|  | /* | 
|  | * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation | 
|  | * August 2002: added remote node KVA remap - Martin J. Bligh | 
|  | * | 
|  | * Copyright (C) 2002, IBM Corp. | 
|  | * | 
|  | * All rights reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but | 
|  | * WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | 
|  | * NON INFRINGEMENT.  See the GNU General Public License for more | 
|  | * details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/module.h> | 
|  |  | 
|  | #include "numa_internal.h" | 
|  |  | 
|  | #ifdef CONFIG_DISCONTIGMEM | 
|  | /* | 
|  | * 4) physnode_map     - the mapping between a pfn and owning node | 
|  | * physnode_map keeps track of the physical memory layout of a generic | 
|  | * numa node on a 64Mb break (each element of the array will | 
|  | * represent 64Mb of memory and will be marked by the node id.  so, | 
|  | * if the first gig is on node 0, and the second gig is on node 1 | 
|  | * physnode_map will contain: | 
|  | * | 
|  | *     physnode_map[0-15] = 0; | 
|  | *     physnode_map[16-31] = 1; | 
|  | *     physnode_map[32- ] = -1; | 
|  | */ | 
|  | s8 physnode_map[MAX_SECTIONS] __read_mostly = { [0 ... (MAX_SECTIONS - 1)] = -1}; | 
|  | EXPORT_SYMBOL(physnode_map); | 
|  |  | 
|  | void memory_present(int nid, unsigned long start, unsigned long end) | 
|  | { | 
|  | unsigned long pfn; | 
|  |  | 
|  | printk(KERN_INFO "Node: %d, start_pfn: %lx, end_pfn: %lx\n", | 
|  | nid, start, end); | 
|  | printk(KERN_DEBUG "  Setting physnode_map array to node %d for pfns:\n", nid); | 
|  | printk(KERN_DEBUG "  "); | 
|  | for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { | 
|  | physnode_map[pfn / PAGES_PER_SECTION] = nid; | 
|  | printk(KERN_CONT "%lx ", pfn); | 
|  | } | 
|  | printk(KERN_CONT "\n"); | 
|  | } | 
|  |  | 
|  | unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn, | 
|  | unsigned long end_pfn) | 
|  | { | 
|  | unsigned long nr_pages = end_pfn - start_pfn; | 
|  |  | 
|  | if (!nr_pages) | 
|  | return 0; | 
|  |  | 
|  | return (nr_pages + 1) * sizeof(struct page); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | extern unsigned long highend_pfn, highstart_pfn; | 
|  |  | 
|  | #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE) | 
|  |  | 
|  | static void *node_remap_start_vaddr[MAX_NUMNODES]; | 
|  | void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags); | 
|  |  | 
|  | /* | 
|  | * Remap memory allocator | 
|  | */ | 
|  | static unsigned long node_remap_start_pfn[MAX_NUMNODES]; | 
|  | static void *node_remap_end_vaddr[MAX_NUMNODES]; | 
|  | static void *node_remap_alloc_vaddr[MAX_NUMNODES]; | 
|  |  | 
|  | /** | 
|  | * alloc_remap - Allocate remapped memory | 
|  | * @nid: NUMA node to allocate memory from | 
|  | * @size: The size of allocation | 
|  | * | 
|  | * Allocate @size bytes from the remap area of NUMA node @nid.  The | 
|  | * size of the remap area is predetermined by init_alloc_remap() and | 
|  | * only the callers considered there should call this function.  For | 
|  | * more info, please read the comment on top of init_alloc_remap(). | 
|  | * | 
|  | * The caller must be ready to handle allocation failure from this | 
