, don't bother */ | 
 | 	if (VM_RandomReadHint(area)) | 
 | 		goto no_cached_page; | 
 |  | 
 | 	/* | 
 | 	 * The readahead code wants to be told about each and every page | 
 | 	 * so it can build and shrink its windows appropriately | 
 | 	 * | 
 | 	 * For sequential accesses, we use the generic readahead logic. | 
 | 	 */ | 
 | 	if (VM_SequentialReadHint(area)) | 
 | 		page_cache_readahead(mapping, ra, file, pgoff, 1); | 
 |  | 
 | 	/* | 
 | 	 * Do we have something in the page cache already? | 
 | 	 */ | 
 | retry_find: | 
 | 	page = find_get_page(mapping, pgoff); | 
 | 	if (!page) { | 
 | 		unsigned long ra_pages; | 
 |  | 
 | 		if (VM_SequentialReadHint(area)) { | 
 | 			handle_ra_miss(mapping, ra, pgoff); | 
 | 			goto no_cached_page; | 
 | 		} | 
 | 		ra->mmap_miss++; | 
 |  | 
 | 		/* | 
 | 		 * Do we miss much more than hit in this file? If so, | 
 | 		 * stop bothering with read-ahead. It will only hurt. | 
 | 		 */ | 
 | 		if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS) | 
 | 			goto no_cached_page; | 
 |  | 
 | 		/* | 
 | 		 * To keep the pgmajfault counter straight, we need to | 
 | 		 * check did_readaround, as this is an inner loop. | 
 | 		 */ | 
 | 		if (!did_readaround) { | 
 | 			majmin = VM_FAULT_MAJOR; | 
 | 			count_vm_event(PGMAJFAULT); | 
 | 		} | 
 | 		did_readaround = 1; | 
 | 		ra_pages = max_sane_readahead(file->f_ra.ra_pages); | 
 | 		if (ra_pages) { | 
 | 			pgoff_t start = 0; | 
 |  | 
 | 			if (pgoff > ra_pages / 2) | 
 | 				start = pgoff - ra_pages / 2; | 
 | 			do_page_cache_readahead(mapping, file, start, ra_pages); | 
 | 		} | 
 | 		page = find_get_page(mapping, pgoff); | 
 | 		if (!page) | 
 | 			goto no_cached_page; | 
 | 	} | 
 |  | 
 | 	if (!did_readaround) | 
 | 		ra->mmap_hit++; | 
 |  | 
 | 	/* | 
 | 	 * Ok, found a page in the page cache, now we need to check | 
 | 	 * that it's up-to-date. | 
 | 	 */ | 
 | 	if (!PageUptodate(page)) | 
 | 		goto page_not_uptodate; | 
 |  | 
 | success: | 
 | 	/* | 
 | 	 * Found the page and have a reference on it. | 
 | 	 */ | 
 | 	mark_page_accessed(page); | 
 | 	if (type) | 
 | 		*type = majmin; | 
 | 	return page; | 
 |  | 
 | outside_data_content: | 
 | 	/* | 
 | 	 * An external ptracer can access pages that normally aren't | 
 | 	 * accessible.. | 
 | 	 */ | 
 | 	if (area->vm_mm == current->mm) | 
 | 		return NOPAGE_SIGBUS; | 
 | 	/* Fall through to the non-read-ahead case */ | 
 | no_cached_page: | 
 | 	/* | 
 | 	 * We're only likely to ever get here if MADV_RANDOM is in | 
 | 	 * effect. | 
 | 	 */ | 
 | 	error = page_cache_read(file, pgoff); | 
 |  | 
 | 	/* | 
 | 	 * The page we want has now been added to the page cache. | 
 | 	 * In the unlikely event that someone removed it in the | 
 | 	 * meantime, we'll just come back here and read it again. | 
 | 	 */ | 
 | 	if (error >= 0) | 
 | 		goto retry_find; | 
 |  | 
 | 	/* | 
 | 	 * An error return from page_cache_read can result if the | 
 | 	 * system is low on memory, or a problem occurs while trying | 
 | 	 * to schedule I/O. | 
 | 	 */ | 
 | 	if (error == -ENOMEM) | 
 | 		return NOPAGE_OOM; | 
 | 	return NOPAGE_SIGBUS; | 
 |  | 
 | page_not_uptodate: | 
 | 	if (!did_readaround) { | 
 | 		majmin = VM_FAULT_MAJOR; | 
 | 		count_vm_event(PGMAJFAULT); | 
 | 	} | 
 | 	lock_page(page); | 
 |  | 
 | 	/* Did it get unhashed while we waited for it? */ | 
 | 	if (!page->mapping) { | 
 | 		unlock_page(page); | 
 | 		page_cache_release(page); | 
 | 		goto retry_all; | 
 | 	} | 
 |  | 
 | 	/* Did somebody else get it up-to-date? */ | 
 | 	if (PageUptodate(page)) { | 
 | 		unlock_page(page); | 
 | 		goto success; | 
 | 	} | 
 |  | 
 | 	error = mapping->a_ops->readpage(file, page); | 
 | 	if (!error) { | 
 | 		wait_on_page_locked(page); | 
 | 		if (PageUptodate(page)) | 
 | 			goto success; | 
 | 	} else if (error == AOP_TRUNCATED_PAGE) { | 
 | 		page_cache_release(page); | 
 | 		goto retry_find; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Umm, take care of errors if the page isn't up-to-date. | 
 | 	 * Try to re-read it _once_. We do this synchronously, | 
 | 	 * because there really aren't any performance issues here | 
 | 	 * and we need to check for errors. | 
