|  | /* | 
|  | * drivers/mtd/nand/fsmc_nand.c | 
|  | * | 
|  | * ST Microelectronics | 
|  | * Flexible Static Memory Controller (FSMC) | 
|  | * Driver for NAND portions | 
|  | * | 
|  | * Copyright © 2010 ST Microelectronics | 
|  | * Vipin Kumar <vipin.kumar@st.com> | 
|  | * Ashish Priyadarshi | 
|  | * | 
|  | * Based on drivers/mtd/nand/nomadik_nand.c | 
|  | * | 
|  | * This file is licensed under the terms of the GNU General Public | 
|  | * License version 2. This program is licensed "as is" without any | 
|  | * warranty of any kind, whether express or implied. | 
|  | */ | 
|  |  | 
|  | #include <linux/clk.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/resource.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/mtd/mtd.h> | 
|  | #include <linux/mtd/nand.h> | 
|  | #include <linux/mtd/nand_ecc.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/mtd/partitions.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/mtd/fsmc.h> | 
|  | #include <linux/amba/bus.h> | 
|  | #include <mtd/mtd-abi.h> | 
|  |  | 
|  | static struct nand_ecclayout fsmc_ecc1_layout = { | 
|  | .eccbytes = 24, | 
|  | .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52, | 
|  | 66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116}, | 
|  | .oobfree = { | 
|  | {.offset = 8, .length = 8}, | 
|  | {.offset = 24, .length = 8}, | 
|  | {.offset = 40, .length = 8}, | 
|  | {.offset = 56, .length = 8}, | 
|  | {.offset = 72, .length = 8}, | 
|  | {.offset = 88, .length = 8}, | 
|  | {.offset = 104, .length = 8}, | 
|  | {.offset = 120, .length = 8} | 
|  | } | 
|  | }; | 
|  |  | 
|  | static struct nand_ecclayout fsmc_ecc4_lp_layout = { | 
|  | .eccbytes = 104, | 
|  | .eccpos = {  2,   3,   4,   5,   6,   7,   8, | 
|  | 9,  10,  11,  12,  13,  14, | 
|  | 18,  19,  20,  21,  22,  23,  24, | 
|  | 25,  26,  27,  28,  29,  30, | 
|  | 34,  35,  36,  37,  38,  39,  40, | 
|  | 41,  42,  43,  44,  45,  46, | 
|  | 50,  51,  52,  53,  54,  55,  56, | 
|  | 57,  58,  59,  60,  61,  62, | 
|  | 66,  67,  68,  69,  70,  71,  72, | 
|  | 73,  74,  75,  76,  77,  78, | 
|  | 82,  83,  84,  85,  86,  87,  88, | 
|  | 89,  90,  91,  92,  93,  94, | 
|  | 98,  99, 100, 101, 102, 103, 104, | 
|  | 105, 106, 107, 108, 109, 110, | 
|  | 114, 115, 116, 117, 118, 119, 120, | 
|  | 121, 122, 123, 124, 125, 126 | 
|  | }, | 
|  | .oobfree = { | 
|  | {.offset = 15, .length = 3}, | 
|  | {.offset = 31, .length = 3}, | 
|  | {.offset = 47, .length = 3}, | 
|  | {.offset = 63, .length = 3}, | 
|  | {.offset = 79, .length = 3}, | 
|  | {.offset = 95, .length = 3}, | 
|  | {.offset = 111, .length = 3}, | 
|  | {.offset = 127, .length = 1} | 
|  | } | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * ECC placement definitions in oobfree type format. | 
|  | * There are 13 bytes of ecc for every 512 byte block and it has to be read | 
|  | * consecutively and immediately after the 512 byte data block for hardware to | 
|  | * generate the error bit offsets in 512 byte data. | 
|  | * Managing the ecc bytes in the following way makes it easier for software to | 
|  | * read ecc bytes consecutive to data bytes. This way is similar to | 
|  | * oobfree structure maintained already in generic nand driver | 
|  | */ | 
|  | static struct fsmc_eccplace fsmc_ecc4_lp_place = { | 
