|  | /* | 
|  | * Handle caching attributes in page tables (PAT) | 
|  | * | 
|  | * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> | 
|  | *          Suresh B Siddha <suresh.b.siddha@intel.com> | 
|  | * | 
|  | * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen. | 
|  | */ | 
|  |  | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/rbtree.h> | 
|  |  | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/x86_init.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/fcntl.h> | 
|  | #include <asm/e820.h> | 
|  | #include <asm/mtrr.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/msr.h> | 
|  | #include <asm/pat.h> | 
|  | #include <asm/io.h> | 
|  |  | 
|  | #include "pat_internal.h" | 
|  |  | 
|  | #ifdef CONFIG_X86_PAT | 
|  | int __read_mostly pat_enabled = 1; | 
|  |  | 
|  | static inline void pat_disable(const char *reason) | 
|  | { | 
|  | pat_enabled = 0; | 
|  | printk(KERN_INFO "%s\n", reason); | 
|  | } | 
|  |  | 
|  | static int __init nopat(char *str) | 
|  | { | 
|  | pat_disable("PAT support disabled."); | 
|  | return 0; | 
|  | } | 
|  | early_param("nopat", nopat); | 
|  | #else | 
|  | static inline void pat_disable(const char *reason) | 
|  | { | 
|  | (void)reason; | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | int pat_debug_enable; | 
|  |  | 
|  | static int __init pat_debug_setup(char *str) | 
|  | { | 
|  | pat_debug_enable = 1; | 
|  | return 0; | 
|  | } | 
|  | __setup("debugpat", pat_debug_setup); | 
|  |  | 
|  | static u64 __read_mostly boot_pat_state; | 
|  |  | 
|  | enum { | 
|  | PAT_UC = 0,		/* uncached */ | 
|  | PAT_WC = 1,		/* Write combining */ | 
|  | PAT_WT = 4,		/* Write Through */ | 
|  | PAT_WP = 5,		/* Write Protected */ | 
|  | PAT_WB = 6,		/* Write Back (default) */ | 
|  | PAT_UC_MINUS = 7,	/* UC, but can be overriden by MTRR */ | 
|  | }; | 
|  |  | 
|  | #define PAT(x, y)	((u64)PAT_ ## y << ((x)*8)) | 
|  |  | 
|  | void pat_init(void) | 
|  | { | 
|  | u64 pat; | 
|  | bool boot_cpu = !boot_pat_state; | 
|  |  | 
|  | if (!pat_enabled) | 
|  | return; | 
|  |  | 
|  | if (!cpu_has_pat) { | 
|  | if (!boot_pat_state) { | 
|  | pat_disable("PAT not supported by CPU."); | 
|  | return; | 
|  | } else { | 
|  | /* | 
|  | * If this happens we are on a secondary CPU, but | 
|  | * switched to PAT on the boot CPU. We have no way to | 
|  | * undo PAT. | 
|  | */ | 
|  | printk(KERN_ERR "PAT enabled, " | 
|  | "but not supported by secondary CPU\n"); | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Set PWT to Write-Combining. All other bits stay the same */ | 
|  | /* | 
|  | * PTE encoding used in Linux: | 
|  | *      PAT | 
|  | *      |PCD | 
|  | *      ||PWT | 
|  | *      ||| | 
|  | *      000 WB		_PAGE_CACHE_WB | 
|  | *      001 WC		_PAGE_CACHE_WC | 
|  | *      010 UC-		_PAGE_CACHE_UC_MINUS | 
|  | *      011 UC		_PAGE_CACHE_UC | 
|  | * PAT bit unused | 
|  | */ | 
|  | pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) | | 
|  | PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC); | 
|  |  | 
|  | /* Boot CPU check */ | 
|  | if (!boot_pat_state) | 
|  | rdmsrl(MSR_IA32_CR_PAT, boot_pat_state); | 
|  |  | 
|  | wrmsrl(MSR_IA32_CR_PAT, pat); | 
|  |  | 
|  | if (boot_cpu) | 
|  | printk(KERN_INFO "x86 PAT enabled: cpu %d, old 0x%Lx, new 0x%Lx\n", | 
|  | smp_processor_id(), boot_pat_state, pat); | 
|  | } | 
|  |  | 
|  | #undef PAT | 
|  |  | 
|  | static DEFINE_SPINLOCK(memtype_lock);	/* protects memtype accesses */ | 
|  |  | 
|  | /* | 
|  | * Does intersection of PAT memory type and MTRR memory type and returns | 
