|  | /* | 
|  | * Kernel-based Virtual Machine driver for Linux | 
|  | * | 
|  | * This module enables machines with Intel VT-x extensions to run virtual | 
|  | * machines without emulation or binary translation. | 
|  | * | 
|  | * Copyright (C) 2006 Qumranet, Inc. | 
|  | * Copyright 2010 Red Hat, Inc. and/or its affiliates. | 
|  | * | 
|  | * Authors: | 
|  | *   Avi Kivity   <avi@qumranet.com> | 
|  | *   Yaniv Kamay  <yaniv@qumranet.com> | 
|  | * | 
|  | * This work is licensed under the terms of the GNU GPL, version 2.  See | 
|  | * the COPYING file in the top-level directory. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include "irq.h" | 
|  | #include "mmu.h" | 
|  |  | 
|  | #include <linux/kvm_host.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/moduleparam.h> | 
|  | #include <linux/ftrace_event.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/tboot.h> | 
|  | #include "kvm_cache_regs.h" | 
|  | #include "x86.h" | 
|  |  | 
|  | #include <asm/io.h> | 
|  | #include <asm/desc.h> | 
|  | #include <asm/vmx.h> | 
|  | #include <asm/virtext.h> | 
|  | #include <asm/mce.h> | 
|  | #include <asm/i387.h> | 
|  | #include <asm/xcr.h> | 
|  | #include <asm/perf_event.h> | 
|  |  | 
|  | #include "trace.h" | 
|  |  | 
|  | #define __ex(x) __kvm_handle_fault_on_reboot(x) | 
|  | #define __ex_clear(x, reg) \ | 
|  | ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg) | 
|  |  | 
|  | MODULE_AUTHOR("Qumranet"); | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  | static int __read_mostly enable_vpid = 1; | 
|  | module_param_named(vpid, enable_vpid, bool, 0444); | 
|  |  | 
|  | static int __read_mostly flexpriority_enabled = 1; | 
|  | module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); | 
|  |  | 
|  | static int __read_mostly enable_ept = 1; | 
|  | module_param_named(ept, enable_ept, bool, S_IRUGO); | 
|  |  | 
|  | static int __read_mostly enable_unrestricted_guest = 1; | 
|  | module_param_named(unrestricted_guest, | 
|  | enable_unrestricted_guest, bool, S_IRUGO); | 
|  |  | 
|  | static int __read_mostly emulate_invalid_guest_state = 0; | 
|  | module_param(emulate_invalid_guest_state, bool, S_IRUGO); | 
|  |  | 
|  | static int __read_mostly vmm_exclusive = 1; | 
|  | module_param(vmm_exclusive, bool, S_IRUGO); | 
|  |  | 
|  | static int __read_mostly yield_on_hlt = 1; | 
|  | module_param(yield_on_hlt, bool, S_IRUGO); | 
|  |  | 
|  | static int __read_mostly fasteoi = 1; | 
|  | module_param(fasteoi, bool, S_IRUGO); | 
|  |  | 
|  | /* | 
|  | * If nested=1, nested virtualization is supported, i.e., guests may use | 
|  | * VMX and be a hypervisor for its own guests. If nested=0, guests may not | 
|  | * use VMX instructions. | 
|  | */ | 
|  | static int __read_mostly nested = 0; | 
|  | module_param(nested, bool, S_IRUGO); | 
|  |  | 
|  | #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST				\ | 
|  | (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD) | 
|  | #define KVM_GUEST_CR0_MASK						\ | 
|  | (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE) | 
|  | #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST				\ | 
|  | (X86_CR0_WP | X86_CR0_NE) | 
|  | #define KVM_VM_CR0_ALWAYS_ON						\ | 
|  | (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE) | 
|  | #define KVM_CR4_GUEST_OWNED_BITS				      \ | 
|  | (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \ | 
|  | | X86_CR4_OSXMMEXCPT) | 
|  |  | 
|  | #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) | 
|  | #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) | 
|  |  | 
|  | #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) | 
|  |  | 
|  | /* | 
|  | * These 2 parameters are used to config the controls for Pause-Loop Exiting: | 
|  | * ple_gap:    upper bound on the amount of time between two successive | 
|  | *             executions of PAUSE in a loop. Also indicate if ple enabled. | 
|  | *             According to test, this time is usually smaller than 128 cycles. | 
|  | * ple_window: upper bound on the amount of time a guest is allowed to execute | 
|  | *             in a PAUSE loop. Tests indicate that most spinlocks are held for | 
|  | *             less than 2^12 cycles | 
|  | * Time is measured based on a counter that runs at the same rate as the TSC, | 
|  | * refer SDM volume 3b section 21.6.13 & 22.1.3. | 
|  | */ | 
|  | #define KVM_VMX_DEFAULT_PLE_GAP    128 | 
|  | #define KVM_VMX_DEFAULT_PLE_WINDOW 4096 | 
|  | static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP; | 
|  | module_param(ple_gap, int, S_IRUGO); | 
|  |  | 
|  | static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; | 
|  | module_param(ple_window, int, S_IRUGO); | 
|  |  | 
|  | #define NR_AUTOLOAD_MSRS 8 | 
|  | #define VMCS02_POOL_SIZE 1 | 
|  |  | 
|  | struct vmcs { | 
|  | u32 revision_id; | 
|  | u32 abort; | 
|  | char data[0]; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also | 
|  | * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs | 
|  | * loaded on this CPU (so we can clear them if the CPU goes down). | 
|  | */ | 
|  | struct loaded_vmcs { | 
|  | struct vmcs *vmcs; | 
|  | int cpu; | 
|  | int launched; | 
|  | struct list_head loaded_vmcss_on_cpu_link; | 
|  | }; | 
|  |  | 
|  | struct shared_msr_entry { | 
|  | unsigned index; | 
|  | u64 data; | 
|  | u64 mask; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a | 
|  | * single nested guest (L2), hence the name vmcs12. Any VMX implementation has | 
|  | * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is | 
|  | * stored in guest memory specified by VMPTRLD, but is opaque to the guest, | 
|  | * which must access it using VMREAD/VMWRITE/VMCLEAR instructions. | 
|  | * More than one of these structures may exist, if L1 runs multiple L2 guests. | 
|  | * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the | 
|  | * underlying hardware which will be used to run L2. | 
|  | * This structure is packed to ensure that its layout is identical across | 
|  | * machines (necessary for live migration). | 
|  | * If there are changes in this struct, VMCS12_REVISION must be changed. | 
|  | */ | 
|  | typedef u64 natural_width; | 
|  | struct __packed vmcs12 { | 
|  | /* According to the Intel spec, a VMCS region must start with the | 
|  | * following two fields. Then follow implementation-specific data. | 
|  | */ | 
|  | u32 revision_id; | 
|  | u32 abort; | 
|  |  | 
|  | u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */ | 
|  | u32 padding[7]; /* room for future expansion */ | 
|  |  | 
|  | u64 io_bitmap_a; | 
|  | u64 io_bitmap_b; | 
|  | u64 msr_bitmap; | 
|  | u64 vm_exit_msr_store_addr; | 
|  | u64 vm_exit_msr_load_addr; | 
|  | u64 vm_entry_msr_load_addr; | 
|  | u64 tsc_offset; | 
|  | u64 virtual_apic_page_addr; | 
|  | u64 apic_access_addr; | 
|  | u64 ept_pointer; | 
|  | u64 guest_physical_address; | 
|  | u64 vmcs_link_pointer; | 
|  | u64 guest_ia32_debugctl; | 
|  | u64 guest_ia32_pat; | 
|  | u64 guest_ia32_efer; | 
|  | u64 guest_ia32_perf_global_ctrl; | 
|  | u64 guest_pdptr0; | 
|  | u64 guest_pdptr1; | 
|  | u64 guest_pdptr2; | 
|  | u64 guest_pdptr3; | 
|  | u64 host_ia32_pat; | 
|  | u64 host_ia32_efer; | 
|  | u64 host_ia32_perf_global_ctrl; | 
|  | u64 padding64[8]; /* room for future expansion */ | 
|  | /* | 
|  | * To allow migration of L1 (complete with its L2 guests) between | 
|  | * machines of different natural widths (32 or 64 bit), we cannot have | 
|  | * unsigned long fields with no explict size. We use u64 (aliased | 
|  | * natural_width) instead. Luckily, x86 is little-endian. | 
|  | */ | 
|  | natural_width cr0_guest_host_mask; | 
|  | natural_width cr4_guest_host_mask; | 
|  | natural_width cr0_read_shadow; | 
|  | natural_width cr4_read_shadow; | 
|  | natural_width cr3_target_value0; | 
|  | natural_width cr3_target_value1; | 
|  | natural_width cr3_target_value2; | 
|  | natural_width cr3_target_value3; | 
|  | natural_width exit_qualification; | 
|  | natural_width guest_linear_address; | 
|  | natural_width guest_cr0; | 
|  | natural_width guest_cr3; | 
|  | natural_width guest_cr4; | 
|  | natural_width guest_es_base; | 
|  | natural_width guest_cs_base; | 
|  | natural_width guest_ss_base; | 
|  | natural_width guest_ds_base; | 
|  | natural_width guest_fs_base; | 
|  | natural_width guest_gs_base; | 
|  | natural_width guest_ldtr_base; | 
|  | natural_width guest_tr_base; | 
|  | natural_width guest_gdtr_base; | 
|  | natural_width guest_idtr_base; | 
|  | natural_width guest_dr7; | 
|  | natural_width guest_rsp; | 
|  | natural_width guest_rip; | 
|  | natural_width guest_rflags; | 
|  | natural_width guest_pending_dbg_exceptions; | 
|  | natural_width guest_sysenter_esp; | 
|  | natural_width guest_sysenter_eip; | 
|  | natural_width host_cr0; | 
|  | natural_width host_cr3; | 
|  | natural_width host_cr4; | 
|  | natural_width host_fs_base; | 
|  | natural_width host_gs_base; | 
|  | natural_width host_tr_base; | 
|  | natural_width host_gdtr_base; | 
|  | natural_width host_idtr_base; | 
|  | natural_width host_ia32_sysenter_esp; | 
|  | natural_width host_ia32_sysenter_eip; | 
|  | natural_width host_rsp; | 
|  | natural_width host_rip; | 
|  | natural_width paddingl[8]; /* room for future expansion */ | 
|  | u32 pin_based_vm_exec_control; | 
|  | u32 cpu_based_vm_exec_control; | 
|  | u32 exception_bitmap; | 
|  | u32 page_fault_error_code_mask; | 
|  | u32 page_fault_error_code_match; | 
|  | u32 cr3_target_count; | 
|  | u32 vm_exit_controls; | 
|  | u32 vm_exit_msr_store_count; | 
|  | u32 vm_exit_msr_load_count; | 
|  | u32 vm_entry_controls; | 
|  | u32 vm_entry_msr_load_count; | 
|  | u32 vm_entry_intr_info_field; | 
|  | u32 vm_entry_exception_error_code; | 
|  | u32 vm_entry_instruction_len; | 
|  | u32 tpr_threshold; | 
|  | u32 secondary_vm_exec_control; | 
|  | u32 vm_instruction_error; | 
|  | u32 vm_exit_reason; | 
|  | u32 vm_exit_intr_info; | 
|  | u32 vm_exit_intr_error_code; | 
|  | u32 idt_vectoring_info_field; | 
|  | u32 idt_vectoring_error_code; | 
|  | u32 vm_exit_instruction_len; | 
|  | u32 vmx_instruction_info; | 
|  | u32 guest_es_limit; | 
|  | u32 guest_cs_limit; | 
|  | u32 guest_ss_limit; | 
|  | u32 guest_ds_limit; | 
|  | u32 guest_fs_limit; | 
|  | u32 guest_gs_limit; | 
|  | u32 guest_ldtr_limit; | 
|  | u32 guest_tr_limit; | 
|  | u32 guest_gdtr_limit; | 
|  | u32 guest_idtr_limit; | 
|  | u32 guest_es_ar_bytes; | 
|  | u32 guest_cs_ar_bytes; | 
|  | u32 guest_ss_ar_bytes; | 
|  | u32 guest_ds_ar_bytes; | 
|  | u32 guest_fs_ar_bytes; | 
|  | u32 guest_gs_ar_bytes; | 
|  | u32 guest_ldtr_ar_bytes; | 
|  | u32 guest_tr_ar_bytes; | 
|  | u32 guest_interruptibility_info; | 
|  | u32 guest_activity_state; | 
|  | u32 guest_sysenter_cs; | 
|  | u32 host_ia32_sysenter_cs; | 
|  | u32 padding32[8]; /* room for future expansion */ | 
|  | u16 virtual_processor_id; | 
|  | u16 guest_es_selector; | 
|  | u16 guest_cs_selector; | 
|  | u16 guest_ss_selector; | 
|  | u16 guest_ds_selector; | 
|  | u16 guest_fs_selector; | 
|  | u16 guest_gs_selector; | 
|  | u16 guest_ldtr_selector; | 
|  | u16 guest_tr_selector; | 
|  | u16 host_es_selector; | 
|  | u16 host_cs_selector; | 
|  | u16 host_ss_selector; | 
|  | u16 host_ds_selector; | 
|  | u16 host_fs_selector; | 
|  | u16 host_gs_selector; | 
|  | u16 host_tr_selector; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * VMCS12_REVISION is an arbitrary id that should be changed if the content or | 
|  | * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and | 
|  | * VMPTRLD verifies that the VMCS region that L1 is loading contains this id. | 
|  | */ | 
|  | #define VMCS12_REVISION 0x11e57ed0 | 
|  |  | 
|  | /* | 
|  | * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region | 
|  | * and any VMCS region. Although only sizeof(struct vmcs12) are used by the | 
|  | * current implementation, 4K are reserved to avoid future complications. | 
|  | */ | 
|  | #define VMCS12_SIZE 0x1000 | 
|  |  | 
|  | /* Used to remember the last vmcs02 used for some recently used vmcs12s */ | 
|  | struct vmcs02_list { | 
|  | struct list_head list; | 
|  | gpa_t vmptr; | 
|  | struct loaded_vmcs vmcs02; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * The nested_vmx structure is part of vcpu_vmx, and holds information we need | 
|  | * for correct emulation of VMX (i.e., nested VMX) on this vcpu. | 
|  | */ | 
|  | struct nested_vmx { | 
|  | /* Has the level1 guest done vmxon? */ | 
|  | bool vmxon; | 
|  |  | 
|  | /* The guest-physical address of the current VMCS L1 keeps for L2 */ | 
|  | gpa_t current_vmptr; | 
|  | /* The host-usable pointer to the above */ | 
|  | struct page *current_vmcs12_page; | 
|  | struct vmcs12 *current_vmcs12; | 
|  |  | 
|  | /* vmcs02_list cache of VMCSs recently used to run L2 guests */ | 
|  | struct list_head vmcs02_pool; | 
|  | int vmcs02_num; | 
|  | u64 vmcs01_tsc_offset; | 
|  | /* L2 must run next, and mustn't decide to exit to L1. */ | 
|  | bool nested_run_pending; | 
|  | /* | 
|  | * Guest pages referred to in vmcs02 with host-physical pointers, so | 
|  | * we must keep them pinned while L2 runs. | 
|  | */ | 
|  | struct page *apic_access_page; | 
|  | }; | 
|  |  | 
|  | struct vcpu_vmx { | 
|  | struct kvm_vcpu       vcpu; | 
|  | unsigned long         host_rsp; | 
|  | u8                    fail; | 
|  | u8                    cpl; | 
|  | bool                  nmi_known_unmasked; | 
|  | u32                   exit_intr_info; | 
|  | u32                   idt_vectoring_info; | 
|  | ulong                 rflags; | 
|  | struct shared_msr_entry *guest_msrs; | 
|  | int                   nmsrs; | 
|  | int                   save_nmsrs; | 
|  | #ifdef CONFIG_X86_64 | 
|  | u64 		      msr_host_kernel_gs_base; | 
|  | u64 		      msr_guest_kernel_gs_base; | 
|  | #endif | 
|  | /* | 
|  | * loaded_vmcs points to the VMCS currently used in this vcpu. For a | 
|  | * non-nested (L1) guest, it always points to vmcs01. For a nested | 
|  | * guest (L2), it points to a different VMCS. | 
|  | */ | 
|  | struct loaded_vmcs    vmcs01; | 
|  | struct loaded_vmcs   *loaded_vmcs; | 
|  | bool                  __launched; /* temporary, used in vmx_vcpu_run */ | 
|  | struct msr_autoload { | 
|  | unsigned nr; | 
|  | struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS]; | 
|  | struct vmx_msr_entry host[NR_AUTOLOAD_MSRS]; | 
|  | } msr_autoload; | 
|  | struct { | 
|  | int           loaded; | 
|  | u16           fs_sel, gs_sel, ldt_sel; | 
|  | int           gs_ldt_reload_needed; | 
|  | int           fs_reload_needed; | 
|  | } host_state; | 
|  | struct { | 
|  | int vm86_active; | 
|  | ulong save_rflags; | 
|  | struct kvm_save_segment { | 
|  | u16 selector; | 
|  | unsigned long base; | 
|  | u32 limit; | 
|  | u32 ar; | 
|  | } tr, es, ds, fs, gs; | 
|  | } rmode; | 
|  | struct { | 
|  | u32 bitmask; /* 4 bits per segment (1 bit per field) */ | 
|  | struct kvm_save_segment seg[8]; | 
|  | } segment_cache; | 
|  | int vpid; | 
|  | bool emulation_required; | 
|  |  | 
|  | /* Support for vnmi-less CPUs */ | 
|  | int soft_vnmi_blocked; | 
|  | ktime_t entry_time; | 
|  | s64 vnmi_blocked_time; | 
|  | u32 exit_reason; | 
|  |  | 
|  | bool rdtscp_enabled; | 
|  |  | 
|  | /* Support for a guest hypervisor (nested VMX) */ | 
|  | struct nested_vmx nested; | 
|  | }; | 
|  |  | 
|  | enum segment_cache_field { | 
|  | SEG_FIELD_SEL = 0, | 
|  | SEG_FIELD_BASE = 1, | 
|  | SEG_FIELD_LIMIT = 2, | 
|  | SEG_FIELD_AR = 3, | 
|  |  | 
|  | SEG_FIELD_NR = 4 | 
|  | }; | 
|  |  | 
|  | static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return container_of(vcpu, struct vcpu_vmx, vcpu); | 
|  | } | 
|  |  | 
|  | #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x) | 
|  | #define FIELD(number, name)	[number] = VMCS12_OFFSET(name) | 
|  | #define FIELD64(number, name)	[number] = VMCS12_OFFSET(name), \ | 
|  | [number##_HIGH] = VMCS12_OFFSET(name)+4 | 
|  |  | 
|  | static unsigned short vmcs_field_to_offset_table[] = { | 
|  | FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id), | 
|  | FIELD(GUEST_ES_SELECTOR, guest_es_selector), | 
|  | FIELD(GUEST_CS_SELECTOR, guest_cs_selector), | 
|  | FIELD(GUEST_SS_SELECTOR, guest_ss_selector), | 
|  | FIELD(GUEST_DS_SELECTOR, guest_ds_selector), | 
|  | FIELD(GUEST_FS_SELECTOR, guest_fs_selector), | 
|  | FIELD(GUEST_GS_SELECTOR, guest_gs_selector), | 
|  | FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector), | 
|  | FIELD(GUEST_TR_SELECTOR, guest_tr_selector), | 
|  | FIELD(HOST_ES_SELECTOR, host_es_selector), | 
|  | FIELD(HOST_CS_SELECTOR, host_cs_selector), | 
|  | FIELD(HOST_SS_SELECTOR, host_ss_selector), | 
|  | FIELD(HOST_DS_SELECTOR, host_ds_selector), | 
|  | FIELD(HOST_FS_SELECTOR, host_fs_selector), | 
|  | FIELD(HOST_GS_SELECTOR, host_gs_selector), | 
|  | FIELD(HOST_TR_SELECTOR, host_tr_selector), | 
|  | FIELD64(IO_BITMAP_A, io_bitmap_a), | 
|  | FIELD64(IO_BITMAP_B, io_bitmap_b), | 
|  | FIELD64(MSR_BITMAP, msr_bitmap), | 
|  | FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr), | 
|  | FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr), | 
|  | FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr), | 
|  | FIELD64(TSC_OFFSET, tsc_offset), | 
|  | FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr), | 
|  | FIELD64(APIC_ACCESS_ADDR, apic_access_addr), | 
|  | FIELD64(EPT_POINTER, ept_pointer), | 
|  | FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address), | 
|  | FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer), | 
|  | FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl), | 
|  | FIELD64(GUEST_IA32_PAT, guest_ia32_pat), | 
|  | FIELD64(GUEST_IA32_EFER, guest_ia32_efer), | 
|  | FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl), | 
|  | FIELD64(GUEST_PDPTR0, guest_pdptr0), | 
|  | FIELD64(GUEST_PDPTR1, guest_pdptr1), | 
|  | FIELD64(GUEST_PDPTR2, guest_pdptr2), | 
|  | FIELD64(GUEST_PDPTR3, guest_pdptr3), | 
|  | FIELD64(HOST_IA32_PAT, host_ia32_pat), | 
|  | FIELD64(HOST_IA32_EFER, host_ia32_efer), | 
|  | FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl), | 
|  | FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control), | 
|  | FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control), | 
|  | FIELD(EXCEPTION_BITMAP, exception_bitmap), | 
|  | FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask), | 
|  | FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match), | 
|  | FIELD(CR3_TARGET_COUNT, cr3_target_count), | 
|  | FIELD(VM_EXIT_CONTROLS, vm_exit_controls), | 
|  | FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count), | 
|  | FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count), | 
|  | FIELD(VM_ENTRY_CONTROLS, vm_entry_controls), | 
|  | FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count), | 
|  | FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field), | 
|  | FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code), | 
|  | FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len), | 
|  | FIELD(TPR_THRESHOLD, tpr_threshold), | 
|  | FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control), | 
|  | FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error), | 
|  | FIELD(VM_EXIT_REASON, vm_exit_reason), | 
|  | FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info), | 
|  | FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code), | 
|  | FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field), | 
|  | FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code), | 
|  | FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len), | 
|  | FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info), | 
|  | FIELD(GUEST_ES_LIMIT, guest_es_limit), | 
|  | FIELD(GUEST_CS_LIMIT, guest_cs_limit), | 
|  | FIELD(GUEST_SS_LIMIT, guest_ss_limit), | 
|  | FIELD(GUEST_DS_LIMIT, guest_ds_limit), | 
|  | FIELD(GUEST_FS_LIMIT, guest_fs_limit), | 
|  | FIELD(GUEST_GS_LIMIT, guest_gs_limit), | 
|  | FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit), | 
|  | FIELD(GUEST_TR_LIMIT, guest_tr_limit), | 
|  | FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit), | 
|  | FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit), | 
|  | FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes), | 
|  | FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes), | 
|  | FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes), | 
|  | FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes), | 
|  | FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes), | 
|  | FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes), | 
|  | FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes), | 
|  | FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes), | 
|  | FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info), | 
|  | FIELD(GUEST_ACTIVITY_STATE, guest_activity_state), | 
|  | FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs), | 
|  | FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs), | 
|  | FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask), | 
|  | FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask), | 
|  | FIELD(CR0_READ_SHADOW, cr0_read_shadow), | 
|  | FIELD(CR4_READ_SHADOW, cr4_read_shadow), | 
|  | FIELD(CR3_TARGET_VALUE0, cr3_target_value0), | 
|  | FIELD(CR3_TARGET_VALUE1, cr3_target_value1), | 
|  | FIELD(CR3_TARGET_VALUE2, cr3_target_value2), | 
|  | FIELD(CR3_TARGET_VALUE3, cr3_target_value3), | 
|  | FIELD(EXIT_QUALIFICATION, exit_qualification), | 
|  | FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address), | 
|  | FIELD(GUEST_CR0, guest_cr0), | 
|  | FIELD(GUEST_CR3, guest_cr3), | 
|  | FIELD(GUEST_CR4, guest_cr4), | 
|  | FIELD(GUEST_ES_BASE, guest_es_base), | 
|  | FIELD(GUEST_CS_BASE, guest_cs_base), | 
|  | FIELD(GUEST_SS_BASE, guest_ss_base), | 
|  | FIELD(GUEST_DS_BASE, guest_ds_base), | 
|  | FIELD(GUEST_FS_BASE, guest_fs_base), | 
|  | FIELD(GUEST_GS_BASE, guest_gs_base), | 
|  | FIELD(GUEST_LDTR_BASE, guest_ldtr_base), | 
|  | FIELD(GUEST_TR_BASE, guest_tr_base), | 
|  | FIELD(GUEST_GDTR_BASE, guest_gdtr_base), | 
|  | FIELD(GUEST_IDTR_BASE, guest_idtr_base), | 
|  | FIELD(GUEST_DR7, guest_dr7), | 
|  | FIELD(GUEST_RSP, guest_rsp), | 
|  | FIELD(GUEST_RIP, guest_rip), | 
|  | FIELD(GUEST_RFLAGS, guest_rflags), | 
|  | FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions), | 
|  | FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp), | 
|  | FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip), | 
|  | FIELD(HOST_CR0, host_cr0), | 
|  | FIELD(HOST_CR3, host_cr3), | 
|  | FIELD(HOST_CR4, host_cr4), | 
|  | FIELD(HOST_FS_BASE, host_fs_base), | 
|  | FIELD(HOST_GS_BASE, host_gs_base), | 
|  | FIELD(HOST_TR_BASE, host_tr_base), | 
|  | FIELD(HOST_GDTR_BASE, host_gdtr_base), | 
|  | FIELD(HOST_IDTR_BASE, host_idtr_base), | 
|  | FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp), | 
|  | FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip), | 
|  | FIELD(HOST_RSP, host_rsp), | 
|  | FIELD(HOST_RIP, host_rip), | 
|  | }; | 
|  | static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table); | 
|  |  | 
|  | static inline short vmcs_field_to_offset(unsigned long field) | 
|  | { | 
|  | if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0) | 
|  | return -1; | 
|  | return vmcs_field_to_offset_table[field]; | 
|  | } | 
|  |  | 
|  | static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return to_vmx(vcpu)->nested.current_vmcs12; | 
|  | } | 
|  |  | 
|  | static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr) | 
|  | { | 
|  | struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT); | 
|  | if (is_error_page(page)) { | 
|  | kvm_release_page_clean(page); | 
|  | return NULL; | 
|  | } | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static void nested_release_page(struct page *page) | 
|  | { | 
|  | kvm_release_page_dirty(page); | 
|  | } | 
|  |  | 
|  | static void nested_release_page_clean(struct page *page) | 
|  | { | 
|  | kvm_release_page_clean(page); | 
|  | } | 
|  |  | 
|  | static u64 construct_eptp(unsigned long root_hpa); | 
|  | static void kvm_cpu_vmxon(u64 addr); | 
|  | static void kvm_cpu_vmxoff(void); | 
|  | static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3); | 
|  | static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr); | 
|  |  | 
|  | static DEFINE_PER_CPU(struct vmcs *, vmxarea); | 
|  | static DEFINE_PER_CPU(struct vmcs *, current_vmcs); | 
|  | /* | 
|  | * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed | 
|  | * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. | 
|  | */ | 
|  | static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); | 
|  | static DEFINE_PER_CPU(struct desc_ptr, host_gdt); | 
|  |  | 
|  | static unsigned long *vmx_io_bitmap_a; | 
|  | static unsigned long *vmx_io_bitmap_b; | 
|  | static unsigned long *vmx_msr_bitmap_legacy; | 
|  | static unsigned long *vmx_msr_bitmap_longmode; | 
|  |  | 
|  | static bool cpu_has_load_ia32_efer; | 
|  | static bool cpu_has_load_perf_global_ctrl; | 
|  |  | 
|  | static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); | 
|  | static DEFINE_SPINLOCK(vmx_vpid_lock); | 
|  |  | 
|  | static struct vmcs_config { | 
|  | int size; | 
|  | int order; | 
|  | u32 revision_id; | 
|  | u32 pin_based_exec_ctrl; | 
|  | u32 cpu_based_exec_ctrl; | 
|  | u32 cpu_based_2nd_exec_ctrl; | 
|  | u32 vmexit_ctrl; | 
|  | u32 vmentry_ctrl; | 
|  | } vmcs_config; | 
|  |  | 
|  | static struct vmx_capability { | 
|  | u32 ept; | 
|  | u32 vpid; | 
|  | } vmx_capability; | 
|  |  | 
|  | #define VMX_SEGMENT_FIELD(seg)					\ | 
|  | [VCPU_SREG_##seg] = {                                   \ | 
|  | .selector = GUEST_##seg##_SELECTOR,		\ | 
|  | .base = GUEST_##seg##_BASE,		   	\ | 
|  | .limit = GUEST_##seg##_LIMIT,		   	\ | 
|  | .ar_bytes = GUEST_##seg##_AR_BYTES,	   	\ | 
|  | } | 
|  |  | 
|  | static struct kvm_vmx_segment_field { | 
|  | unsigned selector; | 
|  | unsigned base; | 
|  | unsigned limit; | 
|  | unsigned ar_bytes; | 
|  | } kvm_vmx_segment_fields[] = { | 
|  | VMX_SEGMENT_FIELD(CS), | 
|  | VMX_SEGMENT_FIELD(DS), | 
|  | VMX_SEGMENT_FIELD(ES), | 
|  | VMX_SEGMENT_FIELD(FS), | 
|  | VMX_SEGMENT_FIELD(GS), | 
|  | VMX_SEGMENT_FIELD(SS), | 
|  | VMX_SEGMENT_FIELD(TR), | 
|  | VMX_SEGMENT_FIELD(LDTR), | 
|  | }; | 
|  |  | 
|  | static u64 host_efer; | 
|  |  | 
|  | static void ept_save_pdptrs(struct kvm_vcpu *vcpu); | 
|  |  | 
|  | /* | 
|  | * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it | 
|  | * away by decrementing the array size. | 
|  | */ | 
|  | static const u32 vmx_msr_index[] = { | 
|  | #ifdef CONFIG_X86_64 | 
|  | MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, | 
|  | #endif | 
|  | MSR_EFER, MSR_TSC_AUX, MSR_STAR, | 
|  | }; | 
|  | #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index) | 
|  |  | 
|  | static inline bool is_page_fault(u32 intr_info) | 
|  | { | 
|  | return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | | 
|  | INTR_INFO_VALID_MASK)) == | 
|  | (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK); | 
|  | } | 
|  |  | 
|  | static inline bool is_no_device(u32 intr_info) | 
|  | { | 
|  | return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | | 
|  | INTR_INFO_VALID_MASK)) == | 
|  | (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK); | 
|  | } | 
|  |  | 
|  | static inline bool is_invalid_opcode(u32 intr_info) | 
|  | { | 
|  | return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | | 
|  | INTR_INFO_VALID_MASK)) == | 
|  | (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK); | 
|  | } | 
|  |  | 
|  | static inline bool is_external_interrupt(u32 intr_info) | 
|  | { | 
|  | return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK)) | 
|  | == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK); | 
|  | } | 
|  |  | 
|  | static inline bool is_machine_check(u32 intr_info) | 
|  | { | 
|  | return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | | 
|  | INTR_INFO_VALID_MASK)) == | 
|  | (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK); | 
|  | } | 
|  |  | 
|  | static inline bool cpu_has_vmx_msr_bitmap(void) | 
|  | { | 
|  | return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS; | 
|  | } | 
|  |  | 
|  | static inline bool cpu_has_vmx_tpr_shadow(void) | 
|  | { | 
|  | return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW; | 
|  | } | 
|  |  | 
|  | static inline bool vm_need_tpr_shadow(struct kvm *kvm) | 
|  | { | 
|  | return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)); | 
|  | } | 
|  |  | 
|  | static inline bool cpu_has_secondary_exec_ctrls(void) | 
|  | { | 
|  | return vmcs_config.cpu_based_exec_ctrl & | 
|  | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; | 
|  | } | 
|  |  | 
|  | static inline bool cpu_has_vmx_virtualize_apic_accesses(void) | 
|  | { | 
|  | return vmcs_config.cpu_based_2nd_exec_ctrl & | 
|  | SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; | 
|  | } | 
|  |  | 
|  | static inline bool cpu_has_vmx_flexpriority(void) | 
|  | { | 
|  | return cpu_has_vmx_tpr_shadow() && | 
|  | cpu_has_vmx_virtualize_apic_accesses(); | 
|  | } | 
|  |  | 
|  | static inline bool cpu_has_vmx_ept_execute_only(void) | 
|  | { | 
|  | return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT; | 
|  | } | 
|  |  | 
|  | static inline bool cpu_has_vmx_eptp_uncacheable(void) | 
|  | { | 
|  | return vmx_capability.ept & VMX_EPTP_UC_BIT; | 
|  | } | 
|  |  | 
|  | static inline bool cpu_has_vmx_eptp_writeback(void) | 
|  | { | 
|  | return vmx_capability.ept & VMX_EPTP_WB_BIT; | 
|  | } | 
|  |  | 
|  | static inline bool cpu_has_vmx_ept_2m_page(void) | 
|  | { | 
|  | return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT; | 
|  | } | 
|  |  | 
|  | static inline bool cpu_has_vmx_ept_1g_page(void) | 
|  | { | 
|  | return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT; | 
|  | } | 
|  |  | 
|  | static inline bool cpu_has_vmx_ept_4levels(void) | 
|  | { | 
|  | return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT; | 
|  | } | 
|  |  | 
|  | static inline bool cpu_has_vmx_invept_individual_addr(void) | 
|  | { | 
|  | return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT; | 
|  | } | 
|  |  | 
|  | static inline bool cpu_has_vmx_invept_context(void) | 
|  | { | 
|  | return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT; | 
|  | } | 
|  |  | 
|  | static inline bool cpu_has_vmx_invept_global(void) | 
|  | { | 
|  | return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT; | 
|  | } | 
|  |  | 
|  | static inline bool cpu_has_vmx_invvpid_single(void) | 
|  | { | 
|  | return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT; | 
|  | } | 
|  |  | 
|  | static inline bool cpu_has_vmx_invvpid_global(void) | 
|  | { | 
|  | return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT; | 
|  | } | 
|  |  | 
|  | static inline bool cpu_has_vmx_ept(void) | 
|  | { | 
|  | return vmcs_config.cpu_based_2nd_exec_ctrl & | 
|  | SECONDARY_EXEC_ENABLE_EPT; | 
|  | } | 
|  |  | 
|  | static inline bool cpu_has_vmx_unrestricted_guest(void) | 
|  | { | 
|  | return vmcs_config.cpu_based_2nd_exec_ctrl & | 
|  | SECONDARY_EXEC_UNRESTRICTED_GUEST; | 
|  | } | 
|  |  | 
|  | static inline bool cpu_has_vmx_ple(void) | 
|  | { | 
|  | return vmcs_config.cpu_based_2nd_exec_ctrl & | 
|  | SECONDARY_EXEC_PAUSE_LOOP_EXITING; | 
|  | } | 
|  |  | 
|  | static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm) | 
|  | { | 
|  | return flexpriority_enabled && irqchip_in_kernel(kvm); | 
|  | } | 
|  |  | 
|  | static inline bool cpu_has_vmx_vpid(void) | 
|  | { | 
|  | return vmcs_config.cpu_based_2nd_exec_ctrl & | 
|  | SECONDARY_EXEC_ENABLE_VPID; | 
|  | } | 
|  |  | 
|  | static inline bool cpu_has_vmx_rdtscp(void) | 