|  | * function and fall back to regular memory allocator in such cases. | 
|  | * | 
|  | * CONTEXT: | 
|  | * Single CPU early boot context. | 
|  | * | 
|  | * RETURNS: | 
|  | * Pointer to the allocated memory on success, %NULL on failure. | 
|  | */ | 
|  | void *alloc_remap(int nid, unsigned long size) | 
|  | { | 
|  | void *allocation = node_remap_alloc_vaddr[nid]; | 
|  |  | 
|  | size = ALIGN(size, L1_CACHE_BYTES); | 
|  |  | 
|  | if (!allocation || (allocation + size) > node_remap_end_vaddr[nid]) | 
|  | return NULL; | 
|  |  | 
|  | node_remap_alloc_vaddr[nid] += size; | 
|  | memset(allocation, 0, size); | 
|  |  | 
|  | return allocation; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HIBERNATION | 
|  | /** | 
|  | * resume_map_numa_kva - add KVA mapping to the temporary page tables created | 
|  | *                       during resume from hibernation | 
|  | * @pgd_base - temporary resume page directory | 
|  | */ | 
|  | void resume_map_numa_kva(pgd_t *pgd_base) | 
|  | { | 
|  | int node; | 
|  |  | 
|  | for_each_online_node(node) { | 
|  | unsigned long start_va, start_pfn, nr_pages, pfn; | 
|  |  | 
|  | start_va = (unsigned long)node_remap_start_vaddr[node]; | 
|  | start_pfn = node_remap_start_pfn[node]; | 
|  | nr_pages = (node_remap_end_vaddr[node] - | 
|  | node_remap_start_vaddr[node]) >> PAGE_SHIFT; | 
|  |  | 
|  | printk(KERN_DEBUG "%s: node %d\n", __func__, node); | 
|  |  | 
|  | for (pfn = 0; pfn < nr_pages; pfn += PTRS_PER_PTE) { | 
|  | unsigned long vaddr = start_va + (pfn << PAGE_SHIFT); | 
|  | pgd_t *pgd = pgd_base + pgd_index(vaddr); | 
|  | pud_t *pud = pud_offset(pgd, vaddr); | 
|  | pmd_t *pmd = pmd_offset(pud, vaddr); | 
|  |  | 
|  | set_pmd(pmd, pfn_pmd(start_pfn + pfn, | 
|  | PAGE_KERNEL_LARGE_EXEC)); | 
|  |  | 
|  | printk(KERN_DEBUG "%s: %08lx -> pfn %08lx\n", | 
|  | __func__, vaddr, start_pfn + pfn); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * init_alloc_remap - Initialize remap allocator for a NUMA node | 
|  | * @nid: NUMA node to initizlie remap allocator for | 
|  | * | 
|  | * NUMA nodes may end up without any lowmem.  As allocating pgdat and | 
|  | * memmap on a different node with lowmem is inefficient, a special | 
|  | * remap allocator is implemented which can be used by alloc_remap(). | 
|  | * | 
|  | * For each node, the amount of memory which will be necessary for | 
|  | * pgdat and memmap is calculated and two memory areas of the size are | 
|  | * allocated - one in the node and the other in lowmem; then, the area | 
|  | * in the node is remapped to the lowmem area. | 
|  | * | 
|  | * As pgdat and memmap must be allocated in lowmem anyway, this | 
|  | * doesn't waste lowmem address space; however, the actual lowmem | 
|  | * which gets remapped over is wasted.  The amount shouldn't be | 
|  | * problematic on machines this feature will be used. | 
|  | * | 
|  | * Initialization failure isn't fatal.  alloc_remap() is used | 
|  | * opportunistically and the callers will fall back to other memory | 
|  | * allocation mechanisms on failure. | 
|  | */ | 
|  | void __init init_alloc_remap(int nid, u64 start, u64 end) | 
|  | { | 
|  | unsigned long start_pfn = start >> PAGE_SHIFT; | 
|  | unsigned long end_pfn = end >> PAGE_SHIFT; | 