|  | * the resulting memory type as PAT understands it. | 
|  | * (Type in pat and mtrr will not have same value) | 
|  | * The intersection is based on "Effective Memory Type" tables in IA-32 | 
|  | * SDM vol 3a | 
|  | */ | 
|  | static unsigned long pat_x_mtrr_type(u64 start, u64 end, unsigned long req_type) | 
|  | { | 
|  | /* | 
|  | * Look for MTRR hint to get the effective type in case where PAT | 
|  | * request is for WB. | 
|  | */ | 
|  | if (req_type == _PAGE_CACHE_WB) { | 
|  | u8 mtrr_type; | 
|  |  | 
|  | mtrr_type = mtrr_type_lookup(start, end); | 
|  | if (mtrr_type != MTRR_TYPE_WRBACK) | 
|  | return _PAGE_CACHE_UC_MINUS; | 
|  |  | 
|  | return _PAGE_CACHE_WB; | 
|  | } | 
|  |  | 
|  | return req_type; | 
|  | } | 
|  |  | 
|  | static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end) | 
|  | { | 
|  | int ram_page = 0, not_rampage = 0; | 
|  | unsigned long page_nr; | 
|  |  | 
|  | for (page_nr = (start >> PAGE_SHIFT); page_nr < (end >> PAGE_SHIFT); | 
|  | ++page_nr) { | 
|  | /* | 
|  | * For legacy reasons, physical address range in the legacy ISA | 
|  | * region is tracked as non-RAM. This will allow users of | 
|  | * /dev/mem to map portions of legacy ISA region, even when | 
|  | * some of those portions are listed(or not even listed) with | 
|  | * different e820 types(RAM/reserved/..) | 
|  | */ | 
|  | if (page_nr >= (ISA_END_ADDRESS >> PAGE_SHIFT) && | 
|  | page_is_ram(page_nr)) | 
|  | ram_page = 1; | 
|  | else | 
|  | not_rampage = 1; | 
|  |  | 
|  | if (ram_page == not_rampage) | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return ram_page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For RAM pages, we use page flags to mark the pages with appropriate type. | 
|  | * Here we do two pass: | 
|  | * - Find the memtype of all the pages in the range, look for any conflicts | 
|  | * - In case of no conflicts, set the new memtype for pages in the range | 
|  | */ | 
|  | static int reserve_ram_pages_type(u64 start, u64 end, unsigned long req_type, | 
|  | unsigned long *new_type) | 
|  | { | 
|  | struct page *page; | 
|  | u64 pfn; | 
|  |  | 
|  | if (req_type == _PAGE_CACHE_UC) { | 
|  | /* We do not support strong UC */ | 
|  | WARN_ON_ONCE(1); | 
|  | req_type = _PAGE_CACHE_UC_MINUS; | 
|  | } | 
|  |  | 
|  | for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) { | 
|  | unsigned long type; | 
|  |  | 
|  | page = pfn_to_page(pfn); | 
|  | type = get_page_memtype(page); | 
|  | if (type != -1) { | 
|  | printk(KERN_INFO "reserve_ram_pages_type failed " | 
|  | "0x%Lx-0x%Lx, track 0x%lx, req 0x%lx\n", | 
|  | start, end, type, req_type); | 
|  | if (new_type) | 
|  | *new_type = type; | 
|  |  | 
|  | return -EBUSY; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (new_type) | 
|  | *new_type = req_type; | 
|  |  | 
|  | for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) { | 
|  | page = pfn_to_page(pfn); | 
|  | set_page_memtype(page, req_type); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int free_ram_pages_type(u64 start, u64 end) | 
|  | { | 
|  | struct page *page; | 
|  | u64 pfn; | 
|  |  | 
|  | for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) { | 
|  | page = pfn_to_page(pfn); | 
|  | set_page_memtype(page, -1); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * req_type typically has one of the: | 
|  | * - _PAGE_CACHE_WB | 
|  | * - _PAGE_CACHE_WC | 
|  | * - _PAGE_CACHE_UC_MINUS | 
|  | * - _PAGE_CACHE_UC | 
|  | * | 
|  | * If new_type is NULL, function will return an error if it cannot reserve the | 
|  | * region with req_type. If new_type is non-NULL, function will return | 