|  | .eccplace = { | 
|  | {.offset = 2, .length = 13}, | 
|  | {.offset = 18, .length = 13}, | 
|  | {.offset = 34, .length = 13}, | 
|  | {.offset = 50, .length = 13}, | 
|  | {.offset = 66, .length = 13}, | 
|  | {.offset = 82, .length = 13}, | 
|  | {.offset = 98, .length = 13}, | 
|  | {.offset = 114, .length = 13} | 
|  | } | 
|  | }; | 
|  |  | 
|  | static struct nand_ecclayout fsmc_ecc4_sp_layout = { | 
|  | .eccbytes = 13, | 
|  | .eccpos = { 0,  1,  2,  3,  6,  7, 8, | 
|  | 9, 10, 11, 12, 13, 14 | 
|  | }, | 
|  | .oobfree = { | 
|  | {.offset = 15, .length = 1}, | 
|  | } | 
|  | }; | 
|  |  | 
|  | static struct fsmc_eccplace fsmc_ecc4_sp_place = { | 
|  | .eccplace = { | 
|  | {.offset = 0, .length = 4}, | 
|  | {.offset = 6, .length = 9} | 
|  | } | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Default partition tables to be used if the partition information not | 
|  | * provided through platform data. | 
|  | * | 
|  | * Default partition layout for small page(= 512 bytes) devices | 
|  | * Size for "Root file system" is updated in driver based on actual device size | 
|  | */ | 
|  | static struct mtd_partition partition_info_16KB_blk[] = { | 
|  | { | 
|  | .name = "X-loader", | 
|  | .offset = 0, | 
|  | .size = 4*0x4000, | 
|  | }, | 
|  | { | 
|  | .name = "U-Boot", | 
|  | .offset = 0x10000, | 
|  | .size = 20*0x4000, | 
|  | }, | 
|  | { | 
|  | .name = "Kernel", | 
|  | .offset = 0x60000, | 
|  | .size = 256*0x4000, | 
|  | }, | 
|  | { | 
|  | .name = "Root File System", | 
|  | .offset = 0x460000, | 
|  | .size = MTDPART_SIZ_FULL, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Default partition layout for large page(> 512 bytes) devices | 
|  | * Size for "Root file system" is updated in driver based on actual device size | 
|  | */ | 
|  | static struct mtd_partition partition_info_128KB_blk[] = { | 
|  | { | 
|  | .name = "X-loader", | 
|  | .offset = 0, | 
|  | .size = 4*0x20000, | 
|  | }, | 
|  | { | 
|  | .name = "U-Boot", | 
|  | .offset = 0x80000, | 
|  | .size = 12*0x20000, | 
|  | }, | 
|  | { | 
|  | .name = "Kernel", | 
|  | .offset = 0x200000, | 
|  | .size = 48*0x20000, | 
|  | }, | 
|  | { | 
|  | .name = "Root File System", | 
|  | .offset = 0x800000, | 
|  | .size = MTDPART_SIZ_FULL, | 
|  | }, | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * struct fsmc_nand_data - structure for FSMC NAND device state | 
|  | * | 
|  | * @pid:		Part ID on the AMBA PrimeCell format | 
|  | * @mtd:		MTD info for a NAND flash. | 
|  | * @nand:		Chip related info for a NAND flash. | 
|  | * | 
|  | * @ecc_place:		ECC placing locations in oobfree type format. | 
|  | * @bank:		Bank number for probed device. | 
|  | * @clk:		Clock structure for FSMC. | 
|  | * | 
|  | * @data_va:		NAND port for Data. | 
|  | * @cmd_va:		NAND port for Command. | 
|  | * @addr_va:		NAND port for Address. | 
|  | * @regs_va:		FSMC regs base address. | 
|  | */ | 
|  | struct fsmc_nand_data { | 
|  | u32			pid; | 
|  | struct mtd_info		mtd; | 
|  | struct nand_chip	nand; | 
|  |  | 
|  | struct fsmc_eccplace	*ecc_place; | 
|  | unsigned int		bank; | 
|  | struct clk		*clk; | 
|  |  | 
|  | struct resource		*resregs; | 
|  | struct resource		*rescmd; | 
|  | struct resource		*resaddr; | 