|  | { | 
|  | return vmcs_config.cpu_based_2nd_exec_ctrl & | 
|  | SECONDARY_EXEC_RDTSCP; | 
|  | } | 
|  |  | 
|  | static inline bool cpu_has_virtual_nmis(void) | 
|  | { | 
|  | return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS; | 
|  | } | 
|  |  | 
|  | static inline bool cpu_has_vmx_wbinvd_exit(void) | 
|  | { | 
|  | return vmcs_config.cpu_based_2nd_exec_ctrl & | 
|  | SECONDARY_EXEC_WBINVD_EXITING; | 
|  | } | 
|  |  | 
|  | static inline bool report_flexpriority(void) | 
|  | { | 
|  | return flexpriority_enabled; | 
|  | } | 
|  |  | 
|  | static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit) | 
|  | { | 
|  | return vmcs12->cpu_based_vm_exec_control & bit; | 
|  | } | 
|  |  | 
|  | static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit) | 
|  | { | 
|  | return (vmcs12->cpu_based_vm_exec_control & | 
|  | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) && | 
|  | (vmcs12->secondary_vm_exec_control & bit); | 
|  | } | 
|  |  | 
|  | static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS; | 
|  | } | 
|  |  | 
|  | static inline bool is_exception(u32 intr_info) | 
|  | { | 
|  | return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK)) | 
|  | == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK); | 
|  | } | 
|  |  | 
|  | static void nested_vmx_vmexit(struct kvm_vcpu *vcpu); | 
|  | static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu, | 
|  | struct vmcs12 *vmcs12, | 
|  | u32 reason, unsigned long qualification); | 
|  |  | 
|  | static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < vmx->nmsrs; ++i) | 
|  | if (vmx_msr_index[vmx->guest_msrs[i].index] == msr) | 
|  | return i; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static inline void __invvpid(int ext, u16 vpid, gva_t gva) | 
|  | { | 
|  | struct { | 
|  | u64 vpid : 16; | 
|  | u64 rsvd : 48; | 
|  | u64 gva; | 
|  | } operand = { vpid, 0, gva }; | 
|  |  | 
|  | asm volatile (__ex(ASM_VMX_INVVPID) | 
|  | /* CF==1 or ZF==1 --> rc = -1 */ | 
|  | "; ja 1f ; ud2 ; 1:" | 
|  | : : "a"(&operand), "c"(ext) : "cc", "memory"); | 
|  | } | 
|  |  | 
|  | static inline void __invept(int ext, u64 eptp, gpa_t gpa) | 
|  | { | 
|  | struct { | 
|  | u64 eptp, gpa; | 
|  | } operand = {eptp, gpa}; | 
|  |  | 
|  | asm volatile (__ex(ASM_VMX_INVEPT) | 
|  | /* CF==1 or ZF==1 --> rc = -1 */ | 
|  | "; ja 1f ; ud2 ; 1:\n" | 
|  | : : "a" (&operand), "c" (ext) : "cc", "memory"); | 
|  | } | 
|  |  | 
|  | static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | i = __find_msr_index(vmx, msr); | 
|  | if (i >= 0) | 
|  | return &vmx->guest_msrs[i]; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void vmcs_clear(struct vmcs *vmcs) | 
|  | { | 
|  | u64 phys_addr = __pa(vmcs); | 
|  | u8 error; | 
|  |  | 
|  | asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0" | 
|  | : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr) | 
|  | : "cc", "memory"); | 
|  | if (error) | 
|  | printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n", | 
|  | vmcs, phys_addr); | 
|  | } | 
|  |  | 
|  | static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs) | 
|  | { | 
|  | vmcs_clear(loaded_vmcs->vmcs); | 
|  | loaded_vmcs->cpu = -1; | 
|  | loaded_vmcs->launched = 0; | 
|  | } | 
|  |  | 
|  | static void vmcs_load(struct vmcs *vmcs) | 
|  | { | 
|  | u64 phys_addr = __pa(vmcs); | 
|  | u8 error; | 
|  |  | 
|  | asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0" | 
|  | : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr) | 
|  | : "cc", "memory"); | 
|  | if (error) | 
|  | printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n", | 
|  | vmcs, phys_addr); | 
|  | } | 
|  |  | 
|  | static void __loaded_vmcs_clear(void *arg) | 
|  | { | 
|  | struct loaded_vmcs *loaded_vmcs = arg; | 
|  | int cpu = raw_smp_processor_id(); | 
|  |  | 
|  | if (loaded_vmcs->cpu != cpu) | 
|  | return; /* vcpu migration can race with cpu offline */ | 
|  | if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) | 
|  | per_cpu(current_vmcs, cpu) = NULL; | 
|  | list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); | 
|  | loaded_vmcs_init(loaded_vmcs); | 
|  | } | 
|  |  | 
|  | static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) | 
|  | { | 
|  | if (loaded_vmcs->cpu != -1) | 
|  | smp_call_function_single( | 
|  | loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1); | 
|  | } | 
|  |  | 
|  | static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx) | 
|  | { | 
|  | if (vmx->vpid == 0) | 
|  | return; | 
|  |  | 
|  | if (cpu_has_vmx_invvpid_single()) | 
|  | __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0); | 
|  | } | 
|  |  | 
|  | static inline void vpid_sync_vcpu_global(void) | 
|  | { | 
|  | if (cpu_has_vmx_invvpid_global()) | 
|  | __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0); | 
|  | } | 
|  |  | 
|  | static inline void vpid_sync_context(struct vcpu_vmx *vmx) | 
|  | { | 
|  | if (cpu_has_vmx_invvpid_single()) | 
|  | vpid_sync_vcpu_single(vmx); | 
|  | else | 
|  | vpid_sync_vcpu_global(); | 
|  | } | 
|  |  | 
|  | static inline void ept_sync_global(void) | 
|  | { | 
|  | if (cpu_has_vmx_invept_global()) | 
|  | __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0); | 
|  | } | 
|  |  | 
|  | static inline void ept_sync_context(u64 eptp) | 
|  | { | 
|  | if (enable_ept) { | 
|  | if (cpu_has_vmx_invept_context()) | 
|  | __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0); | 
|  | else | 
|  | ept_sync_global(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa) | 
|  | { | 
|  | if (enable_ept) { | 
|  | if (cpu_has_vmx_invept_individual_addr()) | 
|  | __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR, | 
|  | eptp, gpa); | 
|  | else | 
|  | ept_sync_context(eptp); | 
|  | } | 
|  | } | 
|  |  | 
|  | static __always_inline unsigned long vmcs_readl(unsigned long field) | 
|  | { | 
|  | unsigned long value; | 
|  |  | 
|  | asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0") | 
|  | : "=a"(value) : "d"(field) : "cc"); | 
|  | return value; | 
|  | } | 
|  |  | 
|  | static __always_inline u16 vmcs_read16(unsigned long field) | 
|  | { | 
|  | return vmcs_readl(field); | 
|  | } | 
|  |  | 
|  | static __always_inline u32 vmcs_read32(unsigned long field) | 
|  | { | 
|  | return vmcs_readl(field); | 
|  | } | 
|  |  | 
|  | static __always_inline u64 vmcs_read64(unsigned long field) | 
|  | { | 
|  | #ifdef CONFIG_X86_64 | 
|  | return vmcs_readl(field); | 
|  | #else | 
|  | return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static noinline void vmwrite_error(unsigned long field, unsigned long value) | 
|  | { | 
|  | printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n", | 
|  | field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); | 
|  | dump_stack(); | 
|  | } | 
|  |  | 
|  | static void vmcs_writel(unsigned long field, unsigned long value) | 
|  | { | 
|  | u8 error; | 
|  |  | 
|  | asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0" | 
|  | : "=q"(error) : "a"(value), "d"(field) : "cc"); | 
|  | if (unlikely(error)) | 
|  | vmwrite_error(field, value); | 
|  | } | 
|  |  | 
|  | static void vmcs_write16(unsigned long field, u16 value) | 
|  | { | 
|  | vmcs_writel(field, value); | 
|  | } | 
|  |  | 
|  | static void vmcs_write32(unsigned long field, u32 value) | 
|  | { | 
|  | vmcs_writel(field, value); | 
|  | } | 
|  |  | 
|  | static void vmcs_write64(unsigned long field, u64 value) | 
|  | { | 
|  | vmcs_writel(field, value); | 
|  | #ifndef CONFIG_X86_64 | 
|  | asm volatile (""); | 
|  | vmcs_writel(field+1, value >> 32); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void vmcs_clear_bits(unsigned long field, u32 mask) | 
|  | { | 
|  | vmcs_writel(field, vmcs_readl(field) & ~mask); | 
|  | } | 
|  |  | 
|  | static void vmcs_set_bits(unsigned long field, u32 mask) | 
|  | { | 
|  | vmcs_writel(field, vmcs_readl(field) | mask); | 
|  | } | 
|  |  | 
|  | static void vmx_segment_cache_clear(struct vcpu_vmx *vmx) | 
|  | { | 
|  | vmx->segment_cache.bitmask = 0; | 
|  | } | 
|  |  | 
|  | static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, | 
|  | unsigned field) | 
|  | { | 
|  | bool ret; | 
|  | u32 mask = 1 << (seg * SEG_FIELD_NR + field); | 
|  |  | 
|  | if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) { | 
|  | vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS); | 
|  | vmx->segment_cache.bitmask = 0; | 
|  | } | 
|  | ret = vmx->segment_cache.bitmask & mask; | 
|  | vmx->segment_cache.bitmask |= mask; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) | 
|  | { | 
|  | u16 *p = &vmx->segment_cache.seg[seg].selector; | 
|  |  | 
|  | if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) | 
|  | *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); | 
|  | return *p; | 
|  | } | 
|  |  | 
|  | static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) | 
|  | { | 
|  | ulong *p = &vmx->segment_cache.seg[seg].base; | 
|  |  | 
|  | if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) | 
|  | *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); | 
|  | return *p; | 
|  | } | 
|  |  | 
|  | static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) | 
|  | { | 
|  | u32 *p = &vmx->segment_cache.seg[seg].limit; | 
|  |  | 
|  | if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) | 
|  | *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); | 
|  | return *p; | 
|  | } | 
|  |  | 
|  | static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) | 
|  | { | 
|  | u32 *p = &vmx->segment_cache.seg[seg].ar; | 
|  |  | 
|  | if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) | 
|  | *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); | 
|  | return *p; | 
|  | } | 
|  |  | 
|  | static void update_exception_bitmap(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u32 eb; | 
|  |  | 
|  | eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | | 
|  | (1u << NM_VECTOR) | (1u << DB_VECTOR); | 
|  | if ((vcpu->guest_debug & | 
|  | (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == | 
|  | (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) | 
|  | eb |= 1u << BP_VECTOR; | 
|  | if (to_vmx(vcpu)->rmode.vm86_active) | 
|  | eb = ~0; | 
|  | if (enable_ept) | 
|  | eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */ | 
|  | if (vcpu->fpu_active) | 
|  | eb &= ~(1u << NM_VECTOR); | 
|  |  | 
|  | /* When we are running a nested L2 guest and L1 specified for it a | 
|  | * certain exception bitmap, we must trap the same exceptions and pass | 
|  | * them to L1. When running L2, we will only handle the exceptions | 
|  | * specified above if L1 did not want them. | 
|  | */ | 
|  | if (is_guest_mode(vcpu)) | 
|  | eb |= get_vmcs12(vcpu)->exception_bitmap; | 
|  |  | 
|  | vmcs_write32(EXCEPTION_BITMAP, eb); | 
|  | } | 
|  |  | 
|  | static void clear_atomic_switch_msr_special(unsigned long entry, | 
|  | unsigned long exit) | 
|  | { | 
|  | vmcs_clear_bits(VM_ENTRY_CONTROLS, entry); | 
|  | vmcs_clear_bits(VM_EXIT_CONTROLS, exit); | 
|  | } | 
|  |  | 
|  | static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) | 
|  | { | 
|  | unsigned i; | 
|  | struct msr_autoload *m = &vmx->msr_autoload; | 
|  |  | 
|  | switch (msr) { | 
|  | case MSR_EFER: | 
|  | if (cpu_has_load_ia32_efer) { | 
|  | clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER, | 
|  | VM_EXIT_LOAD_IA32_EFER); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case MSR_CORE_PERF_GLOBAL_CTRL: | 
|  | if (cpu_has_load_perf_global_ctrl) { | 
|  | clear_atomic_switch_msr_special( | 
|  | VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, | 
|  | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < m->nr; ++i) | 
|  | if (m->guest[i].index == msr) | 
|  | break; | 
|  |  | 
|  | if (i == m->nr) | 
|  | return; | 
|  | --m->nr; | 
|  | m->guest[i] = m->guest[m->nr]; | 
|  | m->host[i] = m->host[m->nr]; | 
|  | vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr); | 
|  | vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr); | 
|  | } | 
|  |  | 
|  | static void add_atomic_switch_msr_special(unsigned long entry, | 
|  | unsigned long exit, unsigned long guest_val_vmcs, | 
|  | unsigned long host_val_vmcs, u64 guest_val, u64 host_val) | 
|  | { | 
|  | vmcs_write64(guest_val_vmcs, guest_val); | 
|  | vmcs_write64(host_val_vmcs, host_val); | 
|  | vmcs_set_bits(VM_ENTRY_CONTROLS, entry); | 
|  | vmcs_set_bits(VM_EXIT_CONTROLS, exit); | 
|  | } | 
|  |  | 
|  | static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, | 
|  | u64 guest_val, u64 host_val) | 
|  | { | 
|  | unsigned i; | 
|  | struct msr_autoload *m = &vmx->msr_autoload; | 
|  |  | 
|  | switch (msr) { | 
|  | case MSR_EFER: | 
|  | if (cpu_has_load_ia32_efer) { | 
|  | add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER, | 
|  | VM_EXIT_LOAD_IA32_EFER, | 
|  | GUEST_IA32_EFER, | 
|  | HOST_IA32_EFER, | 
|  | guest_val, host_val); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case MSR_CORE_PERF_GLOBAL_CTRL: | 
|  | if (cpu_has_load_perf_global_ctrl) { | 
|  | add_atomic_switch_msr_special( | 
|  | VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, | 
|  | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, | 
|  | GUEST_IA32_PERF_GLOBAL_CTRL, | 
|  | HOST_IA32_PERF_GLOBAL_CTRL, | 
|  | guest_val, host_val); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < m->nr; ++i) | 
|  | if (m->guest[i].index == msr) | 
|  | break; | 
|  |  | 
|  | if (i == NR_AUTOLOAD_MSRS) { | 
|  | printk_once(KERN_WARNING"Not enough mst switch entries. " | 
|  | "Can't add msr %x\n", msr); | 
|  | return; | 
|  | } else if (i == m->nr) { | 
|  | ++m->nr; | 
|  | vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr); | 
|  | vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr); | 
|  | } | 
|  |  | 
|  | m->guest[i].index = msr; | 
|  | m->guest[i].value = guest_val; | 
|  | m->host[i].index = msr; | 
|  | m->host[i].value = host_val; | 
|  | } | 
|  |  | 
|  | static void reload_tss(void) | 
|  | { | 
|  | /* | 
|  | * VT restores TR but not its size.  Useless. | 
|  | */ | 
|  | struct desc_ptr *gdt = &__get_cpu_var(host_gdt); | 
|  | struct desc_struct *descs; | 
|  |  | 
|  | descs = (void *)gdt->address; | 
|  | descs[GDT_ENTRY_TSS].type = 9; /* available TSS */ | 
|  | load_TR_desc(); | 
|  | } | 
|  |  | 
|  | static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset) | 
|  | { | 
|  | u64 guest_efer; | 
|  | u64 ignore_bits; | 
|  |  | 
|  | guest_efer = vmx->vcpu.arch.efer; | 
|  |  | 
|  | /* | 
|  | * NX is emulated; LMA and LME handled by hardware; SCE meaninless | 
|  | * outside long mode | 
|  | */ | 
|  | ignore_bits = EFER_NX | EFER_SCE; | 
|  | #ifdef CONFIG_X86_64 | 
|  | ignore_bits |= EFER_LMA | EFER_LME; | 
|  | /* SCE is meaningful only in long mode on Intel */ | 
|  | if (guest_efer & EFER_LMA) | 
|  | ignore_bits &= ~(u64)EFER_SCE; | 
|  | #endif | 
|  | guest_efer &= ~ignore_bits; | 
|  | guest_efer |= host_efer & ignore_bits; | 
|  | vmx->guest_msrs[efer_offset].data = guest_efer; | 
|  | vmx->guest_msrs[efer_offset].mask = ~ignore_bits; | 
|  |  | 
|  | clear_atomic_switch_msr(vmx, MSR_EFER); | 
|  | /* On ept, can't emulate nx, and must switch nx atomically */ | 
|  | if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) { | 
|  | guest_efer = vmx->vcpu.arch.efer; | 
|  | if (!(guest_efer & EFER_LMA)) | 
|  | guest_efer &= ~EFER_LME; | 
|  | add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static unsigned long segment_base(u16 selector) | 
|  | { | 
|  | struct desc_ptr *gdt = &__get_cpu_var(host_gdt); | 
|  | struct desc_struct *d; | 
|  | unsigned long table_base; | 
|  | unsigned long v; | 
|  |  | 
|  | if (!(selector & ~3)) | 
|  | return 0; | 
|  |  | 
|  | table_base = gdt->address; | 
|  |  | 
|  | if (selector & 4) {           /* from ldt */ | 
|  | u16 ldt_selector = kvm_read_ldt(); | 
|  |  | 
|  | if (!(ldt_selector & ~3)) | 
|  | return 0; | 
|  |  | 
|  | table_base = segment_base(ldt_selector); | 
|  | } | 
|  | d = (struct desc_struct *)(table_base + (selector & ~7)); | 
|  | v = get_desc_base(d); | 
|  | #ifdef CONFIG_X86_64 | 
|  | if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11)) | 
|  | v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32; | 
|  | #endif | 
|  | return v; | 
|  | } | 
|  |  | 
|  | static inline unsigned long kvm_read_tr_base(void) | 
|  | { | 
|  | u16 tr; | 
|  | asm("str %0" : "=g"(tr)); | 
|  | return segment_base(tr); | 
|  | } | 
|  |  | 
|  | static void vmx_save_host_state(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  | int i; | 
|  |  | 
|  | if (vmx->host_state.loaded) | 
|  | return; | 
|  |  | 
|  | vmx->host_state.loaded = 1; | 
|  | /* | 
|  | * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not | 
|  | * allow segment selectors with cpl > 0 or ti == 1. | 
|  | */ | 
|  | vmx->host_state.ldt_sel = kvm_read_ldt(); | 
|  | vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel; | 
|  | savesegment(fs, vmx->host_state.fs_sel); | 
|  | if (!(vmx->host_state.fs_sel & 7)) { | 
|  | vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel); | 
|  | vmx->host_state.fs_reload_needed = 0; | 
|  | } else { | 
|  | vmcs_write16(HOST_FS_SELECTOR, 0); | 
|  | vmx->host_state.fs_reload_needed = 1; | 
|  | } | 
|  | savesegment(gs, vmx->host_state.gs_sel); | 
|  | if (!(vmx->host_state.gs_sel & 7)) | 
|  | vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel); | 
|  | else { | 
|  | vmcs_write16(HOST_GS_SELECTOR, 0); | 
|  | vmx->host_state.gs_ldt_reload_needed = 1; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE)); | 
|  | vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE)); | 
|  | #else | 
|  | vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel)); | 
|  | vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel)); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); | 
|  | if (is_long_mode(&vmx->vcpu)) | 
|  | wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); | 
|  | #endif | 
|  | for (i = 0; i < vmx->save_nmsrs; ++i) | 
|  | kvm_set_shared_msr(vmx->guest_msrs[i].index, | 
|  | vmx->guest_msrs[i].data, | 
|  | vmx->guest_msrs[i].mask); | 
|  | } | 
|  |  | 
|  | static void __vmx_load_host_state(struct vcpu_vmx *vmx) | 
|  | { | 
|  | if (!vmx->host_state.loaded) | 
|  | return; | 
|  |  | 
|  | ++vmx->vcpu.stat.host_state_reload; | 
|  | vmx->host_state.loaded = 0; | 
|  | #ifdef CONFIG_X86_64 | 
|  | if (is_long_mode(&vmx->vcpu)) | 
|  | rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); | 
|  | #endif | 
|  | if (vmx->host_state.gs_ldt_reload_needed) { | 
|  | kvm_load_ldt(vmx->host_state.ldt_sel); | 
|  | #ifdef CONFIG_X86_64 | 
|  | load_gs_index(vmx->host_state.gs_sel); | 
|  | #else | 
|  | loadsegment(gs, vmx->host_state.gs_sel); | 
|  | #endif | 
|  | } | 
|  | if (vmx->host_state.fs_reload_needed) | 
|  | loadsegment(fs, vmx->host_state.fs_sel); | 
|  | reload_tss(); | 
|  | #ifdef CONFIG_X86_64 | 
|  | wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); | 
|  | #endif | 
|  | if (current_thread_info()->status & TS_USEDFPU) | 
|  | clts(); | 
|  | load_gdt(&__get_cpu_var(host_gdt)); | 
|  | } | 
|  |  | 
|  | static void vmx_load_host_state(struct vcpu_vmx *vmx) | 
|  | { | 
|  | preempt_disable(); | 
|  | __vmx_load_host_state(vmx); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Switches to specified vcpu, until a matching vcpu_put(), but assumes | 
|  | * vcpu mutex is already taken. | 
|  | */ | 
|  | static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) | 
|  | { | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  | u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); | 
|  |  | 
|  | if (!vmm_exclusive) | 
|  | kvm_cpu_vmxon(phys_addr); | 
|  | else if (vmx->loaded_vmcs->cpu != cpu) | 
|  | loaded_vmcs_clear(vmx->loaded_vmcs); | 
|  |  | 
|  | if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) { | 
|  | per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; | 
|  | vmcs_load(vmx->loaded_vmcs->vmcs); | 
|  | } | 
|  |  | 
|  | if (vmx->loaded_vmcs->cpu != cpu) { | 
|  | struct desc_ptr *gdt = &__get_cpu_var(host_gdt); | 
|  | unsigned long sysenter_esp; | 
|  |  | 
|  | kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); | 
|  | local_irq_disable(); | 
|  | list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, | 
|  | &per_cpu(loaded_vmcss_on_cpu, cpu)); | 
|  | local_irq_enable(); | 
|  |  | 
|  | /* | 
|  | * Linux uses per-cpu TSS and GDT, so set these when switching | 
|  | * processors. | 
|  | */ | 
|  | vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */ | 
|  | vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */ | 
|  |  | 
|  | rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp); | 
|  | vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */ | 
|  | vmx->loaded_vmcs->cpu = cpu; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vmx_vcpu_put(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | __vmx_load_host_state(to_vmx(vcpu)); | 
|  | if (!vmm_exclusive) { | 
|  | __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs); | 
|  | vcpu->cpu = -1; | 
|  | kvm_cpu_vmxoff(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vmx_fpu_activate(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | ulong cr0; | 
|  |  | 
|  | if (vcpu->fpu_active) | 
|  | return; | 
|  | vcpu->fpu_active = 1; | 
|  | cr0 = vmcs_readl(GUEST_CR0); | 
|  | cr0 &= ~(X86_CR0_TS | X86_CR0_MP); | 
|  | cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP); | 
|  | vmcs_writel(GUEST_CR0, cr0); | 
|  | update_exception_bitmap(vcpu); | 
|  | vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS; | 
|  | if (is_guest_mode(vcpu)) | 
|  | vcpu->arch.cr0_guest_owned_bits &= | 
|  | ~get_vmcs12(vcpu)->cr0_guest_host_mask; | 
|  | vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits); | 
|  | } | 
|  |  | 
|  | static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu); | 
|  |  | 
|  | /* | 
|  | * Return the cr0 value that a nested guest would read. This is a combination | 
|  | * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by | 
|  | * its hypervisor (cr0_read_shadow). | 
|  | */ | 
|  | static inline unsigned long nested_read_cr0(struct vmcs12 *fields) | 
|  | { | 
|  | return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) | | 
|  | (fields->cr0_read_shadow & fields->cr0_guest_host_mask); | 
|  | } | 
|  | static inline unsigned long nested_read_cr4(struct vmcs12 *fields) | 
|  | { | 
|  | return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) | | 
|  | (fields->cr4_read_shadow & fields->cr4_guest_host_mask); | 
|  | } | 
|  |  | 
|  | static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | /* Note that there is no vcpu->fpu_active = 0 here. The caller must | 
|  | * set this *before* calling this function. | 
|  | */ | 
|  | vmx_decache_cr0_guest_bits(vcpu); | 
|  | vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP); | 
|  | update_exception_bitmap(vcpu); | 
|  | vcpu->arch.cr0_guest_owned_bits = 0; | 
|  | vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits); | 
|  | if (is_guest_mode(vcpu)) { | 
|  | /* | 
|  | * L1's specified read shadow might not contain the TS bit, | 
|  | * so now that we turned on shadowing of this bit, we need to | 
|  | * set this bit of the shadow. Like in nested_vmx_run we need | 
|  | * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet | 
|  | * up-to-date here because we just decached cr0.TS (and we'll | 
|  | * only update vmcs12->guest_cr0 on nested exit). | 
|  | */ | 
|  | struct vmcs12 *vmcs12 = get_vmcs12(vcpu); | 
|  | vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) | | 
|  | (vcpu->arch.cr0 & X86_CR0_TS); | 
|  | vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12)); | 
|  | } else | 
|  | vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0); | 
|  | } | 
|  |  | 
|  | static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | unsigned long rflags, save_rflags; | 
|  |  | 
|  | if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) { | 
|  | __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail); | 
|  | rflags = vmcs_readl(GUEST_RFLAGS); | 
|  | if (to_vmx(vcpu)->rmode.vm86_active) { | 
|  | rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; | 
|  | save_rflags = to_vmx(vcpu)->rmode.save_rflags; | 
|  | rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; | 
|  | } | 
|  | to_vmx(vcpu)->rflags = rflags; | 
|  | } | 
|  | return to_vmx(vcpu)->rflags; | 
|  | } | 
|  |  | 
|  | static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) | 
|  | { | 
|  | __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail); | 
|  | __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail); | 
|  | to_vmx(vcpu)->rflags = rflags; | 
|  | if (to_vmx(vcpu)->rmode.vm86_active) { | 
|  | to_vmx(vcpu)->rmode.save_rflags = rflags; | 
|  | rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; | 
|  | } | 
|  | vmcs_writel(GUEST_RFLAGS, rflags); | 
|  | } | 
|  |  | 
|  | static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) | 
|  | { | 
|  | u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); | 
|  | int ret = 0; | 
|  |  | 
|  | if (interruptibility & GUEST_INTR_STATE_STI) | 
|  | ret |= KVM_X86_SHADOW_INT_STI; | 
|  | if (interruptibility & GUEST_INTR_STATE_MOV_SS) | 
|  | ret |= KVM_X86_SHADOW_INT_MOV_SS; | 
|  |  | 
|  | return ret & mask; | 
|  | } | 
|  |  | 
|  | static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) | 
|  | { | 
|  | u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); | 
|  | u32 interruptibility = interruptibility_old; | 
|  |  | 
|  | interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); | 
|  |  | 
|  | if (mask & KVM_X86_SHADOW_INT_MOV_SS) | 
|  | interruptibility |= GUEST_INTR_STATE_MOV_SS; | 
|  | else if (mask & KVM_X86_SHADOW_INT_STI) | 
|  | interruptibility |= GUEST_INTR_STATE_STI; | 
|  |  | 
|  | if ((interruptibility != interruptibility_old)) | 
|  | vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); | 
|  | } | 
|  |  | 
|  | static void skip_emulated_instruction(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | unsigned long rip; | 
|  |  | 
|  | rip = kvm_rip_read(vcpu); | 
|  | rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN); | 
|  | kvm_rip_write(vcpu, rip); | 
|  |  | 
|  | /* skipping an emulated instruction also counts */ | 
|  | vmx_set_interrupt_shadow(vcpu, 0); | 
|  | } | 
|  |  | 
|  | static void vmx_clear_hlt(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | /* Ensure that we clear the HLT state in the VMCS.  We don't need to | 
|  | * explicitly skip the instruction because if the HLT state is set, then | 
|  | * the instruction is already executing and RIP has already been | 
|  | * advanced. */ | 
|  | if (!yield_on_hlt && | 
|  | vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) | 
|  | vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * KVM wants to inject page-faults which it got to the guest. This function | 
|  | * checks whether in a nested guest, we need to inject them to L1 or L2. | 
|  | * This function assumes it is called with the exit reason in vmcs02 being | 
|  | * a #PF exception (this is the only case in which KVM injects a #PF when L2 | 
|  | * is running). | 
|  | */ | 
|  | static int nested_pf_handled(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vmcs12 *vmcs12 = get_vmcs12(vcpu); | 
|  |  | 
|  | /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */ | 
|  | if (!(vmcs12->exception_bitmap & PF_VECTOR)) | 
|  | return 0; | 
|  |  | 
|  | nested_vmx_vmexit(vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr, | 
|  | bool has_error_code, u32 error_code, | 
|  | bool reinject) | 
|  | { | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  | u32 intr_info = nr | INTR_INFO_VALID_MASK; | 
|  |  | 
|  | if (nr == PF_VECTOR && is_guest_mode(vcpu) && | 
|  | nested_pf_handled(vcpu)) | 
|  | return; | 
|  |  | 
|  | if (has_error_code) { | 
|  | vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); | 
|  | intr_info |= INTR_INFO_DELIVER_CODE_MASK; | 
|  | } | 
|  |  | 
|  | if (vmx->rmode.vm86_active) { | 
|  | int inc_eip = 0; | 
|  | if (kvm_exception_is_soft(nr)) | 
|  | inc_eip = vcpu->arch.event_exit_inst_len; | 
|  | if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE) | 
|  | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (kvm_exception_is_soft(nr)) { | 
|  | vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, | 
|  | vmx->vcpu.arch.event_exit_inst_len); | 
|  | intr_info |= INTR_TYPE_SOFT_EXCEPTION; | 
|  | } else | 
|  | intr_info |= INTR_TYPE_HARD_EXCEPTION; | 
|  |  | 
|  | vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); | 
|  | vmx_clear_hlt(vcpu); | 
|  | } | 
|  |  | 
|  | static bool vmx_rdtscp_supported(void) | 
|  | { | 
|  | return cpu_has_vmx_rdtscp(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Swap MSR entry in host/guest MSR entry array. | 
|  | */ | 
|  | static void move_msr_up(struct vcpu_vmx *vmx, int from, int to) | 
|  | { | 
|  | struct shared_msr_entry tmp; | 
|  |  | 
|  | tmp = vmx->guest_msrs[to]; | 
|  | vmx->guest_msrs[to] = vmx->guest_msrs[from]; | 
|  | vmx->guest_msrs[from] = tmp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set up the vmcs to automatically save and restore system | 
|  | * msrs.  Don't touch the 64-bit msrs if the guest is in legacy | 
|  | * mode, as fiddling with msrs is very expensive. | 
|  | */ | 
|  | static void setup_msrs(struct vcpu_vmx *vmx) | 
|  | { | 
|  | int save_nmsrs, index; | 
|  | unsigned long *msr_bitmap; | 
|  |  | 
|  | vmx_load_host_state(vmx); | 
|  | save_nmsrs = 0; | 
|  | #ifdef CONFIG_X86_64 | 
|  | if (is_long_mode(&vmx->vcpu)) { | 
|  | index = __find_msr_index(vmx, MSR_SYSCALL_MASK); | 
|  | if (index >= 0) | 
|  | move_msr_up(vmx, index, save_nmsrs++); | 
|  | index = __find_msr_index(vmx, MSR_LSTAR); | 
|  | if (index >= 0) | 
|  | move_msr_up(vmx, index, save_nmsrs++); | 
|  | index = __find_msr_index(vmx, MSR_CSTAR); | 
|  | if (index >= 0) | 
|  | move_msr_up(vmx, index, save_nmsrs++); | 
|  | index = __find_msr_index(vmx, MSR_TSC_AUX); | 
|  | if (index >= 0 && vmx->rdtscp_enabled) | 
|  | move_msr_up(vmx, index, save_nmsrs++); | 
|  | /* | 
|  | * MSR_STAR is only needed on long mode guests, and only | 
|  | * if efer.sce is enabled. | 
|  | */ | 
|  | index = __find_msr_index(vmx, MSR_STAR); | 
|  | if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE)) | 
|  | move_msr_up(vmx, index, save_nmsrs++); | 
|  | } | 
|  | #endif | 
|  | index = __find_msr_index(vmx, MSR_EFER); | 
|  | if (index >= 0 && update_transition_efer(vmx, index)) | 
|  | move_msr_up(vmx, index, save_nmsrs++); | 
|  |  | 
|  | vmx->save_nmsrs = save_nmsrs; | 
|  |  | 
|  | if (cpu_has_vmx_msr_bitmap()) { | 
|  | if (is_long_mode(&vmx->vcpu)) | 
|  | msr_bitmap = vmx_msr_bitmap_longmode; | 
|  | else | 
|  | msr_bitmap = vmx_msr_bitmap_legacy; | 
|  |  | 
|  | vmcs_write64(MSR_BITMAP, __pa(msr_bitmap)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * reads and returns guest's timestamp counter "register" | 
|  | * guest_tsc = host_tsc + tsc_offset    -- 21.3 | 
|  | */ | 
|  | static u64 guest_read_tsc(void) | 
|  | { | 
|  | u64 host_tsc, tsc_offset; | 
|  |  | 
|  | rdtscll(host_tsc); | 
|  | tsc_offset = vmcs_read64(TSC_OFFSET); | 
|  | return host_tsc + tsc_offset; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Like guest_read_tsc, but always returns L1's notion of the timestamp | 
|  | * counter, even if a nested guest (L2) is currently running. | 
|  | */ | 
|  | u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u64 host_tsc, tsc_offset; | 
|  |  | 
|  | rdtscll(host_tsc); | 
|  | tsc_offset = is_guest_mode(vcpu) ? | 
|  | to_vmx(vcpu)->nested.vmcs01_tsc_offset : | 
|  | vmcs_read64(TSC_OFFSET); | 
|  | return host_tsc + tsc_offset; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Empty call-back. Needs to be implemented when VMX enables the SET_TSC_KHZ | 
|  | * ioctl. In this case the call-back should update internal vmx state to make | 
|  | * the changes effective. | 
|  | */ | 
|  | static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) | 
|  | { | 
|  | /* Nothing to do here */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * writes 'offset' into guest's timestamp counter offset register | 
|  | */ | 
|  | static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) | 
|  | { | 
|  | if (is_guest_mode(vcpu)) { | 
|  | /* | 
|  | * We're here if L1 chose not to trap WRMSR to TSC. According | 
|  | * to the spec, this should set L1's TSC; The offset that L1 | 
|  | * set for L2 remains unchanged, and still needs to be added | 
|  | * to the newly set TSC to get L2's TSC. | 
|  | */ | 
|  | struct vmcs12 *vmcs12; | 
|  | to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset; | 
|  | /* recalculate vmcs02.TSC_OFFSET: */ | 
|  | vmcs12 = get_vmcs12(vcpu); | 
|  | vmcs_write64(TSC_OFFSET, offset + | 
|  | (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ? | 
|  | vmcs12->tsc_offset : 0)); | 
|  | } else { | 
|  | vmcs_write64(TSC_OFFSET, offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment) | 
|  | { | 
|  | u64 offset = vmcs_read64(TSC_OFFSET); | 
|  | vmcs_write64(TSC_OFFSET, offset + adjustment); | 
|  | if (is_guest_mode(vcpu)) { | 
|  | /* Even when running L2, the adjustment needs to apply to L1 */ | 
|  | to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment; | 
|  | } | 
|  | } | 
|  |  | 
|  | static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) | 
|  | { | 
|  | return target_tsc - native_read_tsc(); | 
|  | } | 
|  |  | 
|  | static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0); | 
|  | return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31))); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * nested_vmx_allowed() checks whether a guest should be allowed to use VMX | 
|  | * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for | 
|  | * all guests if the "nested" module option is off, and can also be disabled | 
|  | * for a single guest by disabling its VMX cpuid bit. | 
|  | */ | 
|  | static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return nested && guest_cpuid_has_vmx(vcpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be | 
|  | * returned for the various VMX controls MSRs when nested VMX is enabled. | 
|  | * The same values should also be used to verify that vmcs12 control fields are | 
|  | * valid during nested entry from L1 to L2. | 
|  | * Each of these control msrs has a low and high 32-bit half: A low bit is on | 
|  | * if the corresponding bit in the (32-bit) control field *must* be on, and a | 
|  | * bit in the high half is on if the corresponding bit in the control field | 
|  | * may be on. See also vmx_control_verify(). | 
|  | * TODO: allow these variables to be modified (downgraded) by module options | 
|  | * or other means. | 
|  | */ | 
|  | static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high; | 
|  | static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high; | 
|  | static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high; | 
|  | static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high; | 
|  | static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high; | 
|  | static __init void nested_vmx_setup_ctls_msrs(void) | 
|  | { | 
|  | /* | 
|  | * Note that as a general rule, the high half of the MSRs (bits in | 
|  | * the control fields which may be 1) should be initialized by the | 
|  | * intersection of the underlying hardware's MSR (i.e., features which | 
|  | * can be supported) and the list of features we want to expose - | 
|  | * because they are known to be properly supported in our code. | 
|  | * Also, usually, the low half of the MSRs (bits which must be 1) can | 
|  | * be set to 0, meaning that L1 may turn off any of these bits. The | 
|  | * reason is that if one of these bits is necessary, it will appear | 
|  | * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control | 
|  | * fields of vmcs01 and vmcs02, will turn these bits off - and | 
|  | * nested_vmx_exit_handled() will not pass related exits to L1. | 
|  | * These rules have exceptions below. | 
|  | */ | 
|  |  | 
|  | /* pin-based controls */ | 
|  | /* | 
|  | * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is | 
|  | * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR. | 
|  | */ | 
|  | nested_vmx_pinbased_ctls_low = 0x16 ; | 
|  | nested_vmx_pinbased_ctls_high = 0x16 | | 
|  | PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING | | 
|  | PIN_BASED_VIRTUAL_NMIS; | 
|  |  | 
|  | /* exit controls */ | 
|  | nested_vmx_exit_ctls_low = 0; | 
|  | /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */ | 
|  | #ifdef CONFIG_X86_64 | 
|  | nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE; | 
|  | #else | 
|  | nested_vmx_exit_ctls_high = 0; | 
|  | #endif | 
|  |  | 
|  | /* entry controls */ | 
|  | rdmsr(MSR_IA32_VMX_ENTRY_CTLS, | 
|  | nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high); | 
|  | nested_vmx_entry_ctls_low = 0; | 
|  | nested_vmx_entry_ctls_high &= | 
|  | VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE; | 
|  |  | 
|  | /* cpu-based controls */ | 
|  | rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, | 
|  | nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high); | 
|  | nested_vmx_procbased_ctls_low = 0; | 
|  | nested_vmx_procbased_ctls_high &= | 
|  | CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING | | 
|  | CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING | | 
|  | CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING | | 
|  | CPU_BASED_CR3_STORE_EXITING | | 
|  | #ifdef CONFIG_X86_64 | 
|  | CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING | | 
|  | #endif | 
|  | CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING | | 
|  | CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING | | 
|  | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; | 
|  | /* | 
|  | * We can allow some features even when not supported by the | 
|  | * hardware. For example, L1 can specify an MSR bitmap - and we | 
|  | * can use it to avoid exits to L1 - even when L0 runs L2 | 
|  | * without MSR bitmaps. | 
|  | */ | 
|  | nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS; | 
|  |  | 
|  | /* secondary cpu-based controls */ | 
|  | rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2, | 
|  | nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high); | 
|  | nested_vmx_secondary_ctls_low = 0; | 
|  | nested_vmx_secondary_ctls_high &= | 
|  | SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; | 
|  | } | 
|  |  | 
|  | static inline bool vmx_control_verify(u32 control, u32 low, u32 high) | 
|  | { | 
|  | /* | 
|  | * Bits 0 in high must be 0, and bits 1 in low must be 1. | 
|  | */ | 
|  | return ((control & high) | low) == control; | 
|  | } | 
|  |  | 
|  | static inline u64 vmx_control_msr(u32 low, u32 high) | 
|  | { | 
|  | return low | ((u64)high << 32); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we allow our guest to use VMX instructions (i.e., nested VMX), we should | 
|  | * also let it use VMX-specific MSRs. | 
|  | * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a | 
|  | * VMX-specific MSR, or 0 when we haven't (and the caller should handle it | 
|  | * like all other MSRs). | 
|  | */ | 
|  | static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) | 
|  | { | 
|  | if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC && | 
|  | msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) { | 
|  | /* | 
|  | * According to the spec, processors which do not support VMX | 
|  | * should throw a #GP(0) when VMX capability MSRs are read. | 
|  | */ | 
|  | kvm_queue_exception_e(vcpu, GP_VECTOR, 0); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | switch (msr_index) { | 
|  | case MSR_IA32_FEATURE_CONTROL: | 
|  | *pdata = 0; | 
|  | break; | 
|  | case MSR_IA32_VMX_BASIC: | 
|  | /* | 
|  | * This MSR reports some information about VMX support. We | 
|  | * should return information about the VMX we emulate for the | 
|  | * guest, and the VMCS structure we give it - not about the | 
|  | * VMX support of the underlying hardware. | 
|  | */ | 
|  | *pdata = VMCS12_REVISION | | 
|  | ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) | | 
|  | (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT); | 
|  | break; | 
|  | case MSR_IA32_VMX_TRUE_PINBASED_CTLS: | 
|  | case MSR_IA32_VMX_PINBASED_CTLS: | 
|  | *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low, | 
|  | nested_vmx_pinbased_ctls_high); | 
|  | break; | 
|  | case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: | 
|  | case MSR_IA32_VMX_PROCBASED_CTLS: | 
|  | *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low, | 
|  | nested_vmx_procbased_ctls_high); | 
|  | break; | 
|  | case MSR_IA32_VMX_TRUE_EXIT_CTLS: | 
|  | case MSR_IA32_VMX_EXIT_CTLS: | 
|  | *pdata = vmx_control_msr(nested_vmx_exit_ctls_low, | 
|  | nested_vmx_exit_ctls_high); | 
|  | break; | 
|  | case MSR_IA32_VMX_TRUE_ENTRY_CTLS: | 
|  | case MSR_IA32_VMX_ENTRY_CTLS: | 
|  | *pdata = vmx_control_msr(nested_vmx_entry_ctls_low, | 
|  | nested_vmx_entry_ctls_high); | 
|  | break; | 
|  | case MSR_IA32_VMX_MISC: | 
|  | *pdata = 0; | 
|  | break; | 
|  | /* | 
|  | * These MSRs specify bits which the guest must keep fixed (on or off) | 
|  | * while L1 is in VMXON mode (in L1's root mode, or running an L2). | 
|  | * We picked the standard core2 setting. | 
|  | */ | 
|  | #define VMXON_CR0_ALWAYSON	(X86_CR0_PE | X86_CR0_PG | X86_CR0_NE) | 
|  | #define VMXON_CR4_ALWAYSON	X86_CR4_VMXE | 
|  | case MSR_IA32_VMX_CR0_FIXED0: | 
|  | *pdata = VMXON_CR0_ALWAYSON; | 
|  | break; | 
|  | case MSR_IA32_VMX_CR0_FIXED1: | 
|  | *pdata = -1ULL; | 
|  | break; | 
|  | case MSR_IA32_VMX_CR4_FIXED0: | 
|  | *pdata = VMXON_CR4_ALWAYSON; | 
|  | break; | 
|  | case MSR_IA32_VMX_CR4_FIXED1: | 
|  | *pdata = -1ULL; | 
|  | break; | 
|  | case MSR_IA32_VMX_VMCS_ENUM: | 
|  | *pdata = 0x1f; | 
|  | break; | 
|  | case MSR_IA32_VMX_PROCBASED_CTLS2: | 
|  | *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low, | 
|  | nested_vmx_secondary_ctls_high); | 
|  | break; | 
|  | case MSR_IA32_VMX_EPT_VPID_CAP: | 
|  | /* Currently, no nested ept or nested vpid */ | 
|  | *pdata = 0; | 
|  | break; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) | 
|  | { | 
|  | if (!nested_vmx_allowed(vcpu)) | 
|  | return 0; | 
|  |  | 
|  | if (msr_index == MSR_IA32_FEATURE_CONTROL) | 
|  | /* TODO: the right thing. */ | 
|  | return 1; | 
|  | /* | 
|  | * No need to treat VMX capability MSRs specially: If we don't handle | 
|  | * them, handle_wrmsr will #GP(0), which is correct (they are readonly) | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reads an msr value (of 'msr_index') into 'pdata'. | 
|  | * Returns 0 on success, non-0 otherwise. | 
|  | * Assumes vcpu_load() was already called. | 
|  | */ | 
|  | static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) | 
|  | { | 
|  | u64 data; | 
|  | struct shared_msr_entry *msr; | 
|  |  | 
|  | if (!pdata) { | 
|  | printk(KERN_ERR "BUG: get_msr called with NULL pdata\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | switch (msr_index) { | 
|  | #ifdef CONFIG_X86_64 | 
|  | case MSR_FS_BASE: | 
|  | data = vmcs_readl(GUEST_FS_BASE); | 
|  | break; | 
|  | case MSR_GS_BASE: | 
|  | data = vmcs_readl(GUEST_GS_BASE); | 
|  | break; | 
|  | case MSR_KERNEL_GS_BASE: | 
|  | vmx_load_host_state(to_vmx(vcpu)); | 
|  | data = to_vmx(vcpu)->msr_guest_kernel_gs_base; | 
|  | break; | 
|  | #endif | 
|  | case MSR_EFER: | 
|  | return kvm_get_msr_common(vcpu, msr_index, pdata); | 
|  | case MSR_IA32_TSC: | 
|  | data = guest_read_tsc(); | 
|  | break; | 
|  | case MSR_IA32_SYSENTER_CS: | 
|  | data = vmcs_read32(GUEST_SYSENTER_CS); | 
|  | break; | 
|  | case MSR_IA32_SYSENTER_EIP: | 
|  | data = vmcs_readl(GUEST_SYSENTER_EIP); | 
|  | break; | 
|  | case MSR_IA32_SYSENTER_ESP: | 
|  | data = vmcs_readl(GUEST_SYSENTER_ESP); | 
|  | break; | 
|  | case MSR_TSC_AUX: | 
|  | if (!to_vmx(vcpu)->rdtscp_enabled) | 
|  | return 1; | 
|  | /* Otherwise falls through */ | 
|  | default: | 
|  | vmx_load_host_state(to_vmx(vcpu)); | 
|  | if (vmx_get_vmx_msr(vcpu, msr_index, pdata)) | 
|  | return 0; | 
|  | msr = find_msr_entry(to_vmx(vcpu), msr_index); | 
|  | if (msr) { | 
|  | vmx_load_host_state(to_vmx(vcpu)); | 
|  | data = msr->data; | 
|  | break; | 
|  | } | 
|  | return kvm_get_msr_common(vcpu, msr_index, pdata); | 
|  | } | 
|  |  | 
|  | *pdata = data; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Writes msr value into into the appropriate "register". | 
|  | * Returns 0 on success, non-0 otherwise. | 
|  | * Assumes vcpu_load() was already called. | 
|  | */ | 
|  | static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) | 
|  | { | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  | struct shared_msr_entry *msr; | 
|  | int ret = 0; | 
|  |  | 
|  | switch (msr_index) { | 
|  | case MSR_EFER: | 
|  | vmx_load_host_state(vmx); | 
|  | ret = kvm_set_msr_common(vcpu, msr_index, data); | 
|  | break; | 
|  | #ifdef CONFIG_X86_64 | 
|  | case MSR_FS_BASE: | 
|  | vmx_segment_cache_clear(vmx); | 
|  | vmcs_writel(GUEST_FS_BASE, data); | 
|  | break; | 
|  | case MSR_GS_BASE: | 
|  | vmx_segment_cache_clear(vmx); | 
|  | vmcs_writel(GUEST_GS_BASE, data); | 
|  | break; | 
|  | case MSR_KERNEL_GS_BASE: | 
|  | vmx_load_host_state(vmx); | 
|  | vmx->msr_guest_kernel_gs_base = data; | 
|  | break; | 
|  | #endif | 
|  | case MSR_IA32_SYSENTER_CS: | 
|  | vmcs_write32(GUEST_SYSENTER_CS, data); | 
|  | break; | 
|  | case MSR_IA32_SYSENTER_EIP: | 
|  | vmcs_writel(GUEST_SYSENTER_EIP, data); | 
|  | break; | 
|  | case MSR_IA32_SYSENTER_ESP: | 
|  | vmcs_writel(GUEST_SYSENTER_ESP, data); | 
|  | break; | 
|  | case MSR_IA32_TSC: | 
|  | kvm_write_tsc(vcpu, data); | 
|  | break; | 
|  | case MSR_IA32_CR_PAT: | 
|  | if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { | 
|  | vmcs_write64(GUEST_IA32_PAT, data); | 
|  | vcpu->arch.pat = data; | 
|  | break; | 
|  | } | 
|  | ret = kvm_set_msr_common(vcpu, msr_index, data); | 
|  | break; | 
|  | case MSR_TSC_AUX: | 
|  | if (!vmx->rdtscp_enabled) | 
|  | return 1; | 
|  | /* Check reserved bit, higher 32 bits should be zero */ | 
|  | if ((data >> 32) != 0) | 
|  | return 1; | 
|  | /* Otherwise falls through */ | 
|  | default: | 
|  | if (vmx_set_vmx_msr(vcpu, msr_index, data)) | 
|  | break; | 
|  | msr = find_msr_entry(vmx, msr_index); | 
|  | if (msr) { | 
|  | vmx_load_host_state(vmx); | 
|  | msr->data = data; | 
|  | break; | 
|  | } | 
|  | ret = kvm_set_msr_common(vcpu, msr_index, data); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) | 
|  | { | 
|  | __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail); | 
|  | switch (reg) { | 
|  | case VCPU_REGS_RSP: | 
|  | vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); | 
|  | break; | 
|  | case VCPU_REGS_RIP: | 
|  | vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); | 
|  | break; | 
|  | case VCPU_EXREG_PDPTR: | 
|  | if (enable_ept) | 
|  | ept_save_pdptrs(vcpu); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg) | 
|  | { | 
|  | if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) | 
|  | vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]); | 
|  | else | 
|  | vmcs_writel(GUEST_DR7, vcpu->arch.dr7); | 
|  |  | 
|  | update_exception_bitmap(vcpu); | 
|  | } | 
|  |  | 
|  | static __init int cpu_has_kvm_support(void) | 
|  | { | 
|  | return cpu_has_vmx(); | 
|  | } | 
|  |  | 
|  | static __init int vmx_disabled_by_bios(void) | 
|  | { | 
|  | u64 msr; | 
|  |  | 
|  | rdmsrl(MSR_IA32_FEATURE_CONTROL, msr); | 
|  | if (msr & FEATURE_CONTROL_LOCKED) { | 
|  | /* launched w/ TXT and VMX disabled */ | 
|  | if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX) | 
|  | && tboot_enabled()) | 
|  | return 1; | 
|  | /* launched w/o TXT and VMX only enabled w/ TXT */ | 
|  | if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX) | 
|  | && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX) | 
|  | && !tboot_enabled()) { | 
|  | printk(KERN_WARNING "kvm: disable TXT in the BIOS or " | 
|  | "activate TXT before enabling KVM\n"); | 
|  | return 1; | 
|  | } | 
|  | /* launched w/o TXT and VMX disabled */ | 
|  | if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX) | 
|  | && !tboot_enabled()) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void kvm_cpu_vmxon(u64 addr) | 
|  | { | 
|  | asm volatile (ASM_VMX_VMXON_RAX | 
|  | : : "a"(&addr), "m"(addr) | 
|  | : "memory", "cc"); | 
|  | } | 
|  |  | 
|  | static int hardware_enable(void *garbage) | 
|  | { | 
|  | int cpu = raw_smp_processor_id(); | 
|  | u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); | 
|  | u64 old, test_bits; | 
|  |  | 
|  | if (read_cr4() & X86_CR4_VMXE) | 
|  | return -EBUSY; | 
|  |  | 
|  | INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); | 
|  | rdmsrl(MSR_IA32_FEATURE_CONTROL, old); | 
|  |  | 
|  | test_bits = FEATURE_CONTROL_LOCKED; | 
|  | test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; | 
|  | if (tboot_enabled()) | 
|  | test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX; | 
|  |  | 
|  | if ((old & test_bits) != test_bits) { | 
|  | /* enable and lock */ | 
|  | wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits); | 
|  | } | 
|  | write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */ | 
|  |  | 
|  | if (vmm_exclusive) { | 
|  | kvm_cpu_vmxon(phys_addr); | 
|  | ept_sync_global(); | 
|  | } | 
|  |  | 
|  | store_gdt(&__get_cpu_var(host_gdt)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void vmclear_local_loaded_vmcss(void) | 
|  | { | 
|  | int cpu = raw_smp_processor_id(); | 
|  | struct loaded_vmcs *v, *n; | 
|  |  | 
|  | list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), | 
|  | loaded_vmcss_on_cpu_link) | 
|  | __loaded_vmcs_clear(v); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot() | 
|  | * tricks. | 
|  | */ | 
|  | static void kvm_cpu_vmxoff(void) | 
|  | { | 
|  | asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc"); | 
|  | } | 
|  |  | 
|  | static void hardware_disable(void *garbage) | 
|  | { | 
|  | if (vmm_exclusive) { | 
|  | vmclear_local_loaded_vmcss(); | 
|  | kvm_cpu_vmxoff(); | 
|  | } | 
|  | write_cr4(read_cr4() & ~X86_CR4_VMXE); | 
|  | } | 
|  |  | 
|  | static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, | 
|  | u32 msr, u32 *result) | 
|  | { | 
|  | u32 vmx_msr_low, vmx_msr_high; | 
|  | u32 ctl = ctl_min | ctl_opt; | 
|  |  | 
|  | rdmsr(msr, vmx_msr_low, vmx_msr_high); | 
|  |  | 
|  | ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ | 
|  | ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */ | 
|  |  | 
|  | /* Ensure minimum (required) set of control bits are supported. */ | 
|  | if (ctl_min & ~ctl) | 
|  | return -EIO; | 
|  |  | 
|  | *result = ctl; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static __init bool allow_1_setting(u32 msr, u32 ctl) | 
|  | { | 
|  | u32 vmx_msr_low, vmx_msr_high; | 
|  |  | 
|  | rdmsr(msr, vmx_msr_low, vmx_msr_high); | 
|  | return vmx_msr_high & ctl; | 
|  | } | 
|  |  | 
|  | static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf) | 
|  | { | 
|  | u32 vmx_msr_low, vmx_msr_high; | 
|  | u32 min, opt, min2, opt2; | 
|  | u32 _pin_based_exec_control = 0; | 
|  | u32 _cpu_based_exec_control = 0; | 
|  | u32 _cpu_based_2nd_exec_control = 0; | 
|  | u32 _vmexit_control = 0; | 
|  | u32 _vmentry_control = 0; | 
|  |  | 
|  | min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING; | 
|  | opt = PIN_BASED_VIRTUAL_NMIS; | 
|  | if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS, | 
|  | &_pin_based_exec_control) < 0) | 
|  | return -EIO; | 
|  |  | 
|  | min = | 
|  | #ifdef CONFIG_X86_64 | 
|  | CPU_BASED_CR8_LOAD_EXITING | | 
|  | CPU_BASED_CR8_STORE_EXITING | | 
|  | #endif | 
|  | CPU_BASED_CR3_LOAD_EXITING | | 
|  | CPU_BASED_CR3_STORE_EXITING | | 
|  | CPU_BASED_USE_IO_BITMAPS | | 
|  | CPU_BASED_MOV_DR_EXITING | | 
|  | CPU_BASED_USE_TSC_OFFSETING | | 
|  | CPU_BASED_MWAIT_EXITING | | 
|  | CPU_BASED_MONITOR_EXITING | | 
|  | CPU_BASED_INVLPG_EXITING; | 
|  |  | 
|  | if (yield_on_hlt) | 
|  | min |= CPU_BASED_HLT_EXITING; | 
|  |  | 
|  | opt = CPU_BASED_TPR_SHADOW | | 
|  | CPU_BASED_USE_MSR_BITMAPS | | 
|  | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; | 
|  | if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS, | 
|  | &_cpu_based_exec_control) < 0) | 
|  | return -EIO; | 
|  | #ifdef CONFIG_X86_64 | 
|  | if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) | 
|  | _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING & | 
|  | ~CPU_BASED_CR8_STORE_EXITING; | 
|  | #endif | 
|  | if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { | 
|  | min2 = 0; | 
|  | opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | | 
|  | SECONDARY_EXEC_WBINVD_EXITING | | 
|  | SECONDARY_EXEC_ENABLE_VPID | | 
|  | SECONDARY_EXEC_ENABLE_EPT | | 
|  | SECONDARY_EXEC_UNRESTRICTED_GUEST | | 
|  | SECONDARY_EXEC_PAUSE_LOOP_EXITING | | 
|  | SECONDARY_EXEC_RDTSCP; | 
|  | if (adjust_vmx_controls(min2, opt2, | 
|  | MSR_IA32_VMX_PROCBASED_CTLS2, | 
|  | &_cpu_based_2nd_exec_control) < 0) | 
|  | return -EIO; | 
|  | } | 
|  | #ifndef CONFIG_X86_64 | 
|  | if (!(_cpu_based_2nd_exec_control & | 
|  | SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) | 
|  | _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; | 
|  | #endif | 
|  | if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) { | 
|  | /* CR3 accesses and invlpg don't need to cause VM Exits when EPT | 
|  | enabled */ | 
|  | _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | | 
|  | CPU_BASED_CR3_STORE_EXITING | | 
|  | CPU_BASED_INVLPG_EXITING); | 
|  | rdmsr(MSR_IA32_VMX_EPT_VPID_CAP, | 
|  | vmx_capability.ept, vmx_capability.vpid); | 
|  | } | 
|  |  | 
|  | min = 0; | 
|  | #ifdef CONFIG_X86_64 | 
|  | min |= VM_EXIT_HOST_ADDR_SPACE_SIZE; | 
|  | #endif | 
|  | opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT; | 
|  | if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS, | 
|  | &_vmexit_control) < 0) | 
|  | return -EIO; | 
|  |  | 
|  | min = 0; | 
|  | opt = VM_ENTRY_LOAD_IA32_PAT; | 
|  | if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS, | 
|  | &_vmentry_control) < 0) | 
|  | return -EIO; | 
|  |  | 
|  | rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); | 
|  |  | 
|  | /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ | 
|  | if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) | 
|  | return -EIO; | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ | 
|  | if (vmx_msr_high & (1u<<16)) | 
|  | return -EIO; | 
|  | #endif | 
|  |  | 
|  | /* Require Write-Back (WB) memory type for VMCS accesses. */ | 
|  | if (((vmx_msr_high >> 18) & 15) != 6) | 
|  | return -EIO; | 
|  |  | 
|  | vmcs_conf->size = vmx_msr_high & 0x1fff; | 
|  | vmcs_conf->order = get_order(vmcs_config.size); | 
|  | vmcs_conf->revision_id = vmx_msr_low; | 
|  |  | 
|  | vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; | 
|  | vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; | 
|  | vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; | 
|  | vmcs_conf->vmexit_ctrl         = _vmexit_control; | 
|  | vmcs_conf->vmentry_ctrl        = _vmentry_control; | 
|  |  | 
|  | cpu_has_load_ia32_efer = | 
|  | allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS, | 
|  | VM_ENTRY_LOAD_IA32_EFER) | 
|  | && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS, | 
|  | VM_EXIT_LOAD_IA32_EFER); | 
|  |  | 
|  | cpu_has_load_perf_global_ctrl = | 
|  | allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS, | 
|  | VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) | 
|  | && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS, | 
|  | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); | 
|  |  | 
|  | /* | 
|  | * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL | 
|  | * but due to arrata below it can't be used. Workaround is to use | 
|  | * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL. | 
|  | * | 
|  | * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32] | 
|  | * | 
|  | * AAK155             (model 26) | 
|  | * AAP115             (model 30) | 
|  | * AAT100             (model 37) | 
|  | * BC86,AAY89,BD102   (model 44) | 
|  | * BA97               (model 46) | 
|  | * | 
|  | */ | 
|  | if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) { | 
|  | switch (boot_cpu_data.x86_model) { | 
|  | case 26: | 
|  | case 30: | 
|  | case 37: | 
|  | case 44: | 
|  | case 46: | 
|  | cpu_has_load_perf_global_ctrl = false; | 
|  | printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " | 
|  | "does not work properly. Using workaround\n"); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct vmcs *alloc_vmcs_cpu(int cpu) | 
|  | { | 
|  | int node = cpu_to_node(cpu); | 
|  | struct page *pages; | 
|  | struct vmcs *vmcs; | 
|  |  | 
|  | pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order); | 
|  | if (!pages) | 
|  | return NULL; | 
|  | vmcs = page_address(pages); | 
|  | memset(vmcs, 0, vmcs_config.size); | 
|  | vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */ | 
|  | return vmcs; | 
|  | } | 
|  |  | 
|  | static struct vmcs *alloc_vmcs(void) | 
|  | { | 
|  | return alloc_vmcs_cpu(raw_smp_processor_id()); | 
|  | } | 
|  |  | 
|  | static void free_vmcs(struct vmcs *vmcs) | 
|  | { | 
|  | free_pages((unsigned long)vmcs, vmcs_config.order); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded | 
|  | */ | 
|  | static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) | 
|  | { | 
|  | if (!loaded_vmcs->vmcs) | 
|  | return; | 
|  | loaded_vmcs_clear(loaded_vmcs); | 
|  | free_vmcs(loaded_vmcs->vmcs); | 
|  | loaded_vmcs->vmcs = NULL; | 
|  | } | 
|  |  | 
|  | static void free_kvm_area(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | free_vmcs(per_cpu(vmxarea, cpu)); | 
|  | per_cpu(vmxarea, cpu) = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static __init int alloc_kvm_area(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct vmcs *vmcs; | 
|  |  | 
|  | vmcs = alloc_vmcs_cpu(cpu); | 
|  | if (!vmcs) { | 
|  | free_kvm_area(); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | per_cpu(vmxarea, cpu) = vmcs; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static __init int hardware_setup(void) | 
|  | { | 
|  | if (setup_vmcs_config(&vmcs_config) < 0) | 
|  | return -EIO; | 
|  |  | 
|  | if (boot_cpu_has(X86_FEATURE_NX)) | 
|  | kvm_enable_efer_bits(EFER_NX); | 
|  |  | 
|  | if (!cpu_has_vmx_vpid()) | 
|  | enable_vpid = 0; | 
|  |  | 
|  | if (!cpu_has_vmx_ept() || | 
|  | !cpu_has_vmx_ept_4levels()) { | 
|  | enable_ept = 0; | 
|  | enable_unrestricted_guest = 0; | 
|  | } | 
|  |  | 
|  | if (!cpu_has_vmx_unrestricted_guest()) | 
|  | enable_unrestricted_guest = 0; | 
|  |  | 
|  | if (!cpu_has_vmx_flexpriority()) | 
|  | flexpriority_enabled = 0; | 
|  |  | 
|  | if (!cpu_has_vmx_tpr_shadow()) | 
|  | kvm_x86_ops->update_cr8_intercept = NULL; | 
|  |  | 
|  | if (enable_ept && !cpu_has_vmx_ept_2m_page()) | 
|  | kvm_disable_largepages(); | 
|  |  | 
|  | if (!cpu_has_vmx_ple()) | 
|  | ple_gap = 0; | 
|  |  | 
|  | if (nested) | 
|  | nested_vmx_setup_ctls_msrs(); | 
|  |  | 
|  | return alloc_kvm_area(); | 
|  | } | 
|  |  | 
|  | static __exit void hardware_unsetup(void) | 
|  | { | 
|  | free_kvm_area(); | 
|  | } | 
|  |  | 
|  | static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save) | 
|  | { | 
|  | struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; | 
|  |  | 
|  | if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) { | 
|  | vmcs_write16(sf->selector, save->selector); | 
|  | vmcs_writel(sf->base, save->base); | 
|  | vmcs_write32(sf->limit, save->limit); | 
|  | vmcs_write32(sf->ar_bytes, save->ar); | 
|  | } else { | 
|  | u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK) | 
|  | << AR_DPL_SHIFT; | 
|  | vmcs_write32(sf->ar_bytes, 0x93 | dpl); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void enter_pmode(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  |  | 
|  | vmx->emulation_required = 1; | 
|  | vmx->rmode.vm86_active = 0; | 
|  |  | 
|  | vmx_segment_cache_clear(vmx); | 
|  |  | 
|  | vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector); | 
|  | vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base); | 
|  | vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit); | 
|  | vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar); | 
|  |  | 
|  | flags = vmcs_readl(GUEST_RFLAGS); | 
|  | flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; | 
|  | flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; | 
|  | vmcs_writel(GUEST_RFLAGS, flags); | 
|  |  | 
|  | vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | | 
|  | (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); | 
|  |  | 
|  | update_exception_bitmap(vcpu); | 
|  |  | 
|  | if (emulate_invalid_guest_state) | 
|  | return; | 
|  |  | 
|  | fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es); | 
|  | fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds); | 
|  | fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs); | 
|  | fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs); | 
|  |  | 
|  | vmx_segment_cache_clear(vmx); | 
|  |  | 
|  | vmcs_write16(GUEST_SS_SELECTOR, 0); | 
|  | vmcs_write32(GUEST_SS_AR_BYTES, 0x93); | 
|  |  | 
|  | vmcs_write16(GUEST_CS_SELECTOR, | 
|  | vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK); | 
|  | vmcs_write32(GUEST_CS_AR_BYTES, 0x9b); | 
|  | } | 
|  |  | 
|  | static gva_t rmode_tss_base(struct kvm *kvm) | 
|  | { | 
|  | if (!kvm->arch.tss_addr) { | 
|  | struct kvm_memslots *slots; | 
|  | gfn_t base_gfn; | 
|  |  | 
|  | slots = kvm_memslots(kvm); | 
|  | base_gfn = slots->memslots[0].base_gfn + | 
|  | kvm->memslots->memslots[0].npages - 3; | 
|  | return base_gfn << PAGE_SHIFT; | 
|  | } | 
|  | return kvm->arch.tss_addr; | 
|  | } | 
|  |  | 
|  | static void fix_rmode_seg(int seg, struct kvm_save_segment *save) | 
|  | { | 
|  | struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; | 
|  |  | 
|  | save->selector = vmcs_read16(sf->selector); | 
|  | save->base = vmcs_readl(sf->base); | 
|  | save->limit = vmcs_read32(sf->limit); | 
|  | save->ar = vmcs_read32(sf->ar_bytes); | 
|  | vmcs_write16(sf->selector, save->base >> 4); | 
|  | vmcs_write32(sf->base, save->base & 0xffff0); | 
|  | vmcs_write32(sf->limit, 0xffff); | 
|  | vmcs_write32(sf->ar_bytes, 0xf3); | 
|  | if (save->base & 0xf) | 
|  | printk_once(KERN_WARNING "kvm: segment base is not paragraph" | 
|  | " aligned when entering protected mode (seg=%d)", | 
|  | seg); | 
|  | } | 
|  |  | 
|  | static void enter_rmode(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  |  | 
|  | if (enable_unrestricted_guest) | 
|  | return; | 
|  |  | 
|  | vmx->emulation_required = 1; | 
|  | vmx->rmode.vm86_active = 1; | 
|  |  | 
|  | /* | 
|  | * Very old userspace does not call KVM_SET_TSS_ADDR before entering | 
|  | * vcpu. Call it here with phys address pointing 16M below 4G. | 
|  | */ | 
|  | if (!vcpu->kvm->arch.tss_addr) { | 
|  | printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be " | 
|  | "called before entering vcpu\n"); | 
|  | srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); | 
|  | vmx_set_tss_addr(vcpu->kvm, 0xfeffd000); | 
|  | vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); | 
|  | } | 
|  |  | 
|  | vmx_segment_cache_clear(vmx); | 
|  |  | 
|  | vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR); | 
|  | vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE); | 
|  | vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm)); | 
|  |  | 
|  | vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT); | 
|  | vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); | 
|  |  | 
|  | vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES); | 
|  | vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); | 
|  |  | 
|  | flags = vmcs_readl(GUEST_RFLAGS); | 
|  | vmx->rmode.save_rflags = flags; | 
|  |  | 
|  | flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; | 
|  |  | 
|  | vmcs_writel(GUEST_RFLAGS, flags); | 
|  | vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); | 
|  | update_exception_bitmap(vcpu); | 
|  |  | 
|  | if (emulate_invalid_guest_state) | 
|  | goto continue_rmode; | 
|  |  | 
|  | vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4); | 
|  | vmcs_write32(GUEST_SS_LIMIT, 0xffff); | 
|  | vmcs_write32(GUEST_SS_AR_BYTES, 0xf3); | 
|  |  | 
|  | vmcs_write32(GUEST_CS_AR_BYTES, 0xf3); | 
|  | vmcs_write32(GUEST_CS_LIMIT, 0xffff); | 
|  | if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000) | 
|  | vmcs_writel(GUEST_CS_BASE, 0xf0000); | 
|  | vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4); | 
|  |  | 
|  | fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es); | 
|  | fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds); | 
|  | fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs); | 
|  | fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs); | 
|  |  | 
|  | continue_rmode: | 
|  | kvm_mmu_reset_context(vcpu); | 
|  | } | 
|  |  | 
|  | static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) | 
|  | { | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  | struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER); | 
|  |  | 
|  | if (!msr) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Force kernel_gs_base reloading before EFER changes, as control | 
|  | * of this msr depends on is_long_mode(). | 
|  | */ | 
|  | vmx_load_host_state(to_vmx(vcpu)); | 
|  | vcpu->arch.efer = efer; | 
|  | if (efer & EFER_LMA) { | 
|  | vmcs_write32(VM_ENTRY_CONTROLS, | 
|  | vmcs_read32(VM_ENTRY_CONTROLS) | | 
|  | VM_ENTRY_IA32E_MODE); | 
|  | msr->data = efer; | 
|  | } else { | 
|  | vmcs_write32(VM_ENTRY_CONTROLS, | 
|  | vmcs_read32(VM_ENTRY_CONTROLS) & | 
|  | ~VM_ENTRY_IA32E_MODE); | 
|  |  | 
|  | msr->data = efer & ~EFER_LME; | 
|  | } | 
|  | setup_msrs(vmx); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  |  | 
|  | static void enter_lmode(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u32 guest_tr_ar; | 
|  |  | 
|  | vmx_segment_cache_clear(to_vmx(vcpu)); | 
|  |  | 
|  | guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); | 
|  | if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) { | 
|  | pr_debug_ratelimited("%s: tss fixup for long mode. \n", | 
|  | __func__); | 
|  | vmcs_write32(GUEST_TR_AR_BYTES, | 
|  | (guest_tr_ar & ~AR_TYPE_MASK) | 
|  | | AR_TYPE_BUSY_64_TSS); | 
|  | } | 
|  | vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); | 
|  | } | 
|  |  | 
|  | static void exit_lmode(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | vmcs_write32(VM_ENTRY_CONTROLS, | 
|  | vmcs_read32(VM_ENTRY_CONTROLS) | 
|  | & ~VM_ENTRY_IA32E_MODE); | 
|  | vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static void vmx_flush_tlb(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | vpid_sync_context(to_vmx(vcpu)); | 
|  | if (enable_ept) { | 
|  | if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) | 
|  | return; | 
|  | ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; | 
|  |  | 
|  | vcpu->arch.cr0 &= ~cr0_guest_owned_bits; | 
|  | vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits; | 
|  | } | 
|  |  | 
|  | static void vmx_decache_cr3(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (enable_ept && is_paging(vcpu)) | 
|  | vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); | 
|  | __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); | 
|  | } | 
|  |  | 
|  | static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; | 
|  |  | 
|  | vcpu->arch.cr4 &= ~cr4_guest_owned_bits; | 
|  | vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits; | 
|  | } | 
|  |  | 
|  | static void ept_load_pdptrs(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (!test_bit(VCPU_EXREG_PDPTR, | 
|  | (unsigned long *)&vcpu->arch.regs_dirty)) | 
|  | return; | 
|  |  | 
|  | if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) { | 
|  | vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]); | 
|  | vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]); | 
|  | vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]); | 
|  | vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ept_save_pdptrs(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) { | 
|  | vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0); | 
|  | vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1); | 
|  | vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2); | 
|  | vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3); | 
|  | } | 
|  |  | 
|  | __set_bit(VCPU_EXREG_PDPTR, | 
|  | (unsigned long *)&vcpu->arch.regs_avail); | 
|  | __set_bit(VCPU_EXREG_PDPTR, | 
|  | (unsigned long *)&vcpu->arch.regs_dirty); | 
|  | } | 
|  |  | 
|  | static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); | 
|  |  | 
|  | static void ept_update_paging_mode_cr0(unsigned long *hw_cr0, | 
|  | unsigned long cr0, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) | 
|  | vmx_decache_cr3(vcpu); | 
|  | if (!(cr0 & X86_CR0_PG)) { | 
|  | /* From paging/starting to nonpaging */ | 
|  | vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, | 
|  | vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) | | 
|  | (CPU_BASED_CR3_LOAD_EXITING | | 
|  | CPU_BASED_CR3_STORE_EXITING)); | 
|  | vcpu->arch.cr0 = cr0; | 
|  | vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); | 
|  | } else if (!is_paging(vcpu)) { | 
|  | /* From nonpaging to paging */ | 
|  | vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, | 
|  | vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) & | 
|  | ~(CPU_BASED_CR3_LOAD_EXITING | | 
|  | CPU_BASED_CR3_STORE_EXITING)); | 
|  | vcpu->arch.cr0 = cr0; | 
|  | vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); | 
|  | } | 
|  |  | 
|  | if (!(cr0 & X86_CR0_WP)) | 
|  | *hw_cr0 &= ~X86_CR0_WP; | 
|  | } | 
|  |  | 
|  | static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) | 
|  | { | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  | unsigned long hw_cr0; | 
|  |  | 
|  | if (enable_unrestricted_guest) | 
|  | hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST) | 
|  | | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; | 
|  | else | 
|  | hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON; | 
|  |  | 
|  | if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) | 
|  | enter_pmode(vcpu); | 
|  |  | 
|  | if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) | 
|  | enter_rmode(vcpu); | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | if (vcpu->arch.efer & EFER_LME) { | 
|  | if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) | 
|  | enter_lmode(vcpu); | 
|  | if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) | 
|  | exit_lmode(vcpu); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (enable_ept) | 
|  | ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu); | 
|  |  | 
|  | if (!vcpu->fpu_active) | 
|  | hw_cr0 |= X86_CR0_TS | X86_CR0_MP; | 
|  |  | 
|  | vmcs_writel(CR0_READ_SHADOW, cr0); | 
|  | vmcs_writel(GUEST_CR0, hw_cr0); | 
|  | vcpu->arch.cr0 = cr0; | 
|  | __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail); | 
|  | } | 
|  |  | 
|  | static u64 construct_eptp(unsigned long root_hpa) | 
|  | { | 
|  | u64 eptp; | 
|  |  | 
|  | /* TODO write the value reading from MSR */ | 
|  | eptp = VMX_EPT_DEFAULT_MT | | 
|  | VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT; | 
|  | eptp |= (root_hpa & PAGE_MASK); | 
|  |  | 
|  | return eptp; | 
|  | } | 
|  |  | 
|  | static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) | 
|  | { | 
|  | unsigned long guest_cr3; | 
|  | u64 eptp; | 
|  |  | 
|  | guest_cr3 = cr3; | 
|  | if (enable_ept) { | 
|  | eptp = construct_eptp(cr3); | 
|  | vmcs_write64(EPT_POINTER, eptp); | 
|  | guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) : | 
|  | vcpu->kvm->arch.ept_identity_map_addr; | 
|  | ept_load_pdptrs(vcpu); | 
|  | } | 
|  |  | 
|  | vmx_flush_tlb(vcpu); | 
|  | vmcs_writel(GUEST_CR3, guest_cr3); | 
|  | } | 
|  |  | 
|  | static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) | 
|  | { | 
|  | unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ? | 
|  | KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON); | 
|  |  | 
|  | if (cr4 & X86_CR4_VMXE) { | 
|  | /* | 
|  | * To use VMXON (and later other VMX instructions), a guest | 
|  | * must first be able to turn on cr4.VMXE (see handle_vmon()). | 
|  | * So basically the check on whether to allow nested VMX | 
|  | * is here. | 
|  | */ | 
|  | if (!nested_vmx_allowed(vcpu)) | 
|  | return 1; | 
|  | } else if (to_vmx(vcpu)->nested.vmxon) | 
|  | return 1; | 
|  |  | 
|  | vcpu->arch.cr4 = cr4; | 
|  | if (enable_ept) { | 
|  | if (!is_paging(vcpu)) { | 
|  | hw_cr4 &= ~X86_CR4_PAE; | 
|  | hw_cr4 |= X86_CR4_PSE; | 
|  | } else if (!(cr4 & X86_CR4_PAE)) { | 
|  | hw_cr4 &= ~X86_CR4_PAE; | 
|  | } | 
|  | } | 
|  |  | 
|  | vmcs_writel(CR4_READ_SHADOW, cr4); | 
|  | vmcs_writel(GUEST_CR4, hw_cr4); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void vmx_get_segment(struct kvm_vcpu *vcpu, | 
|  | struct kvm_segment *var, int seg) | 
|  | { | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  | struct kvm_save_segment *save; | 
|  | u32 ar; | 
|  |  | 
|  | if (vmx->rmode.vm86_active | 
|  | && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES | 
|  | || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS | 
|  | || seg == VCPU_SREG_GS) | 
|  | && !emulate_invalid_guest_state) { | 
|  | switch (seg) { | 
|  | case VCPU_SREG_TR: save = &vmx->rmode.tr; break; | 
|  | case VCPU_SREG_ES: save = &vmx->rmode.es; break; | 
|  | case VCPU_SREG_DS: save = &vmx->rmode.ds; break; | 
|  | case VCPU_SREG_FS: save = &vmx->rmode.fs; break; | 
|  | case VCPU_SREG_GS: save = &vmx->rmode.gs; break; | 
|  | default: BUG(); | 
|  | } | 
|  | var->selector = save->selector; | 
|  | var->base = save->base; | 
|  | var->limit = save->limit; | 
|  | ar = save->ar; | 
|  | if (seg == VCPU_SREG_TR | 
|  | || var->selector == vmx_read_guest_seg_selector(vmx, seg)) | 
|  | goto use_saved_rmode_seg; | 
|  | } | 
|  | var->base = vmx_read_guest_seg_base(vmx, seg); | 
|  | var->limit = vmx_read_guest_seg_limit(vmx, seg); | 
|  | var->selector = vmx_read_guest_seg_selector(vmx, seg); | 
|  | ar = vmx_read_guest_seg_ar(vmx, seg); | 
|  | use_saved_rmode_seg: | 
|  | if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state) | 
|  | ar = 0; | 
|  | var->type = ar & 15; | 
|  | var->s = (ar >> 4) & 1; | 
|  | var->dpl = (ar >> 5) & 3; | 
|  | var->present = (ar >> 7) & 1; | 
|  | var->avl = (ar >> 12) & 1; | 
|  | var->l = (ar >> 13) & 1; | 
|  | var->db = (ar >> 14) & 1; | 
|  | var->g = (ar >> 15) & 1; | 
|  | var->unusable = (ar >> 16) & 1; | 
|  | } | 
|  |  | 
|  | static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) | 
|  | { | 
|  | struct kvm_segment s; | 
|  |  | 
|  | if (to_vmx(vcpu)->rmode.vm86_active) { | 
|  | vmx_get_segment(vcpu, &s, seg); | 
|  | return s.base; | 
|  | } | 
|  | return vmx_read_guest_seg_base(to_vmx(vcpu), seg); | 
|  | } | 
|  |  | 
|  | static int __vmx_get_cpl(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (!is_protmode(vcpu)) | 
|  | return 0; | 
|  |  | 
|  | if (!is_long_mode(vcpu) | 
|  | && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */ | 
|  | return 3; | 
|  |  | 
|  | return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3; | 
|  | } | 
|  |  | 
|  | static int vmx_get_cpl(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) { | 
|  | __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail); | 
|  | to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu); | 
|  | } | 
|  | return to_vmx(vcpu)->cpl; | 
|  | } | 
|  |  | 
|  |  | 
|  | static u32 vmx_segment_access_rights(struct kvm_segment *var) | 
|  | { | 
|  | u32 ar; | 
|  |  | 
|  | if (var->unusable) | 
|  | ar = 1 << 16; | 
|  | else { | 
|  | ar = var->type & 15; | 
|  | ar |= (var->s & 1) << 4; | 
|  | ar |= (var->dpl & 3) << 5; | 
|  | ar |= (var->present & 1) << 7; | 
|  | ar |= (var->avl & 1) << 12; | 
|  | ar |= (var->l & 1) << 13; | 
|  | ar |= (var->db & 1) << 14; | 
|  | ar |= (var->g & 1) << 15; | 
|  | } | 
|  | if (ar == 0) /* a 0 value means unusable */ | 
|  | ar = AR_UNUSABLE_MASK; | 
|  |  | 
|  | return ar; | 
|  | } | 
|  |  | 
|  | static void vmx_set_segment(struct kvm_vcpu *vcpu, | 
|  | struct kvm_segment *var, int seg) | 
|  | { | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  | struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; | 
|  | u32 ar; | 
|  |  | 
|  | vmx_segment_cache_clear(vmx); | 
|  |  | 
|  | if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) { | 
|  | vmcs_write16(sf->selector, var->selector); | 
|  | vmx->rmode.tr.selector = var->selector; | 
|  | vmx->rmode.tr.base = var->base; | 
|  | vmx->rmode.tr.limit = var->limit; | 
|  | vmx->rmode.tr.ar = vmx_segment_access_rights(var); | 
|  | return; | 
|  | } | 
|  | vmcs_writel(sf->base, var->base); | 
|  | vmcs_write32(sf->limit, var->limit); | 
|  | vmcs_write16(sf->selector, var->selector); | 
|  | if (vmx->rmode.vm86_active && var->s) { | 
|  | /* | 
|  | * Hack real-mode segments into vm86 compatibility. | 
|  | */ | 
|  | if (var->base == 0xffff0000 && var->selector == 0xf000) | 
|  | vmcs_writel(sf->base, 0xf0000); | 
|  | ar = 0xf3; | 
|  | } else | 
|  | ar = vmx_segment_access_rights(var); | 
|  |  | 
|  | /* | 
|  | *   Fix the "Accessed" bit in AR field of segment registers for older | 
|  | * qemu binaries. | 
|  | *   IA32 arch specifies that at the time of processor reset the | 
|  | * "Accessed" bit in the AR field of segment registers is 1. And qemu | 
|  | * is setting it to 0 in the usedland code. This causes invalid guest | 
|  | * state vmexit when "unrestricted guest" mode is turned on. | 
|  | *    Fix for this setup issue in cpu_reset is being pushed in the qemu | 
|  | * tree. Newer qemu binaries with that qemu fix would not need this | 
|  | * kvm hack. | 
|  | */ | 
|  | if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR)) | 
|  | ar |= 0x1; /* Accessed */ | 
|  |  | 
|  | vmcs_write32(sf->ar_bytes, ar); | 
|  | __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail); | 
|  | } | 
|  |  | 
|  | static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) | 
|  | { | 
|  | u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); | 
|  |  | 
|  | *db = (ar >> 14) & 1; | 
|  | *l = (ar >> 13) & 1; | 
|  | } | 
|  |  | 
|  | static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) | 
|  | { | 
|  | dt->size = vmcs_read32(GUEST_IDTR_LIMIT); | 
|  | dt->address = vmcs_readl(GUEST_IDTR_BASE); | 
|  | } | 
|  |  | 
|  | static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) | 
|  | { | 
|  | vmcs_write32(GUEST_IDTR_LIMIT, dt->size); | 
|  | vmcs_writel(GUEST_IDTR_BASE, dt->address); | 
|  | } | 
|  |  | 
|  | static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) | 
|  | { | 
|  | dt->size = vmcs_read32(GUEST_GDTR_LIMIT); | 
|  | dt->address = vmcs_readl(GUEST_GDTR_BASE); | 
|  | } | 
|  |  | 
|  | static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) | 
|  | { | 
|  | vmcs_write32(GUEST_GDTR_LIMIT, dt->size); | 
|  | vmcs_writel(GUEST_GDTR_BASE, dt->address); | 
|  | } | 
|  |  | 
|  | static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) | 
|  | { | 
|  | struct kvm_segment var; | 
|  | u32 ar; | 
|  |  | 
|  | vmx_get_segment(vcpu, &var, seg); | 
|  | ar = vmx_segment_access_rights(&var); | 
|  |  | 
|  | if (var.base != (var.selector << 4)) | 
|  | return false; | 
|  | if (var.limit != 0xffff) | 
|  | return false; | 
|  | if (ar != 0xf3) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool code_segment_valid(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_segment cs; | 
|  | unsigned int cs_rpl; | 
|  |  | 
|  | vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); | 
|  | cs_rpl = cs.selector & SELECTOR_RPL_MASK; | 
|  |  | 
|  | if (cs.unusable) | 
|  | return false; | 
|  | if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK)) | 
|  | return false; | 
|  | if (!cs.s) | 
|  | return false; | 
|  | if (cs.type & AR_TYPE_WRITEABLE_MASK) { | 
|  | if (cs.dpl > cs_rpl) | 
|  | return false; | 
|  | } else { | 
|  | if (cs.dpl != cs_rpl) | 
|  | return false; | 
|  | } | 
|  | if (!cs.present) | 
|  | return false; | 
|  |  | 
|  | /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool stack_segment_valid(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_segment ss; | 
|  | unsigned int ss_rpl; | 
|  |  | 
|  | vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); | 
|  | ss_rpl = ss.selector & SELECTOR_RPL_MASK; | 
|  |  | 
|  | if (ss.unusable) | 
|  | return true; | 
|  | if (ss.type != 3 && ss.type != 7) | 
|  | return false; | 
|  | if (!ss.s) | 
|  | return false; | 
|  | if (ss.dpl != ss_rpl) /* DPL != RPL */ | 
|  | return false; | 
|  | if (!ss.present) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) | 
|  | { | 
|  | struct kvm_segment var; | 
|  | unsigned int rpl; | 
|  |  | 
|  | vmx_get_segment(vcpu, &var, seg); | 
|  | rpl = var.selector & SELECTOR_RPL_MASK; | 
|  |  | 
|  | if (var.unusable) | 
|  | return true; | 
|  | if (!var.s) | 
|  | return false; | 
|  | if (!var.present) | 
|  | return false; | 
|  | if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) { | 
|  | if (var.dpl < rpl) /* DPL < RPL */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* TODO: Add other members to kvm_segment_field to allow checking for other access | 
|  | * rights flags | 
|  | */ | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool tr_valid(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_segment tr; | 
|  |  | 
|  | vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); | 
|  |  | 
|  | if (tr.unusable) | 
|  | return false; | 
|  | if (tr.selector & SELECTOR_TI_MASK)	/* TI = 1 */ | 
|  | return false; | 
|  | if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ | 
|  | return false; | 
|  | if (!tr.present) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool ldtr_valid(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_segment ldtr; | 
|  |  | 
|  | vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); | 
|  |  | 
|  | if (ldtr.unusable) | 
|  | return true; | 
|  | if (ldtr.selector & SELECTOR_TI_MASK)	/* TI = 1 */ | 
|  | return false; | 
|  | if (ldtr.type != 2) | 
|  | return false; | 
|  | if (!ldtr.present) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_segment cs, ss; | 
|  |  | 
|  | vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); | 
|  | vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); | 
|  |  | 
|  | return ((cs.selector & SELECTOR_RPL_MASK) == | 
|  | (ss.selector & SELECTOR_RPL_MASK)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if guest state is valid. Returns true if valid, false if | 
|  | * not. | 
|  | * We assume that registers are always usable | 
|  | */ | 
|  | static bool guest_state_valid(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | /* real mode guest state checks */ | 
|  | if (!is_protmode(vcpu)) { | 
|  | if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) | 
|  | return false; | 
|  | if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) | 
|  | return false; | 
|  | if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) | 
|  | return false; | 
|  | if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) | 
|  | return false; | 
|  | if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) | 
|  | return false; | 
|  | if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) | 
|  | return false; | 
|  | } else { | 
|  | /* protected mode guest state checks */ | 
|  | if (!cs_ss_rpl_check(vcpu)) | 
|  | return false; | 
|  | if (!code_segment_valid(vcpu)) | 
|  | return false; | 
|  | if (!stack_segment_valid(vcpu)) | 
|  | return false; | 
|  | if (!data_segment_valid(vcpu, VCPU_SREG_DS)) | 
|  | return false; | 
|  | if (!data_segment_valid(vcpu, VCPU_SREG_ES)) | 
|  | return false; | 
|  | if (!data_segment_valid(vcpu, VCPU_SREG_FS)) | 
|  | return false; | 
|  | if (!data_segment_valid(vcpu, VCPU_SREG_GS)) | 
|  | return false; | 
|  | if (!tr_valid(vcpu)) | 
|  | return false; | 
|  | if (!ldtr_valid(vcpu)) | 
|  | return false; | 
|  | } | 
|  | /* TODO: | 
|  | * - Add checks on RIP | 
|  | * - Add checks on RFLAGS | 
|  | */ | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int init_rmode_tss(struct kvm *kvm) | 
|  | { | 
|  | gfn_t fn; | 
|  | u16 data = 0; | 
|  | int r, idx, ret = 0; | 
|  |  | 
|  | idx = srcu_read_lock(&kvm->srcu); | 
|  | fn = rmode_tss_base(kvm) >> PAGE_SHIFT; | 
|  | r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); | 
|  | if (r < 0) | 
|  | goto out; | 
|  | data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; | 
|  | r = kvm_write_guest_page(kvm, fn++, &data, | 
|  | TSS_IOPB_BASE_OFFSET, sizeof(u16)); | 
|  | if (r < 0) | 
|  | goto out; | 
|  | r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE); | 
|  | if (r < 0) | 
|  | goto out; | 
|  | r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); | 
|  | if (r < 0) | 
|  | goto out; | 
|  | data = ~0; | 
|  | r = kvm_write_guest_page(kvm, fn, &data, | 
|  | RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1, | 
|  | sizeof(u8)); | 
|  | if (r < 0) | 
|  | goto out; | 
|  |  | 
|  | ret = 1; | 
|  | out: | 
|  | srcu_read_unlock(&kvm->srcu, idx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int init_rmode_identity_map(struct kvm *kvm) | 
|  | { | 
|  | int i, idx, r, ret; | 
|  | pfn_t identity_map_pfn; | 
|  | u32 tmp; | 
|  |  | 
|  | if (!enable_ept) | 
|  | return 1; | 
|  | if (unlikely(!kvm->arch.ept_identity_pagetable)) { | 
|  | printk(KERN_ERR "EPT: identity-mapping pagetable " | 
|  | "haven't been allocated!\n"); | 
|  | return 0; | 
|  | } | 
|  | if (likely(kvm->arch.ept_identity_pagetable_done)) | 
|  | return 1; | 
|  | ret = 0; | 
|  | identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT; | 
|  | idx = srcu_read_lock(&kvm->srcu); | 
|  | r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE); | 
|  | if (r < 0) | 
|  | goto out; | 
|  | /* Set up identity-mapping pagetable for EPT in real mode */ | 
|  | for (i = 0; i < PT32_ENT_PER_PAGE; i++) { | 
|  | tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | | 
|  | _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); | 
|  | r = kvm_write_guest_page(kvm, identity_map_pfn, | 
|  | &tmp, i * sizeof(tmp), sizeof(tmp)); | 
|  | if (r < 0) | 
|  | goto out; | 
|  | } | 
|  | kvm->arch.ept_identity_pagetable_done = true; | 
|  | ret = 1; | 
|  | out: | 
|  | srcu_read_unlock(&kvm->srcu, idx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void seg_setup(int seg) | 
|  | { | 
|  | struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; | 
|  | unsigned int ar; | 
|  |  | 
|  | vmcs_write16(sf->selector, 0); | 
|  | vmcs_writel(sf->base, 0); | 
|  | vmcs_write32(sf->limit, 0xffff); | 
|  | if (enable_unrestricted_guest) { | 
|  | ar = 0x93; | 
|  | if (seg == VCPU_SREG_CS) | 
|  | ar |= 0x08; /* code segment */ | 
|  | } else | 
|  | ar = 0xf3; | 
|  |  | 
|  | vmcs_write32(sf->ar_bytes, ar); | 
|  | } | 
|  |  | 
|  | static int alloc_apic_access_page(struct kvm *kvm) | 
|  | { | 
|  | struct kvm_userspace_memory_region kvm_userspace_mem; | 
|  | int r = 0; | 
|  |  | 
|  | mutex_lock(&kvm->slots_lock); | 
|  | if (kvm->arch.apic_access_page) | 
|  | goto out; | 
|  | kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT; | 
|  | kvm_userspace_mem.flags = 0; | 
|  | kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL; | 
|  | kvm_userspace_mem.memory_size = PAGE_SIZE; | 
|  | r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0); | 
|  | if (r) | 
|  | goto out; | 
|  |  | 
|  | kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00); | 
|  | out: | 
|  | mutex_unlock(&kvm->slots_lock); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int alloc_identity_pagetable(struct kvm *kvm) | 
|  | { | 
|  | struct kvm_userspace_memory_region kvm_userspace_mem; | 
|  | int r = 0; | 
|  |  | 
|  | mutex_lock(&kvm->slots_lock); | 
|  | if (kvm->arch.ept_identity_pagetable) | 
|  | goto out; | 
|  | kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT; | 
|  | kvm_userspace_mem.flags = 0; | 
|  | kvm_userspace_mem.guest_phys_addr = | 
|  | kvm->arch.ept_identity_map_addr; | 
|  | kvm_userspace_mem.memory_size = PAGE_SIZE; | 
|  | r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0); | 
|  | if (r) | 
|  | goto out; | 
|  |  | 
|  | kvm->arch.ept_identity_pagetable = gfn_to_page(kvm, | 
|  | kvm->arch.ept_identity_map_addr >> PAGE_SHIFT); | 
|  | out: | 
|  | mutex_unlock(&kvm->slots_lock); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void allocate_vpid(struct vcpu_vmx *vmx) | 
|  | { | 
|  | int vpid; | 
|  |  | 
|  | vmx->vpid = 0; | 
|  | if (!enable_vpid) | 
|  | return; | 
|  | spin_lock(&vmx_vpid_lock); | 
|  | vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); | 
|  | if (vpid < VMX_NR_VPIDS) { | 
|  | vmx->vpid = vpid; | 
|  | __set_bit(vpid, vmx_vpid_bitmap); | 
|  | } | 
|  | spin_unlock(&vmx_vpid_lock); | 
|  | } | 
|  |  | 
|  | static void free_vpid(struct vcpu_vmx *vmx) | 
|  | { | 
|  | if (!enable_vpid) | 
|  | return; | 
|  | spin_lock(&vmx_vpid_lock); | 
|  | if (vmx->vpid != 0) | 
|  | __clear_bit(vmx->vpid, vmx_vpid_bitmap); | 
|  | spin_unlock(&vmx_vpid_lock); | 
|  | } | 
|  |  | 
|  | static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr) | 
|  | { | 
|  | int f = sizeof(unsigned long); | 
|  |  | 
|  | if (!cpu_has_vmx_msr_bitmap()) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals | 
|  | * have the write-low and read-high bitmap offsets the wrong way round. | 
|  | * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. | 
|  | */ | 
|  | if (msr <= 0x1fff) { | 
|  | __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */ | 
|  | __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */ | 
|  | } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { | 
|  | msr &= 0x1fff; | 
|  | __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */ | 
|  | __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */ | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only) | 
|  | { | 
|  | if (!longmode_only) | 
|  | __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr); | 
|  | __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set up the vmcs's constant host-state fields, i.e., host-state fields that | 
|  | * will not change in the lifetime of the guest. | 
|  | * Note that host-state that does change is set elsewhere. E.g., host-state | 
|  | * that is set differently for each CPU is set in vmx_vcpu_load(), not here. | 
|  | */ | 
|  | static void vmx_set_constant_host_state(void) | 
|  | { | 
|  | u32 low32, high32; | 
|  | unsigned long tmpl; | 
|  | struct desc_ptr dt; | 
|  |  | 
|  | vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS);  /* 22.2.3 */ | 
|  | vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */ | 
|  | vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */ | 
|  |  | 
|  | vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */ | 
|  | vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */ | 
|  | vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */ | 
|  | vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */ | 
|  | vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */ | 
|  |  | 
|  | native_store_idt(&dt); | 
|  | vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */ | 
|  |  | 
|  | asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl)); | 
|  | vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */ | 
|  |  | 
|  | rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); | 
|  | vmcs_write32(HOST_IA32_SYSENTER_CS, low32); | 
|  | rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); | 
|  | vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */ | 
|  |  | 
|  | if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { | 
|  | rdmsr(MSR_IA32_CR_PAT, low32, high32); | 
|  | vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) | 
|  | { | 
|  | vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS; | 
|  | if (enable_ept) | 
|  | vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE; | 
|  | if (is_guest_mode(&vmx->vcpu)) | 
|  | vmx->vcpu.arch.cr4_guest_owned_bits &= | 
|  | ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask; | 
|  | vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits); | 
|  | } | 
|  |  | 
|  | static u32 vmx_exec_control(struct vcpu_vmx *vmx) | 
|  | { | 
|  | u32 exec_control = vmcs_config.cpu_based_exec_ctrl; | 
|  | if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) { | 
|  | exec_control &= ~CPU_BASED_TPR_SHADOW; | 
|  | #ifdef CONFIG_X86_64 | 
|  | exec_control |= CPU_BASED_CR8_STORE_EXITING | | 
|  | CPU_BASED_CR8_LOAD_EXITING; | 
|  | #endif | 
|  | } | 
|  | if (!enable_ept) | 
|  | exec_control |= CPU_BASED_CR3_STORE_EXITING | | 
|  | CPU_BASED_CR3_LOAD_EXITING  | | 
|  | CPU_BASED_INVLPG_EXITING; | 
|  | return exec_control; | 
|  | } | 
|  |  | 
|  | static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx) | 
|  | { | 
|  | u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; | 
|  | if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm)) | 
|  | exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; | 
|  | if (vmx->vpid == 0) | 
|  | exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; | 
|  | if (!enable_ept) { | 
|  | exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; | 
|  | enable_unrestricted_guest = 0; | 
|  | } | 
|  | if (!enable_unrestricted_guest) | 
|  | exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; | 
|  | if (!ple_gap) | 
|  | exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; | 
|  | return exec_control; | 
|  | } | 
|  |  | 
|  | static void ept_set_mmio_spte_mask(void) | 
|  | { | 
|  | /* | 
|  | * EPT Misconfigurations can be generated if the value of bits 2:0 | 
|  | * of an EPT paging-structure entry is 110b (write/execute). | 
|  | * Also, magic bits (0xffull << 49) is set to quickly identify mmio | 
|  | * spte. | 
|  | */ | 
|  | kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sets up the vmcs for emulated real mode. | 
|  | */ | 
|  | static int vmx_vcpu_setup(struct vcpu_vmx *vmx) | 
|  | { | 
|  | #ifdef CONFIG_X86_64 | 
|  | unsigned long a; | 
|  | #endif | 
|  | int i; | 
|  |  | 
|  | /* I/O */ | 
|  | vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a)); | 
|  | vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b)); | 
|  |  | 
|  | if (cpu_has_vmx_msr_bitmap()) | 
|  | vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy)); | 
|  |  | 
|  | vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */ | 
|  |  | 
|  | /* Control */ | 
|  | vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, | 
|  | vmcs_config.pin_based_exec_ctrl); | 
|  |  | 
|  | vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx)); | 
|  |  | 
|  | if (cpu_has_secondary_exec_ctrls()) { | 
|  | vmcs_write32(SECONDARY_VM_EXEC_CONTROL, | 
|  | vmx_secondary_exec_control(vmx)); | 
|  | } | 
|  |  | 
|  | if (ple_gap) { | 
|  | vmcs_write32(PLE_GAP, ple_gap); | 
|  | vmcs_write32(PLE_WINDOW, ple_window); | 
|  | } | 
|  |  | 
|  | vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); | 
|  | vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); | 
|  | vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */ | 
|  |  | 
|  | vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */ | 
|  | vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */ | 
|  | vmx_set_constant_host_state(); | 
|  | #ifdef CONFIG_X86_64 | 
|  | rdmsrl(MSR_FS_BASE, a); | 
|  | vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */ | 
|  | rdmsrl(MSR_GS_BASE, a); | 
|  | vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */ | 
|  | #else | 
|  | vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ | 
|  | vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ | 
|  | #endif | 
|  |  | 
|  | vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); | 
|  | vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); | 
|  | vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host)); | 
|  | vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); | 
|  | vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest)); | 
|  |  | 
|  | if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { | 
|  | u32 msr_low, msr_high; | 
|  | u64 host_pat; | 
|  | rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high); | 
|  | host_pat = msr_low | ((u64) msr_high << 32); | 
|  | /* Write the default value follow host pat */ | 
|  | vmcs_write64(GUEST_IA32_PAT, host_pat); | 
|  | /* Keep arch.pat sync with GUEST_IA32_PAT */ | 
|  | vmx->vcpu.arch.pat = host_pat; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < NR_VMX_MSR; ++i) { | 
|  | u32 index = vmx_msr_index[i]; | 
|  | u32 data_low, data_high; | 
|  | int j = vmx->nmsrs; | 
|  |  | 
|  | if (rdmsr_safe(index, &data_low, &data_high) < 0) | 
|  | continue; | 
|  | if (wrmsr_safe(index, data_low, data_high) < 0) | 
|  | continue; | 
|  | vmx->guest_msrs[j].index = i; | 
|  | vmx->guest_msrs[j].data = 0; | 
|  | vmx->guest_msrs[j].mask = -1ull; | 
|  | ++vmx->nmsrs; | 
|  | } | 
|  |  | 
|  | vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl); | 
|  |  | 
|  | /* 22.2.1, 20.8.1 */ | 
|  | vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl); | 
|  |  | 
|  | vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL); | 
|  | set_cr4_guest_host_mask(vmx); | 
|  |  | 
|  | kvm_write_tsc(&vmx->vcpu, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int vmx_vcpu_reset(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  | u64 msr; | 
|  | int ret; | 
|  |  | 
|  | vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)); | 
|  |  | 
|  | vmx->rmode.vm86_active = 0; | 
|  |  | 
|  | vmx->soft_vnmi_blocked = 0; | 
|  |  | 
|  | vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val(); | 
|  | kvm_set_cr8(&vmx->vcpu, 0); | 
|  | msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE; | 
|  | if (kvm_vcpu_is_bsp(&vmx->vcpu)) | 
|  | msr |= MSR_IA32_APICBASE_BSP; | 
|  | kvm_set_apic_base(&vmx->vcpu, msr); | 
|  |  | 
|  | ret = fx_init(&vmx->vcpu); | 
|  | if (ret != 0) | 
|  | goto out; | 
|  |  | 
|  | vmx_segment_cache_clear(vmx); | 
|  |  | 
|  | seg_setup(VCPU_SREG_CS); | 
|  | /* | 
|  | * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode | 
|  | * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh. | 
|  | */ | 
|  | if (kvm_vcpu_is_bsp(&vmx->vcpu)) { | 
|  | vmcs_write16(GUEST_CS_SELECTOR, 0xf000); | 
|  | vmcs_writel(GUEST_CS_BASE, 0x000f0000); | 
|  | } else { | 
|  | vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8); | 
|  | vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12); | 
|  | } | 
|  |  | 
|  | seg_setup(VCPU_SREG_DS); | 
|  | seg_setup(VCPU_SREG_ES); | 
|  | seg_setup(VCPU_SREG_FS); | 
|  | seg_setup(VCPU_SREG_GS); | 
|  | seg_setup(VCPU_SREG_SS); | 
|  |  | 
|  | vmcs_write16(GUEST_TR_SELECTOR, 0); | 
|  | vmcs_writel(GUEST_TR_BASE, 0); | 
|  | vmcs_write32(GUEST_TR_LIMIT, 0xffff); | 
|  | vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); | 
|  |  | 
|  | vmcs_write16(GUEST_LDTR_SELECTOR, 0); | 
|  | vmcs_writel(GUEST_LDTR_BASE, 0); | 
|  | vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); | 
|  | vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); | 
|  |  | 
|  | vmcs_write32(GUEST_SYSENTER_CS, 0); | 
|  | vmcs_writel(GUEST_SYSENTER_ESP, 0); | 
|  | vmcs_writel(GUEST_SYSENTER_EIP, 0); | 
|  |  | 
|  | vmcs_writel(GUEST_RFLAGS, 0x02); | 
|  | if (kvm_vcpu_is_bsp(&vmx->vcpu)) | 
|  | kvm_rip_write(vcpu, 0xfff0); | 
|  | else | 
|  | kvm_rip_write(vcpu, 0); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RSP, 0); | 
|  |  | 
|  | vmcs_writel(GUEST_DR7, 0x400); | 
|  |  | 
|  | vmcs_writel(GUEST_GDTR_BASE, 0); | 
|  | vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); | 
|  |  | 
|  | vmcs_writel(GUEST_IDTR_BASE, 0); | 
|  | vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); | 
|  |  | 
|  | vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); | 
|  | vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); | 
|  | vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0); | 
|  |  | 
|  | /* Special registers */ | 
|  | vmcs_write64(GUEST_IA32_DEBUGCTL, 0); | 
|  |  | 
|  | setup_msrs(vmx); | 
|  |  | 
|  | vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */ | 
|  |  | 
|  | if (cpu_has_vmx_tpr_shadow()) { | 
|  | vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); | 
|  | if (vm_need_tpr_shadow(vmx->vcpu.kvm)) | 
|  | vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, | 
|  | __pa(vmx->vcpu.arch.apic->regs)); | 
|  | vmcs_write32(TPR_THRESHOLD, 0); | 
|  | } | 
|  |  | 
|  | if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm)) | 
|  | vmcs_write64(APIC_ACCESS_ADDR, | 
|  | page_to_phys(vmx->vcpu.kvm->arch.apic_access_page)); | 
|  |  | 
|  | if (vmx->vpid != 0) | 
|  | vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); | 
|  |  | 
|  | vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET; | 
|  | vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */ | 
|  | vmx_set_cr4(&vmx->vcpu, 0); | 
|  | vmx_set_efer(&vmx->vcpu, 0); | 
|  | vmx_fpu_activate(&vmx->vcpu); | 
|  | update_exception_bitmap(&vmx->vcpu); | 
|  |  | 
|  | vpid_sync_context(vmx); | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | /* HACK: Don't enable emulation on guest boot/reset */ | 
|  | vmx->emulation_required = 0; | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In nested virtualization, check if L1 asked to exit on external interrupts. | 
|  | * For most existing hypervisors, this will always return true. | 
|  | */ | 
|  | static bool nested_exit_on_intr(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return get_vmcs12(vcpu)->pin_based_vm_exec_control & | 
|  | PIN_BASED_EXT_INTR_MASK; | 
|  | } | 
|  |  | 
|  | static void enable_irq_window(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u32 cpu_based_vm_exec_control; | 
|  | if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) | 
|  | /* We can get here when nested_run_pending caused | 
|  | * vmx_interrupt_allowed() to return false. In this case, do | 
|  | * nothing - the interrupt will be injected later. | 
|  | */ | 
|  | return; | 
|  |  | 
|  | cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); | 
|  | cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING; | 
|  | vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); | 
|  | } | 
|  |  | 
|  | static void enable_nmi_window(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u32 cpu_based_vm_exec_control; | 
|  |  | 
|  | if (!cpu_has_virtual_nmis()) { | 
|  | enable_irq_window(vcpu); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { | 
|  | enable_irq_window(vcpu); | 
|  | return; | 
|  | } | 
|  | cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); | 
|  | cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING; | 
|  | vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); | 
|  | } | 
|  |  | 
|  | static void vmx_inject_irq(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  | uint32_t intr; | 
|  | int irq = vcpu->arch.interrupt.nr; | 
|  |  | 
|  | trace_kvm_inj_virq(irq); | 
|  |  | 
|  | ++vcpu->stat.irq_injections; | 
|  | if (vmx->rmode.vm86_active) { | 
|  | int inc_eip = 0; | 
|  | if (vcpu->arch.interrupt.soft) | 
|  | inc_eip = vcpu->arch.event_exit_inst_len; | 
|  | if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE) | 
|  | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); | 
|  | return; | 
|  | } | 
|  | intr = irq | INTR_INFO_VALID_MASK; | 
|  | if (vcpu->arch.interrupt.soft) { | 
|  | intr |= INTR_TYPE_SOFT_INTR; | 
|  | vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, | 
|  | vmx->vcpu.arch.event_exit_inst_len); | 
|  | } else | 
|  | intr |= INTR_TYPE_EXT_INTR; | 
|  | vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); | 
|  | vmx_clear_hlt(vcpu); | 
|  | } | 
|  |  | 
|  | static void vmx_inject_nmi(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  |  | 
|  | if (is_guest_mode(vcpu)) | 
|  | return; | 
|  |  | 
|  | if (!cpu_has_virtual_nmis()) { | 
|  | /* | 
|  | * Tracking the NMI-blocked state in software is built upon | 
|  | * finding the next open IRQ window. This, in turn, depends on | 
|  | * well-behaving guests: They have to keep IRQs disabled at | 
|  | * least as long as the NMI handler runs. Otherwise we may | 
|  | * cause NMI nesting, maybe breaking the guest. But as this is | 
|  | * highly unlikely, we can live with the residual risk. | 
|  | */ | 
|  | vmx->soft_vnmi_blocked = 1; | 
|  | vmx->vnmi_blocked_time = 0; | 
|  | } | 
|  |  | 
|  | ++vcpu->stat.nmi_injections; | 
|  | vmx->nmi_known_unmasked = false; | 
|  | if (vmx->rmode.vm86_active) { | 
|  | if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE) | 
|  | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); | 
|  | return; | 
|  | } | 
|  | vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, | 
|  | INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); | 
|  | vmx_clear_hlt(vcpu); | 
|  | } | 
|  |  | 
|  | static int vmx_nmi_allowed(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked) | 
|  | return 0; | 
|  |  | 
|  | return	!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & | 
|  | (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | 
|  | | GUEST_INTR_STATE_NMI)); | 
|  | } | 
|  |  | 
|  | static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (!cpu_has_virtual_nmis()) | 
|  | return to_vmx(vcpu)->soft_vnmi_blocked; | 
|  | if (to_vmx(vcpu)->nmi_known_unmasked) | 
|  | return false; | 
|  | return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)	& GUEST_INTR_STATE_NMI; | 
|  | } | 
|  |  | 
|  | static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) | 
|  | { | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  |  | 
|  | if (!cpu_has_virtual_nmis()) { | 
|  | if (vmx->soft_vnmi_blocked != masked) { | 
|  | vmx->soft_vnmi_blocked = masked; | 
|  | vmx->vnmi_blocked_time = 0; | 
|  | } | 
|  | } else { | 
|  | vmx->nmi_known_unmasked = !masked; | 
|  | if (masked) | 
|  | vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, | 
|  | GUEST_INTR_STATE_NMI); | 
|  | else | 
|  | vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, | 
|  | GUEST_INTR_STATE_NMI); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) { | 
|  | struct vmcs12 *vmcs12; | 
|  | if (to_vmx(vcpu)->nested.nested_run_pending) | 
|  | return 0; | 
|  | nested_vmx_vmexit(vcpu); | 
|  | vmcs12 = get_vmcs12(vcpu); | 
|  | vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT; | 
|  | vmcs12->vm_exit_intr_info = 0; | 
|  | /* fall through to normal code, but now in L1, not L2 */ | 
|  | } | 
|  |  | 
|  | return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) && | 
|  | !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & | 
|  | (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); | 
|  | } | 
|  |  | 
|  | static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) | 
|  | { | 
|  | int ret; | 
|  | struct kvm_userspace_memory_region tss_mem = { | 
|  | .slot = TSS_PRIVATE_MEMSLOT, | 
|  | .guest_phys_addr = addr, | 
|  | .memory_size = PAGE_SIZE * 3, | 
|  | .flags = 0, | 
|  | }; | 
|  |  | 
|  | ret = kvm_set_memory_region(kvm, &tss_mem, 0); | 
|  | if (ret) | 
|  | return ret; | 
|  | kvm->arch.tss_addr = addr; | 
|  | if (!init_rmode_tss(kvm)) | 
|  | return  -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int handle_rmode_exception(struct kvm_vcpu *vcpu, | 
|  | int vec, u32 err_code) | 
|  | { | 
|  | /* | 
|  | * Instruction with address size override prefix opcode 0x67 | 
|  | * Cause the #SS fault with 0 error code in VM86 mode. | 
|  | */ | 
|  | if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) | 
|  | if (emulate_instruction(vcpu, 0) == EMULATE_DONE) | 
|  | return 1; | 
|  | /* | 
|  | * Forward all other exceptions that are valid in real mode. | 
|  | * FIXME: Breaks guest debugging in real mode, needs to be fixed with | 
|  | *        the required debugging infrastructure rework. | 
|  | */ | 
|  | switch (vec) { | 
|  | case DB_VECTOR: | 
|  | if (vcpu->guest_debug & | 
|  | (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) | 
|  | return 0; | 
|  | kvm_queue_exception(vcpu, vec); | 
|  | return 1; | 
|  | case BP_VECTOR: | 
|  | /* | 
|  | * Update instruction length as we may reinject the exception | 
|  | * from user space while in guest debugging mode. | 
|  | */ | 
|  | to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = | 
|  | vmcs_read32(VM_EXIT_INSTRUCTION_LEN); | 
|  | if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) | 
|  | return 0; | 
|  | /* fall through */ | 
|  | case DE_VECTOR: | 
|  | case OF_VECTOR: | 
|  | case BR_VECTOR: | 
|  | case UD_VECTOR: | 
|  | case DF_VECTOR: | 
|  | case SS_VECTOR: | 
|  | case GP_VECTOR: | 
|  | case MF_VECTOR: | 
|  | kvm_queue_exception(vcpu, vec); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Trigger machine check on the host. We assume all the MSRs are already set up | 
|  | * by the CPU and that we still run on the same CPU as the MCE occurred on. | 
|  | * We pass a fake environment to the machine check handler because we want | 
|  | * the guest to be always treated like user space, no matter what context | 
|  | * it used internally. | 
|  | */ | 
|  | static void kvm_machine_check(void) | 
|  | { | 
|  | #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64) | 
|  | struct pt_regs regs = { | 
|  | .cs = 3, /* Fake ring 3 no matter what the guest ran on */ | 
|  | .flags = X86_EFLAGS_IF, | 
|  | }; | 
|  |  | 
|  | do_machine_check(®s, 0); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int handle_machine_check(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | /* already handled by vcpu_run */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int handle_exception(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  | struct kvm_run *kvm_run = vcpu->run; | 
|  | u32 intr_info, ex_no, error_code; | 
|  | unsigned long cr2, rip, dr6; | 
|  | u32 vect_info; | 
|  | enum emulation_result er; | 
|  |  | 
|  | vect_info = vmx->idt_vectoring_info; | 
|  | intr_info = vmx->exit_intr_info; | 
|  |  | 
|  | if (is_machine_check(intr_info)) | 
|  | return handle_machine_check(vcpu); | 
|  |  | 
|  | if ((vect_info & VECTORING_INFO_VALID_MASK) && | 
|  | !is_page_fault(intr_info)) { | 
|  | vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
|  | vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; | 
|  | vcpu->run->internal.ndata = 2; | 
|  | vcpu->run->internal.data[0] = vect_info; | 
|  | vcpu->run->internal.data[1] = intr_info; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR) | 
|  | return 1;  /* already handled by vmx_vcpu_run() */ | 
|  |  | 
|  | if (is_no_device(intr_info)) { | 
|  | vmx_fpu_activate(vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (is_invalid_opcode(intr_info)) { | 
|  | er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD); | 
|  | if (er != EMULATE_DONE) | 
|  | kvm_queue_exception(vcpu, UD_VECTOR); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | error_code = 0; | 
|  | if (intr_info & INTR_INFO_DELIVER_CODE_MASK) | 
|  | error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); | 
|  | if (is_page_fault(intr_info)) { | 
|  | /* EPT won't cause page fault directly */ | 
|  | BUG_ON(enable_ept); | 
|  | cr2 = vmcs_readl(EXIT_QUALIFICATION); | 
|  | trace_kvm_page_fault(cr2, error_code); | 
|  |  | 
|  | if (kvm_event_needs_reinjection(vcpu)) | 
|  | kvm_mmu_unprotect_page_virt(vcpu, cr2); | 
|  | return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0); | 
|  | } | 
|  |  | 
|  | if (vmx->rmode.vm86_active && | 
|  | handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK, | 
|  | error_code)) { | 
|  | if (vcpu->arch.halt_request) { | 
|  | vcpu->arch.halt_request = 0; | 
|  | return kvm_emulate_halt(vcpu); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | ex_no = intr_info & INTR_INFO_VECTOR_MASK; | 
|  | switch (ex_no) { | 
|  | case DB_VECTOR: | 
|  | dr6 = vmcs_readl(EXIT_QUALIFICATION); | 
|  | if (!(vcpu->guest_debug & | 
|  | (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { | 
|  | vcpu->arch.dr6 = dr6 | DR6_FIXED_1; | 
|  | kvm_queue_exception(vcpu, DB_VECTOR); | 
|  | return 1; | 
|  | } | 
|  | kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1; | 
|  | kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); | 
|  | /* fall through */ | 
|  | case BP_VECTOR: | 
|  | /* | 
|  | * Update instruction length as we may reinject #BP from | 
|  | * user space while in guest debugging mode. Reading it for | 
|  | * #DB as well causes no harm, it is not used in that case. | 
|  | */ | 
|  | vmx->vcpu.arch.event_exit_inst_len = | 
|  | vmcs_read32(VM_EXIT_INSTRUCTION_LEN); | 
|  | kvm_run->exit_reason = KVM_EXIT_DEBUG; | 
|  | rip = kvm_rip_read(vcpu); | 
|  | kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip; | 
|  | kvm_run->debug.arch.exception = ex_no; | 
|  | break; | 
|  | default: | 
|  | kvm_run->exit_reason = KVM_EXIT_EXCEPTION; | 
|  | kvm_run->ex.exception = ex_no; | 
|  | kvm_run->ex.error_code = error_code; | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int handle_external_interrupt(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | ++vcpu->stat.irq_exits; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int handle_triple_fault(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int handle_io(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | unsigned long exit_qualification; | 
|  | int size, in, string; | 
|  | unsigned port; | 
|  |  | 
|  | exit_qualification = vmcs_readl(EXIT_QUALIFICATION); | 
|  | string = (exit_qualification & 16) != 0; | 
|  | in = (exit_qualification & 8) != 0; | 
|  |  | 
|  | ++vcpu->stat.io_exits; | 
|  |  | 
|  | if (string || in) | 
|  | return emulate_instruction(vcpu, 0) == EMULATE_DONE; | 
|  |  | 
|  | port = exit_qualification >> 16; | 
|  | size = (exit_qualification & 7) + 1; | 
|  | skip_emulated_instruction(vcpu); | 
|  |  | 
|  | return kvm_fast_pio_out(vcpu, size, port); | 
|  | } | 
|  |  | 
|  | static void | 
|  | vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) | 
|  | { | 
|  | /* | 
|  | * Patch in the VMCALL instruction: | 
|  | */ | 
|  | hypercall[0] = 0x0f; | 
|  | hypercall[1] = 0x01; | 
|  | hypercall[2] = 0xc1; | 
|  | } | 
|  |  | 
|  | /* called to set cr0 as approriate for a mov-to-cr0 exit. */ | 
|  | static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) | 
|  | { | 
|  | if (to_vmx(vcpu)->nested.vmxon && | 
|  | ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON)) | 
|  | return 1; | 
|  |  | 
|  | if (is_guest_mode(vcpu)) { | 
|  | /* | 
|  | * We get here when L2 changed cr0 in a way that did not change | 
|  | * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), | 
|  | * but did change L0 shadowed bits. This can currently happen | 
|  | * with the TS bit: L0 may want to leave TS on (for lazy fpu | 
|  | * loading) while pretending to allow the guest to change it. | 
|  | */ | 
|  | if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) | | 
|  | (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits))) | 
|  | return 1; | 
|  | vmcs_writel(CR0_READ_SHADOW, val); | 
|  | return 0; | 
|  | } else | 
|  | return kvm_set_cr0(vcpu, val); | 
|  | } | 
|  |  | 
|  | static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) | 
|  | { | 
|  | if (is_guest_mode(vcpu)) { | 
|  | if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) | | 
|  | (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits))) | 
|  | return 1; | 
|  | vmcs_writel(CR4_READ_SHADOW, val); | 
|  | return 0; | 
|  | } else | 
|  | return kvm_set_cr4(vcpu, val); | 
|  | } | 
|  |  | 
|  | /* called to set cr0 as approriate for clts instruction exit. */ | 
|  | static void handle_clts(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (is_guest_mode(vcpu)) { | 
|  | /* | 
|  | * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS | 
|  | * but we did (!fpu_active). We need to keep GUEST_CR0.TS on, | 
|  | * just pretend it's off (also in arch.cr0 for fpu_activate). | 
|  | */ | 
|  | vmcs_writel(CR0_READ_SHADOW, | 
|  | vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS); | 
|  | vcpu->arch.cr0 &= ~X86_CR0_TS; | 
|  | } else | 
|  | vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS)); | 
|  | } | 
|  |  | 
|  | static int handle_cr(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | unsigned long exit_qualification, val; | 
|  | int cr; | 
|  | int reg; | 
|  | int err; | 
|  |  | 
|  | exit_qualification = vmcs_readl(EXIT_QUALIFICATION); | 
|  | cr = exit_qualification & 15; | 
|  | reg = (exit_qualification >> 8) & 15; | 
|  | switch ((exit_qualification >> 4) & 3) { | 
|  | case 0: /* mov to cr */ | 
|  | val = kvm_register_read(vcpu, reg); | 
|  | trace_kvm_cr_write(cr, val); | 
|  | switch (cr) { | 
|  | case 0: | 
|  | err = handle_set_cr0(vcpu, val); | 
|  | kvm_complete_insn_gp(vcpu, err); | 
|  | return 1; | 
|  | case 3: | 
|  | err = kvm_set_cr3(vcpu, val); | 
|  | kvm_complete_insn_gp(vcpu, err); | 
|  | return 1; | 
|  | case 4: | 
|  | err = handle_set_cr4(vcpu, val); | 
|  | kvm_complete_insn_gp(vcpu, err); | 
|  | return 1; | 
|  | case 8: { | 
|  | u8 cr8_prev = kvm_get_cr8(vcpu); | 
|  | u8 cr8 = kvm_register_read(vcpu, reg); | 
|  | err = kvm_set_cr8(vcpu, cr8); | 
|  | kvm_complete_insn_gp(vcpu, err); | 
|  | if (irqchip_in_kernel(vcpu->kvm)) | 
|  | return 1; | 
|  | if (cr8_prev <= cr8) | 
|  | return 1; | 
|  | vcpu->run->exit_reason = KVM_EXIT_SET_TPR; | 
|  | return 0; | 
|  | } | 
|  | }; | 
|  | break; | 
|  | case 2: /* clts */ | 
|  | handle_clts(vcpu); | 
|  | trace_kvm_cr_write(0, kvm_read_cr0(vcpu)); | 
|  | skip_emulated_instruction(vcpu); | 
|  | vmx_fpu_activate(vcpu); | 
|  | return 1; | 
|  | case 1: /*mov from cr*/ | 
|  | switch (cr) { | 
|  | case 3: | 
|  | val = kvm_read_cr3(vcpu); | 
|  | kvm_register_write(vcpu, reg, val); | 
|  | trace_kvm_cr_read(cr, val); | 
|  | skip_emulated_instruction(vcpu); | 
|  | return 1; | 
|  | case 8: | 
|  | val = kvm_get_cr8(vcpu); | 
|  | kvm_register_write(vcpu, reg, val); | 
|  | trace_kvm_cr_read(cr, val); | 
|  | skip_emulated_instruction(vcpu); | 
|  | return 1; | 
|  | } | 
|  | break; | 
|  | case 3: /* lmsw */ | 
|  | val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; | 
|  | trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val); | 
|  | kvm_lmsw(vcpu, val); | 
|  |  | 
|  | skip_emulated_instruction(vcpu); | 
|  | return 1; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | vcpu->run->exit_reason = 0; | 
|  | pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n", | 
|  | (int)(exit_qualification >> 4) & 3, cr); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int handle_dr(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | unsigned long exit_qualification; | 
|  | int dr, reg; | 
|  |  | 
|  | /* Do not handle if the CPL > 0, will trigger GP on re-entry */ | 
|  | if (!kvm_require_cpl(vcpu, 0)) | 
|  | return 1; | 
|  | dr = vmcs_readl(GUEST_DR7); | 
|  | if (dr & DR7_GD) { | 
|  | /* | 
|  | * As the vm-exit takes precedence over the debug trap, we | 
|  | * need to emulate the latter, either for the host or the | 
|  | * guest debugging itself. | 
|  | */ | 
|  | if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { | 
|  | vcpu->run->debug.arch.dr6 = vcpu->arch.dr6; | 
|  | vcpu->run->debug.arch.dr7 = dr; | 
|  | vcpu->run->debug.arch.pc = | 
|  | vmcs_readl(GUEST_CS_BASE) + | 
|  | vmcs_readl(GUEST_RIP); | 
|  | vcpu->run->debug.arch.exception = DB_VECTOR; | 
|  | vcpu->run->exit_reason = KVM_EXIT_DEBUG; | 
|  | return 0; | 
|  | } else { | 
|  | vcpu->arch.dr7 &= ~DR7_GD; | 
|  | vcpu->arch.dr6 |= DR6_BD; | 
|  | vmcs_writel(GUEST_DR7, vcpu->arch.dr7); | 
|  | kvm_queue_exception(vcpu, DB_VECTOR); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | exit_qualification = vmcs_readl(EXIT_QUALIFICATION); | 
|  | dr = exit_qualification & DEBUG_REG_ACCESS_NUM; | 
|  | reg = DEBUG_REG_ACCESS_REG(exit_qualification); | 
|  | if (exit_qualification & TYPE_MOV_FROM_DR) { | 
|  | unsigned long val; | 
|  | if (!kvm_get_dr(vcpu, dr, &val)) | 
|  | kvm_register_write(vcpu, reg, val); | 
|  | } else | 
|  | kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]); | 
|  | skip_emulated_instruction(vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) | 
|  | { | 
|  | vmcs_writel(GUEST_DR7, val); | 
|  | } | 
|  |  | 
|  | static int handle_cpuid(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | kvm_emulate_cpuid(vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int handle_rdmsr(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX]; | 
|  | u64 data; | 
|  |  | 
|  | if (vmx_get_msr(vcpu, ecx, &data)) { | 
|  | trace_kvm_msr_read_ex(ecx); | 
|  | kvm_inject_gp(vcpu, 0); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | trace_kvm_msr_read(ecx, data); | 
|  |  | 
|  | /* FIXME: handling of bits 32:63 of rax, rdx */ | 
|  | vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u; | 
|  | vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u; | 
|  | skip_emulated_instruction(vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int handle_wrmsr(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX]; | 
|  | u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u) | 
|  | | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32); | 
|  |  | 
|  | if (vmx_set_msr(vcpu, ecx, data) != 0) { | 
|  | trace_kvm_msr_write_ex(ecx, data); | 
|  | kvm_inject_gp(vcpu, 0); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | trace_kvm_msr_write(ecx, data); | 
|  | skip_emulated_instruction(vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | kvm_make_request(KVM_REQ_EVENT, vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int handle_interrupt_window(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u32 cpu_based_vm_exec_control; | 
|  |  | 
|  | /* clear pending irq */ | 
|  | cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); | 
|  | cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING; | 
|  | vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); | 
|  |  | 
|  | kvm_make_request(KVM_REQ_EVENT, vcpu); | 
|  |  | 
|  | ++vcpu->stat.irq_window_exits; | 
|  |  | 
|  | /* | 
|  | * If the user space waits to inject interrupts, exit as soon as | 
|  | * possible | 
|  | */ | 
|  | if (!irqchip_in_kernel(vcpu->kvm) && | 
|  | vcpu->run->request_interrupt_window && | 
|  | !kvm_cpu_has_interrupt(vcpu)) { | 
|  | vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int handle_halt(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | skip_emulated_instruction(vcpu); | 
|  | return kvm_emulate_halt(vcpu); | 
|  | } | 
|  |  | 
|  | static int handle_vmcall(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | skip_emulated_instruction(vcpu); | 
|  | kvm_emulate_hypercall(vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int handle_invd(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return emulate_instruction(vcpu, 0) == EMULATE_DONE; | 
|  | } | 
|  |  | 
|  | static int handle_invlpg(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); | 
|  |  | 
|  | kvm_mmu_invlpg(vcpu, exit_qualification); | 
|  | skip_emulated_instruction(vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int handle_wbinvd(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | skip_emulated_instruction(vcpu); | 
|  | kvm_emulate_wbinvd(vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int handle_xsetbv(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u64 new_bv = kvm_read_edx_eax(vcpu); | 
|  | u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX); | 
|  |  | 
|  | if (kvm_set_xcr(vcpu, index, new_bv) == 0) | 
|  | skip_emulated_instruction(vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int handle_apic_access(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (likely(fasteoi)) { | 
|  | unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); | 
|  | int access_type, offset; | 
|  |  | 
|  | access_type = exit_qualification & APIC_ACCESS_TYPE; | 
|  | offset = exit_qualification & APIC_ACCESS_OFFSET; | 
|  | /* | 
|  | * Sane guest uses MOV to write EOI, with written value | 
|  | * not cared. So make a short-circuit here by avoiding | 
|  | * heavy instruction emulation. | 
|  | */ | 
|  | if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && | 
|  | (offset == APIC_EOI)) { | 
|  | kvm_lapic_set_eoi(vcpu); | 
|  | skip_emulated_instruction(vcpu); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | return emulate_instruction(vcpu, 0) == EMULATE_DONE; | 
|  | } | 
|  |  | 
|  | static int handle_task_switch(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  | unsigned long exit_qualification; | 
|  | bool has_error_code = false; | 
|  | u32 error_code = 0; | 
|  | u16 tss_selector; | 
|  | int reason, type, idt_v; | 
|  |  | 
|  | idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); | 
|  | type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); | 
|  |  | 
|  | exit_qualification = vmcs_readl(EXIT_QUALIFICATION); | 
|  |  | 
|  | reason = (u32)exit_qualification >> 30; | 
|  | if (reason == TASK_SWITCH_GATE && idt_v) { | 
|  | switch (type) { | 
|  | case INTR_TYPE_NMI_INTR: | 
|  | vcpu->arch.nmi_injected = false; | 
|  | vmx_set_nmi_mask(vcpu, true); | 
|  | break; | 
|  | case INTR_TYPE_EXT_INTR: | 
|  | case INTR_TYPE_SOFT_INTR: | 
|  | kvm_clear_interrupt_queue(vcpu); | 
|  | break; | 
|  | case INTR_TYPE_HARD_EXCEPTION: | 
|  | if (vmx->idt_vectoring_info & | 
|  | VECTORING_INFO_DELIVER_CODE_MASK) { | 
|  | has_error_code = true; | 
|  | error_code = | 
|  | vmcs_read32(IDT_VECTORING_ERROR_CODE); | 
|  | } | 
|  | /* fall through */ | 
|  | case INTR_TYPE_SOFT_EXCEPTION: | 
|  | kvm_clear_exception_queue(vcpu); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | tss_selector = exit_qualification; | 
|  |  | 
|  | if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && | 
|  | type != INTR_TYPE_EXT_INTR && | 
|  | type != INTR_TYPE_NMI_INTR)) | 
|  | skip_emulated_instruction(vcpu); | 
|  |  | 
|  | if (kvm_task_switch(vcpu, tss_selector, reason, | 
|  | has_error_code, error_code) == EMULATE_FAIL) { | 
|  | vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
|  | vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; | 
|  | vcpu->run->internal.ndata = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* clear all local breakpoint enable flags */ | 
|  | vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55); | 
|  |  | 
|  | /* | 
|  | * TODO: What about debug traps on tss switch? | 
|  | *       Are we supposed to inject them and update dr6? | 
|  | */ | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int handle_ept_violation(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | unsigned long exit_qualification; | 
|  | gpa_t gpa; | 
|  | int gla_validity; | 
|  |  | 
|  | exit_qualification = vmcs_readl(EXIT_QUALIFICATION); | 
|  |  | 
|  | if (exit_qualification & (1 << 6)) { | 
|  | printk(KERN_ERR "EPT: GPA exceeds GAW!\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | gla_validity = (exit_qualification >> 7) & 0x3; | 
|  | if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) { | 
|  | printk(KERN_ERR "EPT: Handling EPT violation failed!\n"); | 
|  | printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n", | 
|  | (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS), | 
|  | vmcs_readl(GUEST_LINEAR_ADDRESS)); | 
|  | printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n", | 
|  | (long unsigned int)exit_qualification); | 
|  | vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; | 
|  | vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); | 
|  | trace_kvm_page_fault(gpa, exit_qualification); | 
|  | return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0); | 
|  | } | 
|  |  | 
|  | static u64 ept_rsvd_mask(u64 spte, int level) | 
|  | { | 
|  | int i; | 
|  | u64 mask = 0; | 
|  |  | 
|  | for (i = 51; i > boot_cpu_data.x86_phys_bits; i--) | 
|  | mask |= (1ULL << i); | 
|  |  | 
|  | if (level > 2) | 
|  | /* bits 7:3 reserved */ | 
|  | mask |= 0xf8; | 
|  | else if (level == 2) { | 
|  | if (spte & (1ULL << 7)) | 
|  | /* 2MB ref, bits 20:12 reserved */ | 
|  | mask |= 0x1ff000; | 
|  | else | 
|  | /* bits 6:3 reserved */ | 
|  | mask |= 0x78; | 
|  | } | 
|  |  | 
|  | return mask; | 
|  | } | 
|  |  | 
|  | static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte, | 
|  | int level) | 
|  | { | 
|  | printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level); | 
|  |  | 
|  | /* 010b (write-only) */ | 
|  | WARN_ON((spte & 0x7) == 0x2); | 
|  |  | 
|  | /* 110b (write/execute) */ | 
|  | WARN_ON((spte & 0x7) == 0x6); | 
|  |  | 
|  | /* 100b (execute-only) and value not supported by logical processor */ | 
|  | if (!cpu_has_vmx_ept_execute_only()) | 
|  | WARN_ON((spte & 0x7) == 0x4); | 
|  |  | 
|  | /* not 000b */ | 
|  | if ((spte & 0x7)) { | 
|  | u64 rsvd_bits = spte & ept_rsvd_mask(spte, level); | 
|  |  | 
|  | if (rsvd_bits != 0) { | 
|  | printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n", | 
|  | __func__, rsvd_bits); | 
|  | WARN_ON(1); | 
|  | } | 
|  |  | 
|  | if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) { | 
|  | u64 ept_mem_type = (spte & 0x38) >> 3; | 
|  |  | 
|  | if (ept_mem_type == 2 || ept_mem_type == 3 || | 
|  | ept_mem_type == 7) { | 
|  | printk(KERN_ERR "%s: ept_mem_type=0x%llx\n", | 
|  | __func__, ept_mem_type); | 
|  | WARN_ON(1); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int handle_ept_misconfig(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u64 sptes[4]; | 
|  | int nr_sptes, i, ret; | 
|  | gpa_t gpa; | 
|  |  | 
|  | gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); | 
|  |  | 
|  | ret = handle_mmio_page_fault_common(vcpu, gpa, true); | 
|  | if (likely(ret == 1)) | 
|  | return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) == | 
|  | EMULATE_DONE; | 
|  | if (unlikely(!ret)) | 
|  | return 1; | 
|  |  | 
|  | /* It is the real ept misconfig */ | 
|  | printk(KERN_ERR "EPT: Misconfiguration.\n"); | 
|  | printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa); | 
|  |  | 
|  | nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes); | 
|  |  | 
|  | for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i) | 
|  | ept_misconfig_inspect_spte(vcpu, sptes[i-1], i); | 
|  |  | 
|  | vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; | 
|  | vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int handle_nmi_window(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u32 cpu_based_vm_exec_control; | 
|  |  | 
|  | /* clear pending NMI */ | 
|  | cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); | 
|  | cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING; | 
|  | vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); | 
|  | ++vcpu->stat.nmi_window_exits; | 
|  | kvm_make_request(KVM_REQ_EVENT, vcpu); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  | enum emulation_result err = EMULATE_DONE; | 
|  | int ret = 1; | 
|  | u32 cpu_exec_ctrl; | 
|  | bool intr_window_requested; | 
|  |  | 
|  | cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); | 
|  | intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING; | 
|  |  | 
|  | while (!guest_state_valid(vcpu)) { | 
|  | if (intr_window_requested | 
|  | && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF)) | 
|  | return handle_interrupt_window(&vmx->vcpu); | 
|  |  | 
|  | err = emulate_instruction(vcpu, 0); | 
|  |  | 
|  | if (err == EMULATE_DO_MMIO) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (err != EMULATE_DONE) | 
|  | return 0; | 
|  |  | 
|  | if (signal_pending(current)) | 
|  | goto out; | 
|  | if (need_resched()) | 
|  | schedule(); | 
|  | } | 
|  |  | 
|  | vmx->emulation_required = 0; | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE | 
|  | * exiting, so only get here on cpu with PAUSE-Loop-Exiting. | 
|  | */ | 
|  | static int handle_pause(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | skip_emulated_instruction(vcpu); | 
|  | kvm_vcpu_on_spin(vcpu); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int handle_invalid_op(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | kvm_queue_exception(vcpu, UD_VECTOR); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12. | 
|  | * We could reuse a single VMCS for all the L2 guests, but we also want the | 
|  | * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this | 
|  | * allows keeping them loaded on the processor, and in the future will allow | 
|  | * optimizations where prepare_vmcs02 doesn't need to set all the fields on | 
|  | * every entry if they never change. | 
|  | * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE | 
|  | * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first. | 
|  | * | 
|  | * The following functions allocate and free a vmcs02 in this pool. | 
|  | */ | 
|  |  | 
|  | /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */ | 
|  | static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx) | 
|  | { | 
|  | struct vmcs02_list *item; | 
|  | list_for_each_entry(item, &vmx->nested.vmcs02_pool, list) | 
|  | if (item->vmptr == vmx->nested.current_vmptr) { | 
|  | list_move(&item->list, &vmx->nested.vmcs02_pool); | 
|  | return &item->vmcs02; | 
|  | } | 
|  |  | 
|  | if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) { | 
|  | /* Recycle the least recently used VMCS. */ | 
|  | item = list_entry(vmx->nested.vmcs02_pool.prev, | 
|  | struct vmcs02_list, list); | 
|  | item->vmptr = vmx->nested.current_vmptr; | 
|  | list_move(&item->list, &vmx->nested.vmcs02_pool); | 
|  | return &item->vmcs02; | 
|  | } | 
|  |  | 
|  | /* Create a new VMCS */ | 
|  | item = (struct vmcs02_list *) | 
|  | kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL); | 
|  | if (!item) | 
|  | return NULL; | 
|  | item->vmcs02.vmcs = alloc_vmcs(); | 
|  | if (!item->vmcs02.vmcs) { | 
|  | kfree(item); | 
|  | return NULL; | 
|  | } | 
|  | loaded_vmcs_init(&item->vmcs02); | 
|  | item->vmptr = vmx->nested.current_vmptr; | 
|  | list_add(&(item->list), &(vmx->nested.vmcs02_pool)); | 
|  | vmx->nested.vmcs02_num++; | 
|  | return &item->vmcs02; | 
|  | } | 
|  |  | 
|  | /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */ | 
|  | static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr) | 
|  | { | 
|  | struct vmcs02_list *item; | 
|  | list_for_each_entry(item, &vmx->nested.vmcs02_pool, list) | 
|  | if (item->vmptr == vmptr) { | 
|  | free_loaded_vmcs(&item->vmcs02); | 
|  | list_del(&item->list); | 
|  | kfree(item); | 
|  | vmx->nested.vmcs02_num--; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free all VMCSs saved for this vcpu, except the one pointed by | 
|  | * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one | 
|  | * currently used, if running L2), and vmcs01 when running L2. | 
|  | */ | 
|  | static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx) | 
|  | { | 
|  | struct vmcs02_list *item, *n; | 
|  | list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) { | 
|  | if (vmx->loaded_vmcs != &item->vmcs02) | 
|  | free_loaded_vmcs(&item->vmcs02); | 
|  | list_del(&item->list); | 
|  | kfree(item); | 
|  | } | 
|  | vmx->nested.vmcs02_num = 0; | 
|  |  | 
|  | if (vmx->loaded_vmcs != &vmx->vmcs01) | 
|  | free_loaded_vmcs(&vmx->vmcs01); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Emulate the VMXON instruction. | 
|  | * Currently, we just remember that VMX is active, and do not save or even | 
|  | * inspect the argument to VMXON (the so-called "VMXON pointer") because we | 
|  | * do not currently need to store anything in that guest-allocated memory | 
|  | * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their | 
|  | * argument is different from the VMXON pointer (which the spec says they do). | 
|  | */ | 
|  | static int handle_vmon(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_segment cs; | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  |  | 
|  | /* The Intel VMX Instruction Reference lists a bunch of bits that | 
|  | * are prerequisite to running VMXON, most notably cr4.VMXE must be | 
|  | * set to 1 (see vmx_set_cr4() for when we allow the guest to set this). | 
|  | * Otherwise, we should fail with #UD. We test these now: | 
|  | */ | 
|  | if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) || | 
|  | !kvm_read_cr0_bits(vcpu, X86_CR0_PE) || | 
|  | (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { | 
|  | kvm_queue_exception(vcpu, UD_VECTOR); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); | 
|  | if (is_long_mode(vcpu) && !cs.l) { | 
|  | kvm_queue_exception(vcpu, UD_VECTOR); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (vmx_get_cpl(vcpu)) { | 
|  | kvm_inject_gp(vcpu, 0); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool)); | 
|  | vmx->nested.vmcs02_num = 0; | 
|  |  | 
|  | vmx->nested.vmxon = true; | 
|  |  | 
|  | skip_emulated_instruction(vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Intel's VMX Instruction Reference specifies a common set of prerequisites | 
|  | * for running VMX instructions (except VMXON, whose prerequisites are | 
|  | * slightly different). It also specifies what exception to inject otherwise. | 
|  | */ | 
|  | static int nested_vmx_check_permission(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_segment cs; | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  |  | 
|  | if (!vmx->nested.vmxon) { | 
|  | kvm_queue_exception(vcpu, UD_VECTOR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); | 
|  | if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) || | 
|  | (is_long_mode(vcpu) && !cs.l)) { | 
|  | kvm_queue_exception(vcpu, UD_VECTOR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (vmx_get_cpl(vcpu)) { | 
|  | kvm_inject_gp(vcpu, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free whatever needs to be freed from vmx->nested when L1 goes down, or | 
|  | * just stops using VMX. | 
|  | */ | 
|  | static void free_nested(struct vcpu_vmx *vmx) | 
|  | { | 
|  | if (!vmx->nested.vmxon) | 
|  | return; | 
|  | vmx->nested.vmxon = false; | 
|  | if (vmx->nested.current_vmptr != -1ull) { | 
|  | kunmap(vmx->nested.current_vmcs12_page); | 
|  | nested_release_page(vmx->nested.current_vmcs12_page); | 
|  | vmx->nested.current_vmptr = -1ull; | 
|  | vmx->nested.current_vmcs12 = NULL; | 
|  | } | 
|  | /* Unpin physical memory we referred to in current vmcs02 */ | 
|  | if (vmx->nested.apic_access_page) { | 
|  | nested_release_page(vmx->nested.apic_access_page); | 
|  | vmx->nested.apic_access_page = 0; | 
|  | } | 
|  |  | 
|  | nested_free_all_saved_vmcss(vmx); | 
|  | } | 
|  |  | 
|  | /* Emulate the VMXOFF instruction */ | 
|  | static int handle_vmoff(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (!nested_vmx_check_permission(vcpu)) | 
|  | return 1; | 
|  | free_nested(to_vmx(vcpu)); | 
|  | skip_emulated_instruction(vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Decode the memory-address operand of a vmx instruction, as recorded on an | 
|  | * exit caused by such an instruction (run by a guest hypervisor). | 
|  | * On success, returns 0. When the operand is invalid, returns 1 and throws | 
|  | * #UD or #GP. | 
|  | */ | 
|  | static int get_vmx_mem_address(struct kvm_vcpu *vcpu, | 
|  | unsigned long exit_qualification, | 
|  | u32 vmx_instruction_info, gva_t *ret) | 
|  | { | 
|  | /* | 
|  | * According to Vol. 3B, "Information for VM Exits Due to Instruction | 
|  | * Execution", on an exit, vmx_instruction_info holds most of the | 
|  | * addressing components of the operand. Only the displacement part | 
|  | * is put in exit_qualification (see 3B, "Basic VM-Exit Information"). | 
|  | * For how an actual address is calculated from all these components, | 
|  | * refer to Vol. 1, "Operand Addressing". | 
|  | */ | 
|  | int  scaling = vmx_instruction_info & 3; | 
|  | int  addr_size = (vmx_instruction_info >> 7) & 7; | 
|  | bool is_reg = vmx_instruction_info & (1u << 10); | 
|  | int  seg_reg = (vmx_instruction_info >> 15) & 7; | 
|  | int  index_reg = (vmx_instruction_info >> 18) & 0xf; | 
|  | bool index_is_valid = !(vmx_instruction_info & (1u << 22)); | 
|  | int  base_reg       = (vmx_instruction_info >> 23) & 0xf; | 
|  | bool base_is_valid  = !(vmx_instruction_info & (1u << 27)); | 
|  |  | 
|  | if (is_reg) { | 
|  | kvm_queue_exception(vcpu, UD_VECTOR); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Addr = segment_base + offset */ | 
|  | /* offset = base + [index * scale] + displacement */ | 
|  | *ret = vmx_get_segment_base(vcpu, seg_reg); | 
|  | if (base_is_valid) | 
|  | *ret += kvm_register_read(vcpu, base_reg); | 
|  | if (index_is_valid) | 
|  | *ret += kvm_register_read(vcpu, index_reg)<<scaling; | 
|  | *ret += exit_qualification; /* holds the displacement */ | 
|  |  | 
|  | if (addr_size == 1) /* 32 bit */ | 
|  | *ret &= 0xffffffff; | 
|  |  | 
|  | /* | 
|  | * TODO: throw #GP (and return 1) in various cases that the VM* | 
|  | * instructions require it - e.g., offset beyond segment limit, | 
|  | * unusable or unreadable/unwritable segment, non-canonical 64-bit | 
|  | * address, and so on. Currently these are not checked. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(), | 
|  | * set the success or error code of an emulated VMX instruction, as specified | 
|  | * by Vol 2B, VMX Instruction Reference, "Conventions". | 
|  | */ | 
|  | static void nested_vmx_succeed(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | vmx_set_rflags(vcpu, vmx_get_rflags(vcpu) | 
|  | & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | | 
|  | X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF)); | 
|  | } | 
|  |  | 
|  | static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu) | 
|  | & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF | | 
|  | X86_EFLAGS_SF | X86_EFLAGS_OF)) | 
|  | | X86_EFLAGS_CF); | 
|  | } | 
|  |  | 
|  | static void nested_vmx_failValid(struct kvm_vcpu *vcpu, | 
|  | u32 vm_instruction_error) | 
|  | { | 
|  | if (to_vmx(vcpu)->nested.current_vmptr == -1ull) { | 
|  | /* | 
|  | * failValid writes the error number to the current VMCS, which | 
|  | * can't be done there isn't a current VMCS. | 
|  | */ | 
|  | nested_vmx_failInvalid(vcpu); | 
|  | return; | 
|  | } | 
|  | vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu) | 
|  | & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | | 
|  | X86_EFLAGS_SF | X86_EFLAGS_OF)) | 
|  | | X86_EFLAGS_ZF); | 
|  | get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error; | 
|  | } | 
|  |  | 
|  | /* Emulate the VMCLEAR instruction */ | 
|  | static int handle_vmclear(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  | gva_t gva; | 
|  | gpa_t vmptr; | 
|  | struct vmcs12 *vmcs12; | 
|  | struct page *page; | 
|  | struct x86_exception e; | 
|  |  | 
|  | if (!nested_vmx_check_permission(vcpu)) | 
|  | return 1; | 
|  |  | 
|  | if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), | 
|  | vmcs_read32(VMX_INSTRUCTION_INFO), &gva)) | 
|  | return 1; | 
|  |  | 
|  | if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr, | 
|  | sizeof(vmptr), &e)) { | 
|  | kvm_inject_page_fault(vcpu, &e); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (!IS_ALIGNED(vmptr, PAGE_SIZE)) { | 
|  | nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS); | 
|  | skip_emulated_instruction(vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (vmptr == vmx->nested.current_vmptr) { | 
|  | kunmap(vmx->nested.current_vmcs12_page); | 
|  | nested_release_page(vmx->nested.current_vmcs12_page); | 
|  | vmx->nested.current_vmptr = -1ull; | 
|  | vmx->nested.current_vmcs12 = NULL; | 
|  | } | 
|  |  | 
|  | page = nested_get_page(vcpu, vmptr); | 
|  | if (page == NULL) { | 
|  | /* | 
|  | * For accurate processor emulation, VMCLEAR beyond available | 
|  | * physical memory should do nothing at all. However, it is | 
|  | * possible that a nested vmx bug, not a guest hypervisor bug, | 
|  | * resulted in this case, so let's shut down before doing any | 
|  | * more damage: | 
|  | */ | 
|  | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); | 
|  | return 1; | 
|  | } | 
|  | vmcs12 = kmap(page); | 
|  | vmcs12->launch_state = 0; | 
|  | kunmap(page); | 
|  | nested_release_page(page); | 
|  |  | 
|  | nested_free_vmcs02(vmx, vmptr); | 
|  |  | 
|  | skip_emulated_instruction(vcpu); | 
|  | nested_vmx_succeed(vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch); | 
|  |  | 
|  | /* Emulate the VMLAUNCH instruction */ | 
|  | static int handle_vmlaunch(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return nested_vmx_run(vcpu, true); | 
|  | } | 
|  |  | 
|  | /* Emulate the VMRESUME instruction */ | 
|  | static int handle_vmresume(struct kvm_vcpu *vcpu) | 
|  | { | 
|  |  | 
|  | return nested_vmx_run(vcpu, false); | 
|  | } | 
|  |  | 
|  | enum vmcs_field_type { | 
|  | VMCS_FIELD_TYPE_U16 = 0, | 
|  | VMCS_FIELD_TYPE_U64 = 1, | 
|  | VMCS_FIELD_TYPE_U32 = 2, | 
|  | VMCS_FIELD_TYPE_NATURAL_WIDTH = 3 | 
|  | }; | 
|  |  | 
|  | static inline int vmcs_field_type(unsigned long field) | 
|  | { | 
|  | if (0x1 & field)	/* the *_HIGH fields are all 32 bit */ | 
|  | return VMCS_FIELD_TYPE_U32; | 
|  | return (field >> 13) & 0x3 ; | 
|  | } | 
|  |  | 
|  | static inline int vmcs_field_readonly(unsigned long field) | 
|  | { | 
|  | return (((field >> 10) & 0x3) == 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read a vmcs12 field. Since these can have varying lengths and we return | 
|  | * one type, we chose the biggest type (u64) and zero-extend the return value | 
|  | * to that size. Note that the caller, handle_vmread, might need to use only | 
|  | * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of | 
|  | * 64-bit fields are to be returned). | 
|  | */ | 
|  | static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu, | 
|  | unsigned long field, u64 *ret) | 
|  | { | 
|  | short offset = vmcs_field_to_offset(field); | 
|  | char *p; | 
|  |  | 
|  | if (offset < 0) | 
|  | return 0; | 
|  |  | 
|  | p = ((char *)(get_vmcs12(vcpu))) + offset; | 
|  |  | 
|  | switch (vmcs_field_type(field)) { | 
|  | case VMCS_FIELD_TYPE_NATURAL_WIDTH: | 
|  | *ret = *((natural_width *)p); | 
|  | return 1; | 
|  | case VMCS_FIELD_TYPE_U16: | 
|  | *ret = *((u16 *)p); | 
|  | return 1; | 
|  | case VMCS_FIELD_TYPE_U32: | 
|  | *ret = *((u32 *)p); | 
|  | return 1; | 
|  | case VMCS_FIELD_TYPE_U64: | 
|  | *ret = *((u64 *)p); | 
|  | return 1; | 
|  | default: | 
|  | return 0; /* can never happen. */ | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was | 
|  | * used before) all generate the same failure when it is missing. | 
|  | */ | 
|  | static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  | if (vmx->nested.current_vmptr == -1ull) { | 
|  | nested_vmx_failInvalid(vcpu); | 
|  | skip_emulated_instruction(vcpu); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int handle_vmread(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | unsigned long field; | 
|  | u64 field_value; | 
|  | unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); | 
|  | u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); | 
|  | gva_t gva = 0; | 
|  |  | 
|  | if (!nested_vmx_check_permission(vcpu) || | 
|  | !nested_vmx_check_vmcs12(vcpu)) | 
|  | return 1; | 
|  |  | 
|  | /* Decode instruction info and find the field to read */ | 
|  | field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf)); | 
|  | /* Read the field, zero-extended to a u64 field_value */ | 
|  | if (!vmcs12_read_any(vcpu, field, &field_value)) { | 
|  | nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT); | 
|  | skip_emulated_instruction(vcpu); | 
|  | return 1; | 
|  | } | 
|  | /* | 
|  | * Now copy part of this value to register or memory, as requested. | 
|  | * Note that the number of bits actually copied is 32 or 64 depending | 
|  | * on the guest's mode (32 or 64 bit), not on the given field's length. | 
|  | */ | 
|  | if (vmx_instruction_info & (1u << 10)) { | 
|  | kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf), | 
|  | field_value); | 
|  | } else { | 
|  | if (get_vmx_mem_address(vcpu, exit_qualification, | 
|  | vmx_instruction_info, &gva)) | 
|  | return 1; | 
|  | /* _system ok, as nested_vmx_check_permission verified cpl=0 */ | 
|  | kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva, | 
|  | &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL); | 
|  | } | 
|  |  | 
|  | nested_vmx_succeed(vcpu); | 
|  | skip_emulated_instruction(vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int handle_vmwrite(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | unsigned long field; | 
|  | gva_t gva; | 
|  | unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); | 
|  | u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); | 
|  | char *p; | 
|  | short offset; | 
|  | /* The value to write might be 32 or 64 bits, depending on L1's long | 
|  | * mode, and eventually we need to write that into a field of several | 
|  | * possible lengths. The code below first zero-extends the value to 64 | 
|  | * bit (field_value), and then copies only the approriate number of | 
|  | * bits into the vmcs12 field. | 
|  | */ | 
|  | u64 field_value = 0; | 
|  | struct x86_exception e; | 
|  |  | 
|  | if (!nested_vmx_check_permission(vcpu) || | 
|  | !nested_vmx_check_vmcs12(vcpu)) | 
|  | return 1; | 
|  |  | 
|  | if (vmx_instruction_info & (1u << 10)) | 
|  | field_value = kvm_register_read(vcpu, | 
|  | (((vmx_instruction_info) >> 3) & 0xf)); | 
|  | else { | 
|  | if (get_vmx_mem_address(vcpu, exit_qualification, | 
|  | vmx_instruction_info, &gva)) | 
|  | return 1; | 
|  | if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, | 
|  | &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) { | 
|  | kvm_inject_page_fault(vcpu, &e); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf)); | 
|  | if (vmcs_field_readonly(field)) { | 
|  | nested_vmx_failValid(vcpu, | 
|  | VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT); | 
|  | skip_emulated_instruction(vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | offset = vmcs_field_to_offset(field); | 
|  | if (offset < 0) { | 
|  | nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT); | 
|  | skip_emulated_instruction(vcpu); | 
|  | return 1; | 
|  | } | 
|  | p = ((char *) get_vmcs12(vcpu)) + offset; | 
|  |  | 
|  | switch (vmcs_field_type(field)) { | 
|  | case VMCS_FIELD_TYPE_U16: | 
|  | *(u16 *)p = field_value; | 
|  | break; | 
|  | case VMCS_FIELD_TYPE_U32: | 
|  | *(u32 *)p = field_value; | 
|  | break; | 
|  | case VMCS_FIELD_TYPE_U64: | 
|  | *(u64 *)p = field_value; | 
|  | break; | 
|  | case VMCS_FIELD_TYPE_NATURAL_WIDTH: | 
|  | *(natural_width *)p = field_value; | 
|  | break; | 
|  | default: | 
|  | nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT); | 
|  | skip_emulated_instruction(vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | nested_vmx_succeed(vcpu); | 
|  | skip_emulated_instruction(vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Emulate the VMPTRLD instruction */ | 
|  | static int handle_vmptrld(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  | gva_t gva; | 
|  | gpa_t vmptr; | 
|  | struct x86_exception e; | 
|  |  | 
|  | if (!nested_vmx_check_permission(vcpu)) | 
|  | return 1; | 
|  |  | 
|  | if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), | 
|  | vmcs_read32(VMX_INSTRUCTION_INFO), &gva)) | 
|  | return 1; | 
|  |  | 
|  | if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr, | 
|  | sizeof(vmptr), &e)) { | 
|  | kvm_inject_page_fault(vcpu, &e); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (!IS_ALIGNED(vmptr, PAGE_SIZE)) { | 
|  | nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS); | 
|  | skip_emulated_instruction(vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (vmx->nested.current_vmptr != vmptr) { | 
|  | struct vmcs12 *new_vmcs12; | 
|  | struct page *page; | 
|  | page = nested_get_page(vcpu, vmptr); | 
|  | if (page == NULL) { | 
|  | nested_vmx_failInvalid(vcpu); | 
|  | skip_emulated_instruction(vcpu); | 
|  | return 1; | 
|  | } | 
|  | new_vmcs12 = kmap(page); | 
|  | if (new_vmcs12->revision_id != VMCS12_REVISION) { | 
|  | kunmap(page); | 
|  | nested_release_page_clean(page); | 
|  | nested_vmx_failValid(vcpu, | 
|  | VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID); | 
|  | skip_emulated_instruction(vcpu); | 
|  | return 1; | 
|  | } | 
|  | if (vmx->nested.current_vmptr != -1ull) { | 
|  | kunmap(vmx->nested.current_vmcs12_page); | 
|  | nested_release_page(vmx->nested.current_vmcs12_page); | 
|  | } | 
|  |  | 
|  | vmx->nested.current_vmptr = vmptr; | 
|  | vmx->nested.current_vmcs12 = new_vmcs12; | 
|  | vmx->nested.current_vmcs12_page = page; | 
|  | } | 
|  |  | 
|  | nested_vmx_succeed(vcpu); | 
|  | skip_emulated_instruction(vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Emulate the VMPTRST instruction */ | 
|  | static int handle_vmptrst(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); | 
|  | u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); | 
|  | gva_t vmcs_gva; | 
|  | struct x86_exception e; | 
|  |  | 
|  | if (!nested_vmx_check_permission(vcpu)) | 
|  | return 1; | 
|  |  | 
|  | if (get_vmx_mem_address(vcpu, exit_qualification, | 
|  | vmx_instruction_info, &vmcs_gva)) | 
|  | return 1; | 
|  | /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */ | 
|  | if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva, | 
|  | (void *)&to_vmx(vcpu)->nested.current_vmptr, | 
|  | sizeof(u64), &e)) { | 
|  | kvm_inject_page_fault(vcpu, &e); | 
|  | return 1; | 
|  | } | 
|  | nested_vmx_succeed(vcpu); | 
|  | skip_emulated_instruction(vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The exit handlers return 1 if the exit was handled fully and guest execution | 
|  | * may resume.  Otherwise they set the kvm_run parameter to indicate what needs | 
|  | * to be done to userspace and return 0. | 
|  | */ | 
|  | static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { | 
|  | [EXIT_REASON_EXCEPTION_NMI]           = handle_exception, | 
|  | [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt, | 
|  | [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault, | 
|  | [EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window, | 
|  | [EXIT_REASON_IO_INSTRUCTION]          = handle_io, | 
|  | [EXIT_REASON_CR_ACCESS]               = handle_cr, | 
|  | [EXIT_REASON_DR_ACCESS]               = handle_dr, | 
|  | [EXIT_REASON_CPUID]                   = handle_cpuid, | 
|  | [EXIT_REASON_MSR_READ]                = handle_rdmsr, | 
|  | [EXIT_REASON_MSR_WRITE]               = handle_wrmsr, | 
|  | [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window, | 
|  | [EXIT_REASON_HLT]                     = handle_halt, | 
|  | [EXIT_REASON_INVD]		      = handle_invd, | 
|  | [EXIT_REASON_INVLPG]		      = handle_invlpg, | 
|  | [EXIT_REASON_VMCALL]                  = handle_vmcall, | 
|  | [EXIT_REASON_VMCLEAR]	              = handle_vmclear, | 
|  | [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch, | 
|  | [EXIT_REASON_VMPTRLD]                 = handle_vmptrld, | 
|  | [EXIT_REASON_VMPTRST]                 = handle_vmptrst, | 
|  | [EXIT_REASON_VMREAD]                  = handle_vmread, | 
|  | [EXIT_REASON_VMRESUME]                = handle_vmresume, | 
|  | [EXIT_REASON_VMWRITE]                 = handle_vmwrite, | 
|  | [EXIT_REASON_VMOFF]                   = handle_vmoff, | 
|  | [EXIT_REASON_VMON]                    = handle_vmon, | 
|  | [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold, | 
|  | [EXIT_REASON_APIC_ACCESS]             = handle_apic_access, | 
|  | [EXIT_REASON_WBINVD]                  = handle_wbinvd, | 
|  | [EXIT_REASON_XSETBV]                  = handle_xsetbv, | 
|  | [EXIT_REASON_TASK_SWITCH]             = handle_task_switch, | 
|  | [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check, | 
|  | [EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation, | 
|  | [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig, | 
|  | [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause, | 
|  | [EXIT_REASON_MWAIT_INSTRUCTION]	      = handle_invalid_op, | 
|  | [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_invalid_op, | 
|  | }; | 
|  |  | 
|  | static const int kvm_vmx_max_exit_handlers = | 
|  | ARRAY_SIZE(kvm_vmx_exit_handlers); | 
|  |  | 
|  | /* | 
|  | * Return 1 if we should exit from L2 to L1 to handle an MSR access access, | 
|  | * rather than handle it ourselves in L0. I.e., check whether L1 expressed | 
|  | * disinterest in the current event (read or write a specific MSR) by using an | 
|  | * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps. | 
|  | */ | 
|  | static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu, | 
|  | struct vmcs12 *vmcs12, u32 exit_reason) | 
|  | { | 
|  | u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX]; | 
|  | gpa_t bitmap; | 
|  |  | 
|  | if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS)) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * The MSR_BITMAP page is divided into four 1024-byte bitmaps, | 
|  | * for the four combinations of read/write and low/high MSR numbers. | 
|  | * First we need to figure out which of the four to use: | 
|  | */ | 
|  | bitmap = vmcs12->msr_bitmap; | 
|  | if (exit_reason == EXIT_REASON_MSR_WRITE) | 
|  | bitmap += 2048; | 
|  | if (msr_index >= 0xc0000000) { | 
|  | msr_index -= 0xc0000000; | 
|  | bitmap += 1024; | 
|  | } | 
|  |  | 
|  | /* Then read the msr_index'th bit from this bitmap: */ | 
|  | if (msr_index < 1024*8) { | 
|  | unsigned char b; | 
|  | kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1); | 
|  | return 1 & (b >> (msr_index & 7)); | 
|  | } else | 
|  | return 1; /* let L1 handle the wrong parameter */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return 1 if we should exit from L2 to L1 to handle a CR access exit, | 
|  | * rather than handle it ourselves in L0. I.e., check if L1 wanted to | 
|  | * intercept (via guest_host_mask etc.) the current event. | 
|  | */ | 
|  | static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu, | 
|  | struct vmcs12 *vmcs12) | 
|  | { | 
|  | unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); | 
|  | int cr = exit_qualification & 15; | 
|  | int reg = (exit_qualification >> 8) & 15; | 
|  | unsigned long val = kvm_register_read(vcpu, reg); | 
|  |  | 
|  | switch ((exit_qualification >> 4) & 3) { | 
|  | case 0: /* mov to cr */ | 
|  | switch (cr) { | 
|  | case 0: | 
|  | if (vmcs12->cr0_guest_host_mask & | 
|  | (val ^ vmcs12->cr0_read_shadow)) | 
|  | return 1; | 
|  | break; | 
|  | case 3: | 
|  | if ((vmcs12->cr3_target_count >= 1 && | 
|  | vmcs12->cr3_target_value0 == val) || | 
|  | (vmcs12->cr3_target_count >= 2 && | 
|  | vmcs12->cr3_target_value1 == val) || | 
|  | (vmcs12->cr3_target_count >= 3 && | 
|  | vmcs12->cr3_target_value2 == val) || | 
|  | (vmcs12->cr3_target_count >= 4 && | 
|  | vmcs12->cr3_target_value3 == val)) | 
|  | return 0; | 
|  | if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING)) | 
|  | return 1; | 
|  | break; | 
|  | case 4: | 
|  | if (vmcs12->cr4_guest_host_mask & | 
|  | (vmcs12->cr4_read_shadow ^ val)) | 
|  | return 1; | 
|  | break; | 
|  | case 8: | 
|  | if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING)) | 
|  | return 1; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case 2: /* clts */ | 
|  | if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) && | 
|  | (vmcs12->cr0_read_shadow & X86_CR0_TS)) | 
|  | return 1; | 
|  | break; | 
|  | case 1: /* mov from cr */ | 
|  | switch (cr) { | 
|  | case 3: | 
|  | if (vmcs12->cpu_based_vm_exec_control & | 
|  | CPU_BASED_CR3_STORE_EXITING) | 
|  | return 1; | 
|  | break; | 
|  | case 8: | 
|  | if (vmcs12->cpu_based_vm_exec_control & | 
|  | CPU_BASED_CR8_STORE_EXITING) | 
|  | return 1; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case 3: /* lmsw */ | 
|  | /* | 
|  | * lmsw can change bits 1..3 of cr0, and only set bit 0 of | 
|  | * cr0. Other attempted changes are ignored, with no exit. | 
|  | */ | 
|  | if (vmcs12->cr0_guest_host_mask & 0xe & | 
|  | (val ^ vmcs12->cr0_read_shadow)) | 
|  | return 1; | 
|  | if ((vmcs12->cr0_guest_host_mask & 0x1) && | 
|  | !(vmcs12->cr0_read_shadow & 0x1) && | 
|  | (val & 0x1)) | 
|  | return 1; | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we | 
|  | * should handle it ourselves in L0 (and then continue L2). Only call this | 
|  | * when in is_guest_mode (L2). | 
|  | */ | 
|  | static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u32 exit_reason = vmcs_read32(VM_EXIT_REASON); | 
|  | u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO); | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  | struct vmcs12 *vmcs12 = get_vmcs12(vcpu); | 
|  |  | 
|  | if (vmx->nested.nested_run_pending) | 
|  | return 0; | 
|  |  | 
|  | if (unlikely(vmx->fail)) { | 
|  | pr_info_ratelimited("%s failed vm entry %x\n", __func__, | 
|  | vmcs_read32(VM_INSTRUCTION_ERROR)); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | switch (exit_reason) { | 
|  | case EXIT_REASON_EXCEPTION_NMI: | 
|  | if (!is_exception(intr_info)) | 
|  | return 0; | 
|  | else if (is_page_fault(intr_info)) | 
|  | return enable_ept; | 
|  | return vmcs12->exception_bitmap & | 
|  | (1u << (intr_info & INTR_INFO_VECTOR_MASK)); | 
|  | case EXIT_REASON_EXTERNAL_INTERRUPT: | 
|  | return 0; | 
|  | case EXIT_REASON_TRIPLE_FAULT: | 
|  | return 1; | 
|  | case EXIT_REASON_PENDING_INTERRUPT: | 
|  | case EXIT_REASON_NMI_WINDOW: | 
|  | /* | 
|  | * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit | 
|  | * (aka Interrupt Window Exiting) only when L1 turned it on, | 
|  | * so if we got a PENDING_INTERRUPT exit, this must be for L1. | 
|  | * Same for NMI Window Exiting. | 
|  | */ | 
|  | return 1; | 
|  | case EXIT_REASON_TASK_SWITCH: | 
|  | return 1; | 
|  | case EXIT_REASON_CPUID: | 
|  | return 1; | 
|  | case EXIT_REASON_HLT: | 
|  | return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING); | 
|  | case EXIT_REASON_INVD: | 
|  | return 1; | 
|  | case EXIT_REASON_INVLPG: | 
|  | return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING); | 
|  | case EXIT_REASON_RDPMC: | 
|  | return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING); | 
|  | case EXIT_REASON_RDTSC: | 
|  | return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING); | 
|  | case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR: | 
|  | case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD: | 
|  | case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD: | 
|  | case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE: | 
|  | case EXIT_REASON_VMOFF: case EXIT_REASON_VMON: | 
|  | /* | 
|  | * VMX instructions trap unconditionally. This allows L1 to | 
|  | * emulate them for its L2 guest, i.e., allows 3-level nesting! | 
|  | */ | 
|  | return 1; | 
|  | case EXIT_REASON_CR_ACCESS: | 
|  | return nested_vmx_exit_handled_cr(vcpu, vmcs12); | 
|  | case EXIT_REASON_DR_ACCESS: | 
|  | return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING); | 
|  | case EXIT_REASON_IO_INSTRUCTION: | 
|  | /* TODO: support IO bitmaps */ | 
|  | return 1; | 
|  | case EXIT_REASON_MSR_READ: | 
|  | case EXIT_REASON_MSR_WRITE: | 
|  | return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason); | 
|  | case EXIT_REASON_INVALID_STATE: | 
|  | return 1; | 
|  | case EXIT_REASON_MWAIT_INSTRUCTION: | 
|  | return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING); | 
|  | case EXIT_REASON_MONITOR_INSTRUCTION: | 
|  | return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING); | 
|  | case EXIT_REASON_PAUSE_INSTRUCTION: | 
|  | return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) || | 
|  | nested_cpu_has2(vmcs12, | 
|  | SECONDARY_EXEC_PAUSE_LOOP_EXITING); | 
|  | case EXIT_REASON_MCE_DURING_VMENTRY: | 
|  | return 0; | 
|  | case EXIT_REASON_TPR_BELOW_THRESHOLD: | 
|  | return 1; | 
|  | case EXIT_REASON_APIC_ACCESS: | 
|  | return nested_cpu_has2(vmcs12, | 
|  | SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES); | 
|  | case EXIT_REASON_EPT_VIOLATION: | 
|  | case EXIT_REASON_EPT_MISCONFIG: | 
|  | return 0; | 
|  | case EXIT_REASON_WBINVD: | 
|  | return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING); | 
|  | case EXIT_REASON_XSETBV: | 
|  | return 1; | 
|  | default: | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2) | 
|  | { | 
|  | *info1 = vmcs_readl(EXIT_QUALIFICATION); | 
|  | *info2 = vmcs_read32(VM_EXIT_INTR_INFO); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The guest has exited.  See if we can fix it or if we need userspace | 
|  | * assistance. | 
|  | */ | 
|  | static int vmx_handle_exit(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  | u32 exit_reason = vmx->exit_reason; | 
|  | u32 vectoring_info = vmx->idt_vectoring_info; | 
|  |  | 
|  | /* If guest state is invalid, start emulating */ | 
|  | if (vmx->emulation_required && emulate_invalid_guest_state) | 
|  | return handle_invalid_guest_state(vcpu); | 
|  |  | 
|  | /* | 
|  | * the KVM_REQ_EVENT optimization bit is only on for one entry, and if | 
|  | * we did not inject a still-pending event to L1 now because of | 
|  | * nested_run_pending, we need to re-enable this bit. | 
|  | */ | 
|  | if (vmx->nested.nested_run_pending) | 
|  | kvm_make_request(KVM_REQ_EVENT, vcpu); | 
|  |  | 
|  | if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH || | 
|  | exit_reason == EXIT_REASON_VMRESUME)) | 
|  | vmx->nested.nested_run_pending = 1; | 
|  | else | 
|  | vmx->nested.nested_run_pending = 0; | 
|  |  | 
|  | if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) { | 
|  | nested_vmx_vmexit(vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) { | 
|  | vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; | 
|  | vcpu->run->fail_entry.hardware_entry_failure_reason | 
|  | = exit_reason; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (unlikely(vmx->fail)) { | 
|  | vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; | 
|  | vcpu->run->fail_entry.hardware_entry_failure_reason | 
|  | = vmcs_read32(VM_INSTRUCTION_ERROR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if ((vectoring_info & VECTORING_INFO_VALID_MASK) && | 
|  | (exit_reason != EXIT_REASON_EXCEPTION_NMI && | 
|  | exit_reason != EXIT_REASON_EPT_VIOLATION && | 
|  | exit_reason != EXIT_REASON_TASK_SWITCH)) | 
|  | printk(KERN_WARNING "%s: unexpected, valid vectoring info " | 
|  | "(0x%x) and exit reason is 0x%x\n", | 
|  | __func__, vectoring_info, exit_reason); | 
|  |  | 
|  | if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked && | 
|  | !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis( | 
|  | get_vmcs12(vcpu), vcpu)))) { | 
|  | if (vmx_interrupt_allowed(vcpu)) { | 
|  | vmx->soft_vnmi_blocked = 0; | 
|  | } else if (vmx->vnmi_blocked_time > 1000000000LL && | 
|  | vcpu->arch.nmi_pending) { | 
|  | /* | 
|  | * This CPU don't support us in finding the end of an | 
|  | * NMI-blocked window if the guest runs with IRQs | 
|  | * disabled. So we pull the trigger after 1 s of | 
|  | * futile waiting, but inform the user about this. | 
|  | */ | 
|  | printk(KERN_WARNING "%s: Breaking out of NMI-blocked " | 
|  | "state on VCPU %d after 1 s timeout\n", | 
|  | __func__, vcpu->vcpu_id); | 
|  | vmx->soft_vnmi_blocked = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (exit_reason < kvm_vmx_max_exit_handlers | 
|  | && kvm_vmx_exit_handlers[exit_reason]) | 
|  | return kvm_vmx_exit_handlers[exit_reason](vcpu); | 
|  | else { | 
|  | vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; | 
|  | vcpu->run->hw.hardware_exit_reason = exit_reason; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) | 
|  | { | 
|  | if (irr == -1 || tpr < irr) { | 
|  | vmcs_write32(TPR_THRESHOLD, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | vmcs_write32(TPR_THRESHOLD, irr); | 
|  | } | 
|  |  | 
|  | static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx) | 
|  | { | 
|  | u32 exit_intr_info; | 
|  |  | 
|  | if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY | 
|  | || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)) | 
|  | return; | 
|  |  | 
|  | vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); | 
|  | exit_intr_info = vmx->exit_intr_info; | 
|  |  | 
|  | /* Handle machine checks before interrupts are enabled */ | 
|  | if (is_machine_check(exit_intr_info)) | 
|  | kvm_machine_check(); | 
|  |  | 
|  | /* We need to handle NMIs before interrupts are enabled */ | 
|  | if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR && | 
|  | (exit_intr_info & INTR_INFO_VALID_MASK)) { | 
|  | kvm_before_handle_nmi(&vmx->vcpu); | 
|  | asm("int $2"); | 
|  | kvm_after_handle_nmi(&vmx->vcpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) | 
|  | { | 
|  | u32 exit_intr_info; | 
|  | bool unblock_nmi; | 
|  | u8 vector; | 
|  | bool idtv_info_valid; | 
|  |  | 
|  | idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; | 
|  |  | 
|  | if (cpu_has_virtual_nmis()) { | 
|  | if (vmx->nmi_known_unmasked) | 
|  | return; | 
|  | /* | 
|  | * Can't use vmx->exit_intr_info since we're not sure what | 
|  | * the exit reason is. | 
|  | */ | 
|  | exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); | 
|  | unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; | 
|  | vector = exit_intr_info & INTR_INFO_VECTOR_MASK; | 
|  | /* | 
|  | * SDM 3: 27.7.1.2 (September 2008) | 
|  | * Re-set bit "block by NMI" before VM entry if vmexit caused by | 
|  | * a guest IRET fault. | 
|  | * SDM 3: 23.2.2 (September 2008) | 
|  | * Bit 12 is undefined in any of the following cases: | 
|  | *  If the VM exit sets the valid bit in the IDT-vectoring | 
|  | *   information field. | 
|  | *  If the VM exit is due to a double fault. | 
|  | */ | 
|  | if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && | 
|  | vector != DF_VECTOR && !idtv_info_valid) | 
|  | vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, | 
|  | GUEST_INTR_STATE_NMI); | 
|  | else | 
|  | vmx->nmi_known_unmasked = | 
|  | !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) | 
|  | & GUEST_INTR_STATE_NMI); | 
|  | } else if (unlikely(vmx->soft_vnmi_blocked)) | 
|  | vmx->vnmi_blocked_time += | 
|  | ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time)); | 
|  | } | 
|  |  | 
|  | static void __vmx_complete_interrupts(struct vcpu_vmx *vmx, | 
|  | u32 idt_vectoring_info, | 
|  | int instr_len_field, | 
|  | int error_code_field) | 
|  | { | 
|  | u8 vector; | 
|  | int type; | 
|  | bool idtv_info_valid; | 
|  |  | 
|  | idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; | 
|  |  | 
|  | vmx->vcpu.arch.nmi_injected = false; | 
|  | kvm_clear_exception_queue(&vmx->vcpu); | 
|  | kvm_clear_interrupt_queue(&vmx->vcpu); | 
|  |  | 
|  | if (!idtv_info_valid) | 
|  | return; | 
|  |  | 
|  | kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu); | 
|  |  | 
|  | vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; | 
|  | type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; | 
|  |  | 
|  | switch (type) { | 
|  | case INTR_TYPE_NMI_INTR: | 
|  | vmx->vcpu.arch.nmi_injected = true; | 
|  | /* | 
|  | * SDM 3: 27.7.1.2 (September 2008) | 
|  | * Clear bit "block by NMI" before VM entry if a NMI | 
|  | * delivery faulted. | 
|  | */ | 
|  | vmx_set_nmi_mask(&vmx->vcpu, false); | 
|  | break; | 
|  | case INTR_TYPE_SOFT_EXCEPTION: | 
|  | vmx->vcpu.arch.event_exit_inst_len = | 
|  | vmcs_read32(instr_len_field); | 
|  | /* fall through */ | 
|  | case INTR_TYPE_HARD_EXCEPTION: | 
|  | if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { | 
|  | u32 err = vmcs_read32(error_code_field); | 
|  | kvm_queue_exception_e(&vmx->vcpu, vector, err); | 
|  | } else | 
|  | kvm_queue_exception(&vmx->vcpu, vector); | 
|  | break; | 
|  | case INTR_TYPE_SOFT_INTR: | 
|  | vmx->vcpu.arch.event_exit_inst_len = | 
|  | vmcs_read32(instr_len_field); | 
|  | /* fall through */ | 
|  | case INTR_TYPE_EXT_INTR: | 
|  | kvm_queue_interrupt(&vmx->vcpu, vector, | 
|  | type == INTR_TYPE_SOFT_INTR); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vmx_complete_interrupts(struct vcpu_vmx *vmx) | 
|  | { | 
|  | if (is_guest_mode(&vmx->vcpu)) | 
|  | return; | 
|  | __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info, | 
|  | VM_EXIT_INSTRUCTION_LEN, | 
|  | IDT_VECTORING_ERROR_CODE); | 
|  | } | 
|  |  | 
|  | static void vmx_cancel_injection(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (is_guest_mode(vcpu)) | 
|  | return; | 
|  | __vmx_complete_interrupts(to_vmx(vcpu), | 
|  | vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), | 
|  | VM_ENTRY_INSTRUCTION_LEN, | 
|  | VM_ENTRY_EXCEPTION_ERROR_CODE); | 
|  |  | 
|  | vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); | 
|  | } | 
|  |  | 
|  | static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) | 
|  | { | 
|  | int i, nr_msrs; | 
|  | struct perf_guest_switch_msr *msrs; | 
|  |  | 
|  | msrs = perf_guest_get_msrs(&nr_msrs); | 
|  |  | 
|  | if (!msrs) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < nr_msrs; i++) | 
|  | if (msrs[i].host == msrs[i].guest) | 
|  | clear_atomic_switch_msr(vmx, msrs[i].msr); | 
|  | else | 
|  | add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, | 
|  | msrs[i].host); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | #define R "r" | 
|  | #define Q "q" | 
|  | #else | 
|  | #define R "e" | 
|  | #define Q "l" | 
|  | #endif | 
|  |  | 
|  | static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  |  | 
|  | if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) { | 
|  | struct vmcs12 *vmcs12 = get_vmcs12(vcpu); | 
|  | if (vmcs12->idt_vectoring_info_field & | 
|  | VECTORING_INFO_VALID_MASK) { | 
|  | vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, | 
|  | vmcs12->idt_vectoring_info_field); | 
|  | vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, | 
|  | vmcs12->vm_exit_instruction_len); | 
|  | if (vmcs12->idt_vectoring_info_field & | 
|  | VECTORING_INFO_DELIVER_CODE_MASK) | 
|  | vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, | 
|  | vmcs12->idt_vectoring_error_code); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Record the guest's net vcpu time for enforced NMI injections. */ | 
|  | if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) | 
|  | vmx->entry_time = ktime_get(); | 
|  |  | 
|  | /* Don't enter VMX if guest state is invalid, let the exit handler | 
|  | start emulation until we arrive back to a valid state */ | 
|  | if (vmx->emulation_required && emulate_invalid_guest_state) | 
|  | return; | 
|  |  | 
|  | if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty)) | 
|  | vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); | 
|  | if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty)) | 
|  | vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); | 
|  |  | 
|  | /* When single-stepping over STI and MOV SS, we must clear the | 
|  | * corresponding interruptibility bits in the guest state. Otherwise | 
|  | * vmentry fails as it then expects bit 14 (BS) in pending debug | 
|  | * exceptions being set, but that's not correct for the guest debugging | 
|  | * case. */ | 
|  | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) | 
|  | vmx_set_interrupt_shadow(vcpu, 0); | 
|  |  | 
|  | atomic_switch_perf_msrs(vmx); | 
|  |  | 
|  | vmx->__launched = vmx->loaded_vmcs->launched; | 
|  | asm( | 
|  | /* Store host registers */ | 
|  | "push %%"R"dx; push %%"R"bp;" | 
|  | "push %%"R"cx \n\t" /* placeholder for guest rcx */ | 
|  | "push %%"R"cx \n\t" | 
|  | "cmp %%"R"sp, %c[host_rsp](%0) \n\t" | 
|  | "je 1f \n\t" | 
|  | "mov %%"R"sp, %c[host_rsp](%0) \n\t" | 
|  | __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t" | 
|  | "1: \n\t" | 
|  | /* Reload cr2 if changed */ | 
|  | "mov %c[cr2](%0), %%"R"ax \n\t" | 
|  | "mov %%cr2, %%"R"dx \n\t" | 
|  | "cmp %%"R"ax, %%"R"dx \n\t" | 
|  | "je 2f \n\t" | 
|  | "mov %%"R"ax, %%cr2 \n\t" | 
|  | "2: \n\t" | 
|  | /* Check if vmlaunch of vmresume is needed */ | 
|  | "cmpl $0, %c[launched](%0) \n\t" | 
|  | /* Load guest registers.  Don't clobber flags. */ | 
|  | "mov %c[rax](%0), %%"R"ax \n\t" | 
|  | "mov %c[rbx](%0), %%"R"bx \n\t" | 
|  | "mov %c[rdx](%0), %%"R"dx \n\t" | 
|  | "mov %c[rsi](%0), %%"R"si \n\t" | 
|  | "mov %c[rdi](%0), %%"R"di \n\t" | 
|  | "mov %c[rbp](%0), %%"R"bp \n\t" | 
|  | #ifdef CONFIG_X86_64 | 
|  | "mov %c[r8](%0),  %%r8  \n\t" | 
|  | "mov %c[r9](%0),  %%r9  \n\t" | 
|  | "mov %c[r10](%0), %%r10 \n\t" | 
|  | "mov %c[r11](%0), %%r11 \n\t" | 
|  | "mov %c[r12](%0), %%r12 \n\t" | 
|  | "mov %c[r13](%0), %%r13 \n\t" | 
|  | "mov %c[r14](%0), %%r14 \n\t" | 
|  | "mov %c[r15](%0), %%r15 \n\t" | 
|  | #endif | 
|  | "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */ | 
|  |  | 
|  | /* Enter guest mode */ | 
|  | "jne .Llaunched \n\t" | 
|  | __ex(ASM_VMX_VMLAUNCH) "\n\t" | 
|  | "jmp .Lkvm_vmx_return \n\t" | 
|  | ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t" | 
|  | ".Lkvm_vmx_return: " | 
|  | /* Save guest registers, load host registers, keep flags */ | 
|  | "mov %0, %c[wordsize](%%"R"sp) \n\t" | 
|  | "pop %0 \n\t" | 
|  | "mov %%"R"ax, %c[rax](%0) \n\t" | 
|  | "mov %%"R"bx, %c[rbx](%0) \n\t" | 
|  | "pop"Q" %c[rcx](%0) \n\t" | 
|  | "mov %%"R"dx, %c[rdx](%0) \n\t" | 
|  | "mov %%"R"si, %c[rsi](%0) \n\t" | 
|  | "mov %%"R"di, %c[rdi](%0) \n\t" | 
|  | "mov %%"R"bp, %c[rbp](%0) \n\t" | 
|  | #ifdef CONFIG_X86_64 | 
|  | "mov %%r8,  %c[r8](%0) \n\t" | 
|  | "mov %%r9,  %c[r9](%0) \n\t" | 
|  | "mov %%r10, %c[r10](%0) \n\t" | 
|  | "mov %%r11, %c[r11](%0) \n\t" | 
|  | "mov %%r12, %c[r12](%0) \n\t" | 
|  | "mov %%r13, %c[r13](%0) \n\t" | 
|  | "mov %%r14, %c[r14](%0) \n\t" | 
|  | "mov %%r15, %c[r15](%0) \n\t" | 
|  | #endif | 
|  | "mov %%cr2, %%"R"ax   \n\t" | 
|  | "mov %%"R"ax, %c[cr2](%0) \n\t" | 
|  |  | 
|  | "pop  %%"R"bp; pop  %%"R"dx \n\t" | 
|  | "setbe %c[fail](%0) \n\t" | 
|  | : : "c"(vmx), "d"((unsigned long)HOST_RSP), | 
|  | [launched]"i"(offsetof(struct vcpu_vmx, __launched)), | 
|  | [fail]"i"(offsetof(struct vcpu_vmx, fail)), | 
|  | [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)), | 
|  | [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])), | 
|  | [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])), | 
|  | [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])), | 
|  | [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])), | 
|  | [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])), | 
|  | [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])), | 
|  | [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])), | 
|  | #ifdef CONFIG_X86_64 | 
|  | [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])), | 
|  | [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])), | 
|  | [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])), | 
|  | [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])), | 
|  | [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])), | 
|  | [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])), | 
|  | [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])), | 
|  | [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])), | 
|  | #endif | 
|  | [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)), | 
|  | [wordsize]"i"(sizeof(ulong)) | 
|  | : "cc", "memory" | 
|  | , R"ax", R"bx", R"di", R"si" | 
|  | #ifdef CONFIG_X86_64 | 
|  | , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" | 
|  | #endif | 
|  | ); | 
|  |  | 
|  | vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP) | 
|  | | (1 << VCPU_EXREG_RFLAGS) | 
|  | | (1 << VCPU_EXREG_CPL) | 
|  | | (1 << VCPU_EXREG_PDPTR) | 
|  | | (1 << VCPU_EXREG_SEGMENTS) | 
|  | | (1 << VCPU_EXREG_CR3)); | 
|  | vcpu->arch.regs_dirty = 0; | 
|  |  | 
|  | vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); | 
|  |  | 
|  | if (is_guest_mode(vcpu)) { | 
|  | struct vmcs12 *vmcs12 = get_vmcs12(vcpu); | 
|  | vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info; | 
|  | if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) { | 
|  | vmcs12->idt_vectoring_error_code = | 
|  | vmcs_read32(IDT_VECTORING_ERROR_CODE); | 
|  | vmcs12->vm_exit_instruction_len = | 
|  | vmcs_read32(VM_EXIT_INSTRUCTION_LEN); | 
|  | } | 
|  | } | 
|  |  | 
|  | asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS)); | 
|  | vmx->loaded_vmcs->launched = 1; | 
|  |  | 
|  | vmx->exit_reason = vmcs_read32(VM_EXIT_REASON); | 
|  | trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX); | 
|  |  | 
|  | vmx_complete_atomic_exit(vmx); | 
|  | vmx_recover_nmi_blocking(vmx); | 
|  | vmx_complete_interrupts(vmx); | 
|  | } | 
|  |  | 
|  | #undef R | 
|  | #undef Q | 
|  |  | 
|  | static void vmx_free_vcpu(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  |  | 
|  | free_vpid(vmx); | 
|  | free_nested(vmx); | 
|  | free_loaded_vmcs(vmx->loaded_vmcs); | 
|  | kfree(vmx->guest_msrs); | 
|  | kvm_vcpu_uninit(vcpu); | 
|  | kmem_cache_free(kvm_vcpu_cache, vmx); | 
|  | } | 
|  |  | 
|  | static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id) | 
|  | { | 
|  | int err; | 
|  | struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); | 
|  | int cpu; | 
|  |  | 
|  | if (!vmx) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | allocate_vpid(vmx); | 
|  |  | 
|  | err = kvm_vcpu_init(&vmx->vcpu, kvm, id); | 
|  | if (err) | 
|  | goto free_vcpu; | 
|  |  | 
|  | vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL); | 
|  | err = -ENOMEM; | 
|  | if (!vmx->guest_msrs) { | 
|  | goto uninit_vcpu; | 
|  | } | 
|  |  | 
|  | vmx->loaded_vmcs = &vmx->vmcs01; | 
|  | vmx->loaded_vmcs->vmcs = alloc_vmcs(); | 
|  | if (!vmx->loaded_vmcs->vmcs) | 
|  | goto free_msrs; | 
|  | if (!vmm_exclusive) | 
|  | kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id()))); | 
|  | loaded_vmcs_init(vmx->loaded_vmcs); | 
|  | if (!vmm_exclusive) | 
|  | kvm_cpu_vmxoff(); | 
|  |  | 
|  | cpu = get_cpu(); | 
|  | vmx_vcpu_load(&vmx->vcpu, cpu); | 
|  | vmx->vcpu.cpu = cpu; | 
|  | err = vmx_vcpu_setup(vmx); | 
|  | vmx_vcpu_put(&vmx->vcpu); | 
|  | put_cpu(); | 
|  | if (err) | 
|  | goto free_vmcs; | 
|  | if (vm_need_virtualize_apic_accesses(kvm)) | 
|  | err = alloc_apic_access_page(kvm); | 
|  | if (err) | 
|  | goto free_vmcs; | 
|  |  | 
|  | if (enable_ept) { | 
|  | if (!kvm->arch.ept_identity_map_addr) | 
|  | kvm->arch.ept_identity_map_addr = | 
|  | VMX_EPT_IDENTITY_PAGETABLE_ADDR; | 
|  | err = -ENOMEM; | 
|  | if (alloc_identity_pagetable(kvm) != 0) | 
|  | goto free_vmcs; | 
|  | if (!init_rmode_identity_map(kvm)) | 
|  | goto free_vmcs; | 
|  | } | 
|  |  | 
|  | vmx->nested.current_vmptr = -1ull; | 
|  | vmx->nested.current_vmcs12 = NULL; | 
|  |  | 
|  | return &vmx->vcpu; | 
|  |  | 
|  | free_vmcs: | 
|  | free_vmcs(vmx->loaded_vmcs->vmcs); | 
|  | free_msrs: | 
|  | kfree(vmx->guest_msrs); | 
|  | uninit_vcpu: | 
|  | kvm_vcpu_uninit(&vmx->vcpu); | 
|  | free_vcpu: | 
|  | free_vpid(vmx); | 
|  | kmem_cache_free(kvm_vcpu_cache, vmx); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | static void __init vmx_check_processor_compat(void *rtn) | 
|  | { | 
|  | struct vmcs_config vmcs_conf; | 
|  |  | 
|  | *(int *)rtn = 0; | 
|  | if (setup_vmcs_config(&vmcs_conf) < 0) | 
|  | *(int *)rtn = -EIO; | 
|  | if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) { | 
|  | printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n", | 
|  | smp_processor_id()); | 
|  | *(int *)rtn = -EIO; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int get_ept_level(void) | 
|  | { | 
|  | return VMX_EPT_DEFAULT_GAW + 1; | 
|  | } | 
|  |  | 
|  | static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) | 
|  | { | 
|  | u64 ret; | 
|  |  | 
|  | /* For VT-d and EPT combination | 
|  | * 1. MMIO: always map as UC | 
|  | * 2. EPT with VT-d: | 
|  | *   a. VT-d without snooping control feature: can't guarantee the | 
|  | *	result, try to trust guest. | 
|  | *   b. VT-d with snooping control feature: snooping control feature of | 
|  | *	VT-d engine can guarantee the cache correctness. Just set it | 
|  | *	to WB to keep consistent with host. So the same as item 3. | 
|  | * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep | 
|  | *    consistent with host MTRR | 
|  | */ | 
|  | if (is_mmio) | 
|  | ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT; | 
|  | else if (vcpu->kvm->arch.iommu_domain && | 
|  | !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY)) | 
|  | ret = kvm_get_guest_memory_type(vcpu, gfn) << | 
|  | VMX_EPT_MT_EPTE_SHIFT; | 
|  | else | 
|  | ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | 
|  | | VMX_EPT_IPAT_BIT; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int vmx_get_lpage_level(void) | 
|  | { | 
|  | if (enable_ept && !cpu_has_vmx_ept_1g_page()) | 
|  | return PT_DIRECTORY_LEVEL; | 
|  | else | 
|  | /* For shadow and EPT supported 1GB page */ | 
|  | return PT_PDPE_LEVEL; | 
|  | } | 
|  |  | 
|  | static void vmx_cpuid_update(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_cpuid_entry2 *best; | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  | u32 exec_control; | 
|  |  | 
|  | vmx->rdtscp_enabled = false; | 
|  | if (vmx_rdtscp_supported()) { | 
|  | exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); | 
|  | if (exec_control & SECONDARY_EXEC_RDTSCP) { | 
|  | best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); | 
|  | if (best && (best->edx & bit(X86_FEATURE_RDTSCP))) | 
|  | vmx->rdtscp_enabled = true; | 
|  | else { | 
|  | exec_control &= ~SECONDARY_EXEC_RDTSCP; | 
|  | vmcs_write32(SECONDARY_VM_EXEC_CONTROL, | 
|  | exec_control); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry) | 
|  | { | 
|  | if (func == 1 && nested) | 
|  | entry->ecx |= bit(X86_FEATURE_VMX); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested | 
|  | * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it | 
|  | * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2 | 
|  | * guest in a way that will both be appropriate to L1's requests, and our | 
|  | * needs. In addition to modifying the active vmcs (which is vmcs02), this | 
|  | * function also has additional necessary side-effects, like setting various | 
|  | * vcpu->arch fields. | 
|  | */ | 
|  | static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) | 
|  | { | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  | u32 exec_control; | 
|  |  | 
|  | vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector); | 
|  | vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector); | 
|  | vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector); | 
|  | vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector); | 
|  | vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector); | 
|  | vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector); | 
|  | vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector); | 
|  | vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector); | 
|  | vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit); | 
|  | vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit); | 
|  | vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit); | 
|  | vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit); | 
|  | vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit); | 
|  | vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit); | 
|  | vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit); | 
|  | vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit); | 
|  | vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit); | 
|  | vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit); | 
|  | vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes); | 
|  | vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes); | 
|  | vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes); | 
|  | vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes); | 
|  | vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes); | 
|  | vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes); | 
|  | vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes); | 
|  | vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes); | 
|  | vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base); | 
|  | vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base); | 
|  | vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base); | 
|  | vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base); | 
|  | vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base); | 
|  | vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base); | 
|  | vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base); | 
|  | vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base); | 
|  | vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base); | 
|  | vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base); | 
|  |  | 
|  | vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl); | 
|  | vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, | 
|  | vmcs12->vm_entry_intr_info_field); | 
|  | vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, | 
|  | vmcs12->vm_entry_exception_error_code); | 
|  | vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, | 
|  | vmcs12->vm_entry_instruction_len); | 
|  | vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, | 
|  | vmcs12->guest_interruptibility_info); | 
|  | vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state); | 
|  | vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs); | 
|  | vmcs_writel(GUEST_DR7, vmcs12->guest_dr7); | 
|  | vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags); | 
|  | vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, | 
|  | vmcs12->guest_pending_dbg_exceptions); | 
|  | vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp); | 
|  | vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip); | 
|  |  | 
|  | vmcs_write64(VMCS_LINK_POINTER, -1ull); | 
|  |  | 
|  | vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, | 
|  | (vmcs_config.pin_based_exec_ctrl | | 
|  | vmcs12->pin_based_vm_exec_control)); | 
|  |  | 
|  | /* | 
|  | * Whether page-faults are trapped is determined by a combination of | 
|  | * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF. | 
|  | * If enable_ept, L0 doesn't care about page faults and we should | 
|  | * set all of these to L1's desires. However, if !enable_ept, L0 does | 
|  | * care about (at least some) page faults, and because it is not easy | 
|  | * (if at all possible?) to merge L0 and L1's desires, we simply ask | 
|  | * to exit on each and every L2 page fault. This is done by setting | 
|  | * MASK=MATCH=0 and (see below) EB.PF=1. | 
|  | * Note that below we don't need special code to set EB.PF beyond the | 
|  | * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept, | 
|  | * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when | 
|  | * !enable_ept, EB.PF is 1, so the "or" will always be 1. | 
|  | * | 
|  | * A problem with this approach (when !enable_ept) is that L1 may be | 
|  | * injected with more page faults than it asked for. This could have | 
|  | * caused problems, but in practice existing hypervisors don't care. | 
|  | * To fix this, we will need to emulate the PFEC checking (on the L1 | 
|  | * page tables), using walk_addr(), when injecting PFs to L1. | 
|  | */ | 
|  | vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, | 
|  | enable_ept ? vmcs12->page_fault_error_code_mask : 0); | 
|  | vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, | 
|  | enable_ept ? vmcs12->page_fault_error_code_match : 0); | 
|  |  | 
|  | if (cpu_has_secondary_exec_ctrls()) { | 
|  | u32 exec_control = vmx_secondary_exec_control(vmx); | 
|  | if (!vmx->rdtscp_enabled) | 
|  | exec_control &= ~SECONDARY_EXEC_RDTSCP; | 
|  | /* Take the following fields only from vmcs12 */ | 
|  | exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; | 
|  | if (nested_cpu_has(vmcs12, | 
|  | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) | 
|  | exec_control |= vmcs12->secondary_vm_exec_control; | 
|  |  | 
|  | if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) { | 
|  | /* | 
|  | * Translate L1 physical address to host physical | 
|  | * address for vmcs02. Keep the page pinned, so this | 
|  | * physical address remains valid. We keep a reference | 
|  | * to it so we can release it later. | 
|  | */ | 
|  | if (vmx->nested.apic_access_page) /* shouldn't happen */ | 
|  | nested_release_page(vmx->nested.apic_access_page); | 
|  | vmx->nested.apic_access_page = | 
|  | nested_get_page(vcpu, vmcs12->apic_access_addr); | 
|  | /* | 
|  | * If translation failed, no matter: This feature asks | 
|  | * to exit when accessing the given address, and if it | 
|  | * can never be accessed, this feature won't do | 
|  | * anything anyway. | 
|  | */ | 
|  | if (!vmx->nested.apic_access_page) | 
|  | exec_control &= | 
|  | ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; | 
|  | else | 
|  | vmcs_write64(APIC_ACCESS_ADDR, | 
|  | page_to_phys(vmx->nested.apic_access_page)); | 
|  | } | 
|  |  | 
|  | vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Set host-state according to L0's settings (vmcs12 is irrelevant here) | 
|  | * Some constant fields are set here by vmx_set_constant_host_state(). | 
|  | * Other fields are different per CPU, and will be set later when | 
|  | * vmx_vcpu_load() is called, and when vmx_save_host_state() is called. | 
|  | */ | 
|  | vmx_set_constant_host_state(); | 
|  |  | 
|  | /* | 
|  | * HOST_RSP is normally set correctly in vmx_vcpu_run() just before | 
|  | * entry, but only if the current (host) sp changed from the value | 
|  | * we wrote last (vmx->host_rsp). This cache is no longer relevant | 
|  | * if we switch vmcs, and rather than hold a separate cache per vmcs, | 
|  | * here we just force the write to happen on entry. | 
|  | */ | 
|  | vmx->host_rsp = 0; | 
|  |  | 
|  | exec_control = vmx_exec_control(vmx); /* L0's desires */ | 
|  | exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING; | 
|  | exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING; | 
|  | exec_control &= ~CPU_BASED_TPR_SHADOW; | 
|  | exec_control |= vmcs12->cpu_based_vm_exec_control; | 
|  | /* | 
|  | * Merging of IO and MSR bitmaps not currently supported. | 
|  | * Rather, exit every time. | 
|  | */ | 
|  | exec_control &= ~CPU_BASED_USE_MSR_BITMAPS; | 
|  | exec_control &= ~CPU_BASED_USE_IO_BITMAPS; | 
|  | exec_control |= CPU_BASED_UNCOND_IO_EXITING; | 
|  |  | 
|  | vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control); | 
|  |  | 
|  | /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the | 
|  | * bitwise-or of what L1 wants to trap for L2, and what we want to | 
|  | * trap. Note that CR0.TS also needs updating - we do this later. | 
|  | */ | 
|  | update_exception_bitmap(vcpu); | 
|  | vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask; | 
|  | vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits); | 
|  |  | 
|  | /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */ | 
|  | vmcs_write32(VM_EXIT_CONTROLS, | 
|  | vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl); | 
|  | vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls | | 
|  | (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE)); | 
|  |  | 
|  | if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) | 
|  | vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat); | 
|  | else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) | 
|  | vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); | 
|  |  | 
|  |  | 
|  | set_cr4_guest_host_mask(vmx); | 
|  |  | 
|  | if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING) | 
|  | vmcs_write64(TSC_OFFSET, | 
|  | vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset); | 
|  | else | 
|  | vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset); | 
|  |  | 
|  | if (enable_vpid) { | 
|  | /* | 
|  | * Trivially support vpid by letting L2s share their parent | 
|  | * L1's vpid. TODO: move to a more elaborate solution, giving | 
|  | * each L2 its own vpid and exposing the vpid feature to L1. | 
|  | */ | 
|  | vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); | 
|  | vmx_flush_tlb(vcpu); | 
|  | } | 
|  |  | 
|  | if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) | 
|  | vcpu->arch.efer = vmcs12->guest_ia32_efer; | 
|  | if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) | 
|  | vcpu->arch.efer |= (EFER_LMA | EFER_LME); | 
|  | else | 
|  | vcpu->arch.efer &= ~(EFER_LMA | EFER_LME); | 
|  | /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */ | 
|  | vmx_set_efer(vcpu, vcpu->arch.efer); | 
|  |  | 
|  | /* | 
|  | * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified | 
|  | * TS bit (for lazy fpu) and bits which we consider mandatory enabled. | 
|  | * The CR0_READ_SHADOW is what L2 should have expected to read given | 
|  | * the specifications by L1; It's not enough to take | 
|  | * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we | 
|  | * have more bits than L1 expected. | 
|  | */ | 
|  | vmx_set_cr0(vcpu, vmcs12->guest_cr0); | 
|  | vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12)); | 
|  |  | 
|  | vmx_set_cr4(vcpu, vmcs12->guest_cr4); | 
|  | vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12)); | 
|  |  | 
|  | /* shadow page tables on either EPT or shadow page tables */ | 
|  | kvm_set_cr3(vcpu, vmcs12->guest_cr3); | 
|  | kvm_mmu_reset_context(vcpu); | 
|  |  | 
|  | kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1 | 
|  | * for running an L2 nested guest. | 
|  | */ | 
|  | static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch) | 
|  | { | 
|  | struct vmcs12 *vmcs12; | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  | int cpu; | 
|  | struct loaded_vmcs *vmcs02; | 
|  |  | 
|  | if (!nested_vmx_check_permission(vcpu) || | 
|  | !nested_vmx_check_vmcs12(vcpu)) | 
|  | return 1; | 
|  |  | 
|  | skip_emulated_instruction(vcpu); | 
|  | vmcs12 = get_vmcs12(vcpu); | 
|  |  | 
|  | /* | 
|  | * The nested entry process starts with enforcing various prerequisites | 
|  | * on vmcs12 as required by the Intel SDM, and act appropriately when | 
|  | * they fail: As the SDM explains, some conditions should cause the | 
|  | * instruction to fail, while others will cause the instruction to seem | 
|  | * to succeed, but return an EXIT_REASON_INVALID_STATE. | 
|  | * To speed up the normal (success) code path, we should avoid checking | 
|  | * for misconfigurations which will anyway be caught by the processor | 
|  | * when using the merged vmcs02. | 
|  | */ | 
|  | if (vmcs12->launch_state == launch) { | 
|  | nested_vmx_failValid(vcpu, | 
|  | launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS | 
|  | : VMXERR_VMRESUME_NONLAUNCHED_VMCS); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) && | 
|  | !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) { | 
|  | /*TODO: Also verify bits beyond physical address width are 0*/ | 
|  | nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) && | 
|  | !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) { | 
|  | /*TODO: Also verify bits beyond physical address width are 0*/ | 
|  | nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (vmcs12->vm_entry_msr_load_count > 0 || | 
|  | vmcs12->vm_exit_msr_load_count > 0 || | 
|  | vmcs12->vm_exit_msr_store_count > 0) { | 
|  | pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n", | 
|  | __func__); | 
|  | nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control, | 
|  | nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) || | 
|  | !vmx_control_verify(vmcs12->secondary_vm_exec_control, | 
|  | nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) || | 
|  | !vmx_control_verify(vmcs12->pin_based_vm_exec_control, | 
|  | nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) || | 
|  | !vmx_control_verify(vmcs12->vm_exit_controls, | 
|  | nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) || | 
|  | !vmx_control_verify(vmcs12->vm_entry_controls, | 
|  | nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high)) | 
|  | { | 
|  | nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) || | 
|  | ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) { | 
|  | nested_vmx_failValid(vcpu, | 
|  | VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) || | 
|  | ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) { | 
|  | nested_vmx_entry_failure(vcpu, vmcs12, | 
|  | EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT); | 
|  | return 1; | 
|  | } | 
|  | if (vmcs12->vmcs_link_pointer != -1ull) { | 
|  | nested_vmx_entry_failure(vcpu, vmcs12, | 
|  | EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We're finally done with prerequisite checking, and can start with | 
|  | * the nested entry. | 
|  | */ | 
|  |  | 
|  | vmcs02 = nested_get_current_vmcs02(vmx); | 
|  | if (!vmcs02) | 
|  | return -ENOMEM; | 
|  |  | 
|  | enter_guest_mode(vcpu); | 
|  |  | 
|  | vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET); | 
|  |  | 
|  | cpu = get_cpu(); | 
|  | vmx->loaded_vmcs = vmcs02; | 
|  | vmx_vcpu_put(vcpu); | 
|  | vmx_vcpu_load(vcpu, cpu); | 
|  | vcpu->cpu = cpu; | 
|  | put_cpu(); | 
|  |  | 
|  | vmcs12->launch_state = 1; | 
|  |  | 
|  | prepare_vmcs02(vcpu, vmcs12); | 
|  |  | 
|  | /* | 
|  | * Note no nested_vmx_succeed or nested_vmx_fail here. At this point | 
|  | * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet | 
|  | * returned as far as L1 is concerned. It will only return (and set | 
|  | * the success flag) when L2 exits (see nested_vmx_vmexit()). | 
|  | */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date | 
|  | * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK). | 
|  | * This function returns the new value we should put in vmcs12.guest_cr0. | 
|  | * It's not enough to just return the vmcs02 GUEST_CR0. Rather, | 
|  | *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now | 
|  | *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0 | 
|  | *     didn't trap the bit, because if L1 did, so would L0). | 
|  | *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have | 
|  | *     been modified by L2, and L1 knows it. So just leave the old value of | 
|  | *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0 | 
|  | *     isn't relevant, because if L0 traps this bit it can set it to anything. | 
|  | *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have | 
|  | *     changed these bits, and therefore they need to be updated, but L0 | 
|  | *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather | 
|  | *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there. | 
|  | */ | 
|  | static inline unsigned long | 
|  | vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) | 
|  | { | 
|  | return | 
|  | /*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) | | 
|  | /*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) | | 
|  | /*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask | | 
|  | vcpu->arch.cr0_guest_owned_bits)); | 
|  | } | 
|  |  | 
|  | static inline unsigned long | 
|  | vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) | 
|  | { | 
|  | return | 
|  | /*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) | | 
|  | /*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) | | 
|  | /*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask | | 
|  | vcpu->arch.cr4_guest_owned_bits)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits | 
|  | * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12), | 
|  | * and this function updates it to reflect the changes to the guest state while | 
|  | * L2 was running (and perhaps made some exits which were handled directly by L0 | 
|  | * without going back to L1), and to reflect the exit reason. | 
|  | * Note that we do not have to copy here all VMCS fields, just those that | 
|  | * could have changed by the L2 guest or the exit - i.e., the guest-state and | 
|  | * exit-information fields only. Other fields are modified by L1 with VMWRITE, | 
|  | * which already writes to vmcs12 directly. | 
|  | */ | 
|  | void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) | 
|  | { | 
|  | /* update guest state fields: */ | 
|  | vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12); | 
|  | vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12); | 
|  |  | 
|  | kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7); | 
|  | vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); | 
|  | vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP); | 
|  | vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS); | 
|  |  | 
|  | vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR); | 
|  | vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR); | 
|  | vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR); | 
|  | vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR); | 
|  | vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR); | 
|  | vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR); | 
|  | vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR); | 
|  | vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR); | 
|  | vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT); | 
|  | vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT); | 
|  | vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT); | 
|  | vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT); | 
|  | vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT); | 
|  | vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT); | 
|  | vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT); | 
|  | vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT); | 
|  | vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT); | 
|  | vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT); | 
|  | vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES); | 
|  | vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES); | 
|  | vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES); | 
|  | vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES); | 
|  | vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES); | 
|  | vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES); | 
|  | vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES); | 
|  | vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES); | 
|  | vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE); | 
|  | vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE); | 
|  | vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE); | 
|  | vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE); | 
|  | vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE); | 
|  | vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE); | 
|  | vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE); | 
|  | vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE); | 
|  | vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE); | 
|  | vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE); | 
|  |  | 
|  | vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE); | 
|  | vmcs12->guest_interruptibility_info = | 
|  | vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); | 
|  | vmcs12->guest_pending_dbg_exceptions = | 
|  | vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS); | 
|  |  | 
|  | /* TODO: These cannot have changed unless we have MSR bitmaps and | 
|  | * the relevant bit asks not to trap the change */ | 
|  | vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL); | 
|  | if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT) | 
|  | vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT); | 
|  | vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS); | 
|  | vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP); | 
|  | vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP); | 
|  |  | 
|  | /* update exit information fields: */ | 
|  |  | 
|  | vmcs12->vm_exit_reason  = vmcs_read32(VM_EXIT_REASON); | 
|  | vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION); | 
|  |  | 
|  | vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); | 
|  | vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); | 
|  | vmcs12->idt_vectoring_info_field = | 
|  | vmcs_read32(IDT_VECTORING_INFO_FIELD); | 
|  | vmcs12->idt_vectoring_error_code = | 
|  | vmcs_read32(IDT_VECTORING_ERROR_CODE); | 
|  | vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); | 
|  | vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); | 
|  |  | 
|  | /* clear vm-entry fields which are to be cleared on exit */ | 
|  | if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) | 
|  | vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A part of what we need to when the nested L2 guest exits and we want to | 
|  | * run its L1 parent, is to reset L1's guest state to the host state specified | 
|  | * in vmcs12. | 
|  | * This function is to be called not only on normal nested exit, but also on | 
|  | * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry | 
|  | * Failures During or After Loading Guest State"). | 
|  | * This function should be called when the active VMCS is L1's (vmcs01). | 
|  | */ | 
|  | void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) | 
|  | { | 
|  | if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) | 
|  | vcpu->arch.efer = vmcs12->host_ia32_efer; | 
|  | if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) | 
|  | vcpu->arch.efer |= (EFER_LMA | EFER_LME); | 
|  | else | 
|  | vcpu->arch.efer &= ~(EFER_LMA | EFER_LME); | 
|  | vmx_set_efer(vcpu, vcpu->arch.efer); | 
|  |  | 
|  | kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip); | 
|  | /* | 
|  | * Note that calling vmx_set_cr0 is important, even if cr0 hasn't | 
|  | * actually changed, because it depends on the current state of | 
|  | * fpu_active (which may have changed). | 
|  | * Note that vmx_set_cr0 refers to efer set above. | 
|  | */ | 
|  | kvm_set_cr0(vcpu, vmcs12->host_cr0); | 
|  | /* | 
|  | * If we did fpu_activate()/fpu_deactivate() during L2's run, we need | 
|  | * to apply the same changes to L1's vmcs. We just set cr0 correctly, | 
|  | * but we also need to update cr0_guest_host_mask and exception_bitmap. | 
|  | */ | 
|  | update_exception_bitmap(vcpu); | 
|  | vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0); | 
|  | vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits); | 
|  |  | 
|  | /* | 
|  | * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01 | 
|  | * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask(); | 
|  | */ | 
|  | vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK); | 
|  | kvm_set_cr4(vcpu, vmcs12->host_cr4); | 
|  |  | 
|  | /* shadow page tables on either EPT or shadow page tables */ | 
|  | kvm_set_cr3(vcpu, vmcs12->host_cr3); | 
|  | kvm_mmu_reset_context(vcpu); | 
|  |  | 
|  | if (enable_vpid) { | 
|  | /* | 
|  | * Trivially support vpid by letting L2s share their parent | 
|  | * L1's vpid. TODO: move to a more elaborate solution, giving | 
|  | * each L2 its own vpid and exposing the vpid feature to L1. | 
|  | */ | 
|  | vmx_flush_tlb(vcpu); | 
|  | } | 
|  |  | 
|  |  | 
|  | vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs); | 
|  | vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp); | 
|  | vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip); | 
|  | vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base); | 
|  | vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base); | 
|  | vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base); | 
|  | vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base); | 
|  | vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base); | 
|  | vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector); | 
|  | vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector); | 
|  | vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector); | 
|  | vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector); | 
|  | vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector); | 
|  | vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector); | 
|  | vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector); | 
|  |  | 
|  | if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) | 
|  | vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat); | 
|  | if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) | 
|  | vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL, | 
|  | vmcs12->host_ia32_perf_global_ctrl); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1 | 
|  | * and modify vmcs12 to make it see what it would expect to see there if | 
|  | * L2 was its real guest. Must only be called when in L2 (is_guest_mode()) | 
|  | */ | 
|  | static void nested_vmx_vmexit(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  | int cpu; | 
|  | struct vmcs12 *vmcs12 = get_vmcs12(vcpu); | 
|  |  | 
|  | leave_guest_mode(vcpu); | 
|  | prepare_vmcs12(vcpu, vmcs12); | 
|  |  | 
|  | cpu = get_cpu(); | 
|  | vmx->loaded_vmcs = &vmx->vmcs01; | 
|  | vmx_vcpu_put(vcpu); | 
|  | vmx_vcpu_load(vcpu, cpu); | 
|  | vcpu->cpu = cpu; | 
|  | put_cpu(); | 
|  |  | 
|  | /* if no vmcs02 cache requested, remove the one we used */ | 
|  | if (VMCS02_POOL_SIZE == 0) | 
|  | nested_free_vmcs02(vmx, vmx->nested.current_vmptr); | 
|  |  | 
|  | load_vmcs12_host_state(vcpu, vmcs12); | 
|  |  | 
|  | /* Update TSC_OFFSET if TSC was changed while L2 ran */ | 
|  | vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset); | 
|  |  | 
|  | /* This is needed for same reason as it was needed in prepare_vmcs02 */ | 
|  | vmx->host_rsp = 0; | 
|  |  | 
|  | /* Unpin physical memory we referred to in vmcs02 */ | 
|  | if (vmx->nested.apic_access_page) { | 
|  | nested_release_page(vmx->nested.apic_access_page); | 
|  | vmx->nested.apic_access_page = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Exiting from L2 to L1, we're now back to L1 which thinks it just | 
|  | * finished a VMLAUNCH or VMRESUME instruction, so we need to set the | 
|  | * success or failure flag accordingly. | 
|  | */ | 
|  | if (unlikely(vmx->fail)) { | 
|  | vmx->fail = 0; | 
|  | nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR)); | 
|  | } else | 
|  | nested_vmx_succeed(vcpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * L1's failure to enter L2 is a subset of a normal exit, as explained in | 
|  | * 23.7 "VM-entry failures during or after loading guest state" (this also | 
|  | * lists the acceptable exit-reason and exit-qualification parameters). | 
|  | * It should only be called before L2 actually succeeded to run, and when | 
|  | * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss). | 
|  | */ | 
|  | static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu, | 
|  | struct vmcs12 *vmcs12, | 
|  | u32 reason, unsigned long qualification) | 
|  | { | 
|  | load_vmcs12_host_state(vcpu, vmcs12); | 
|  | vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY; | 
|  | vmcs12->exit_qualification = qualification; | 
|  | nested_vmx_succeed(vcpu); | 
|  | } | 
|  |  | 
|  | static int vmx_check_intercept(struct kvm_vcpu *vcpu, | 
|  | struct x86_instruction_info *info, | 
|  | enum x86_intercept_stage stage) | 
|  | { | 
|  | return X86EMUL_CONTINUE; | 
|  | } | 
|  |  | 
|  | static struct kvm_x86_ops vmx_x86_ops = { | 
|  | .cpu_has_kvm_support = cpu_has_kvm_support, | 
|  | .disabled_by_bios = vmx_disabled_by_bios, | 
|  | .hardware_setup = hardware_setup, | 
|  | .hardware_unsetup = hardware_unsetup, | 
|  | .check_processor_compatibility = vmx_check_processor_compat, | 
|  | .hardware_enable = hardware_enable, | 
|  | .hardware_disable = hardware_disable, | 
|  | .cpu_has_accelerated_tpr = report_flexpriority, | 
|  |  | 
|  | .vcpu_create = vmx_create_vcpu, | 
|  | .vcpu_free = vmx_free_vcpu, | 
|  | .vcpu_reset = vmx_vcpu_reset, | 
|  |  | 
|  | .prepare_guest_switch = vmx_save_host_state, | 
|  | .vcpu_load = vmx_vcpu_load, | 
|  | .vcpu_put = vmx_vcpu_put, | 
|  |  | 
|  | .set_guest_debug = set_guest_debug, | 
|  | .get_msr = vmx_get_msr, | 
|  | .set_msr = vmx_set_msr, | 
|  | .get_segment_base = vmx_get_segment_base, | 
|  | .get_segment = vmx_get_segment, | 
|  | .set_segment = vmx_set_segment, | 
|  | .get_cpl = vmx_get_cpl, | 
|  | .get_cs_db_l_bits = vmx_get_cs_db_l_bits, | 
|  | .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits, | 
|  | .decache_cr3 = vmx_decache_cr3, | 
|  | .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits, | 
|  | .set_cr0 = vmx_set_cr0, | 
|  | .set_cr3 = vmx_set_cr3, | 
|  | .set_cr4 = vmx_set_cr4, | 
|  | .set_efer = vmx_set_efer, | 
|  | .get_idt = vmx_get_idt, | 
|  | .set_idt = vmx_set_idt, | 
|  | .get_gdt = vmx_get_gdt, | 
|  | .set_gdt = vmx_set_gdt, | 
|  | .set_dr7 = vmx_set_dr7, | 
|  | .cache_reg = vmx_cache_reg, | 
|  | .get_rflags = vmx_get_rflags, | 
|  | .set_rflags = vmx_set_rflags, | 
|  | .fpu_activate = vmx_fpu_activate, | 
|  | .fpu_deactivate = vmx_fpu_deactivate, | 
|  |  | 
|  | .tlb_flush = vmx_flush_tlb, | 
|  |  | 
|  | .run = vmx_vcpu_run, | 
|  | .handle_exit = vmx_handle_exit, | 
|  | .skip_emulated_instruction = skip_emulated_instruction, | 
|  | .set_interrupt_shadow = vmx_set_interrupt_shadow, | 
|  | .get_interrupt_shadow = vmx_get_interrupt_shadow, | 
|  | .patch_hypercall = vmx_patch_hypercall, | 
|  | .set_irq = vmx_inject_irq, | 
|  | .set_nmi = vmx_inject_nmi, | 
|  | .queue_exception = vmx_queue_exception, | 
|  | .cancel_injection = vmx_cancel_injection, | 
|  | .interrupt_allowed = vmx_interrupt_allowed, | 
|  | .nmi_allowed = vmx_nmi_allowed, | 
|  | .get_nmi_mask = vmx_get_nmi_mask, | 
|  | .set_nmi_mask = vmx_set_nmi_mask, | 
|  | .enable_nmi_window = enable_nmi_window, | 
|  | .enable_irq_window = enable_irq_window, | 
|  | .update_cr8_intercept = update_cr8_intercept, | 
|  |  | 
|  | .set_tss_addr = vmx_set_tss_addr, | 
|  | .get_tdp_level = get_ept_level, | 
|  | .get_mt_mask = vmx_get_mt_mask, | 
|  |  | 
|  | .get_exit_info = vmx_get_exit_info, | 
|  |  | 
|  | .get_lpage_level = vmx_get_lpage_level, | 
|  |  | 
|  | .cpuid_update = vmx_cpuid_update, | 
|  |  | 
|  | .rdtscp_supported = vmx_rdtscp_supported, | 
|  |  | 
|  | .set_supported_cpuid = vmx_set_supported_cpuid, | 
|  |  | 
|  | .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, | 
|  |  | 
|  | .set_tsc_khz = vmx_set_tsc_khz, | 
|  | .write_tsc_offset = vmx_write_tsc_offset, | 
|  | .adjust_tsc_offset = vmx_adjust_tsc_offset, | 
|  | .compute_tsc_offset = vmx_compute_tsc_offset, | 
|  | .read_l1_tsc = vmx_read_l1_tsc, | 
|  |  | 
|  | .set_tdp_cr3 = vmx_set_cr3, | 
|  |  | 
|  | .check_intercept = vmx_check_intercept, | 
|  | }; | 
|  |  | 
|  | static int __init vmx_init(void) | 
|  | { | 
|  | int r, i; | 
|  |  | 
|  | rdmsrl_safe(MSR_EFER, &host_efer); | 
|  |  | 
|  | for (i = 0; i < NR_VMX_MSR; ++i) | 
|  | kvm_define_shared_msr(i, vmx_msr_index[i]); | 
|  |  | 
|  | vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL); | 
|  | if (!vmx_io_bitmap_a) | 
|  | return -ENOMEM; | 
|  |  | 
|  | vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL); | 
|  | if (!vmx_io_bitmap_b) { | 
|  | r = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL); | 
|  | if (!vmx_msr_bitmap_legacy) { | 
|  | r = -ENOMEM; | 
|  | goto out1; | 
|  | } | 
|  |  | 
|  | vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL); | 
|  | if (!vmx_msr_bitmap_longmode) { | 
|  | r = -ENOMEM; | 
|  | goto out2; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allow direct access to the PC debug port (it is often used for I/O | 
|  | * delays, but the vmexits simply slow things down). | 
|  | */ | 
|  | memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE); | 
|  | clear_bit(0x80, vmx_io_bitmap_a); | 
|  |  | 
|  | memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE); | 
|  |  | 
|  | memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE); | 
|  | memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE); | 
|  |  | 
|  | set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ | 
|  |  | 
|  | r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), | 
|  | __alignof__(struct vcpu_vmx), THIS_MODULE); | 
|  | if (r) | 
|  | goto out3; | 
|  |  | 
|  | vmx_disable_intercept_for_msr(MSR_FS_BASE, false); | 
|  | vmx_disable_intercept_for_msr(MSR_GS_BASE, false); | 
|  | vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true); | 
|  | vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false); | 
|  | vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false); | 
|  | vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false); | 
|  |  | 
|  | if (enable_ept) { | 
|  | kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull, | 
|  | VMX_EPT_EXECUTABLE_MASK); | 
|  | ept_set_mmio_spte_mask(); | 
|  | kvm_enable_tdp(); | 
|  | } else | 
|  | kvm_disable_tdp(); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out3: | 
|  | free_page((unsigned long)vmx_msr_bitmap_longmode); | 
|  | out2: | 
|  | free_page((unsigned long)vmx_msr_bitmap_legacy); | 
|  | out1: | 
|  | free_page((unsigned long)vmx_io_bitmap_b); | 
|  | out: | 
|  | free_page((unsigned long)vmx_io_bitmap_a); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void __exit vmx_exit(void) | 
|  | { | 
|  | free_page((unsigned long)vmx_msr_bitmap_legacy); | 
|  | free_page((unsigned long)vmx_msr_bitmap_longmode); | 
|  | free_page((unsigned long)vmx_io_bitmap_b); | 
|  | free_page((unsigned long)vmx_io_bitmap_a); | 
|  |  | 
|  | kvm_exit(); | 
|  | } | 
|  |  | 
|  | module_init(vmx_init) | 
|  | module_exit(vmx_exit) |