|  | * available type in new_type in case of no error. In case of any error | 
|  | * it will return a negative return value. | 
|  | */ | 
|  | int reserve_memtype(u64 start, u64 end, unsigned long req_type, | 
|  | unsigned long *new_type) | 
|  | { | 
|  | struct memtype *new; | 
|  | unsigned long actual_type; | 
|  | int is_range_ram; | 
|  | int err = 0; | 
|  |  | 
|  | BUG_ON(start >= end); /* end is exclusive */ | 
|  |  | 
|  | if (!pat_enabled) { | 
|  | /* This is identical to page table setting without PAT */ | 
|  | if (new_type) { | 
|  | if (req_type == _PAGE_CACHE_WC) | 
|  | *new_type = _PAGE_CACHE_UC_MINUS; | 
|  | else | 
|  | *new_type = req_type & _PAGE_CACHE_MASK; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Low ISA region is always mapped WB in page table. No need to track */ | 
|  | if (x86_platform.is_untracked_pat_range(start, end)) { | 
|  | if (new_type) | 
|  | *new_type = _PAGE_CACHE_WB; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Call mtrr_lookup to get the type hint. This is an | 
|  | * optimization for /dev/mem mmap'ers into WB memory (BIOS | 
|  | * tools and ACPI tools). Use WB request for WB memory and use | 
|  | * UC_MINUS otherwise. | 
|  | */ | 
|  | actual_type = pat_x_mtrr_type(start, end, req_type & _PAGE_CACHE_MASK); | 
|  |  | 
|  | if (new_type) | 
|  | *new_type = actual_type; | 
|  |  | 
|  | is_range_ram = pat_pagerange_is_ram(start, end); | 
|  | if (is_range_ram == 1) { | 
|  |  | 
|  | err = reserve_ram_pages_type(start, end, req_type, new_type); | 
|  |  | 
|  | return err; | 
|  | } else if (is_range_ram < 0) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | new  = kzalloc(sizeof(struct memtype), GFP_KERNEL); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  |  | 
|  | new->start	= start; | 
|  | new->end	= end; | 
|  | new->type	= actual_type; | 
|  |  | 
|  | spin_lock(&memtype_lock); | 
|  |  | 
|  | err = rbt_memtype_check_insert(new, new_type); | 
|  | if (err) { | 
|  | printk(KERN_INFO "reserve_memtype failed 0x%Lx-0x%Lx, " | 
|  | "track %s, req %s\n", | 
|  | start, end, cattr_name(new->type), cattr_name(req_type)); | 
|  | kfree(new); | 
|  | spin_unlock(&memtype_lock); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | spin_unlock(&memtype_lock); | 
|  |  | 
|  | dprintk("reserve_memtype added 0x%Lx-0x%Lx, track %s, req %s, ret %s\n", | 
|  | start, end, cattr_name(new->type), cattr_name(req_type), | 
|  | new_type ? cattr_name(*new_type) : "-"); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int free_memtype(u64 start, u64 end) | 
|  | { | 
|  | int err = -EINVAL; | 
|  | int is_range_ram; | 
|  | struct memtype *entry; | 
|  |  | 
|  | if (!pat_enabled) | 
|  | return 0; | 
|  |  | 
|  | /* Low ISA region is always mapped WB. No need to track */ | 
|  | if (x86_platform.is_untracked_pat_range(start, end)) | 
|  | return 0; | 
|  |  | 
|  | is_range_ram = pat_pagerange_is_ram(start, end); | 
|  | if (is_range_ram == 1) { | 
|  |  | 
|  | err = free_ram_pages_type(start, end); | 
|  |  | 
|  | return err; | 
|  | } else if (is_range_ram < 0) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | spin_lock(&memtype_lock); | 
|  | entry = rbt_memtype_erase(start, end); | 
|  | spin_unlock(&memtype_lock); | 
|  |  | 
|  | if (!entry) { | 
|  | printk(KERN_INFO "%s:%d freeing invalid memtype %Lx-%Lx\n", | 
|  | current->comm, current->pid, start, end); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | kfree(entry); | 
|  |  | 