|  | struct resource		*resdata; | 
|  |  | 
|  | void __iomem		*data_va; | 
|  | void __iomem		*cmd_va; | 
|  | void __iomem		*addr_va; | 
|  | void __iomem		*regs_va; | 
|  |  | 
|  | void			(*select_chip)(uint32_t bank, uint32_t busw); | 
|  | }; | 
|  |  | 
|  | /* Assert CS signal based on chipnr */ | 
|  | static void fsmc_select_chip(struct mtd_info *mtd, int chipnr) | 
|  | { | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | struct fsmc_nand_data *host; | 
|  |  | 
|  | host = container_of(mtd, struct fsmc_nand_data, mtd); | 
|  |  | 
|  | switch (chipnr) { | 
|  | case -1: | 
|  | chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); | 
|  | break; | 
|  | case 0: | 
|  | case 1: | 
|  | case 2: | 
|  | case 3: | 
|  | if (host->select_chip) | 
|  | host->select_chip(chipnr, | 
|  | chip->options & NAND_BUSWIDTH_16); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fsmc_cmd_ctrl - For facilitaing Hardware access | 
|  | * This routine allows hardware specific access to control-lines(ALE,CLE) | 
|  | */ | 
|  | static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) | 
|  | { | 
|  | struct nand_chip *this = mtd->priv; | 
|  | struct fsmc_nand_data *host = container_of(mtd, | 
|  | struct fsmc_nand_data, mtd); | 
|  | struct fsmc_regs *regs = host->regs_va; | 
|  | unsigned int bank = host->bank; | 
|  |  | 
|  | if (ctrl & NAND_CTRL_CHANGE) { | 
|  | if (ctrl & NAND_CLE) { | 
|  | this->IO_ADDR_R = (void __iomem *)host->cmd_va; | 
|  | this->IO_ADDR_W = (void __iomem *)host->cmd_va; | 
|  | } else if (ctrl & NAND_ALE) { | 
|  | this->IO_ADDR_R = (void __iomem *)host->addr_va; | 
|  | this->IO_ADDR_W = (void __iomem *)host->addr_va; | 
|  | } else { | 
|  | this->IO_ADDR_R = (void __iomem *)host->data_va; | 
|  | this->IO_ADDR_W = (void __iomem *)host->data_va; | 
|  | } | 
|  |  | 
|  | if (ctrl & NAND_NCE) { | 
|  | writel(readl(®s->bank_regs[bank].pc) | FSMC_ENABLE, | 
|  | ®s->bank_regs[bank].pc); | 
|  | } else { | 
|  | writel(readl(®s->bank_regs[bank].pc) & ~FSMC_ENABLE, | 
|  | ®s->bank_regs[bank].pc); | 
|  | } | 
|  | } | 
|  |  | 
|  | mb(); | 
|  |  | 
|  | if (cmd != NAND_CMD_NONE) | 
|  | writeb(cmd, this->IO_ADDR_W); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine | 
|  | * | 
|  | * This routine initializes timing parameters related to NAND memory access in | 
|  | * FSMC registers | 
|  | */ | 
|  | static void __init fsmc_nand_setup(struct fsmc_regs *regs, uint32_t bank, | 
|  | uint32_t busw) | 
|  | { | 
|  | uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON; | 
|  |  | 
|  | if (busw) | 
|  | writel(value | FSMC_DEVWID_16, ®s->bank_regs[bank].pc); | 
|  | else | 
|  | writel(value | FSMC_DEVWID_8, ®s->bank_regs[bank].pc); | 
|  |  | 
|  | writel(readl(®s->bank_regs[bank].pc) | FSMC_TCLR_1 | FSMC_TAR_1, | 
|  | ®s->bank_regs[bank].pc); | 
|  | writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0, | 
|  | ®s->bank_regs[bank].comm); | 
|  | writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0, | 
|  | ®s->bank_regs[bank].attrib); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers | 
|  | */ | 
|  | static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode) | 
|  | { | 
|  | struct fsmc_nand_data *host = container_of(mtd, | 
|  | struct fsmc_nand_data, mtd); | 
|  | struct fsmc_regs *regs = host->regs_va; | 
|  | uint32_t bank = host->bank; | 
|  |  | 
|  | writel(readl(®s->bank_regs[bank].pc) & ~FSMC_ECCPLEN_256, | 
|  | ®s->bank_regs[bank].pc); | 
|  | writel(readl(®s->bank_regs[bank].pc) & ~FSMC_ECCEN, | 
|  | ®s->bank_regs[bank].pc); | 
|  | writel(readl(®s->bank_regs[bank].pc) | FSMC_ECCEN, | 
|  | ®s->bank_regs[bank].pc); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by | 
|  | * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to | 
|  | * max of 8-bits) | 
|  | */ | 
|  | static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data, | 
|  | uint8_t *ecc) | 
|  | { | 
|  | struct fsmc_nand_data *host = container_of(mtd, | 
|  | struct fsmc_nand_data, mtd); | 
|  | struct fsmc_regs *regs = host->regs_va; | 
|  | uint32_t bank = host->bank; | 
|  | uint32_t ecc_tmp; | 
|  | unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT; | 
|  |  | 
|  | do { | 
|  | if (readl(®s->bank_regs[bank].sts) & FSMC_CODE_RDY) | 
|  | break; | 
|  | else | 
|  | cond_resched(); | 
|  | } while (!time_after_eq(jiffies, deadline)); | 
|  |  | 
|  | ecc_tmp = readl(®s->bank_regs[bank].ecc1); | 
|  | ecc[0] = (uint8_t) (ecc_tmp >> 0); | 
|  | ecc[1] = (uint8_t) (ecc_tmp >> 8); | 
|  | ecc[2] = (uint8_t) (ecc_tmp >> 16); | 
|  | ecc[3] = (uint8_t) (ecc_tmp >> 24); | 
|  |  | 
|  | ecc_tmp = readl(®s->bank_regs[bank].ecc2); | 
|  | ecc[4] = (uint8_t) (ecc_tmp >> 0); | 
|  | ecc[5] = (uint8_t) (ecc_tmp >> 8); | 
|  | ecc[6] = (uint8_t) (ecc_tmp >> 16); | 
|  | ecc[7] = (uint8_t) (ecc_tmp >> 24); | 
|  |  | 
|  | ecc_tmp = readl(®s->bank_regs[bank].ecc3); | 
|  | ecc[8] = (uint8_t) (ecc_tmp >> 0); | 
|  | ecc[9] = (uint8_t) (ecc_tmp >> 8); | 
|  | ecc[10] = (uint8_t) (ecc_tmp >> 16); | 
|  | ecc[11] = (uint8_t) (ecc_tmp >> 24); | 
|  |  | 
|  | ecc_tmp = readl(®s->bank_regs[bank].sts); | 
|  | ecc[12] = (uint8_t) (ecc_tmp >> 16); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by | 
|  | * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to | 
|  | * max of 1-bit) | 
|  | */ | 
|  | static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data, | 
|  | uint8_t *ecc) | 
|  | { | 
|  | struct fsmc_nand_data *host = container_of(mtd, | 
|  | struct fsmc_nand_data, mtd); | 
|  | struct fsmc_regs *regs = host->regs_va; | 
|  | uint32_t bank = host->bank; | 
|  | uint32_t ecc_tmp; | 
|  |  | 
|  | ecc_tmp = readl(®s->bank_regs[bank].ecc1); | 
|  | ecc[0] = (uint8_t) (ecc_tmp >> 0); | 
|  | ecc[1] = (uint8_t) (ecc_tmp >> 8); | 
|  | ecc[2] = (uint8_t) (ecc_tmp >> 16); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fsmc_read_page_hwecc | 
|  | * @mtd:	mtd info structure | 
|  | * @chip:	nand chip info structure | 
|  | * @buf:	buffer to store read data | 
|  | * @page:	page number to read | 
|  | * | 
|  | * This routine is needed for fsmc version 8 as reading from NAND chip has to be | 
|  | * performed in a strict sequence as follows: | 
|  | * data(512 byte) -> ecc(13 byte) | 
|  | * After this read, fsmc hardware generates and reports error data bits(up to a | 
|  | * max of 8 bits) | 
|  | */ | 
|  | static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, | 
|  | uint8_t *buf, int page) | 
|  | { | 
|  | struct fsmc_nand_data *host = container_of(mtd, | 
|  | struct fsmc_nand_data, mtd); | 
|  | struct fsmc_eccplace *ecc_place = host->ecc_place; | 
|  | int i, j, s, stat, eccsize = chip->ecc.size; | 
|  | int eccbytes = chip->ecc.bytes; | 
|  | int eccsteps = chip->ecc.steps; | 
|  | uint8_t *p = buf; | 
|  | uint8_t *ecc_calc = chip->buffers->ecccalc; | 
|  | uint8_t *ecc_code = chip->buffers->ecccode; | 
|  | int off, len, group = 0; | 
|  | /* | 
|  | * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we | 
|  | * end up reading 14 bytes (7 words) from oob. The local array is | 
|  | * to maintain word alignment | 
|  | */ | 
|  | uint16_t ecc_oob[7]; | 
|  | uint8_t *oob = (uint8_t *)&ecc_oob[0]; | 
|  |  | 
|  | for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) { | 
|  |  | 
|  | chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page); | 
|  | chip->ecc.hwctl(mtd, NAND_ECC_READ); | 
|  | chip->read_buf(mtd, p, eccsize); | 
|  |  | 
|  | for (j = 0; j < eccbytes;) { | 
|  | off = ecc_place->eccplace[group].offset; | 
|  | len = ecc_place->eccplace[group].length; | 
|  | group++; | 
|  |  | 
|  | /* | 
|  | * length is intentionally kept a higher multiple of 2 | 
|  | * to read at least 13 bytes even in case of 16 bit NAND | 
|  | * devices | 
|  | */ | 
|  | len = roundup(len, 2); | 
|  | chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page); | 
|  | chip->read_buf(mtd, oob + j, len); | 
|  | j += len; | 
|  | } | 
|  |  | 
|  | memcpy(&ecc_code[i], oob, 13); | 
|  | chip->ecc.calculate(mtd, p, &ecc_calc[i]); | 
|  |  | 
|  | stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); | 
|  | if (stat < 0) | 
|  | mtd->ecc_stats.failed++; | 
|  | else | 
|  | mtd->ecc_stats.corrected += stat; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fsmc_correct_data | 
|  | * @mtd:	mtd info structure | 
|  | * @dat:	buffer of read data | 
|  | * @read_ecc:	ecc read from device spare area | 
|  | * @calc_ecc:	ecc calculated from read data | 
|  | * | 
|  | * calc_ecc is a 104 bit information containing maximum of 8 error | 
|  | * offset informations of 13 bits each in 512 bytes of read data. | 
|  | */ | 
|  | static int fsmc_correct_data(struct mtd_info *mtd, uint8_t *dat, | 
|  | uint8_t *read_ecc, uint8_t *calc_ecc) | 
|  | { | 
|  | struct fsmc_nand_data *host = container_of(mtd, | 
|  | struct fsmc_nand_data, mtd); | 
|  | struct fsmc_regs *regs = host->regs_va; | 
|  | unsigned int bank = host->bank; | 
|  | uint16_t err_idx[8]; | 
|  | uint64_t ecc_data[2]; | 
|  | uint32_t num_err, i; | 
|  |  | 
|  | /* The calculated ecc is actually the correction index in data */ | 
|  | memcpy(ecc_data, calc_ecc, 13); | 
|  |  | 
|  | /* | 
|  | * ------------------- calc_ecc[] bit wise -----------|--13 bits--| | 
|  | * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--| | 
|  | * | 
|  | * calc_ecc is a 104 bit information containing maximum of 8 error | 
|  | * offset informations of 13 bits each. calc_ecc is copied into a | 
|  | * uint64_t array and error offset indexes are populated in err_idx | 
|  | * array | 
|  | */ | 
|  | for (i = 0; i < 8; i++) { | 
|  | if (i == 4) { | 
|  | err_idx[4] = ((ecc_data[1] & 0x1) << 12) | ecc_data[0]; | 
|  | ecc_data[1] >>= 1; | 
|  | continue; | 
|  | } | 
|  | err_idx[i] = (ecc_data[i/4] & 0x1FFF); | 
|  | ecc_data[i/4] >>= 13; | 
|  | } | 
|  |  | 
|  | num_err = (readl(®s->bank_regs[bank].sts) >> 10) & 0xF; | 
|  |  | 
|  | if (num_err == 0xF) | 
|  | return -EBADMSG; | 
|  |  | 
|  | i = 0; | 
|  | while (num_err--) { | 
|  | change_bit(0, (unsigned long *)&err_idx[i]); | 
|  | change_bit(1, (unsigned long *)&err_idx[i]); | 
|  |  | 
|  | if (err_idx[i] <= 512 * 8) { | 
|  | change_bit(err_idx[i], (unsigned long *)dat); | 
|  | i++; | 
|  | } | 
|  | } | 
|  | return i; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fsmc_nand_probe - Probe function | 
|  | * @pdev:       platform device structure | 
|  | */ | 
|  | static int __init fsmc_nand_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); | 
|  | struct fsmc_nand_data *host; | 
|  | struct mtd_info *mtd; | 
|  | struct nand_chip *nand; | 
|  | struct fsmc_regs *regs; | 
|  | struct resource *res; | 
|  | int ret = 0; | 
|  | u32 pid; | 
|  | int i; | 
|  |  | 
|  | if (!pdata) { | 
|  | dev_err(&pdev->dev, "platform data is NULL\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Allocate memory for the device structure (and zero it) */ | 
|  | host = kzalloc(sizeof(*host), GFP_KERNEL); | 
|  | if (!host) { | 
|  | dev_err(&pdev->dev, "failed to allocate device structure\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data"); | 
|  | if (!res) { | 
|  | ret = -EIO; | 
|  | goto err_probe1; | 
|  | } | 
|  |  | 
|  | host->resdata = request_mem_region(res->start, resource_size(res), | 
|  | pdev->name); | 
|  | if (!host->resdata) { | 
|  | ret = -EIO; | 
|  | goto err_probe1; | 
|  | } | 
|  |  | 
|  | host->data_va = ioremap(res->start, resource_size(res)); | 
|  | if (!host->data_va) { | 
|  | ret = -EIO; | 
|  | goto err_probe1; | 
|  | } | 
|  |  | 
|  | host->resaddr = request_mem_region(res->start + PLAT_NAND_ALE, | 
|  | resource_size(res), pdev->name); | 
|  | if (!host->resaddr) { | 
|  | ret = -EIO; | 
|  | goto err_probe1; | 
|  | } | 
|  |  | 
|  | host->addr_va = ioremap(res->start + PLAT_NAND_ALE, resource_size(res)); | 
|  | if (!host->addr_va) { | 
|  | ret = -EIO; | 
|  | goto err_probe1; | 
|  | } | 
|  |  | 
|  | host->rescmd = request_mem_region(res->start + PLAT_NAND_CLE, | 
|  | resource_size(res), pdev->name); | 
|  | if (!host->rescmd) { | 
|  | ret = -EIO; | 
|  | goto err_probe1; | 
|  | } | 
|  |  | 
|  | host->cmd_va = ioremap(res->start + PLAT_NAND_CLE, resource_size(res)); | 
|  | if (!host->cmd_va) { | 
|  | ret = -EIO; | 
|  | goto err_probe1; | 
|  | } | 
|  |  | 
|  | res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs"); | 
|  | if (!res) { | 
|  | ret = -EIO; | 
|  | goto err_probe1; | 
|  | } | 
|  |  | 
|  | host->resregs = request_mem_region(res->start, resource_size(res), | 
|  | pdev->name); | 
|  | if (!host->resregs) { | 
|  | ret = -EIO; | 
|  | goto err_probe1; | 
|  | } | 
|  |  | 
|  | host->regs_va = ioremap(res->start, resource_size(res)); | 
|  | if (!host->regs_va) { | 
|  | ret = -EIO; | 
|  | goto err_probe1; | 
|  | } | 
|  |  | 
|  | host->clk = clk_get(&pdev->dev, NULL); | 
|  | if (IS_ERR(host->clk)) { | 
|  | dev_err(&pdev->dev, "failed to fetch block clock\n"); | 
|  | ret = PTR_ERR(host->clk); | 
|  | host->clk = NULL; | 
|  | goto err_probe1; | 
|  | } | 
|  |  | 
|  | ret = clk_enable(host->clk); | 
|  | if (ret) | 
|  | goto err_probe1; | 
|  |  | 
|  | /* | 
|  | * This device ID is actually a common AMBA ID as used on the | 
|  | * AMBA PrimeCell bus. However it is not a PrimeCell. | 
|  | */ | 
|  | for (pid = 0, i = 0; i < 4; i++) | 
|  | pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8); | 
|  | host->pid = pid; | 
|  | dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, " | 
|  | "revision %02x, config %02x\n", | 
|  | AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid), | 
|  | AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid)); | 
|  |  | 
|  | host->bank = pdata->bank; | 
|  | host->select_chip = pdata->select_bank; | 
|  | regs = host->regs_va; | 
|  |  | 
|  | /* Link all private pointers */ | 
|  | mtd = &host->mtd; | 
|  | nand = &host->nand; | 
|  | mtd->priv = nand; | 
|  | nand->priv = host; | 
|  |  | 
|  | host->mtd.owner = THIS_MODULE; | 
|  | nand->IO_ADDR_R = host->data_va; | 
|  | nand->IO_ADDR_W = host->data_va; | 
|  | nand->cmd_ctrl = fsmc_cmd_ctrl; | 
|  | nand->chip_delay = 30; | 
|  |  | 
|  | nand->ecc.mode = NAND_ECC_HW; | 
|  | nand->ecc.hwctl = fsmc_enable_hwecc; | 
|  | nand->ecc.size = 512; | 
|  | nand->options = pdata->options; | 
|  | nand->select_chip = fsmc_select_chip; | 
|  |  | 
|  | if (pdata->width == FSMC_NAND_BW16) | 
|  | nand->options |= NAND_BUSWIDTH_16; | 
|  |  | 
|  | fsmc_nand_setup(regs, host->bank, nand->options & NAND_BUSWIDTH_16); | 
|  |  | 
|  | if (AMBA_REV_BITS(host->pid) >= 8) { | 
|  | nand->ecc.read_page = fsmc_read_page_hwecc; | 
|  | nand->ecc.calculate = fsmc_read_hwecc_ecc4; | 
|  | nand->ecc.correct = fsmc_correct_data; | 
|  | nand->ecc.bytes = 13; | 
|  | } else { | 
|  | nand->ecc.calculate = fsmc_read_hwecc_ecc1; | 
|  | nand->ecc.correct = nand_correct_data; | 
|  | nand->ecc.bytes = 3; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Scan to find existence of the device | 
|  | */ | 
|  | if (nand_scan_ident(&host->mtd, 1, NULL)) { | 
|  | ret = -ENXIO; | 
|  | dev_err(&pdev->dev, "No NAND Device found!\n"); | 
|  | goto err_probe; | 
|  | } | 
|  |  | 
|  | if (AMBA_REV_BITS(host->pid) >= 8) { | 
|  | if (host->mtd.writesize == 512) { | 
|  | nand->ecc.layout = &fsmc_ecc4_sp_layout; | 
|  | host->ecc_place = &fsmc_ecc4_sp_place; | 
|  | } else { | 
|  | nand->ecc.layout = &fsmc_ecc4_lp_layout; | 
|  | host->ecc_place = &fsmc_ecc4_lp_place; | 
|  | } | 
|  | } else { | 
|  | nand->ecc.layout = &fsmc_ecc1_layout; | 
|  | } | 
|  |  | 
|  | /* Second stage of scan to fill MTD data-structures */ | 
|  | if (nand_scan_tail(&host->mtd)) { | 
|  | ret = -ENXIO; | 
|  | goto err_probe; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The partition information can is accessed by (in the same precedence) | 
|  | * | 
|  | * command line through Bootloader, | 
|  | * platform data, | 
|  | * default partition information present in driver. | 
|  | */ | 
|  | /* | 
|  | * Check for partition info passed | 
|  | */ | 
|  | host->mtd.name = "nand"; | 
|  | ret = mtd_device_parse_register(&host->mtd, NULL, 0, | 
|  | host->mtd.size <= 0x04000000 ? | 
|  | partition_info_16KB_blk : | 
|  | partition_info_128KB_blk, | 
|  | host->mtd.size <= 0x04000000 ? | 
|  | ARRAY_SIZE(partition_info_16KB_blk) : | 
|  | ARRAY_SIZE(partition_info_128KB_blk)); | 
|  | if (ret) | 
|  | goto err_probe; | 
|  |  | 
|  | platform_set_drvdata(pdev, host); | 
|  | dev_info(&pdev->dev, "FSMC NAND driver registration successful\n"); | 
|  | return 0; | 
|  |  | 
|  | err_probe: | 
|  | clk_disable(host->clk); | 
|  | err_probe1: | 
|  | if (host->clk) | 
|  | clk_put(host->clk); | 
|  | if (host->regs_va) | 
|  | iounmap(host->regs_va); | 
|  | if (host->resregs) | 
|  | release_mem_region(host->resregs->start, | 
|  | resource_size(host->resregs)); | 
|  | if (host->cmd_va) | 
|  | iounmap(host->cmd_va); | 
|  | if (host->rescmd) | 
|  | release_mem_region(host->rescmd->start, | 
|  | resource_size(host->rescmd)); | 
|  | if (host->addr_va) | 
|  | iounmap(host->addr_va); | 
|  | if (host->resaddr) | 
|  | release_mem_region(host->resaddr->start, | 
|  | resource_size(host->resaddr)); | 
|  | if (host->data_va) | 
|  | iounmap(host->data_va); | 
|  | if (host->resdata) | 
|  | release_mem_region(host->resdata->start, | 
|  | resource_size(host->resdata)); | 
|  |  | 
|  | kfree(host); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clean up routine | 
|  | */ | 
|  | static int fsmc_nand_remove(struct platform_device *pdev) | 
|  | { | 
|  | struct fsmc_nand_data *host = platform_get_drvdata(pdev); | 
|  |  | 
|  | platform_set_drvdata(pdev, NULL); | 
|  |  | 
|  | if (host) { | 
|  | nand_release(&host->mtd); | 
|  | clk_disable(host->clk); | 
|  | clk_put(host->clk); | 
|  |  | 
|  | iounmap(host->regs_va); | 
|  | release_mem_region(host->resregs->start, | 
|  | resource_size(host->resregs)); | 
|  | iounmap(host->cmd_va); | 
|  | release_mem_region(host->rescmd->start, | 
|  | resource_size(host->rescmd)); | 
|  | iounmap(host->addr_va); | 
|  | release_mem_region(host->resaddr->start, | 
|  | resource_size(host->resaddr)); | 
|  | iounmap(host->data_va); | 
|  | release_mem_region(host->resdata->start, | 
|  | resource_size(host->resdata)); | 
|  |  | 
|  | kfree(host); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | static int fsmc_nand_suspend(struct device *dev) | 
|  | { | 
|  | struct fsmc_nand_data *host = dev_get_drvdata(dev); | 
|  | if (host) | 
|  | clk_disable(host->clk); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int fsmc_nand_resume(struct device *dev) | 
|  | { | 
|  | struct fsmc_nand_data *host = dev_get_drvdata(dev); | 
|  | if (host) | 
|  | clk_enable(host->clk); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct dev_pm_ops fsmc_nand_pm_ops = { | 
|  | .suspend = fsmc_nand_suspend, | 
|  | .resume = fsmc_nand_resume, | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | static struct platform_driver fsmc_nand_driver = { | 
|  | .remove = fsmc_nand_remove, | 
|  | .driver = { | 
|  | .owner = THIS_MODULE, | 
|  | .name = "fsmc-nand", | 
|  | #ifdef CONFIG_PM | 
|  | .pm = &fsmc_nand_pm_ops, | 
|  | #endif | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static int __init fsmc_nand_init(void) | 
|  | { | 
|  | return platform_driver_probe(&fsmc_nand_driver, | 
|  | fsmc_nand_probe); | 
|  | } | 
|  | module_init(fsmc_nand_init); | 
|  |  | 
|  | static void __exit fsmc_nand_exit(void) | 
|  | { | 
|  | platform_driver_unregister(&fsmc_nand_driver); | 
|  | } | 
|  | module_exit(fsmc_nand_exit); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi"); | 
|  | MODULE_DESCRIPTION("NAND driver for SPEAr Platforms"); |