|  | unsigned long size, pfn; | 
|  | u64 node_pa, remap_pa; | 
|  | void *remap_va; | 
|  |  | 
|  | /* | 
|  | * The acpi/srat node info can show hot-add memroy zones where | 
|  | * memory could be added but not currently present. | 
|  | */ | 
|  | printk(KERN_DEBUG "node %d pfn: [%lx - %lx]\n", | 
|  | nid, start_pfn, end_pfn); | 
|  |  | 
|  | /* calculate the necessary space aligned to large page size */ | 
|  | size = node_memmap_size_bytes(nid, start_pfn, end_pfn); | 
|  | size += ALIGN(sizeof(pg_data_t), PAGE_SIZE); | 
|  | size = ALIGN(size, LARGE_PAGE_BYTES); | 
|  |  | 
|  | /* allocate node memory and the lowmem remap area */ | 
|  | node_pa = memblock_find_in_range(start, end, size, LARGE_PAGE_BYTES); | 
|  | if (node_pa == MEMBLOCK_ERROR) { | 
|  | pr_warning("remap_alloc: failed to allocate %lu bytes for node %d\n", | 
|  | size, nid); | 
|  | return; | 
|  | } | 
|  | memblock_x86_reserve_range(node_pa, node_pa + size, "KVA RAM"); | 
|  |  | 
|  | remap_pa = memblock_find_in_range(min_low_pfn << PAGE_SHIFT, | 
|  | max_low_pfn << PAGE_SHIFT, | 
|  | size, LARGE_PAGE_BYTES); | 
|  | if (remap_pa == MEMBLOCK_ERROR) { | 
|  | pr_warning("remap_alloc: failed to allocate %lu bytes remap area for node %d\n", | 
|  | size, nid); | 
|  | memblock_x86_free_range(node_pa, node_pa + size); | 
|  | return; | 
|  | } | 
|  | memblock_x86_reserve_range(remap_pa, remap_pa + size, "KVA PG"); | 
|  | remap_va = phys_to_virt(remap_pa); | 
|  |  | 
|  | /* perform actual remap */ | 
|  | for (pfn = 0; pfn < size >> PAGE_SHIFT; pfn += PTRS_PER_PTE) | 
|  | set_pmd_pfn((unsigned long)remap_va + (pfn << PAGE_SHIFT), | 
|  | (node_pa >> PAGE_SHIFT) + pfn, | 
|  | PAGE_KERNEL_LARGE); | 
|  |  | 
|  | /* initialize remap allocator parameters */ | 
|  | node_remap_start_pfn[nid] = node_pa >> PAGE_SHIFT; | 
|  | node_remap_start_vaddr[nid] = remap_va; | 
|  | node_remap_end_vaddr[nid] = remap_va + size; | 
|  | node_remap_alloc_vaddr[nid] = remap_va; | 
|  |  | 
|  | printk(KERN_DEBUG "remap_alloc: node %d [%08llx-%08llx) -> [%p-%p)\n", | 
|  | nid, node_pa, node_pa + size, remap_va, remap_va + size); | 
|  | } | 
|  |  | 
|  | void __init initmem_init(void) | 
|  | { | 
|  | x86_numa_init(); | 
|  |  | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | highstart_pfn = highend_pfn = max_pfn; | 
|  | if (max_pfn > max_low_pfn) | 
|  | highstart_pfn = max_low_pfn; | 
|  | printk(KERN_NOTICE "%ldMB HIGHMEM available.\n", | 
|  | pages_to_mb(highend_pfn - highstart_pfn)); | 
|  | num_physpages = highend_pfn; | 
|  | high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1; | 
|  | #else | 
|  | num_physpages = max_low_pfn; | 
|  | high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1; | 
|  | #endif | 
|  | printk(KERN_NOTICE "%ldMB LOWMEM available.\n", | 
|  | pages_to_mb(max_low_pfn)); | 
|  | printk(KERN_DEBUG "max_low_pfn = %lx, highstart_pfn = %lx\n", | 
|  | max_low_pfn, highstart_pfn); | 
|  |  | 
|  | printk(KERN_DEBUG "Low memory ends at vaddr %08lx\n", | 
|  | (ulong) pfn_to_kaddr(max_low_pfn)); | 
|  |  | 
|  | printk(KERN_DEBUG "High memory starts at vaddr %08lx\n", | 
|  | (ulong) pfn_to_kaddr(highstart_pfn)); | 
|  |  | 
|  | setup_bootmem_allocator(); | 
|  | } |