|  | dprintk("free_memtype request 0x%Lx-0x%Lx\n", start, end); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * lookup_memtype - Looksup the memory type for a physical address | 
|  | * @paddr: physical address of which memory type needs to be looked up | 
|  | * | 
|  | * Only to be called when PAT is enabled | 
|  | * | 
|  | * Returns _PAGE_CACHE_WB, _PAGE_CACHE_WC, _PAGE_CACHE_UC_MINUS or | 
|  | * _PAGE_CACHE_UC | 
|  | */ | 
|  | static unsigned long lookup_memtype(u64 paddr) | 
|  | { | 
|  | int rettype = _PAGE_CACHE_WB; | 
|  | struct memtype *entry; | 
|  |  | 
|  | if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE)) | 
|  | return rettype; | 
|  |  | 
|  | if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) { | 
|  | struct page *page; | 
|  | page = pfn_to_page(paddr >> PAGE_SHIFT); | 
|  | rettype = get_page_memtype(page); | 
|  | /* | 
|  | * -1 from get_page_memtype() implies RAM page is in its | 
|  | * default state and not reserved, and hence of type WB | 
|  | */ | 
|  | if (rettype == -1) | 
|  | rettype = _PAGE_CACHE_WB; | 
|  |  | 
|  | return rettype; | 
|  | } | 
|  |  | 
|  | spin_lock(&memtype_lock); | 
|  |  | 
|  | entry = rbt_memtype_lookup(paddr); | 
|  | if (entry != NULL) | 
|  | rettype = entry->type; | 
|  | else | 
|  | rettype = _PAGE_CACHE_UC_MINUS; | 
|  |  | 
|  | spin_unlock(&memtype_lock); | 
|  | return rettype; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * io_reserve_memtype - Request a memory type mapping for a region of memory | 
|  | * @start: start (physical address) of the region | 
|  | * @end: end (physical address) of the region | 
|  | * @type: A pointer to memtype, with requested type. On success, requested | 
|  | * or any other compatible type that was available for the region is returned | 
|  | * | 
|  | * On success, returns 0 | 
|  | * On failure, returns non-zero | 
|  | */ | 
|  | int io_reserve_memtype(resource_size_t start, resource_size_t end, | 
|  | unsigned long *type) | 
|  | { | 
|  | resource_size_t size = end - start; | 
|  | unsigned long req_type = *type; | 
|  | unsigned long new_type; | 
|  | int ret; | 
|  |  | 
|  | WARN_ON_ONCE(iomem_map_sanity_check(start, size)); | 
|  |  | 
|  | ret = reserve_memtype(start, end, req_type, &new_type); | 
|  | if (ret) | 
|  | goto out_err; | 
|  |  | 
|  | if (!is_new_memtype_allowed(start, size, req_type, new_type)) | 
|  | goto out_free; | 
|  |  | 
|  | if (kernel_map_sync_memtype(start, size, new_type) < 0) | 
|  | goto out_free; | 
|  |  | 
|  | *type = new_type; | 
|  | return 0; | 
|  |  | 
|  | out_free: | 
|  | free_memtype(start, end); | 
|  | ret = -EBUSY; | 
|  | out_err: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * io_free_memtype - Release a memory type mapping for a region of memory | 
|  | * @start: start (physical address) of the region | 
|  | * @end: end (physical address) of the region | 
|  | */ | 
|  | void io_free_memtype(resource_size_t start, resource_size_t end) | 
|  | { | 
|  | free_memtype(start, end); | 
|  | } | 
|  |  | 
|  | pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, | 
|  | unsigned long size, pgprot_t vma_prot) | 
|  | { | 
|  | return vma_prot; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_STRICT_DEVMEM | 
|  | /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM*/ | 
|  | static inline int range_is_allowed(unsigned long pfn, unsigned long size) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  | #else | 
|  | /* This check is needed to avoid cache aliasing when PAT is enabled */ | 
|  | static inline int range_is_allowed(unsigned long pfn, unsigned long size) | 
|  | { | 
|  | u64 from = ((u64)pfn) << PAGE_SHIFT; | 