 | 	 */ | 
 | 	lock_page(page); | 
 |  | 
 | 	/* Somebody truncated the page on us? */ | 
 | 	if (!page->mapping) { | 
 | 		unlock_page(page); | 
 | 		page_cache_release(page); | 
 | 		goto retry_all; | 
 | 	} | 
 |  | 
 | 	/* Somebody else successfully read it in? */ | 
 | 	if (PageUptodate(page)) { | 
 | 		unlock_page(page); | 
 | 		goto success; | 
 | 	} | 
 | 	ClearPageError(page); | 
 | 	error = mapping->a_ops->readpage(file, page); | 
 | 	if (!error) { | 
 | 		wait_on_page_locked(page); | 
 | 		if (PageUptodate(page)) | 
 | 			goto success; | 
 | 	} else if (error == AOP_TRUNCATED_PAGE) { | 
 | 		page_cache_release(page); | 
 | 		goto retry_find; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Things didn't work out. Return zero to tell the | 
 | 	 * mm layer so, possibly freeing the page cache page first. | 
 | 	 */ | 
 | 	shrink_readahead_size_eio(file, ra); | 
 | 	page_cache_release(page); | 
 | 	return NOPAGE_SIGBUS; | 
 | } | 
 | EXPORT_SYMBOL(filemap_nopage); | 
 |  | 
 | static struct page * filemap_getpage(struct file *file, unsigned long pgoff, | 
 | 					int nonblock) | 
 | { | 
 | 	struct address_space *mapping = file->f_mapping; | 
 | 	struct page *page; | 
 | 	int error; | 
 |  | 
 | 	/* | 
 | 	 * Do we have something in the page cache already? | 
 | 	 */ | 
 | retry_find: | 
 | 	page = find_get_page(mapping, pgoff); | 
 | 	if (!page) { | 
 | 		if (nonblock) | 
 | 			return NULL; | 
 | 		goto no_cached_page; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Ok, found a page in the page cache, now we need to check | 
 | 	 * that it's up-to-date. | 
 | 	 */ | 
 | 	if (!PageUptodate(page)) { | 
 | 		if (nonblock) { | 
 | 			page_cache_release(page); | 
 | 			return NULL; | 
 | 		} | 
 | 		goto page_not_uptodate; | 
 | 	} | 
 |  | 
 | success: | 
 | 	/* | 
 | 	 * Found the page and have a reference on it. | 
 | 	 */ | 
 | 	mark_page_accessed(page); | 
 | 	return page; | 
 |  | 
 | no_cached_page: | 
 | 	error = page_cache_read(file, pgoff); | 
 |  | 
 | 	/* | 
 | 	 * The page we want has now been added to the page cache. | 
 | 	 * In the unlikely event that someone removed it in the | 
 | 	 * meantime, we'll just come back here and read it again. | 
 | 	 */ | 
 | 	if (error >= 0) | 
 | 		goto retry_find; | 
 |  | 
 | 	/* | 
 | 	 * An error return from page_cache_read can result if the | 
 | 	 * system is low on memory, or a problem occurs while trying | 
 | 	 * to schedule I/O. | 
 | 	 */ | 
 | 	return NULL; | 
 |  | 
 | page_not_uptodate: | 
 | 	lock_page(page); | 
 |  | 
 | 	/* Did it get truncated while we waited for it? */ | 
 | 	if (!page->mapping) { | 
 | 		unlock_page(page); | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	/* Did somebody else get it up-to-date? */ | 
 | 	if (PageUptodate(page)) { | 
 | 		unlock_page(page); | 
 | 		goto success; | 
 | 	} | 
 |  | 
 | 	error = mapping->a_ops->readpage(file, page); | 
 | 	if (!error) { | 
 | 		wait_on_page_locked(page); | 
 | 		if (PageUptodate(page)) | 
 | 			goto success; | 
 | 	} else if (error == AOP_TRUNCATED_PAGE) { | 
 | 		page_cache_release(page); | 
 | 		goto retry_find; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Umm, take care of errors if the page isn't up-to-date. | 
 | 	 * Try to re-read it _once_. We do this synchronously, | 
 | 	 * because there really aren't any performance issues here | 
 | 	 * and we need to check for errors. | 
 | 	 */ | 
 | 	lock_page(page); | 
 |  | 
 | 	/* Somebody truncated the page on us? */ | 
 | 	if (!page->mapping) { | 
 | 		unlock_page(page); | 
 | 		goto err; | 
 | 	} | 
 | 	/* Somebody else successfully read it in? */ | 
 | 	if (PageUptodate(page)) { | 
 | 		unlock_page(page); | 
 | 		goto success; | 
 | 	} | 
 |  | 
 | 	ClearPageError(page); | 
 | 	error = mapping->a_ops->readpage(file, page); | 
 | 	if (!error) { | 
 | 		wait_on_page_locked(page); | 
 | 		if (PageUptodate(page)) | 
 | 			goto success; | 
 | 	} else if (error == AOP_TRUNCATED_PAGE) { | 
 | 		page_cache_release(page); | 
 | 		goto retry_find; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Things didn't work out. Return zero to tell the | 
 | 	 * mm layer so, possibly freeing the page cache page first. | 
 | 	 */ | 
 | err: | 
 | 	page_cache_release(page); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | int filemap_populate(struct vm_area_struct *vma, unsigned long addr, | 
 | 		unsigned long len, pgprot_t prot, unsigned long pgoff, | 
 | 		int nonblock) | 
 | { | 
 | 	struct file *file = vma->vm_file; | 
 | 	struct address_space *mapping = file->f_mapping; | 
 | 	struct inode *inode = mapping->host; | 
 | 	unsigned long size; | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	struct page *page; | 
 | 	int err; | 
 |  | 
 | 	if (!nonblock) | 
 | 		force_page_cache_readahead(mapping, vma->vm_file, | 
 | 					pgoff, len >> PAGE_CACHE_SHIFT); | 
 |  | 
 | repeat: | 
 | 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; | 
 | 	if (pgoff + (len >> PAGE_CACHE_SHIFT) > size) | 
 | 		return -EINVAL; | 
 |  | 
 | 	page = filemap_getpage(file, pgoff, nonblock); | 
 |  | 
 | 	/* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as | 
 | 	 * done in shmem_populate calling shmem_getpage */ | 
 | 	if (!page && !nonblock) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (page) { | 
 | 		err = install_page(mm, vma, addr, page, prot); | 
 | 		if (err) { | 
 | 			page_cache_release(page); | 
 | 			return err; | 
 | 		} | 
 | 	} else if (vma->vm_flags & VM_NONLINEAR) { | 
 | 		/* No page was found just because we can't read it in now (being | 
 | 		 * here implies nonblock != 0), but the page may exist, so set | 
 | 		 * the PTE to fault it in later. */ | 
 | 		err = install_file_pte(mm, vma, addr, pgoff, prot); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	len -= PAGE_SIZE; | 
 | 	addr += PAGE_SIZE; | 
 | 	pgoff++; | 
 | 	if (len) | 
 | 		goto repeat; | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(filemap_populate); | 
 |  | 
 | struct vm_operations_struct generic_file_vm_ops = { | 
 | 	.nopage		= filemap_nopage, | 
 | 	.populate	= filemap_populate, | 
 | }; | 
 |  | 
 | /* This is used for a general mmap of a disk file */ | 
 |  | 
 | int generic_file_mmap(struct file * file, struct vm_area_struct * vma) | 
 | { | 
 | 	struct address_space *mapping = file->f_mapping; | 
 |  | 
 | 	if (!mapping->a_ops->readpage) | 
 | 		return -ENOEXEC; | 
 | 	file_accessed(file); | 
 | 	vma->vm_ops = &generic_file_vm_ops; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This is for filesystems which do not implement ->writepage. | 
 |  */ | 
 | int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) | 
 | { | 
 | 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) | 
 | 		return -EINVAL; | 
 | 	return generic_file_mmap(file, vma); | 
 | } | 
 | #else | 
 | int generic_file_mmap(struct file * file, struct vm_area_struct * vma) | 
 | { | 
 | 	return -ENOSYS; | 
 | } | 
 | int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) | 
 | { | 
 | 	return -ENOSYS; | 
 | } | 
 | #endif /* CONFIG_MMU */ | 
 |  | 
 | EXPORT_SYMBOL(generic_file_mmap); | 
 | EXPORT_SYMBOL(generic_file_readonly_mmap); | 
 |  | 
 | static inline struct page *__read_cache_page(struct address_space *mapping, | 
 | 				unsigned long index, | 
 | 				int (*filler)(void *,struct page*), | 
 | 				void *data) | 
 | { | 
 | 	struct page *page, *cached_page = NULL; | 
 | 	int err; | 
 | repeat: | 
 | 	page = find_get_page(mapping, index); | 
 | 	if (!page) { | 
 | 		if (!cached_page) { | 
 | 			cached_page = page_cache_alloc_cold(mapping); | 
 | 			if (!cached_page) | 
 | 				return ERR_PTR(-ENOMEM); | 
 | 		} | 
 | 		err = add_to_page_cache_lru(cached_page, mapping, | 
 | 					index, GFP_KERNEL); | 
 | 		if (err == -EEXIST) | 
 | 			goto repeat; | 
 | 		if (err < 0) { | 
 | 			/* Presumably ENOMEM for radix tree node */ | 
 | 			page_cache_release(cached_page); | 
 | 			return ERR_PTR(err); | 
 | 		} | 
 | 		page = cached_page; | 
 | 		cached_page = NULL; | 
 | 		err = filler(data, page); | 
 | 		if (err < 0) { | 
 | 			page_cache_release(page); | 
 | 			page = ERR_PTR(err); | 
 | 		} | 
 | 	} | 
 | 	if (cached_page) | 
 | 		page_cache_release(cached_page); | 
 | 	return page; | 
 | } | 
 |  | 
 | /** | 
 |  * read_cache_page - read into page cache, fill it if needed | 
 |  * @mapping:	the page's address_space | 
 |  * @index:	the page index | 
 |  * @filler:	function to perform the read | 
 |  * @data:	destination for read data | 
 |  * | 
 |  * Read into the page cache. If a page already exists, | 
 |  * and PageUptodate() is not set, try to fill the page. | 
 |  */ | 
 | struct page *read_cache_page(struct address_space *mapping, | 
 | 				unsigned long index, | 
 | 				int (*filler)(void *,struct page*), | 
 | 				void *data) | 
 | { | 
 | 	struct page *page; | 
 | 	int err; | 
 |  | 
 | retry: | 
 | 	page = __read_cache_page(mapping, index, filler, data); | 
 | 	if (IS_ERR(page)) | 
 | 		goto out; | 
 | 	mark_page_accessed(page); | 
 | 	if (PageUptodate(page)) | 
 | 		goto out; | 
 |  | 
 | 	lock_page(page); | 
 | 	if (!page->mapping) { | 
 | 		unlock_page(page); | 
 | 		page_cache_release(page); | 
 | 		goto retry; | 
 | 	} | 
 | 	if (PageUptodate(page)) { | 
 | 		unlock_page(page); | 
 | 		goto out; | 
 | 	} | 
 | 	err = filler(data, page); | 
 | 	if (err < 0) { | 
 | 		page_cache_release(page); | 
 | 		page = ERR_PTR(err); | 
 | 	} | 
 |  out: | 
 | 	return page; | 
 | } | 
 | EXPORT_SYMBOL(read_cache_page); | 
 |  | 
 | /* | 
 |  * If the page was newly created, increment its refcount and add it to the | 
 |  * caller's lru-buffering pagevec.  This function is specifically for | 
 |  * generic_file_write(). | 
 |  */ | 
 | static inline struct page * | 
 | __grab_cache_page(struct address_space *mapping, unsigned long index, | 
 | 			struct page **cached_page, struct pagevec *lru_pvec) | 
 | { | 
 | 	int err; | 
 | 	struct page *page; | 
 | repeat: | 
 | 	page = find_lock_page(mapping, index); | 
 | 	if (!page) { | 
 | 		if (!*cached_page) { | 
 | 			*cached_page = page_cache_alloc(mapping); | 
 | 			if (!*cached_page) | 
 | 				return NULL; | 
 | 		} | 
 | 		err = add_to_page_cache(*cached_page, mapping, | 
 | 					index, GFP_KERNEL); | 
 | 		if (err == -EEXIST) | 
 | 			goto repeat; | 
 | 		if (err == 0) { | 
 | 			page = *cached_page; | 
 | 			page_cache_get(page); | 
 | 			if (!pagevec_add(lru_pvec, page)) | 
 | 				__pagevec_lru_add(lru_pvec); | 
 | 			*cached_page = NULL; | 
 | 		} | 
 | 	} | 
 | 	return page; | 
 | } | 
 |  | 
 | /* | 
 |  * The logic we want is | 
 |  * | 
 |  *	if suid or (sgid and xgrp) | 
 |  *		remove privs | 
 |  */ | 
 | int should_remove_suid(struct dentry *dentry) | 
 | { | 
 | 	mode_t mode = dentry->d_inode->i_mode; | 
 | 	int kill = 0; | 
 |  | 
 | 	/* suid always must be killed */ | 
 | 	if (unlikely(mode & S_ISUID)) | 
 | 		kill = ATTR_KILL_SUID; | 
 |  | 
 | 	/* | 
 | 	 * sgid without any exec bits is just a mandatory locking mark; leave | 
 | 	 * it alone.  If some exec bits are set, it's a real sgid; kill it. | 
 | 	 */ | 
 | 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) | 
 | 		kill |= ATTR_KILL_SGID; | 
 |  | 
 | 	if (unlikely(kill && !capable(CAP_FSETID))) | 
 | 		return kill; | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(should_remove_suid); | 
 |  | 
 | int __remove_suid(struct dentry *dentry, int kill) | 
 | { | 
 | 	struct iattr newattrs; | 
 |  | 
 | 	newattrs.ia_valid = ATTR_FORCE | kill; | 
 | 	return notify_change(dentry, &newattrs); | 
 | } | 
 |  | 
 | int remove_suid(struct dentry *dentry) | 
 | { | 
 | 	int kill = should_remove_suid(dentry); | 
 |  | 
 | 	if (unlikely(kill)) | 
 | 		return __remove_suid(dentry, kill); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(remove_suid); | 
 |  | 
 | size_t | 
 | __filemap_copy_from_user_iovec_inatomic(char *vaddr, | 
 | 			const struct iovec *iov, size_t base, size_t bytes) | 
 | { | 
 | 	size_t copied = 0, left = 0; | 
 |  | 
 | 	while (bytes) { | 
 | 		char __user *buf = iov->iov_base + base; | 
 | 		int copy = min(bytes, iov->iov_len - base); | 
 |  | 
 | 		base = 0; | 
 | 		left = __copy_from_user_inatomic_nocache(vaddr, buf, copy); | 
 | 		copied += copy; | 
 | 		bytes -= copy; | 
 | 		vaddr += copy; | 
 | 		iov++; | 
 |  | 
 | 		if (unlikely(left)) | 
 | 			break; | 
 | 	} | 
 | 	return copied - left; | 
 | } | 
 |  | 
 | /* | 
 |  * Performs necessary checks before doing a write | 
 |  * | 
 |  * Can adjust writing position or amount of bytes to write. | 
 |  * Returns appropriate error code that caller should return or | 
 |  * zero in case that write should be allowed. | 
 |  */ | 
 | inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) | 
 | { | 
 | 	struct inode *inode = file->f_mapping->host; | 
 | 	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; | 
 |  | 
 |         if (unlikely(*pos < 0)) | 
 |                 return -EINVAL; | 
 |  | 
 | 	if (!isblk) { | 
 | 		/* FIXME: this is for backwards compatibility with 2.4 */ | 
 | 		if (file->f_flags & O_APPEND) | 
 |                         *pos = i_size_read(inode); | 
 |  | 
 | 		if (limit != RLIM_INFINITY) { | 
 | 			if (*pos >= limit) { | 
 | 				send_sig(SIGXFSZ, current, 0); | 
 | 				return -EFBIG; | 
 | 			} | 
 | 			if (*count > limit - (typeof(limit))*pos) { | 
 | 				*count = limit - (typeof(limit))*pos; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * LFS rule | 
 | 	 */ | 
 | 	if (unlikely(*pos + *count > MAX_NON_LFS && | 
 | 				!(file->f_flags & O_LARGEFILE))) { | 
 | 		if (*pos >= MAX_NON_LFS) { | 
 | 			send_sig(SIGXFSZ, current, 0); | 
 | 			return -EFBIG; | 
 | 		} | 
 | 		if (*count > MAX_NON_LFS - (unsigned long)*pos) { | 
 | 			*count = MAX_NON_LFS - (unsigned long)*pos; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Are we about to exceed the fs block limit ? | 
 | 	 * | 
 | 	 * If we have written data it becomes a short write.  If we have | 
 | 	 * exceeded without writing data we send a signal and return EFBIG. | 
 | 	 * Linus frestrict idea will clean these up nicely.. | 
 | 	 */ | 
 | 	if (likely(!isblk)) { | 
 | 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { | 
 | 			if (*count || *pos > inode->i_sb->s_maxbytes) { | 
 | 				send_sig(SIGXFSZ, current, 0); | 
 | 				return -EFBIG; | 
 | 			} | 
 | 			/* zero-length writes at ->s_maxbytes are OK */ | 
 | 		} | 
 |  | 
 | 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) | 
 | 			*count = inode->i_sb->s_maxbytes - *pos; | 
 | 	} else { | 
 | #ifdef CONFIG_BLOCK | 
 | 		loff_t isize; | 
 | 		if (bdev_read_only(I_BDEV(inode))) | 
 | 			return -EPERM; | 
 | 		isize = i_size_read(inode); | 
 | 		if (*pos >= isize) { | 
 | 			if (*count || *pos > isize) | 
 | 				return -ENOSPC; | 
 | 		} | 
 |  | 
 | 		if (*pos + *count > isize) | 
 | 			*count = isize - *pos; | 
 | #else | 
 | 		return -EPERM; | 
 | #endif | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(generic_write_checks); | 
 |  | 
 | ssize_t | 
 | generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, | 
 | 		unsigned long *nr_segs, loff_t pos, loff_t *ppos, | 
 | 		size_t count, size_t ocount) | 
 | { | 
 | 	struct file	*file = iocb->ki_filp; | 
 | 	struct address_space *mapping = file->f_mapping; | 
 | 	struct inode	*inode = mapping->host; | 
 | 	ssize_t		written; | 
 |  | 
 | 	if (count != ocount) | 
 | 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); | 
 |  | 
 | 	written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs); | 
 | 	if (written > 0) { | 
 | 		loff_t end = pos + written; | 
 | 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { | 
 | 			i_size_write(inode,  end); | 
 | 			mark_inode_dirty(inode); | 
 | 		} | 
 | 		*ppos = end; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Sync the fs metadata but not the minor inode changes and | 
 | 	 * of course not the data as we did direct DMA for the IO. | 
 | 	 * i_mutex is held, which protects generic_osync_inode() from | 
 | 	 * livelocking.  AIO O_DIRECT ops attempt to sync metadata here. | 
 | 	 */ | 
 | 	if ((written >= 0 || written == -EIOCBQUEUED) && | 
 | 	    ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { | 
 | 		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA); | 
 | 		if (err < 0) | 
 | 			written = err; | 
 | 	} | 
 | 	return written; | 
 | } | 
 | EXPORT_SYMBOL(generic_file_direct_write); | 
 |  | 
 | ssize_t | 
 | generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, | 
 | 		unsigned long nr_segs, loff_t pos, loff_t *ppos, | 
 | 		size_t count, ssize_t written) | 
 | { | 
 | 	struct file *file = iocb->ki_filp; | 
 | 	struct address_space * mapping = file->f_mapping; | 
 | 	const struct address_space_operations *a_ops = mapping->a_ops; | 
 | 	struct inode 	*inode = mapping->host; | 
 | 	long		status = 0; | 
 | 	struct page	*page; | 
 | 	struct page	*cached_page = NULL; | 
 | 	size_t		bytes; | 
 | 	struct pagevec	lru_pvec; | 
 | 	const struct iovec *cur_iov = iov; /* current iovec */ | 
 | 	size_t		iov_base = 0;	   /* offset in the current iovec */ | 
 | 	char __user	*buf; | 
 |  | 
 | 	pagevec_init(&lru_pvec, 0); | 
 |  | 
 | 	/* | 
 | 	 * handle partial DIO write.  Adjust cur_iov if needed. | 
 | 	 */ | 
 | 	if (likely(nr_segs == 1)) | 
 | 		buf = iov->iov_base + written; | 
 | 	else { | 
 | 		filemap_set_next_iovec(&cur_iov, &iov_base, written); | 
 | 		buf = cur_iov->iov_base + iov_base; | 
 | 	} | 
 |  | 
 | 	do { | 
 | 		unsigned long index; | 
 | 		unsigned long offset; | 
 | 		size_t copied; | 
 |  | 
 | 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ | 
 | 		index = pos >> PAGE_CACHE_SHIFT; | 
 | 		bytes = PAGE_CACHE_SIZE - offset; | 
 |  | 
 | 		/* Limit the size of the copy to the caller's write size */ | 
 | 		bytes = min(bytes, count); | 
 |  | 
 | 		/* | 
 | 		 * Limit the size of the copy to that of the current segment, | 
 | 		 * because fault_in_pages_readable() doesn't know how to walk | 
 | 		 * segments. | 
 | 		 */ | 
 | 		bytes = min(bytes, cur_iov->iov_len - iov_base); | 
 |  | 
 | 		/* | 
 | 		 * Bring in the user page that we will copy from _first_. | 
 | 		 * Otherwise there's a nasty deadlock on copying from the | 
 | 		 * same page as we're writing to, without it being marked | 
 | 		 * up-to-date. | 
 | 		 */ | 
 | 		fault_in_pages_readable(buf, bytes); | 
 |  | 
 | 		page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec); | 
 | 		if (!page) { | 
 | 			status = -ENOMEM; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (unlikely(bytes == 0)) { | 
 | 			status = 0; | 
 | 			copied = 0; | 
 | 			goto zero_length_segment; | 
 | 		} | 
 |  | 
 | 		status = a_ops->prepare_write(file, page, offset, offset+bytes); | 
 | 		if (unlikely(status)) { | 
 | 			loff_t isize = i_size_read(inode); | 
 |  | 
 | 			if (status != AOP_TRUNCATED_PAGE) | 
 | 				unlock_page(page); | 
 | 			page_cache_release(page); | 
 | 			if (status == AOP_TRUNCATED_PAGE) | 
 | 				continue; | 
 | 			/* | 
 | 			 * prepare_write() may have instantiated a few blocks | 
 | 			 * outside i_size.  Trim these off again. | 
 | 			 */ | 
 | 			if (pos + bytes > isize) | 
 | 				vmtruncate(inode, isize); | 
 | 			break; | 
 | 		} | 
 | 		if (likely(nr_segs == 1)) | 
 | 			copied = filemap_copy_from_user(page, offset, | 
 | 							buf, bytes); | 
 | 		else | 
 | 			copied = filemap_copy_from_user_iovec(page, offset, | 
 | 						cur_iov, iov_base, bytes); | 
 | 		flush_dcache_page(page); | 
 | 		status = a_ops->commit_write(file, page, offset, offset+bytes); | 
 | 		if (status == AOP_TRUNCATED_PAGE) { | 
 | 			page_cache_release(page); | 
 | 			continue; | 
 | 		} | 
 | zero_length_segment: | 
 | 		if (likely(copied >= 0)) { | 
 | 			if (!status) | 
 | 				status = copied; | 
 |  | 
 | 			if (status >= 0) { | 
 | 				written += status; | 
 | 				count -= status; | 
 | 				pos += status; | 
 | 				buf += status; | 
 | 				if (unlikely(nr_segs > 1)) { | 
 | 					filemap_set_next_iovec(&cur_iov, | 
 | 							&iov_base, status); | 
 | 					if (count) | 
 | 						buf = cur_iov->iov_base + | 
 | 							iov_base; | 
 | 				} else { | 
 | 					iov_base += status; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 		if (unlikely(copied != bytes)) | 
 | 			if (status >= 0) | 
 | 				status = -EFAULT; | 
 | 		unlock_page(page); | 
 | 		mark_page_accessed(page); | 
 | 		page_cache_release(page); | 
 | 		if (status < 0) | 
 | 			break; | 
 | 		balance_dirty_pages_ratelimited(mapping); | 
 | 		cond_resched(); | 
 | 	} while (count); | 
 | 	*ppos = pos; | 
 |  | 
 | 	if (cached_page) | 
 | 		page_cache_release(cached_page); | 
 |  | 
 | 	/* | 
 | 	 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC | 
 | 	 */ | 
 | 	if (likely(status >= 0)) { | 
 | 		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) { | 
 | 			if (!a_ops->writepage || !is_sync_kiocb(iocb)) | 
 | 				status = generic_osync_inode(inode, mapping, | 
 | 						OSYNC_METADATA|OSYNC_DATA); | 
 | 		} | 
 |   	} | 
 | 	 | 
 | 	/* | 
 | 	 * If we get here for O_DIRECT writes then we must have fallen through | 
 | 	 * to buffered writes (block instantiation inside i_size).  So we sync | 
 | 	 * the file data here, to try to honour O_DIRECT expectations. | 
 | 	 */ | 
 | 	if (unlikely(file->f_flags & O_DIRECT) && written) | 
 | 		status = filemap_write_and_wait(mapping); | 
 |  | 
 | 	pagevec_lru_add(&lru_pvec); | 
 | 	return written ? written : status; | 
 | } | 
 | EXPORT_SYMBOL(generic_file_buffered_write); | 
 |  | 
 | static ssize_t | 
 | __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov, | 
 | 				unsigned long nr_segs, loff_t *ppos) | 
 | { | 
 | 	struct file *file = iocb->ki_filp; | 
 | 	struct address_space * mapping = file->f_mapping; | 
 | 	size_t ocount;		/* original count */ | 
 | 	size_t count;		/* after file limit checks */ | 
 | 	struct inode 	*inode = mapping->host; | 
 | 	unsigned long	seg; | 
 | 	loff_t		pos; | 
 | 	ssize_t		written; | 
 | 	ssize_t		err; | 
 |  | 
 | 	ocount = 0; | 
 | 	for (seg = 0; seg < nr_segs; seg++) { | 
 | 		const struct iovec *iv = &iov[seg]; | 
 |  | 
 | 		/* | 
 | 		 * If any segment has a negative length, or the cumulative | 
 | 		 * length ever wraps negative then return -EINVAL. | 
 | 		 */ | 
 | 		ocount += iv->iov_len; | 
 | 		if (unlikely((ssize_t)(ocount|iv->iov_len) < 0)) | 
 | 			return -EINVAL; | 
 | 		if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len)) | 
 | 			continue; | 
 | 		if (seg == 0) | 
 | 			return -EFAULT; | 
 | 		nr_segs = seg; | 
 | 		ocount -= iv->iov_len;	/* This segment is no good */ | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	count = ocount; | 
 | 	pos = *ppos; | 
 |  | 
 | 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); | 
 |  | 
 | 	/* We can write back this queue in page reclaim */ | 
 | 	current->backing_dev_info = mapping->backing_dev_info; | 
 | 	written = 0; | 
 |  | 
 | 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	if (count == 0) | 
 | 		goto out; | 
 |  | 
 | 	err = remove_suid(file->f_path.dentry); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	file_update_time(file); | 
 |  | 
 | 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ | 
 | 	if (unlikely(file->f_flags & O_DIRECT)) { | 
 | 		loff_t endbyte; | 
 | 		ssize_t written_buffered; | 
 |  | 
 | 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos, | 
 | 							ppos, count, ocount); | 
 | 		if (written < 0 || written == count) | 
 | 			goto out; | 
 | 		/* | 
 | 		 * direct-io write to a hole: fall through to buffered I/O | 
 | 		 * for completing the rest of the request. | 
 | 		 */ | 
 | 		pos += written; | 
 | 		count -= written; | 
 | 		written_buffered = generic_file_buffered_write(iocb, iov, | 
 | 						nr_segs, pos, ppos, count, | 
 | 						written); | 
 | 		/* | 
 | 		 * If generic_file_buffered_write() retuned a synchronous error | 
 | 		 * then we want to return the number of bytes which were | 
 | 		 * direct-written, or the error code if that was zero.  Note | 
 | 		 * that this differs from normal direct-io semantics, which | 
 | 		 * will return -EFOO even if some bytes were written. | 
 | 		 */ | 
 | 		if (written_buffered < 0) { | 
 | 			err = written_buffered; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * We need to ensure that the page cache pages are written to | 
 | 		 * disk and invalidated to preserve the expected O_DIRECT | 
 | 		 * semantics. | 
 | 		 */ | 
 | 		endbyte = pos + written_buffered - written - 1; | 
 | 		err = do_sync_file_range(file, pos, endbyte, | 
 | 					 SYNC_FILE_RANGE_WAIT_BEFORE| | 
 | 					 SYNC_FILE_RANGE_WRITE| | 
 | 					 SYNC_FILE_RANGE_WAIT_AFTER); | 
 | 		if (err == 0) { | 
 | 			written = written_buffered; | 
 | 			invalidate_mapping_pages(mapping, | 
 | 						 pos >> PAGE_CACHE_SHIFT, | 
 | 						 endbyte >> PAGE_CACHE_SHIFT); | 
 | 		} else { | 
 | 			/* | 
 | 			 * We don't know how much we wrote, so just return | 
 | 			 * the number of bytes which were direct-written | 
 | 			 */ | 
 | 		} | 
 | 	} else { | 
 | 		written = generic_file_buffered_write(iocb, iov, nr_segs, | 
 | 				pos, ppos, count, written); | 
 | 	} | 
 | out: | 
 | 	current->backing_dev_info = NULL; | 
 | 	return written ? written : err; | 
 | } | 
 |  | 
 | ssize_t generic_file_aio_write_nolock(struct kiocb *iocb, | 
 | 		const struct iovec *iov, unsigned long nr_segs, loff_t pos) | 
 | { | 
 | 	struct file *file = iocb->ki_filp; | 
 | 	struct address_space *mapping = file->f_mapping; | 
 | 	struct inode *inode = mapping->host; | 
 | 	ssize_t ret; | 
 |  | 
 | 	BUG_ON(iocb->ki_pos != pos); | 
 |  | 
 | 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, | 
 | 			&iocb->ki_pos); | 
 |  | 
 | 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { | 
 | 		ssize_t err; | 
 |  | 
 | 		err = sync_page_range_nolock(inode, mapping, pos, ret); | 
 | 		if (err < 0) | 
 | 			ret = err; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(generic_file_aio_write_nolock); | 
 |  | 
 | ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, | 
 | 		unsigned long nr_segs, loff_t pos) | 
 | { | 
 | 	struct file *file = iocb->ki_filp; | 
 | 	struct address_space *mapping = file->f_mapping; | 
 | 	struct inode *inode = mapping->host; | 
 | 	ssize_t ret; | 
 |  | 
 | 	BUG_ON(iocb->ki_pos != pos); | 
 |  | 
 | 	mutex_lock(&inode->i_mutex); | 
 | 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, | 
 | 			&iocb->ki_pos); | 
 | 	mutex_unlock(&inode->i_mutex); | 
 |  | 
 | 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { | 
 | 		ssize_t err; | 
 |  | 
 | 		err = sync_page_range(inode, mapping, pos, ret); | 
 | 		if (err < 0) | 
 | 			ret = err; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(generic_file_aio_write); | 
 |  | 
 | /* | 
 |  * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something | 
 |  * went wrong during pagecache shootdown. | 
 |  */ | 
 | static ssize_t | 
 | generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, | 
 | 	loff_t offset, unsigned long nr_segs) | 
 | { | 
 | 	struct file *file = iocb->ki_filp; | 
 | 	struct address_space *mapping = file->f_mapping; | 
 | 	ssize_t retval; | 
 | 	size_t write_len = 0; | 
 |  | 
 | 	/* | 
 | 	 * If it's a write, unmap all mmappings of the file up-front.  This | 
 | 	 * will cause any pte dirty bits to be propagated into the pageframes | 
 | 	 * for the subsequent filemap_write_and_wait(). | 
 | 	 */ | 
 | 	if (rw == WRITE) { | 
 | 		write_len = iov_length(iov, nr_segs); | 
 | 	       	if (mapping_mapped(mapping)) | 
 | 			unmap_mapping_range(mapping, offset, write_len, 0); | 
 | 	} | 
 |  | 
 | 	retval = filemap_write_and_wait(mapping); | 
 | 	if (retval == 0) { | 
 | 		retval = mapping->a_ops->direct_IO(rw, iocb, iov, | 
 | 						offset, nr_segs); | 
 | 		if (rw == WRITE && mapping->nrpages) { | 
 | 			pgoff_t end = (offset + write_len - 1) | 
 | 						>> PAGE_CACHE_SHIFT; | 
 | 			int err = invalidate_inode_pages2_range(mapping, | 
 | 					offset >> PAGE_CACHE_SHIFT, end); | 
 | 			if (err) | 
 | 				retval = err; | 
 | 		} | 
 | 	} | 
 | 	return retval; | 
 | } | 
 |  | 
 | /** | 
 |  * try_to_release_page() - release old fs-specific metadata on a page | 
 |  * | 
 |  * @page: the page which the kernel is trying to free | 
 |  * @gfp_mask: memory allocation flags (and I/O mode) | 
 |  * | 
 |  * The address_space is to try to release any data against the page | 
 |  * (presumably at page->private).  If the release was successful, return `1'. | 
 |  * Otherwise return zero. | 
 |  * | 
 |  * The @gfp_mask argument specifies whether I/O may be performed to release | 
 |  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT). | 
 |  * | 
 |  * NOTE: @gfp_mask may go away, and this function may become non-blocking. | 
 |  */ | 
 | int try_to_release_page(struct page *page, gfp_t gfp_mask) | 
 | { | 
 | 	struct address_space * const mapping = page->mapping; | 
 |  | 
 | 	BUG_ON(!PageLocked(page)); | 
 | 	if (PageWriteback(page)) | 
 | 		return 0; | 
 |  | 
 | 	if (mapping && mapping->a_ops->releasepage) | 
 | 		return mapping->a_ops->releasepage(page, gfp_mask); | 
 | 	return try_to_free_buffers(page); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(try_to_release_page); |