|  | #ifndef __ASM_SH_UNALIGNED_SH4A_H | 
|  | #define __ASM_SH_UNALIGNED_SH4A_H | 
|  |  | 
|  | /* | 
|  | * SH-4A has support for unaligned 32-bit loads, and 32-bit loads only. | 
|  | * Support for 64-bit accesses are done through shifting and masking | 
|  | * relative to the endianness. Unaligned stores are not supported by the | 
|  | * instruction encoding, so these continue to use the packed | 
|  | * struct. | 
|  | * | 
|  | * The same note as with the movli.l/movco.l pair applies here, as long | 
|  | * as the load is guaranteed to be inlined, nothing else will hook in to | 
|  | * r0 and we get the return value for free. | 
|  | * | 
|  | * NOTE: Due to the fact we require r0 encoding, care should be taken to | 
|  | * avoid mixing these heavily with other r0 consumers, such as the atomic | 
|  | * ops. Failure to adhere to this can result in the compiler running out | 
|  | * of spill registers and blowing up when building at low optimization | 
|  | * levels. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=34777. | 
|  | */ | 
|  | #include <linux/unaligned/packed_struct.h> | 
|  | #include <linux/types.h> | 
|  | #include <asm/byteorder.h> | 
|  |  | 
|  | static inline u16 sh4a_get_unaligned_cpu16(const u8 *p) | 
|  | { | 
|  | #ifdef __LITTLE_ENDIAN | 
|  | return p[0] | p[1] << 8; | 
|  | #else | 
|  | return p[0] << 8 | p[1]; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static __always_inline u32 sh4a_get_unaligned_cpu32(const u8 *p) | 
|  | { | 
|  | unsigned long unaligned; | 
|  |  | 
|  | __asm__ __volatile__ ( | 
|  | "movua.l	@%1, %0\n\t" | 
|  | : "=z" (unaligned) | 
|  | : "r" (p) | 
|  | ); | 
|  |  | 
|  | return unaligned; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Even though movua.l supports auto-increment on the read side, it can | 
|  | * only store to r0 due to instruction encoding constraints, so just let | 
|  | * the compiler sort it out on its own. | 
|  | */ | 
|  | static inline u64 sh4a_get_unaligned_cpu64(const u8 *p) | 
|  | { | 
|  | #ifdef __LITTLE_ENDIAN | 
|  | return (u64)sh4a_get_unaligned_cpu32(p + 4) << 32 | | 
|  | sh4a_get_unaligned_cpu32(p); | 
|  | #else | 
|  | return (u64)sh4a_get_unaligned_cpu32(p) << 32 | | 
|  | sh4a_get_unaligned_cpu32(p + 4); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline u16 get_unaligned_le16(const void *p) | 
|  | { | 
|  | return le16_to_cpu(sh4a_get_unaligned_cpu16(p)); | 
|  | } | 
|  |  | 
|  | static inline u32 get_unaligned_le32(const void *p) | 
|  | { | 
|  | return le32_to_cpu(sh4a_get_unaligned_cpu32(p)); | 
|  | } | 
|  |  | 
|  | static inline u64 get_unaligned_le64(const void *p) | 
|  | { | 
|  | return le64_to_cpu(sh4a_get_unaligned_cpu64(p)); | 
|  | } | 
|  |  | 
|  | static inline u16 get_unaligned_be16(const void *p) | 
|  | { | 
|  | return be16_to_cpu(sh4a_get_unaligned_cpu16(p)); | 
|  | } | 
|  |  | 
|  | static inline u32 get_unaligned_be32(const void *p) | 
|  | { | 
|  | return be32_to_cpu(sh4a_get_unaligned_cpu32(p)); | 
|  | } | 
|  |  | 
|  | static inline u64 get_unaligned_be64(const void *p) | 
|  | { | 
|  | return be64_to_cpu(sh4a_get_unaligned_cpu64(p)); | 
|  | } | 
|  |  | 
|  | static inline void nonnative_put_le16(u16 val, u8 *p) | 
|  | { | 
|  | *p++ = val; | 
|  | *p++ = val >> 8; | 
|  | } | 
|  |  | 
|  | static inline void nonnative_put_le32(u32 val, u8 *p) | 
|  | { | 
|  | nonnative_put_le16(val, p); | 
|  | nonnative_put_le16(val >> 16, p + 2); | 
|  | } | 
|  |  | 
|  | static inline void nonnative_put_le64(u64 val, u8 *p) | 
|  | { | 
|  | nonnative_put_le32(val, p); | 
|  | nonnative_put_le32(val >> 32, p + 4); | 
|  | } | 
|  |  | 
|  | static inline void nonnative_put_be16(u16 val, u8 *p) | 
|  | { | 
|  | *p++ = val >> 8; | 
|  | *p++ = val; | 
|  | } | 
|  |  | 
|  | static inline void nonnative_put_be32(u32 val, u8 *p) | 
|  | { | 
|  | nonnative_put_be16(val >> 16, p); | 
|  | nonnative_put_be16(val, p + 2); | 
|  | } | 
|  |  | 
|  | static inline void nonnative_put_be64(u64 val, u8 *p) | 
|  | { | 
|  | nonnative_put_be32(val >> 32, p); | 
|  | nonnative_put_be32(val, p + 4); | 
|  | } | 
|  |  | 
|  | static inline void put_unaligned_le16(u16 val, void *p) | 
|  | { | 
|  | #ifdef __LITTLE_ENDIAN | 
|  | __put_unaligned_cpu16(val, p); | 
|  | #else | 
|  | nonnative_put_le16(val, p); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void put_unaligned_le32(u32 val, void *p) | 
|  | { | 
|  | #ifdef __LITTLE_ENDIAN | 
|  | __put_unaligned_cpu32(val, p); | 
|  | #else | 
|  | nonnative_put_le32(val, p); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void put_unaligned_le64(u64 val, void *p) | 
|  | { | 
|  | #ifdef __LITTLE_ENDIAN | 
|  | __put_unaligned_cpu64(val, p); | 
|  | #else | 
|  | nonnative_put_le64(val, p); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void put_unaligned_be16(u16 val, void *p) | 
|  | { | 
|  | #ifdef __BIG_ENDIAN | 
|  | __put_unaligned_cpu16(val, p); | 
|  | #else | 
|  | nonnative_put_be16(val, p); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void put_unaligned_be32(u32 val, void *p) | 
|  | { | 
|  | #ifdef __BIG_ENDIAN | 
|  | __put_unaligned_cpu32(val, p); | 
|  | #else | 
|  | nonnative_put_be32(val, p); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void put_unaligned_be64(u64 val, void *p) | 
|  | { | 
|  | #ifdef __BIG_ENDIAN | 
|  | __put_unaligned_cpu64(val, p); | 
|  | #else | 
|  | nonnative_put_be64(val, p); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * While it's a bit non-obvious, even though the generic le/be wrappers | 
|  | * use the __get/put_xxx prefixing, they actually wrap in to the | 
|  | * non-prefixed get/put_xxx variants as provided above. | 
|  | */ | 
|  | #include <linux/unaligned/generic.h> | 
|  |  | 
|  | #ifdef __LITTLE_ENDIAN | 
|  | # define get_unaligned __get_unaligned_le | 
|  | # define put_unaligned __put_unaligned_le | 
|  | #else | 
|  | # define get_unaligned __get_unaligned_be | 
|  | # define put_unaligned __put_unaligned_be | 
|  | #endif | 
|  |  | 
|  | #endif /* __ASM_SH_UNALIGNED_SH4A_H */ |