|  | u64 to = from + size; | 
|  | u64 cursor = from; | 
|  |  | 
|  | if (!pat_enabled) | 
|  | return 1; | 
|  |  | 
|  | while (cursor < to) { | 
|  | if (!devmem_is_allowed(pfn)) { | 
|  | printk(KERN_INFO | 
|  | "Program %s tried to access /dev/mem between %Lx->%Lx.\n", | 
|  | current->comm, from, to); | 
|  | return 0; | 
|  | } | 
|  | cursor += PAGE_SIZE; | 
|  | pfn++; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | #endif /* CONFIG_STRICT_DEVMEM */ | 
|  |  | 
|  | int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, | 
|  | unsigned long size, pgprot_t *vma_prot) | 
|  | { | 
|  | unsigned long flags = _PAGE_CACHE_WB; | 
|  |  | 
|  | if (!range_is_allowed(pfn, size)) | 
|  | return 0; | 
|  |  | 
|  | if (file->f_flags & O_DSYNC) | 
|  | flags = _PAGE_CACHE_UC_MINUS; | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | /* | 
|  | * On the PPro and successors, the MTRRs are used to set | 
|  | * memory types for physical addresses outside main memory, | 
|  | * so blindly setting UC or PWT on those pages is wrong. | 
|  | * For Pentiums and earlier, the surround logic should disable | 
|  | * caching for the high addresses through the KEN pin, but | 
|  | * we maintain the tradition of paranoia in this code. | 
|  | */ | 
|  | if (!pat_enabled && | 
|  | !(boot_cpu_has(X86_FEATURE_MTRR) || | 
|  | boot_cpu_has(X86_FEATURE_K6_MTRR) || | 
|  | boot_cpu_has(X86_FEATURE_CYRIX_ARR) || | 
|  | boot_cpu_has(X86_FEATURE_CENTAUR_MCR)) && | 
|  | (pfn << PAGE_SHIFT) >= __pa(high_memory)) { | 
|  | flags = _PAGE_CACHE_UC; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | *vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) | | 
|  | flags); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Change the memory type for the physial address range in kernel identity | 
|  | * mapping space if that range is a part of identity map. | 
|  | */ | 
|  | int kernel_map_sync_memtype(u64 base, unsigned long size, unsigned long flags) | 
|  | { | 
|  | unsigned long id_sz; | 
|  |  | 
|  | if (base >= __pa(high_memory)) | 
|  | return 0; | 
|  |  | 
|  | id_sz = (__pa(high_memory) < base + size) ? | 
|  | __pa(high_memory) - base : | 
|  | size; | 
|  |  | 
|  | if (ioremap_change_attr((unsigned long)__va(base), id_sz, flags) < 0) { | 
|  | printk(KERN_INFO | 
|  | "%s:%d ioremap_change_attr failed %s " | 
|  | "for %Lx-%Lx\n", | 
|  | current->comm, current->pid, | 
|  | cattr_name(flags), | 
|  | base, (unsigned long long)(base + size)); | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Internal interface to reserve a range of physical memory with prot. | 
|  | * Reserved non RAM regions only and after successful reserve_memtype, | 
|  | * this func also keeps identity mapping (if any) in sync with this new prot. | 
|  | */ | 
|  | static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot, | 
|  | int strict_prot) | 
|  | { | 
|  | int is_ram = 0; | 
|  | int ret; | 
|  | unsigned long want_flags = (pgprot_val(*vma_prot) & _PAGE_CACHE_MASK); | 
|  | unsigned long flags = want_flags; | 
|  |  | 
|  | is_ram = pat_pagerange_is_ram(paddr, paddr + size); | 
|  |  | 
|  | /* | 
|  | * reserve_pfn_range() for RAM pages. We do not refcount to keep | 
|  | * track of number of mappings of RAM pages. We can assert that | 
|  | * the type requested matches the type of first page in the range. | 
|  | */ | 
|  | if (is_ram) { | 
|  | if (!pat_enabled) | 
|  | return 0; | 
|  |  | 
|  | flags = lookup_memtype(paddr); | 
|  | if (want_flags != flags) { | 
|  | printk(KERN_WARNING | 
|  | "%s:%d map pfn RAM range req %s for %Lx-%Lx, got %s\n", | 
|  | current->comm, current->pid, | 
|  | cattr_name(want_flags), | 
|  | (unsigned long long)paddr, | 
|  | (unsigned long long)(paddr + size), | 
|  | cattr_name(flags)); | 
|  | *vma_prot = __pgprot((pgprot_val(*vma_prot) & | 
|  | (~_PAGE_CACHE_MASK)) | | 
|  | flags); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ret = reserve_memtype(paddr, paddr + size, want_flags, &flags); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (flags != want_flags) { | 
|  | if (strict_prot || | 
|  | !is_new_memtype_allowed(paddr, size, want_flags, flags)) { | 
|  | free_memtype(paddr, paddr + size); | 
|  | printk(KERN_ERR "%s:%d map pfn expected mapping type %s" | 
|  | " for %Lx-%Lx, got %s\n", | 
|  | current->comm, current->pid, | 
|  | cattr_name(want_flags), | 
|  | (unsigned long long)paddr, | 
|  | (unsigned long long)(paddr + size), | 
|  | cattr_name(flags)); | 
|  | return -EINVAL; | 
|  | } | 
|  | /* | 
|  | * We allow returning different type than the one requested in | 
|  | * non strict case. | 
|  | */ | 
|  | *vma_prot = __pgprot((pgprot_val(*vma_prot) & | 
|  | (~_PAGE_CACHE_MASK)) | | 
|  | flags); | 
|  | } | 
|  |  | 
|  | if (kernel_map_sync_memtype(paddr, size, flags) < 0) { | 
|  | free_memtype(paddr, paddr + size); | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Internal interface to free a range of physical memory. | 
|  | * Frees non RAM regions only. | 
|  | */ | 
|  | static void free_pfn_range(u64 paddr, unsigned long size) | 
|  | { | 
|  | int is_ram; | 
|  |  | 
|  | is_ram = pat_pagerange_is_ram(paddr, paddr + size); | 
|  | if (is_ram == 0) | 
|  | free_memtype(paddr, paddr + size); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * track_pfn_vma_copy is called when vma that is covering the pfnmap gets | 
|  | * copied through copy_page_range(). | 
|  | * | 
|  | * If the vma has a linear pfn mapping for the entire range, we get the prot | 
|  | * from pte and reserve the entire vma range with single reserve_pfn_range call. | 
|  | */ | 
|  | int track_pfn_vma_copy(struct vm_area_struct *vma) | 
|  | { | 
|  | resource_size_t paddr; | 
|  | unsigned long prot; | 
|  | unsigned long vma_size = vma->vm_end - vma->vm_start; | 
|  | pgprot_t pgprot; | 
|  |  | 
|  | if (is_linear_pfn_mapping(vma)) { | 
|  | /* | 
|  | * reserve the whole chunk covered by vma. We need the | 
|  | * starting address and protection from pte. | 
|  | */ | 
|  | if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) { | 
|  | WARN_ON_ONCE(1); | 
|  | return -EINVAL; | 
|  | } | 
|  | pgprot = __pgprot(prot); | 
|  | return reserve_pfn_range(paddr, vma_size, &pgprot, 1); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * track_pfn_vma_new is called when a _new_ pfn mapping is being established | 
|  | * for physical range indicated by pfn and size. | 
|  | * | 
|  | * prot is passed in as a parameter for the new mapping. If the vma has a | 
|  | * linear pfn mapping for the entire range reserve the entire vma range with | 
|  | * single reserve_pfn_range call. | 
|  | */ | 
|  | int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot, | 
|  | unsigned long pfn, unsigned long size) | 
|  | { | 
|  | unsigned long flags; | 
|  | resource_size_t paddr; | 
|  | unsigned long vma_size = vma->vm_end - vma->vm_start; | 
|  |  | 
|  | if (is_linear_pfn_mapping(vma)) { | 
|  | /* reserve the whole chunk starting from vm_pgoff */ | 
|  | paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT; | 
|  | return reserve_pfn_range(paddr, vma_size, prot, 0); | 
|  | } | 
|  |  | 
|  | if (!pat_enabled) | 
|  | return 0; | 
|  |  | 
|  | /* for vm_insert_pfn and friends, we set prot based on lookup */ | 
|  | flags = lookup_memtype(pfn << PAGE_SHIFT); | 
|  | *prot = __pgprot((pgprot_val(vma->vm_page_prot) & (~_PAGE_CACHE_MASK)) | | 
|  | flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * untrack_pfn_vma is called while unmapping a pfnmap for a region. | 
|  | * untrack can be called for a specific region indicated by pfn and size or | 
|  | * can be for the entire vma (in which case size can be zero). | 
|  | */ | 
|  | void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn, | 
|  | unsigned long size) | 
|  | { | 
|  | resource_size_t paddr; | 
|  | unsigned long vma_size = vma->vm_end - vma->vm_start; | 
|  |  | 
|  | if (is_linear_pfn_mapping(vma)) { | 
|  | /* free the whole chunk starting from vm_pgoff */ | 
|  | paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT; | 
|  | free_pfn_range(paddr, vma_size); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | pgprot_t pgprot_writecombine(pgprot_t prot) | 
|  | { | 
|  | if (pat_enabled) | 
|  | return __pgprot(pgprot_val(prot) | _PAGE_CACHE_WC); | 
|  | else | 
|  | return pgprot_noncached(prot); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pgprot_writecombine); | 
|  |  | 
|  | #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT) | 
|  |  | 
|  | static struct memtype *memtype_get_idx(loff_t pos) | 
|  | { | 
|  | struct memtype *print_entry; | 
|  | int ret; | 
|  |  | 
|  | print_entry  = kzalloc(sizeof(struct memtype), GFP_KERNEL); | 
|  | if (!print_entry) | 
|  | return NULL; | 
|  |  | 
|  | spin_lock(&memtype_lock); | 
|  | ret = rbt_memtype_copy_nth_element(print_entry, pos); | 
|  | spin_unlock(&memtype_lock); | 
|  |  | 
|  | if (!ret) { | 
|  | return print_entry; | 
|  | } else { | 
|  | kfree(print_entry); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void *memtype_seq_start(struct seq_file *seq, loff_t *pos) | 
|  | { | 
|  | if (*pos == 0) { | 
|  | ++*pos; | 
|  | seq_printf(seq, "PAT memtype list:\n"); | 
|  | } | 
|  |  | 
|  | return memtype_get_idx(*pos); | 
|  | } | 
|  |  | 
|  | static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos) | 
|  | { | 
|  | ++*pos; | 
|  | return memtype_get_idx(*pos); | 
|  | } | 
|  |  | 
|  | static void memtype_seq_stop(struct seq_file *seq, void *v) | 
|  | { | 
|  | } | 
|  |  | 
|  | static int memtype_seq_show(struct seq_file *seq, void *v) | 
|  | { | 
|  | struct memtype *print_entry = (struct memtype *)v; | 
|  |  | 
|  | seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type), | 
|  | print_entry->start, print_entry->end); | 
|  | kfree(print_entry); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct seq_operations memtype_seq_ops = { | 
|  | .start = memtype_seq_start, | 
|  | .next  = memtype_seq_next, | 
|  | .stop  = memtype_seq_stop, | 
|  | .show  = memtype_seq_show, | 
|  | }; | 
|  |  | 
|  | static int memtype_seq_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return seq_open(file, &memtype_seq_ops); | 
|  | } | 
|  |  | 
|  | static const struct file_operations memtype_fops = { | 
|  | .open    = memtype_seq_open, | 
|  | .read    = seq_read, | 
|  | .llseek  = seq_lseek, | 
|  | .release = seq_release, | 
|  | }; | 
|  |  | 
|  | static int __init pat_memtype_list_init(void) | 
|  | { | 
|  | if (pat_enabled) { | 
|  | debugfs_create_file("pat_memtype_list", S_IRUSR, | 
|  | arch_debugfs_dir, NULL, &memtype_fops); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | late_initcall(pat_memtype_list_init); | 
|  |  | 
|  | #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */ |