|  | /* | 
|  | * PMC-Sierra SPC 8001 SAS/SATA based host adapters driver | 
|  | * | 
|  | * Copyright (c) 2008-2009 USI Co., Ltd. | 
|  | * All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions, and the following disclaimer, | 
|  | *    without modification. | 
|  | * 2. Redistributions in binary form must reproduce at minimum a disclaimer | 
|  | *    substantially similar to the "NO WARRANTY" disclaimer below | 
|  | *    ("Disclaimer") and any redistribution must be conditioned upon | 
|  | *    including a substantially similar Disclaimer requirement for further | 
|  | *    binary redistribution. | 
|  | * 3. Neither the names of the above-listed copyright holders nor the names | 
|  | *    of any contributors may be used to endorse or promote products derived | 
|  | *    from this software without specific prior written permission. | 
|  | * | 
|  | * Alternatively, this software may be distributed under the terms of the | 
|  | * GNU General Public License ("GPL") version 2 as published by the Free | 
|  | * Software Foundation. | 
|  | * | 
|  | * NO WARRANTY | 
|  | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
|  | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
|  | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR | 
|  | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
|  | * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
|  | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
|  | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
|  | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING | 
|  | * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | * POSSIBILITY OF SUCH DAMAGES. | 
|  | * | 
|  | */ | 
|  | #include <linux/slab.h> | 
|  | #include "pm8001_sas.h" | 
|  | #include "pm8001_hwi.h" | 
|  | #include "pm8001_chips.h" | 
|  | #include "pm8001_ctl.h" | 
|  |  | 
|  | /** | 
|  | * read_main_config_table - read the configure table and save it. | 
|  | * @pm8001_ha: our hba card information | 
|  | */ | 
|  | static void __devinit read_main_config_table(struct pm8001_hba_info *pm8001_ha) | 
|  | { | 
|  | void __iomem *address = pm8001_ha->main_cfg_tbl_addr; | 
|  | pm8001_ha->main_cfg_tbl.signature	= pm8001_mr32(address, 0x00); | 
|  | pm8001_ha->main_cfg_tbl.interface_rev	= pm8001_mr32(address, 0x04); | 
|  | pm8001_ha->main_cfg_tbl.firmware_rev	= pm8001_mr32(address, 0x08); | 
|  | pm8001_ha->main_cfg_tbl.max_out_io	= pm8001_mr32(address, 0x0C); | 
|  | pm8001_ha->main_cfg_tbl.max_sgl		= pm8001_mr32(address, 0x10); | 
|  | pm8001_ha->main_cfg_tbl.ctrl_cap_flag	= pm8001_mr32(address, 0x14); | 
|  | pm8001_ha->main_cfg_tbl.gst_offset	= pm8001_mr32(address, 0x18); | 
|  | pm8001_ha->main_cfg_tbl.inbound_queue_offset = | 
|  | pm8001_mr32(address, MAIN_IBQ_OFFSET); | 
|  | pm8001_ha->main_cfg_tbl.outbound_queue_offset = | 
|  | pm8001_mr32(address, MAIN_OBQ_OFFSET); | 
|  | pm8001_ha->main_cfg_tbl.hda_mode_flag	= | 
|  | pm8001_mr32(address, MAIN_HDA_FLAGS_OFFSET); | 
|  |  | 
|  | /* read analog Setting offset from the configuration table */ | 
|  | pm8001_ha->main_cfg_tbl.anolog_setup_table_offset = | 
|  | pm8001_mr32(address, MAIN_ANALOG_SETUP_OFFSET); | 
|  |  | 
|  | /* read Error Dump Offset and Length */ | 
|  | pm8001_ha->main_cfg_tbl.fatal_err_dump_offset0 = | 
|  | pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP0_OFFSET); | 
|  | pm8001_ha->main_cfg_tbl.fatal_err_dump_length0 = | 
|  | pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP0_LENGTH); | 
|  | pm8001_ha->main_cfg_tbl.fatal_err_dump_offset1 = | 
|  | pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP1_OFFSET); | 
|  | pm8001_ha->main_cfg_tbl.fatal_err_dump_length1 = | 
|  | pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP1_LENGTH); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * read_general_status_table - read the general status table and save it. | 
|  | * @pm8001_ha: our hba card information | 
|  | */ | 
|  | static void __devinit | 
|  | read_general_status_table(struct pm8001_hba_info *pm8001_ha) | 
|  | { | 
|  | void __iomem *address = pm8001_ha->general_stat_tbl_addr; | 
|  | pm8001_ha->gs_tbl.gst_len_mpistate	= pm8001_mr32(address, 0x00); | 
|  | pm8001_ha->gs_tbl.iq_freeze_state0	= pm8001_mr32(address, 0x04); | 
|  | pm8001_ha->gs_tbl.iq_freeze_state1	= pm8001_mr32(address, 0x08); | 
|  | pm8001_ha->gs_tbl.msgu_tcnt		= pm8001_mr32(address, 0x0C); | 
|  | pm8001_ha->gs_tbl.iop_tcnt		= pm8001_mr32(address, 0x10); | 
|  | pm8001_ha->gs_tbl.reserved		= pm8001_mr32(address, 0x14); | 
|  | pm8001_ha->gs_tbl.phy_state[0]	= pm8001_mr32(address, 0x18); | 
|  | pm8001_ha->gs_tbl.phy_state[1]	= pm8001_mr32(address, 0x1C); | 
|  | pm8001_ha->gs_tbl.phy_state[2]	= pm8001_mr32(address, 0x20); | 
|  | pm8001_ha->gs_tbl.phy_state[3]	= pm8001_mr32(address, 0x24); | 
|  | pm8001_ha->gs_tbl.phy_state[4]	= pm8001_mr32(address, 0x28); | 
|  | pm8001_ha->gs_tbl.phy_state[5]	= pm8001_mr32(address, 0x2C); | 
|  | pm8001_ha->gs_tbl.phy_state[6]	= pm8001_mr32(address, 0x30); | 
|  | pm8001_ha->gs_tbl.phy_state[7]	= pm8001_mr32(address, 0x34); | 
|  | pm8001_ha->gs_tbl.reserved1		= pm8001_mr32(address, 0x38); | 
|  | pm8001_ha->gs_tbl.reserved2		= pm8001_mr32(address, 0x3C); | 
|  | pm8001_ha->gs_tbl.reserved3		= pm8001_mr32(address, 0x40); | 
|  | pm8001_ha->gs_tbl.recover_err_info[0]	= pm8001_mr32(address, 0x44); | 
|  | pm8001_ha->gs_tbl.recover_err_info[1]	= pm8001_mr32(address, 0x48); | 
|  | pm8001_ha->gs_tbl.recover_err_info[2]	= pm8001_mr32(address, 0x4C); | 
|  | pm8001_ha->gs_tbl.recover_err_info[3]	= pm8001_mr32(address, 0x50); | 
|  | pm8001_ha->gs_tbl.recover_err_info[4]	= pm8001_mr32(address, 0x54); | 
|  | pm8001_ha->gs_tbl.recover_err_info[5]	= pm8001_mr32(address, 0x58); | 
|  | pm8001_ha->gs_tbl.recover_err_info[6]	= pm8001_mr32(address, 0x5C); | 
|  | pm8001_ha->gs_tbl.recover_err_info[7]	= pm8001_mr32(address, 0x60); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * read_inbnd_queue_table - read the inbound queue table and save it. | 
|  | * @pm8001_ha: our hba card information | 
|  | */ | 
|  | static void __devinit | 
|  | read_inbnd_queue_table(struct pm8001_hba_info *pm8001_ha) | 
|  | { | 
|  | int inbQ_num = 1; | 
|  | int i; | 
|  | void __iomem *address = pm8001_ha->inbnd_q_tbl_addr; | 
|  | for (i = 0; i < inbQ_num; i++) { | 
|  | u32 offset = i * 0x20; | 
|  | pm8001_ha->inbnd_q_tbl[i].pi_pci_bar = | 
|  | get_pci_bar_index(pm8001_mr32(address, (offset + 0x14))); | 
|  | pm8001_ha->inbnd_q_tbl[i].pi_offset = | 
|  | pm8001_mr32(address, (offset + 0x18)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * read_outbnd_queue_table - read the outbound queue table and save it. | 
|  | * @pm8001_ha: our hba card information | 
|  | */ | 
|  | static void __devinit | 
|  | read_outbnd_queue_table(struct pm8001_hba_info *pm8001_ha) | 
|  | { | 
|  | int outbQ_num = 1; | 
|  | int i; | 
|  | void __iomem *address = pm8001_ha->outbnd_q_tbl_addr; | 
|  | for (i = 0; i < outbQ_num; i++) { | 
|  | u32 offset = i * 0x24; | 
|  | pm8001_ha->outbnd_q_tbl[i].ci_pci_bar = | 
|  | get_pci_bar_index(pm8001_mr32(address, (offset + 0x14))); | 
|  | pm8001_ha->outbnd_q_tbl[i].ci_offset = | 
|  | pm8001_mr32(address, (offset + 0x18)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * init_default_table_values - init the default table. | 
|  | * @pm8001_ha: our hba card information | 
|  | */ | 
|  | static void __devinit | 
|  | init_default_table_values(struct pm8001_hba_info *pm8001_ha) | 
|  | { | 
|  | int qn = 1; | 
|  | int i; | 
|  | u32 offsetib, offsetob; | 
|  | void __iomem *addressib = pm8001_ha->inbnd_q_tbl_addr; | 
|  | void __iomem *addressob = pm8001_ha->outbnd_q_tbl_addr; | 
|  |  | 
|  | pm8001_ha->main_cfg_tbl.inbound_q_nppd_hppd			= 0; | 
|  | pm8001_ha->main_cfg_tbl.outbound_hw_event_pid0_3 		= 0; | 
|  | pm8001_ha->main_cfg_tbl.outbound_hw_event_pid4_7		= 0; | 
|  | pm8001_ha->main_cfg_tbl.outbound_ncq_event_pid0_3		= 0; | 
|  | pm8001_ha->main_cfg_tbl.outbound_ncq_event_pid4_7		= 0; | 
|  | pm8001_ha->main_cfg_tbl.outbound_tgt_ITNexus_event_pid0_3	= 0; | 
|  | pm8001_ha->main_cfg_tbl.outbound_tgt_ITNexus_event_pid4_7	= 0; | 
|  | pm8001_ha->main_cfg_tbl.outbound_tgt_ssp_event_pid0_3	= 0; | 
|  | pm8001_ha->main_cfg_tbl.outbound_tgt_ssp_event_pid4_7	= 0; | 
|  | pm8001_ha->main_cfg_tbl.outbound_tgt_smp_event_pid0_3	= 0; | 
|  | pm8001_ha->main_cfg_tbl.outbound_tgt_smp_event_pid4_7	= 0; | 
|  |  | 
|  | pm8001_ha->main_cfg_tbl.upper_event_log_addr		= | 
|  | pm8001_ha->memoryMap.region[AAP1].phys_addr_hi; | 
|  | pm8001_ha->main_cfg_tbl.lower_event_log_addr		= | 
|  | pm8001_ha->memoryMap.region[AAP1].phys_addr_lo; | 
|  | pm8001_ha->main_cfg_tbl.event_log_size	= PM8001_EVENT_LOG_SIZE; | 
|  | pm8001_ha->main_cfg_tbl.event_log_option		= 0x01; | 
|  | pm8001_ha->main_cfg_tbl.upper_iop_event_log_addr	= | 
|  | pm8001_ha->memoryMap.region[IOP].phys_addr_hi; | 
|  | pm8001_ha->main_cfg_tbl.lower_iop_event_log_addr	= | 
|  | pm8001_ha->memoryMap.region[IOP].phys_addr_lo; | 
|  | pm8001_ha->main_cfg_tbl.iop_event_log_size	= PM8001_EVENT_LOG_SIZE; | 
|  | pm8001_ha->main_cfg_tbl.iop_event_log_option		= 0x01; | 
|  | pm8001_ha->main_cfg_tbl.fatal_err_interrupt		= 0x01; | 
|  | for (i = 0; i < qn; i++) { | 
|  | pm8001_ha->inbnd_q_tbl[i].element_pri_size_cnt	= | 
|  | 0x00000100 | (0x00000040 << 16) | (0x00<<30); | 
|  | pm8001_ha->inbnd_q_tbl[i].upper_base_addr	= | 
|  | pm8001_ha->memoryMap.region[IB].phys_addr_hi; | 
|  | pm8001_ha->inbnd_q_tbl[i].lower_base_addr	= | 
|  | pm8001_ha->memoryMap.region[IB].phys_addr_lo; | 
|  | pm8001_ha->inbnd_q_tbl[i].base_virt		= | 
|  | (u8 *)pm8001_ha->memoryMap.region[IB].virt_ptr; | 
|  | pm8001_ha->inbnd_q_tbl[i].total_length		= | 
|  | pm8001_ha->memoryMap.region[IB].total_len; | 
|  | pm8001_ha->inbnd_q_tbl[i].ci_upper_base_addr	= | 
|  | pm8001_ha->memoryMap.region[CI].phys_addr_hi; | 
|  | pm8001_ha->inbnd_q_tbl[i].ci_lower_base_addr	= | 
|  | pm8001_ha->memoryMap.region[CI].phys_addr_lo; | 
|  | pm8001_ha->inbnd_q_tbl[i].ci_virt		= | 
|  | pm8001_ha->memoryMap.region[CI].virt_ptr; | 
|  | offsetib = i * 0x20; | 
|  | pm8001_ha->inbnd_q_tbl[i].pi_pci_bar		= | 
|  | get_pci_bar_index(pm8001_mr32(addressib, | 
|  | (offsetib + 0x14))); | 
|  | pm8001_ha->inbnd_q_tbl[i].pi_offset		= | 
|  | pm8001_mr32(addressib, (offsetib + 0x18)); | 
|  | pm8001_ha->inbnd_q_tbl[i].producer_idx		= 0; | 
|  | pm8001_ha->inbnd_q_tbl[i].consumer_index	= 0; | 
|  | } | 
|  | for (i = 0; i < qn; i++) { | 
|  | pm8001_ha->outbnd_q_tbl[i].element_size_cnt	= | 
|  | 256 | (64 << 16) | (1<<30); | 
|  | pm8001_ha->outbnd_q_tbl[i].upper_base_addr	= | 
|  | pm8001_ha->memoryMap.region[OB].phys_addr_hi; | 
|  | pm8001_ha->outbnd_q_tbl[i].lower_base_addr	= | 
|  | pm8001_ha->memoryMap.region[OB].phys_addr_lo; | 
|  | pm8001_ha->outbnd_q_tbl[i].base_virt		= | 
|  | (u8 *)pm8001_ha->memoryMap.region[OB].virt_ptr; | 
|  | pm8001_ha->outbnd_q_tbl[i].total_length		= | 
|  | pm8001_ha->memoryMap.region[OB].total_len; | 
|  | pm8001_ha->outbnd_q_tbl[i].pi_upper_base_addr	= | 
|  | pm8001_ha->memoryMap.region[PI].phys_addr_hi; | 
|  | pm8001_ha->outbnd_q_tbl[i].pi_lower_base_addr	= | 
|  | pm8001_ha->memoryMap.region[PI].phys_addr_lo; | 
|  | pm8001_ha->outbnd_q_tbl[i].interrup_vec_cnt_delay	= | 
|  | 0 | (10 << 16) | (0 << 24); | 
|  | pm8001_ha->outbnd_q_tbl[i].pi_virt		= | 
|  | pm8001_ha->memoryMap.region[PI].virt_ptr; | 
|  | offsetob = i * 0x24; | 
|  | pm8001_ha->outbnd_q_tbl[i].ci_pci_bar		= | 
|  | get_pci_bar_index(pm8001_mr32(addressob, | 
|  | offsetob + 0x14)); | 
|  | pm8001_ha->outbnd_q_tbl[i].ci_offset		= | 
|  | pm8001_mr32(addressob, (offsetob + 0x18)); | 
|  | pm8001_ha->outbnd_q_tbl[i].consumer_idx		= 0; | 
|  | pm8001_ha->outbnd_q_tbl[i].producer_index	= 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * update_main_config_table - update the main default table to the HBA. | 
|  | * @pm8001_ha: our hba card information | 
|  | */ | 
|  | static void __devinit | 
|  | update_main_config_table(struct pm8001_hba_info *pm8001_ha) | 
|  | { | 
|  | void __iomem *address = pm8001_ha->main_cfg_tbl_addr; | 
|  | pm8001_mw32(address, 0x24, | 
|  | pm8001_ha->main_cfg_tbl.inbound_q_nppd_hppd); | 
|  | pm8001_mw32(address, 0x28, | 
|  | pm8001_ha->main_cfg_tbl.outbound_hw_event_pid0_3); | 
|  | pm8001_mw32(address, 0x2C, | 
|  | pm8001_ha->main_cfg_tbl.outbound_hw_event_pid4_7); | 
|  | pm8001_mw32(address, 0x30, | 
|  | pm8001_ha->main_cfg_tbl.outbound_ncq_event_pid0_3); | 
|  | pm8001_mw32(address, 0x34, | 
|  | pm8001_ha->main_cfg_tbl.outbound_ncq_event_pid4_7); | 
|  | pm8001_mw32(address, 0x38, | 
|  | pm8001_ha->main_cfg_tbl.outbound_tgt_ITNexus_event_pid0_3); | 
|  | pm8001_mw32(address, 0x3C, | 
|  | pm8001_ha->main_cfg_tbl.outbound_tgt_ITNexus_event_pid4_7); | 
|  | pm8001_mw32(address, 0x40, | 
|  | pm8001_ha->main_cfg_tbl.outbound_tgt_ssp_event_pid0_3); | 
|  | pm8001_mw32(address, 0x44, | 
|  | pm8001_ha->main_cfg_tbl.outbound_tgt_ssp_event_pid4_7); | 
|  | pm8001_mw32(address, 0x48, | 
|  | pm8001_ha->main_cfg_tbl.outbound_tgt_smp_event_pid0_3); | 
|  | pm8001_mw32(address, 0x4C, | 
|  | pm8001_ha->main_cfg_tbl.outbound_tgt_smp_event_pid4_7); | 
|  | pm8001_mw32(address, 0x50, | 
|  | pm8001_ha->main_cfg_tbl.upper_event_log_addr); | 
|  | pm8001_mw32(address, 0x54, | 
|  | pm8001_ha->main_cfg_tbl.lower_event_log_addr); | 
|  | pm8001_mw32(address, 0x58, pm8001_ha->main_cfg_tbl.event_log_size); | 
|  | pm8001_mw32(address, 0x5C, pm8001_ha->main_cfg_tbl.event_log_option); | 
|  | pm8001_mw32(address, 0x60, | 
|  | pm8001_ha->main_cfg_tbl.upper_iop_event_log_addr); | 
|  | pm8001_mw32(address, 0x64, | 
|  | pm8001_ha->main_cfg_tbl.lower_iop_event_log_addr); | 
|  | pm8001_mw32(address, 0x68, pm8001_ha->main_cfg_tbl.iop_event_log_size); | 
|  | pm8001_mw32(address, 0x6C, | 
|  | pm8001_ha->main_cfg_tbl.iop_event_log_option); | 
|  | pm8001_mw32(address, 0x70, | 
|  | pm8001_ha->main_cfg_tbl.fatal_err_interrupt); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * update_inbnd_queue_table - update the inbound queue table to the HBA. | 
|  | * @pm8001_ha: our hba card information | 
|  | */ | 
|  | static void __devinit | 
|  | update_inbnd_queue_table(struct pm8001_hba_info *pm8001_ha, int number) | 
|  | { | 
|  | void __iomem *address = pm8001_ha->inbnd_q_tbl_addr; | 
|  | u16 offset = number * 0x20; | 
|  | pm8001_mw32(address, offset + 0x00, | 
|  | pm8001_ha->inbnd_q_tbl[number].element_pri_size_cnt); | 
|  | pm8001_mw32(address, offset + 0x04, | 
|  | pm8001_ha->inbnd_q_tbl[number].upper_base_addr); | 
|  | pm8001_mw32(address, offset + 0x08, | 
|  | pm8001_ha->inbnd_q_tbl[number].lower_base_addr); | 
|  | pm8001_mw32(address, offset + 0x0C, | 
|  | pm8001_ha->inbnd_q_tbl[number].ci_upper_base_addr); | 
|  | pm8001_mw32(address, offset + 0x10, | 
|  | pm8001_ha->inbnd_q_tbl[number].ci_lower_base_addr); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * update_outbnd_queue_table - update the outbound queue table to the HBA. | 
|  | * @pm8001_ha: our hba card information | 
|  | */ | 
|  | static void __devinit | 
|  | update_outbnd_queue_table(struct pm8001_hba_info *pm8001_ha, int number) | 
|  | { | 
|  | void __iomem *address = pm8001_ha->outbnd_q_tbl_addr; | 
|  | u16 offset = number * 0x24; | 
|  | pm8001_mw32(address, offset + 0x00, | 
|  | pm8001_ha->outbnd_q_tbl[number].element_size_cnt); | 
|  | pm8001_mw32(address, offset + 0x04, | 
|  | pm8001_ha->outbnd_q_tbl[number].upper_base_addr); | 
|  | pm8001_mw32(address, offset + 0x08, | 
|  | pm8001_ha->outbnd_q_tbl[number].lower_base_addr); | 
|  | pm8001_mw32(address, offset + 0x0C, | 
|  | pm8001_ha->outbnd_q_tbl[number].pi_upper_base_addr); | 
|  | pm8001_mw32(address, offset + 0x10, | 
|  | pm8001_ha->outbnd_q_tbl[number].pi_lower_base_addr); | 
|  | pm8001_mw32(address, offset + 0x1C, | 
|  | pm8001_ha->outbnd_q_tbl[number].interrup_vec_cnt_delay); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bar4_shift - function is called to shift BAR base address | 
|  | * @pm8001_ha : our hba card information | 
|  | * @shiftValue : shifting value in memory bar. | 
|  | */ | 
|  | static int bar4_shift(struct pm8001_hba_info *pm8001_ha, u32 shiftValue) | 
|  | { | 
|  | u32 regVal; | 
|  | u32 max_wait_count; | 
|  |  | 
|  | /* program the inbound AXI translation Lower Address */ | 
|  | pm8001_cw32(pm8001_ha, 1, SPC_IBW_AXI_TRANSLATION_LOW, shiftValue); | 
|  |  | 
|  | /* confirm the setting is written */ | 
|  | max_wait_count = 1 * 1000 * 1000;  /* 1 sec */ | 
|  | do { | 
|  | udelay(1); | 
|  | regVal = pm8001_cr32(pm8001_ha, 1, SPC_IBW_AXI_TRANSLATION_LOW); | 
|  | } while ((regVal != shiftValue) && (--max_wait_count)); | 
|  |  | 
|  | if (!max_wait_count) { | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("TIMEOUT:SPC_IBW_AXI_TRANSLATION_LOW" | 
|  | " = 0x%x\n", regVal)); | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mpi_set_phys_g3_with_ssc | 
|  | * @pm8001_ha: our hba card information | 
|  | * @SSCbit: set SSCbit to 0 to disable all phys ssc; 1 to enable all phys ssc. | 
|  | */ | 
|  | static void __devinit | 
|  | mpi_set_phys_g3_with_ssc(struct pm8001_hba_info *pm8001_ha, u32 SSCbit) | 
|  | { | 
|  | u32 value, offset, i; | 
|  |  | 
|  | #define SAS2_SETTINGS_LOCAL_PHY_0_3_SHIFT_ADDR 0x00030000 | 
|  | #define SAS2_SETTINGS_LOCAL_PHY_4_7_SHIFT_ADDR 0x00040000 | 
|  | #define SAS2_SETTINGS_LOCAL_PHY_0_3_OFFSET 0x1074 | 
|  | #define SAS2_SETTINGS_LOCAL_PHY_4_7_OFFSET 0x1074 | 
|  | #define PHY_G3_WITHOUT_SSC_BIT_SHIFT 12 | 
|  | #define PHY_G3_WITH_SSC_BIT_SHIFT 13 | 
|  | #define SNW3_PHY_CAPABILITIES_PARITY 31 | 
|  |  | 
|  | /* | 
|  | * Using shifted destination address 0x3_0000:0x1074 + 0x4000*N (N=0:3) | 
|  | * Using shifted destination address 0x4_0000:0x1074 + 0x4000*(N-4) (N=4:7) | 
|  | */ | 
|  | if (-1 == bar4_shift(pm8001_ha, SAS2_SETTINGS_LOCAL_PHY_0_3_SHIFT_ADDR)) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | offset = SAS2_SETTINGS_LOCAL_PHY_0_3_OFFSET + 0x4000 * i; | 
|  | pm8001_cw32(pm8001_ha, 2, offset, 0x80001501); | 
|  | } | 
|  | /* shift membase 3 for SAS2_SETTINGS_LOCAL_PHY 4 - 7 */ | 
|  | if (-1 == bar4_shift(pm8001_ha, SAS2_SETTINGS_LOCAL_PHY_4_7_SHIFT_ADDR)) | 
|  | return; | 
|  | for (i = 4; i < 8; i++) { | 
|  | offset = SAS2_SETTINGS_LOCAL_PHY_4_7_OFFSET + 0x4000 * (i-4); | 
|  | pm8001_cw32(pm8001_ha, 2, offset, 0x80001501); | 
|  | } | 
|  | /************************************************************* | 
|  | Change the SSC upspreading value to 0x0 so that upspreading is disabled. | 
|  | Device MABC SMOD0 Controls | 
|  | Address: (via MEMBASE-III): | 
|  | Using shifted destination address 0x0_0000: with Offset 0xD8 | 
|  |  | 
|  | 31:28 R/W Reserved Do not change | 
|  | 27:24 R/W SAS_SMOD_SPRDUP 0000 | 
|  | 23:20 R/W SAS_SMOD_SPRDDN 0000 | 
|  | 19:0  R/W  Reserved Do not change | 
|  | Upon power-up this register will read as 0x8990c016, | 
|  | and I would like you to change the SAS_SMOD_SPRDUP bits to 0b0000 | 
|  | so that the written value will be 0x8090c016. | 
|  | This will ensure only down-spreading SSC is enabled on the SPC. | 
|  | *************************************************************/ | 
|  | value = pm8001_cr32(pm8001_ha, 2, 0xd8); | 
|  | pm8001_cw32(pm8001_ha, 2, 0xd8, 0x8000C016); | 
|  |  | 
|  | /*set the shifted destination address to 0x0 to avoid error operation */ | 
|  | bar4_shift(pm8001_ha, 0x0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mpi_set_open_retry_interval_reg | 
|  | * @pm8001_ha: our hba card information | 
|  | * @interval - interval time for each OPEN_REJECT (RETRY). The units are in 1us. | 
|  | */ | 
|  | static void __devinit | 
|  | mpi_set_open_retry_interval_reg(struct pm8001_hba_info *pm8001_ha, | 
|  | u32 interval) | 
|  | { | 
|  | u32 offset; | 
|  | u32 value; | 
|  | u32 i; | 
|  |  | 
|  | #define OPEN_RETRY_INTERVAL_PHY_0_3_SHIFT_ADDR 0x00030000 | 
|  | #define OPEN_RETRY_INTERVAL_PHY_4_7_SHIFT_ADDR 0x00040000 | 
|  | #define OPEN_RETRY_INTERVAL_PHY_0_3_OFFSET 0x30B4 | 
|  | #define OPEN_RETRY_INTERVAL_PHY_4_7_OFFSET 0x30B4 | 
|  | #define OPEN_RETRY_INTERVAL_REG_MASK 0x0000FFFF | 
|  |  | 
|  | value = interval & OPEN_RETRY_INTERVAL_REG_MASK; | 
|  | /* shift bar and set the OPEN_REJECT(RETRY) interval time of PHY 0 -3.*/ | 
|  | if (-1 == bar4_shift(pm8001_ha, | 
|  | OPEN_RETRY_INTERVAL_PHY_0_3_SHIFT_ADDR)) | 
|  | return; | 
|  | for (i = 0; i < 4; i++) { | 
|  | offset = OPEN_RETRY_INTERVAL_PHY_0_3_OFFSET + 0x4000 * i; | 
|  | pm8001_cw32(pm8001_ha, 2, offset, value); | 
|  | } | 
|  |  | 
|  | if (-1 == bar4_shift(pm8001_ha, | 
|  | OPEN_RETRY_INTERVAL_PHY_4_7_SHIFT_ADDR)) | 
|  | return; | 
|  | for (i = 4; i < 8; i++) { | 
|  | offset = OPEN_RETRY_INTERVAL_PHY_4_7_OFFSET + 0x4000 * (i-4); | 
|  | pm8001_cw32(pm8001_ha, 2, offset, value); | 
|  | } | 
|  | /*set the shifted destination address to 0x0 to avoid error operation */ | 
|  | bar4_shift(pm8001_ha, 0x0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mpi_init_check - check firmware initialization status. | 
|  | * @pm8001_ha: our hba card information | 
|  | */ | 
|  | static int mpi_init_check(struct pm8001_hba_info *pm8001_ha) | 
|  | { | 
|  | u32 max_wait_count; | 
|  | u32 value; | 
|  | u32 gst_len_mpistate; | 
|  | /* Write bit0=1 to Inbound DoorBell Register to tell the SPC FW the | 
|  | table is updated */ | 
|  | pm8001_cw32(pm8001_ha, 0, MSGU_IBDB_SET, SPC_MSGU_CFG_TABLE_UPDATE); | 
|  | /* wait until Inbound DoorBell Clear Register toggled */ | 
|  | max_wait_count = 1 * 1000 * 1000;/* 1 sec */ | 
|  | do { | 
|  | udelay(1); | 
|  | value = pm8001_cr32(pm8001_ha, 0, MSGU_IBDB_SET); | 
|  | value &= SPC_MSGU_CFG_TABLE_UPDATE; | 
|  | } while ((value != 0) && (--max_wait_count)); | 
|  |  | 
|  | if (!max_wait_count) | 
|  | return -1; | 
|  | /* check the MPI-State for initialization */ | 
|  | gst_len_mpistate = | 
|  | pm8001_mr32(pm8001_ha->general_stat_tbl_addr, | 
|  | GST_GSTLEN_MPIS_OFFSET); | 
|  | if (GST_MPI_STATE_INIT != (gst_len_mpistate & GST_MPI_STATE_MASK)) | 
|  | return -1; | 
|  | /* check MPI Initialization error */ | 
|  | gst_len_mpistate = gst_len_mpistate >> 16; | 
|  | if (0x0000 != gst_len_mpistate) | 
|  | return -1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * check_fw_ready - The LLDD check if the FW is ready, if not, return error. | 
|  | * @pm8001_ha: our hba card information | 
|  | */ | 
|  | static int check_fw_ready(struct pm8001_hba_info *pm8001_ha) | 
|  | { | 
|  | u32 value, value1; | 
|  | u32 max_wait_count; | 
|  | /* check error state */ | 
|  | value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1); | 
|  | value1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2); | 
|  | /* check AAP error */ | 
|  | if (SCRATCH_PAD1_ERR == (value & SCRATCH_PAD_STATE_MASK)) { | 
|  | /* error state */ | 
|  | value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* check IOP error */ | 
|  | if (SCRATCH_PAD2_ERR == (value1 & SCRATCH_PAD_STATE_MASK)) { | 
|  | /* error state */ | 
|  | value1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_3); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* bit 4-31 of scratch pad1 should be zeros if it is not | 
|  | in error state*/ | 
|  | if (value & SCRATCH_PAD1_STATE_MASK) { | 
|  | /* error case */ | 
|  | pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* bit 2, 4-31 of scratch pad2 should be zeros if it is not | 
|  | in error state */ | 
|  | if (value1 & SCRATCH_PAD2_STATE_MASK) { | 
|  | /* error case */ | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | max_wait_count = 1 * 1000 * 1000;/* 1 sec timeout */ | 
|  |  | 
|  | /* wait until scratch pad 1 and 2 registers in ready state  */ | 
|  | do { | 
|  | udelay(1); | 
|  | value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1) | 
|  | & SCRATCH_PAD1_RDY; | 
|  | value1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2) | 
|  | & SCRATCH_PAD2_RDY; | 
|  | if ((--max_wait_count) == 0) | 
|  | return -1; | 
|  | } while ((value != SCRATCH_PAD1_RDY) || (value1 != SCRATCH_PAD2_RDY)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void init_pci_device_addresses(struct pm8001_hba_info *pm8001_ha) | 
|  | { | 
|  | void __iomem *base_addr; | 
|  | u32	value; | 
|  | u32	offset; | 
|  | u32	pcibar; | 
|  | u32	pcilogic; | 
|  |  | 
|  | value = pm8001_cr32(pm8001_ha, 0, 0x44); | 
|  | offset = value & 0x03FFFFFF; | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("Scratchpad 0 Offset: %x\n", offset)); | 
|  | pcilogic = (value & 0xFC000000) >> 26; | 
|  | pcibar = get_pci_bar_index(pcilogic); | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("Scratchpad 0 PCI BAR: %d\n", pcibar)); | 
|  | pm8001_ha->main_cfg_tbl_addr = base_addr = | 
|  | pm8001_ha->io_mem[pcibar].memvirtaddr + offset; | 
|  | pm8001_ha->general_stat_tbl_addr = | 
|  | base_addr + pm8001_cr32(pm8001_ha, pcibar, offset + 0x18); | 
|  | pm8001_ha->inbnd_q_tbl_addr = | 
|  | base_addr + pm8001_cr32(pm8001_ha, pcibar, offset + 0x1C); | 
|  | pm8001_ha->outbnd_q_tbl_addr = | 
|  | base_addr + pm8001_cr32(pm8001_ha, pcibar, offset + 0x20); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pm8001_chip_init - the main init function that initialize whole PM8001 chip. | 
|  | * @pm8001_ha: our hba card information | 
|  | */ | 
|  | static int __devinit pm8001_chip_init(struct pm8001_hba_info *pm8001_ha) | 
|  | { | 
|  | /* check the firmware status */ | 
|  | if (-1 == check_fw_ready(pm8001_ha)) { | 
|  | PM8001_FAIL_DBG(pm8001_ha, | 
|  | pm8001_printk("Firmware is not ready!\n")); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | /* Initialize pci space address eg: mpi offset */ | 
|  | init_pci_device_addresses(pm8001_ha); | 
|  | init_default_table_values(pm8001_ha); | 
|  | read_main_config_table(pm8001_ha); | 
|  | read_general_status_table(pm8001_ha); | 
|  | read_inbnd_queue_table(pm8001_ha); | 
|  | read_outbnd_queue_table(pm8001_ha); | 
|  | /* update main config table ,inbound table and outbound table */ | 
|  | update_main_config_table(pm8001_ha); | 
|  | update_inbnd_queue_table(pm8001_ha, 0); | 
|  | update_outbnd_queue_table(pm8001_ha, 0); | 
|  | mpi_set_phys_g3_with_ssc(pm8001_ha, 0); | 
|  | mpi_set_open_retry_interval_reg(pm8001_ha, 7); | 
|  | /* notify firmware update finished and check initialization status */ | 
|  | if (0 == mpi_init_check(pm8001_ha)) { | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("MPI initialize successful!\n")); | 
|  | } else | 
|  | return -EBUSY; | 
|  | /*This register is a 16-bit timer with a resolution of 1us. This is the | 
|  | timer used for interrupt delay/coalescing in the PCIe Application Layer. | 
|  | Zero is not a valid value. A value of 1 in the register will cause the | 
|  | interrupts to be normal. A value greater than 1 will cause coalescing | 
|  | delays.*/ | 
|  | pm8001_cw32(pm8001_ha, 1, 0x0033c0, 0x1); | 
|  | pm8001_cw32(pm8001_ha, 1, 0x0033c4, 0x0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int mpi_uninit_check(struct pm8001_hba_info *pm8001_ha) | 
|  | { | 
|  | u32 max_wait_count; | 
|  | u32 value; | 
|  | u32 gst_len_mpistate; | 
|  | init_pci_device_addresses(pm8001_ha); | 
|  | /* Write bit1=1 to Inbound DoorBell Register to tell the SPC FW the | 
|  | table is stop */ | 
|  | pm8001_cw32(pm8001_ha, 0, MSGU_IBDB_SET, SPC_MSGU_CFG_TABLE_RESET); | 
|  |  | 
|  | /* wait until Inbound DoorBell Clear Register toggled */ | 
|  | max_wait_count = 1 * 1000 * 1000;/* 1 sec */ | 
|  | do { | 
|  | udelay(1); | 
|  | value = pm8001_cr32(pm8001_ha, 0, MSGU_IBDB_SET); | 
|  | value &= SPC_MSGU_CFG_TABLE_RESET; | 
|  | } while ((value != 0) && (--max_wait_count)); | 
|  |  | 
|  | if (!max_wait_count) { | 
|  | PM8001_FAIL_DBG(pm8001_ha, | 
|  | pm8001_printk("TIMEOUT:IBDB value/=0x%x\n", value)); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* check the MPI-State for termination in progress */ | 
|  | /* wait until Inbound DoorBell Clear Register toggled */ | 
|  | max_wait_count = 1 * 1000 * 1000;  /* 1 sec */ | 
|  | do { | 
|  | udelay(1); | 
|  | gst_len_mpistate = | 
|  | pm8001_mr32(pm8001_ha->general_stat_tbl_addr, | 
|  | GST_GSTLEN_MPIS_OFFSET); | 
|  | if (GST_MPI_STATE_UNINIT == | 
|  | (gst_len_mpistate & GST_MPI_STATE_MASK)) | 
|  | break; | 
|  | } while (--max_wait_count); | 
|  | if (!max_wait_count) { | 
|  | PM8001_FAIL_DBG(pm8001_ha, | 
|  | pm8001_printk(" TIME OUT MPI State = 0x%x\n", | 
|  | gst_len_mpistate & GST_MPI_STATE_MASK)); | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * soft_reset_ready_check - Function to check FW is ready for soft reset. | 
|  | * @pm8001_ha: our hba card information | 
|  | */ | 
|  | static u32 soft_reset_ready_check(struct pm8001_hba_info *pm8001_ha) | 
|  | { | 
|  | u32 regVal, regVal1, regVal2; | 
|  | if (mpi_uninit_check(pm8001_ha) != 0) { | 
|  | PM8001_FAIL_DBG(pm8001_ha, | 
|  | pm8001_printk("MPI state is not ready\n")); | 
|  | return -1; | 
|  | } | 
|  | /* read the scratch pad 2 register bit 2 */ | 
|  | regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2) | 
|  | & SCRATCH_PAD2_FWRDY_RST; | 
|  | if (regVal == SCRATCH_PAD2_FWRDY_RST) { | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("Firmware is ready for reset .\n")); | 
|  | } else { | 
|  | /* Trigger NMI twice via RB6 */ | 
|  | if (-1 == bar4_shift(pm8001_ha, RB6_ACCESS_REG)) { | 
|  | PM8001_FAIL_DBG(pm8001_ha, | 
|  | pm8001_printk("Shift Bar4 to 0x%x failed\n", | 
|  | RB6_ACCESS_REG)); | 
|  | return -1; | 
|  | } | 
|  | pm8001_cw32(pm8001_ha, 2, SPC_RB6_OFFSET, | 
|  | RB6_MAGIC_NUMBER_RST); | 
|  | pm8001_cw32(pm8001_ha, 2, SPC_RB6_OFFSET, RB6_MAGIC_NUMBER_RST); | 
|  | /* wait for 100 ms */ | 
|  | mdelay(100); | 
|  | regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2) & | 
|  | SCRATCH_PAD2_FWRDY_RST; | 
|  | if (regVal != SCRATCH_PAD2_FWRDY_RST) { | 
|  | regVal1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1); | 
|  | regVal2 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2); | 
|  | PM8001_FAIL_DBG(pm8001_ha, | 
|  | pm8001_printk("TIMEOUT:MSGU_SCRATCH_PAD1" | 
|  | "=0x%x, MSGU_SCRATCH_PAD2=0x%x\n", | 
|  | regVal1, regVal2)); | 
|  | PM8001_FAIL_DBG(pm8001_ha, | 
|  | pm8001_printk("SCRATCH_PAD0 value = 0x%x\n", | 
|  | pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0))); | 
|  | PM8001_FAIL_DBG(pm8001_ha, | 
|  | pm8001_printk("SCRATCH_PAD3 value = 0x%x\n", | 
|  | pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_3))); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pm8001_chip_soft_rst - soft reset the PM8001 chip, so that the clear all | 
|  | * the FW register status to the originated status. | 
|  | * @pm8001_ha: our hba card information | 
|  | * @signature: signature in host scratch pad0 register. | 
|  | */ | 
|  | static int | 
|  | pm8001_chip_soft_rst(struct pm8001_hba_info *pm8001_ha, u32 signature) | 
|  | { | 
|  | u32	regVal, toggleVal; | 
|  | u32	max_wait_count; | 
|  | u32	regVal1, regVal2, regVal3; | 
|  |  | 
|  | /* step1: Check FW is ready for soft reset */ | 
|  | if (soft_reset_ready_check(pm8001_ha) != 0) { | 
|  | PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("FW is not ready\n")); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* step 2: clear NMI status register on AAP1 and IOP, write the same | 
|  | value to clear */ | 
|  | /* map 0x60000 to BAR4(0x20), BAR2(win) */ | 
|  | if (-1 == bar4_shift(pm8001_ha, MBIC_AAP1_ADDR_BASE)) { | 
|  | PM8001_FAIL_DBG(pm8001_ha, | 
|  | pm8001_printk("Shift Bar4 to 0x%x failed\n", | 
|  | MBIC_AAP1_ADDR_BASE)); | 
|  | return -1; | 
|  | } | 
|  | regVal = pm8001_cr32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_IOP); | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("MBIC - NMI Enable VPE0 (IOP)= 0x%x\n", regVal)); | 
|  | pm8001_cw32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_IOP, 0x0); | 
|  | /* map 0x70000 to BAR4(0x20), BAR2(win) */ | 
|  | if (-1 == bar4_shift(pm8001_ha, MBIC_IOP_ADDR_BASE)) { | 
|  | PM8001_FAIL_DBG(pm8001_ha, | 
|  | pm8001_printk("Shift Bar4 to 0x%x failed\n", | 
|  | MBIC_IOP_ADDR_BASE)); | 
|  | return -1; | 
|  | } | 
|  | regVal = pm8001_cr32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_AAP1); | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("MBIC - NMI Enable VPE0 (AAP1)= 0x%x\n", regVal)); | 
|  | pm8001_cw32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_AAP1, 0x0); | 
|  |  | 
|  | regVal = pm8001_cr32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT_ENABLE); | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("PCIE -Event Interrupt Enable = 0x%x\n", regVal)); | 
|  | pm8001_cw32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT_ENABLE, 0x0); | 
|  |  | 
|  | regVal = pm8001_cr32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT); | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("PCIE - Event Interrupt  = 0x%x\n", regVal)); | 
|  | pm8001_cw32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT, regVal); | 
|  |  | 
|  | regVal = pm8001_cr32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT_ENABLE); | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("PCIE -Error Interrupt Enable = 0x%x\n", regVal)); | 
|  | pm8001_cw32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT_ENABLE, 0x0); | 
|  |  | 
|  | regVal = pm8001_cr32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT); | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("PCIE - Error Interrupt = 0x%x\n", regVal)); | 
|  | pm8001_cw32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT, regVal); | 
|  |  | 
|  | /* read the scratch pad 1 register bit 2 */ | 
|  | regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1) | 
|  | & SCRATCH_PAD1_RST; | 
|  | toggleVal = regVal ^ SCRATCH_PAD1_RST; | 
|  |  | 
|  | /* set signature in host scratch pad0 register to tell SPC that the | 
|  | host performs the soft reset */ | 
|  | pm8001_cw32(pm8001_ha, 0, MSGU_HOST_SCRATCH_PAD_0, signature); | 
|  |  | 
|  | /* read required registers for confirmming */ | 
|  | /* map 0x0700000 to BAR4(0x20), BAR2(win) */ | 
|  | if (-1 == bar4_shift(pm8001_ha, GSM_ADDR_BASE)) { | 
|  | PM8001_FAIL_DBG(pm8001_ha, | 
|  | pm8001_printk("Shift Bar4 to 0x%x failed\n", | 
|  | GSM_ADDR_BASE)); | 
|  | return -1; | 
|  | } | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("GSM 0x0(0x00007b88)-GSM Configuration and" | 
|  | " Reset = 0x%x\n", | 
|  | pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET))); | 
|  |  | 
|  | /* step 3: host read GSM Configuration and Reset register */ | 
|  | regVal = pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET); | 
|  | /* Put those bits to low */ | 
|  | /* GSM XCBI offset = 0x70 0000 | 
|  | 0x00 Bit 13 COM_SLV_SW_RSTB 1 | 
|  | 0x00 Bit 12 QSSP_SW_RSTB 1 | 
|  | 0x00 Bit 11 RAAE_SW_RSTB 1 | 
|  | 0x00 Bit 9 RB_1_SW_RSTB 1 | 
|  | 0x00 Bit 8 SM_SW_RSTB 1 | 
|  | */ | 
|  | regVal &= ~(0x00003b00); | 
|  | /* host write GSM Configuration and Reset register */ | 
|  | pm8001_cw32(pm8001_ha, 2, GSM_CONFIG_RESET, regVal); | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("GSM 0x0 (0x00007b88 ==> 0x00004088) - GSM " | 
|  | "Configuration and Reset is set to = 0x%x\n", | 
|  | pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET))); | 
|  |  | 
|  | /* step 4: */ | 
|  | /* disable GSM - Read Address Parity Check */ | 
|  | regVal1 = pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK); | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("GSM 0x700038 - Read Address Parity Check " | 
|  | "Enable = 0x%x\n", regVal1)); | 
|  | pm8001_cw32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK, 0x0); | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("GSM 0x700038 - Read Address Parity Check Enable" | 
|  | "is set to = 0x%x\n", | 
|  | pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK))); | 
|  |  | 
|  | /* disable GSM - Write Address Parity Check */ | 
|  | regVal2 = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK); | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("GSM 0x700040 - Write Address Parity Check" | 
|  | " Enable = 0x%x\n", regVal2)); | 
|  | pm8001_cw32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK, 0x0); | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("GSM 0x700040 - Write Address Parity Check " | 
|  | "Enable is set to = 0x%x\n", | 
|  | pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK))); | 
|  |  | 
|  | /* disable GSM - Write Data Parity Check */ | 
|  | regVal3 = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK); | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("GSM 0x300048 - Write Data Parity Check" | 
|  | " Enable = 0x%x\n", regVal3)); | 
|  | pm8001_cw32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK, 0x0); | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("GSM 0x300048 - Write Data Parity Check Enable" | 
|  | "is set to = 0x%x\n", | 
|  | pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK))); | 
|  |  | 
|  | /* step 5: delay 10 usec */ | 
|  | udelay(10); | 
|  | /* step 5-b: set GPIO-0 output control to tristate anyway */ | 
|  | if (-1 == bar4_shift(pm8001_ha, GPIO_ADDR_BASE)) { | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("Shift Bar4 to 0x%x failed\n", | 
|  | GPIO_ADDR_BASE)); | 
|  | return -1; | 
|  | } | 
|  | regVal = pm8001_cr32(pm8001_ha, 2, GPIO_GPIO_0_0UTPUT_CTL_OFFSET); | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("GPIO Output Control Register:" | 
|  | " = 0x%x\n", regVal)); | 
|  | /* set GPIO-0 output control to tri-state */ | 
|  | regVal &= 0xFFFFFFFC; | 
|  | pm8001_cw32(pm8001_ha, 2, GPIO_GPIO_0_0UTPUT_CTL_OFFSET, regVal); | 
|  |  | 
|  | /* Step 6: Reset the IOP and AAP1 */ | 
|  | /* map 0x00000 to BAR4(0x20), BAR2(win) */ | 
|  | if (-1 == bar4_shift(pm8001_ha, SPC_TOP_LEVEL_ADDR_BASE)) { | 
|  | PM8001_FAIL_DBG(pm8001_ha, | 
|  | pm8001_printk("SPC Shift Bar4 to 0x%x failed\n", | 
|  | SPC_TOP_LEVEL_ADDR_BASE)); | 
|  | return -1; | 
|  | } | 
|  | regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET); | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("Top Register before resetting IOP/AAP1" | 
|  | ":= 0x%x\n", regVal)); | 
|  | regVal &= ~(SPC_REG_RESET_PCS_IOP_SS | SPC_REG_RESET_PCS_AAP1_SS); | 
|  | pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal); | 
|  |  | 
|  | /* step 7: Reset the BDMA/OSSP */ | 
|  | regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET); | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("Top Register before resetting BDMA/OSSP" | 
|  | ": = 0x%x\n", regVal)); | 
|  | regVal &= ~(SPC_REG_RESET_BDMA_CORE | SPC_REG_RESET_OSSP); | 
|  | pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal); | 
|  |  | 
|  | /* step 8: delay 10 usec */ | 
|  | udelay(10); | 
|  |  | 
|  | /* step 9: bring the BDMA and OSSP out of reset */ | 
|  | regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET); | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("Top Register before bringing up BDMA/OSSP" | 
|  | ":= 0x%x\n", regVal)); | 
|  | regVal |= (SPC_REG_RESET_BDMA_CORE | SPC_REG_RESET_OSSP); | 
|  | pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal); | 
|  |  | 
|  | /* step 10: delay 10 usec */ | 
|  | udelay(10); | 
|  |  | 
|  | /* step 11: reads and sets the GSM Configuration and Reset Register */ | 
|  | /* map 0x0700000 to BAR4(0x20), BAR2(win) */ | 
|  | if (-1 == bar4_shift(pm8001_ha, GSM_ADDR_BASE)) { | 
|  | PM8001_FAIL_DBG(pm8001_ha, | 
|  | pm8001_printk("SPC Shift Bar4 to 0x%x failed\n", | 
|  | GSM_ADDR_BASE)); | 
|  | return -1; | 
|  | } | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("GSM 0x0 (0x00007b88)-GSM Configuration and " | 
|  | "Reset = 0x%x\n", pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET))); | 
|  | regVal = pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET); | 
|  | /* Put those bits to high */ | 
|  | /* GSM XCBI offset = 0x70 0000 | 
|  | 0x00 Bit 13 COM_SLV_SW_RSTB 1 | 
|  | 0x00 Bit 12 QSSP_SW_RSTB 1 | 
|  | 0x00 Bit 11 RAAE_SW_RSTB 1 | 
|  | 0x00 Bit 9   RB_1_SW_RSTB 1 | 
|  | 0x00 Bit 8   SM_SW_RSTB 1 | 
|  | */ | 
|  | regVal |= (GSM_CONFIG_RESET_VALUE); | 
|  | pm8001_cw32(pm8001_ha, 2, GSM_CONFIG_RESET, regVal); | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("GSM (0x00004088 ==> 0x00007b88) - GSM" | 
|  | " Configuration and Reset is set to = 0x%x\n", | 
|  | pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET))); | 
|  |  | 
|  | /* step 12: Restore GSM - Read Address Parity Check */ | 
|  | regVal = pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK); | 
|  | /* just for debugging */ | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("GSM 0x700038 - Read Address Parity Check Enable" | 
|  | " = 0x%x\n", regVal)); | 
|  | pm8001_cw32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK, regVal1); | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("GSM 0x700038 - Read Address Parity" | 
|  | " Check Enable is set to = 0x%x\n", | 
|  | pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK))); | 
|  | /* Restore GSM - Write Address Parity Check */ | 
|  | regVal = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK); | 
|  | pm8001_cw32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK, regVal2); | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("GSM 0x700040 - Write Address Parity Check" | 
|  | " Enable is set to = 0x%x\n", | 
|  | pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK))); | 
|  | /* Restore GSM - Write Data Parity Check */ | 
|  | regVal = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK); | 
|  | pm8001_cw32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK, regVal3); | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("GSM 0x700048 - Write Data Parity Check Enable" | 
|  | "is set to = 0x%x\n", | 
|  | pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK))); | 
|  |  | 
|  | /* step 13: bring the IOP and AAP1 out of reset */ | 
|  | /* map 0x00000 to BAR4(0x20), BAR2(win) */ | 
|  | if (-1 == bar4_shift(pm8001_ha, SPC_TOP_LEVEL_ADDR_BASE)) { | 
|  | PM8001_FAIL_DBG(pm8001_ha, | 
|  | pm8001_printk("Shift Bar4 to 0x%x failed\n", | 
|  | SPC_TOP_LEVEL_ADDR_BASE)); | 
|  | return -1; | 
|  | } | 
|  | regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET); | 
|  | regVal |= (SPC_REG_RESET_PCS_IOP_SS | SPC_REG_RESET_PCS_AAP1_SS); | 
|  | pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal); | 
|  |  | 
|  | /* step 14: delay 10 usec - Normal Mode */ | 
|  | udelay(10); | 
|  | /* check Soft Reset Normal mode or Soft Reset HDA mode */ | 
|  | if (signature == SPC_SOFT_RESET_SIGNATURE) { | 
|  | /* step 15 (Normal Mode): wait until scratch pad1 register | 
|  | bit 2 toggled */ | 
|  | max_wait_count = 2 * 1000 * 1000;/* 2 sec */ | 
|  | do { | 
|  | udelay(1); | 
|  | regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1) & | 
|  | SCRATCH_PAD1_RST; | 
|  | } while ((regVal != toggleVal) && (--max_wait_count)); | 
|  |  | 
|  | if (!max_wait_count) { | 
|  | regVal = pm8001_cr32(pm8001_ha, 0, | 
|  | MSGU_SCRATCH_PAD_1); | 
|  | PM8001_FAIL_DBG(pm8001_ha, | 
|  | pm8001_printk("TIMEOUT : ToggleVal 0x%x," | 
|  | "MSGU_SCRATCH_PAD1 = 0x%x\n", | 
|  | toggleVal, regVal)); | 
|  | PM8001_FAIL_DBG(pm8001_ha, | 
|  | pm8001_printk("SCRATCH_PAD0 value = 0x%x\n", | 
|  | pm8001_cr32(pm8001_ha, 0, | 
|  | MSGU_SCRATCH_PAD_0))); | 
|  | PM8001_FAIL_DBG(pm8001_ha, | 
|  | pm8001_printk("SCRATCH_PAD2 value = 0x%x\n", | 
|  | pm8001_cr32(pm8001_ha, 0, | 
|  | MSGU_SCRATCH_PAD_2))); | 
|  | PM8001_FAIL_DBG(pm8001_ha, | 
|  | pm8001_printk("SCRATCH_PAD3 value = 0x%x\n", | 
|  | pm8001_cr32(pm8001_ha, 0, | 
|  | MSGU_SCRATCH_PAD_3))); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* step 16 (Normal) - Clear ODMR and ODCR */ | 
|  | pm8001_cw32(pm8001_ha, 0, MSGU_ODCR, ODCR_CLEAR_ALL); | 
|  | pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, ODMR_CLEAR_ALL); | 
|  |  | 
|  | /* step 17 (Normal Mode): wait for the FW and IOP to get | 
|  | ready - 1 sec timeout */ | 
|  | /* Wait for the SPC Configuration Table to be ready */ | 
|  | if (check_fw_ready(pm8001_ha) == -1) { | 
|  | regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1); | 
|  | /* return error if MPI Configuration Table not ready */ | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("FW not ready SCRATCH_PAD1" | 
|  | " = 0x%x\n", regVal)); | 
|  | regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2); | 
|  | /* return error if MPI Configuration Table not ready */ | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("FW not ready SCRATCH_PAD2" | 
|  | " = 0x%x\n", regVal)); | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("SCRATCH_PAD0 value = 0x%x\n", | 
|  | pm8001_cr32(pm8001_ha, 0, | 
|  | MSGU_SCRATCH_PAD_0))); | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("SCRATCH_PAD3 value = 0x%x\n", | 
|  | pm8001_cr32(pm8001_ha, 0, | 
|  | MSGU_SCRATCH_PAD_3))); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("SPC soft reset Complete\n")); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void pm8001_hw_chip_rst(struct pm8001_hba_info *pm8001_ha) | 
|  | { | 
|  | u32 i; | 
|  | u32 regVal; | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("chip reset start\n")); | 
|  |  | 
|  | /* do SPC chip reset. */ | 
|  | regVal = pm8001_cr32(pm8001_ha, 1, SPC_REG_RESET); | 
|  | regVal &= ~(SPC_REG_RESET_DEVICE); | 
|  | pm8001_cw32(pm8001_ha, 1, SPC_REG_RESET, regVal); | 
|  |  | 
|  | /* delay 10 usec */ | 
|  | udelay(10); | 
|  |  | 
|  | /* bring chip reset out of reset */ | 
|  | regVal = pm8001_cr32(pm8001_ha, 1, SPC_REG_RESET); | 
|  | regVal |= SPC_REG_RESET_DEVICE; | 
|  | pm8001_cw32(pm8001_ha, 1, SPC_REG_RESET, regVal); | 
|  |  | 
|  | /* delay 10 usec */ | 
|  | udelay(10); | 
|  |  | 
|  | /* wait for 20 msec until the firmware gets reloaded */ | 
|  | i = 20; | 
|  | do { | 
|  | mdelay(1); | 
|  | } while ((--i) != 0); | 
|  |  | 
|  | PM8001_INIT_DBG(pm8001_ha, | 
|  | pm8001_printk("chip reset finished\n")); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pm8001_chip_iounmap - which maped when initialized. | 
|  | * @pm8001_ha: our hba card information | 
|  | */ | 
|  | static void pm8001_chip_iounmap(struct pm8001_hba_info *pm8001_ha) | 
|  | { | 
|  | s8 bar, logical = 0; | 
|  | for (bar = 0; bar < 6; bar++) { | 
|  | /* | 
|  | ** logical BARs for SPC: | 
|  | ** bar 0 and 1 - logical BAR0 | 
|  | ** bar 2 and 3 - logical BAR1 | 
|  | ** bar4 - logical BAR2 | 
|  | ** bar5 - logical BAR3 | 
|  | ** Skip the appropriate assignments: | 
|  | */ | 
|  | if ((bar == 1) || (bar == 3)) | 
|  | continue; | 
|  | if (pm8001_ha->io_mem[logical].memvirtaddr) { | 
|  | iounmap(pm8001_ha->io_mem[logical].memvirtaddr); | 
|  | logical++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pm8001_chip_interrupt_enable - enable PM8001 chip interrupt | 
|  | * @pm8001_ha: our hba card information | 
|  | */ | 
|  | static void | 
|  | pm8001_chip_intx_interrupt_enable(struct pm8001_hba_info *pm8001_ha) | 
|  | { | 
|  | pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, ODMR_CLEAR_ALL); | 
|  | pm8001_cw32(pm8001_ha, 0, MSGU_ODCR, ODCR_CLEAR_ALL); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pm8001_chip_intx_interrupt_disable- disable PM8001 chip interrupt | 
|  | * @pm8001_ha: our hba card information | 
|  | */ | 
|  | static void | 
|  | pm8001_chip_intx_interrupt_disable(struct pm8001_hba_info *pm8001_ha) | 
|  | { | 
|  | pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, ODMR_MASK_ALL); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pm8001_chip_msix_interrupt_enable - enable PM8001 chip interrupt | 
|  | * @pm8001_ha: our hba card information | 
|  | */ | 
|  | static void | 
|  | pm8001_chip_msix_interrupt_enable(struct pm8001_hba_info *pm8001_ha, | 
|  | u32 int_vec_idx) | 
|  | { | 
|  | u32 msi_index; | 
|  | u32 value; | 
|  | msi_index = int_vec_idx * MSIX_TABLE_ELEMENT_SIZE; | 
|  | msi_index += MSIX_TABLE_BASE; | 
|  | pm8001_cw32(pm8001_ha, 0, msi_index, MSIX_INTERRUPT_ENABLE); | 
|  | value = (1 << int_vec_idx); | 
|  | pm8001_cw32(pm8001_ha, 0,  MSGU_ODCR, value); | 
|  |  | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pm8001_chip_msix_interrupt_disable - disable PM8001 chip interrupt | 
|  | * @pm8001_ha: our hba card information | 
|  | */ | 
|  | static void | 
|  | pm8001_chip_msix_interrupt_disable(struct pm8001_hba_info *pm8001_ha, | 
|  | u32 int_vec_idx) | 
|  | { | 
|  | u32 msi_index; | 
|  | msi_index = int_vec_idx * MSIX_TABLE_ELEMENT_SIZE; | 
|  | msi_index += MSIX_TABLE_BASE; | 
|  | pm8001_cw32(pm8001_ha, 0,  msi_index, MSIX_INTERRUPT_DISABLE); | 
|  |  | 
|  | } | 
|  | /** | 
|  | * pm8001_chip_interrupt_enable - enable PM8001 chip interrupt | 
|  | * @pm8001_ha: our hba card information | 
|  | */ | 
|  | static void | 
|  | pm8001_chip_interrupt_enable(struct pm8001_hba_info *pm8001_ha) | 
|  | { | 
|  | #ifdef PM8001_USE_MSIX | 
|  | pm8001_chip_msix_interrupt_enable(pm8001_ha, 0); | 
|  | return; | 
|  | #endif | 
|  | pm8001_chip_intx_interrupt_enable(pm8001_ha); | 
|  |  | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pm8001_chip_intx_interrupt_disable- disable PM8001 chip interrupt | 
|  | * @pm8001_ha: our hba card information | 
|  | */ | 
|  | static void | 
|  | pm8001_chip_interrupt_disable(struct pm8001_hba_info *pm8001_ha) | 
|  | { | 
|  | #ifdef PM8001_USE_MSIX | 
|  | pm8001_chip_msix_interrupt_disable(pm8001_ha, 0); | 
|  | return; | 
|  | #endif | 
|  | pm8001_chip_intx_interrupt_disable(pm8001_ha); | 
|  |  | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mpi_msg_free_get- get the free message buffer for transfer inbound queue. | 
|  | * @circularQ: the inbound queue  we want to transfer to HBA. | 
|  | * @messageSize: the message size of this transfer, normally it is 64 bytes | 
|  | * @messagePtr: the pointer to message. | 
|  | */ | 
|  | static int mpi_msg_free_get(struct inbound_queue_table *circularQ, | 
|  | u16 messageSize, void **messagePtr) | 
|  | { | 
|  | u32 offset, consumer_index; | 
|  | struct mpi_msg_hdr *msgHeader; | 
|  | u8 bcCount = 1; /* only support single buffer */ | 
|  |  | 
|  | /* Checks is the requested message size can be allocated in this queue*/ | 
|  | if (messageSize > 64) { | 
|  | *messagePtr = NULL; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Stores the new consumer index */ | 
|  | consumer_index = pm8001_read_32(circularQ->ci_virt); | 
|  | circularQ->consumer_index = cpu_to_le32(consumer_index); | 
|  | if (((circularQ->producer_idx + bcCount) % 256) == | 
|  | circularQ->consumer_index) { | 
|  | *messagePtr = NULL; | 
|  | return -1; | 
|  | } | 
|  | /* get memory IOMB buffer address */ | 
|  | offset = circularQ->producer_idx * 64; | 
|  | /* increment to next bcCount element */ | 
|  | circularQ->producer_idx = (circularQ->producer_idx + bcCount) % 256; | 
|  | /* Adds that distance to the base of the region virtual address plus | 
|  | the message header size*/ | 
|  | msgHeader = (struct mpi_msg_hdr *)(circularQ->base_virt	+ offset); | 
|  | *messagePtr = ((void *)msgHeader) + sizeof(struct mpi_msg_hdr); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mpi_build_cmd- build the message queue for transfer, update the PI to FW | 
|  | * to tell the fw to get this message from IOMB. | 
|  | * @pm8001_ha: our hba card information | 
|  | * @circularQ: the inbound queue we want to transfer to HBA. | 
|  | * @opCode: the operation code represents commands which LLDD and fw recognized. | 
|  | * @payload: the command payload of each operation command. | 
|  | */ | 
|  | static int mpi_build_cmd(struct pm8001_hba_info *pm8001_ha, | 
|  | struct inbound_queue_table *circularQ, | 
|  | u32 opCode, void *payload) | 
|  | { | 
|  | u32 Header = 0, hpriority = 0, bc = 1, category = 0x02; | 
|  | u32 responseQueue = 0; | 
|  | void *pMessage; | 
|  |  | 
|  | if (mpi_msg_free_get(circularQ, 64, &pMessage) < 0) { | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("No free mpi buffer\n")); | 
|  | return -1; | 
|  | } | 
|  | BUG_ON(!payload); | 
|  | /*Copy to the payload*/ | 
|  | memcpy(pMessage, payload, (64 - sizeof(struct mpi_msg_hdr))); | 
|  |  | 
|  | /*Build the header*/ | 
|  | Header = ((1 << 31) | (hpriority << 30) | ((bc & 0x1f) << 24) | 
|  | | ((responseQueue & 0x3F) << 16) | 
|  | | ((category & 0xF) << 12) | (opCode & 0xFFF)); | 
|  |  | 
|  | pm8001_write_32((pMessage - 4), 0, cpu_to_le32(Header)); | 
|  | /*Update the PI to the firmware*/ | 
|  | pm8001_cw32(pm8001_ha, circularQ->pi_pci_bar, | 
|  | circularQ->pi_offset, circularQ->producer_idx); | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("after PI= %d CI= %d\n", circularQ->producer_idx, | 
|  | circularQ->consumer_index)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u32 mpi_msg_free_set(struct pm8001_hba_info *pm8001_ha, void *pMsg, | 
|  | struct outbound_queue_table *circularQ, u8 bc) | 
|  | { | 
|  | u32 producer_index; | 
|  | struct mpi_msg_hdr *msgHeader; | 
|  | struct mpi_msg_hdr *pOutBoundMsgHeader; | 
|  |  | 
|  | msgHeader = (struct mpi_msg_hdr *)(pMsg - sizeof(struct mpi_msg_hdr)); | 
|  | pOutBoundMsgHeader = (struct mpi_msg_hdr *)(circularQ->base_virt + | 
|  | circularQ->consumer_idx * 64); | 
|  | if (pOutBoundMsgHeader != msgHeader) { | 
|  | PM8001_FAIL_DBG(pm8001_ha, | 
|  | pm8001_printk("consumer_idx = %d msgHeader = %p\n", | 
|  | circularQ->consumer_idx, msgHeader)); | 
|  |  | 
|  | /* Update the producer index from SPC */ | 
|  | producer_index = pm8001_read_32(circularQ->pi_virt); | 
|  | circularQ->producer_index = cpu_to_le32(producer_index); | 
|  | PM8001_FAIL_DBG(pm8001_ha, | 
|  | pm8001_printk("consumer_idx = %d producer_index = %d" | 
|  | "msgHeader = %p\n", circularQ->consumer_idx, | 
|  | circularQ->producer_index, msgHeader)); | 
|  | return 0; | 
|  | } | 
|  | /* free the circular queue buffer elements associated with the message*/ | 
|  | circularQ->consumer_idx = (circularQ->consumer_idx + bc) % 256; | 
|  | /* update the CI of outbound queue */ | 
|  | pm8001_cw32(pm8001_ha, circularQ->ci_pci_bar, circularQ->ci_offset, | 
|  | circularQ->consumer_idx); | 
|  | /* Update the producer index from SPC*/ | 
|  | producer_index = pm8001_read_32(circularQ->pi_virt); | 
|  | circularQ->producer_index = cpu_to_le32(producer_index); | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk(" CI=%d PI=%d\n", circularQ->consumer_idx, | 
|  | circularQ->producer_index)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mpi_msg_consume- get the MPI message from  outbound queue message table. | 
|  | * @pm8001_ha: our hba card information | 
|  | * @circularQ: the outbound queue  table. | 
|  | * @messagePtr1: the message contents of this outbound message. | 
|  | * @pBC: the message size. | 
|  | */ | 
|  | static u32 mpi_msg_consume(struct pm8001_hba_info *pm8001_ha, | 
|  | struct outbound_queue_table *circularQ, | 
|  | void **messagePtr1, u8 *pBC) | 
|  | { | 
|  | struct mpi_msg_hdr	*msgHeader; | 
|  | __le32	msgHeader_tmp; | 
|  | u32 header_tmp; | 
|  | do { | 
|  | /* If there are not-yet-delivered messages ... */ | 
|  | if (circularQ->producer_index != circularQ->consumer_idx) { | 
|  | /*Get the pointer to the circular queue buffer element*/ | 
|  | msgHeader = (struct mpi_msg_hdr *) | 
|  | (circularQ->base_virt + | 
|  | circularQ->consumer_idx * 64); | 
|  | /* read header */ | 
|  | header_tmp = pm8001_read_32(msgHeader); | 
|  | msgHeader_tmp = cpu_to_le32(header_tmp); | 
|  | if (0 != (msgHeader_tmp & 0x80000000)) { | 
|  | if (OPC_OUB_SKIP_ENTRY != | 
|  | (msgHeader_tmp & 0xfff)) { | 
|  | *messagePtr1 = | 
|  | ((u8 *)msgHeader) + | 
|  | sizeof(struct mpi_msg_hdr); | 
|  | *pBC = (u8)((msgHeader_tmp >> 24) & | 
|  | 0x1f); | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk(": CI=%d PI=%d " | 
|  | "msgHeader=%x\n", | 
|  | circularQ->consumer_idx, | 
|  | circularQ->producer_index, | 
|  | msgHeader_tmp)); | 
|  | return MPI_IO_STATUS_SUCCESS; | 
|  | } else { | 
|  | circularQ->consumer_idx = | 
|  | (circularQ->consumer_idx + | 
|  | ((msgHeader_tmp >> 24) & 0x1f)) | 
|  | % 256; | 
|  | msgHeader_tmp = 0; | 
|  | pm8001_write_32(msgHeader, 0, 0); | 
|  | /* update the CI of outbound queue */ | 
|  | pm8001_cw32(pm8001_ha, | 
|  | circularQ->ci_pci_bar, | 
|  | circularQ->ci_offset, | 
|  | circularQ->consumer_idx); | 
|  | } | 
|  | } else { | 
|  | circularQ->consumer_idx = | 
|  | (circularQ->consumer_idx + | 
|  | ((msgHeader_tmp >> 24) & 0x1f)) % 256; | 
|  | msgHeader_tmp = 0; | 
|  | pm8001_write_32(msgHeader, 0, 0); | 
|  | /* update the CI of outbound queue */ | 
|  | pm8001_cw32(pm8001_ha, circularQ->ci_pci_bar, | 
|  | circularQ->ci_offset, | 
|  | circularQ->consumer_idx); | 
|  | return MPI_IO_STATUS_FAIL; | 
|  | } | 
|  | } else { | 
|  | u32 producer_index; | 
|  | void *pi_virt = circularQ->pi_virt; | 
|  | /* Update the producer index from SPC */ | 
|  | producer_index = pm8001_read_32(pi_virt); | 
|  | circularQ->producer_index = cpu_to_le32(producer_index); | 
|  | } | 
|  | } while (circularQ->producer_index != circularQ->consumer_idx); | 
|  | /* while we don't have any more not-yet-delivered message */ | 
|  | /* report empty */ | 
|  | return MPI_IO_STATUS_BUSY; | 
|  | } | 
|  |  | 
|  | static void pm8001_work_fn(struct work_struct *work) | 
|  | { | 
|  | struct pm8001_work *pw = container_of(work, struct pm8001_work, work); | 
|  | struct pm8001_device *pm8001_dev; | 
|  | struct domain_device *dev; | 
|  |  | 
|  | switch (pw->handler) { | 
|  | case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: | 
|  | pm8001_dev = pw->data; | 
|  | dev = pm8001_dev->sas_device; | 
|  | pm8001_I_T_nexus_reset(dev); | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY: | 
|  | pm8001_dev = pw->data; | 
|  | dev = pm8001_dev->sas_device; | 
|  | pm8001_I_T_nexus_reset(dev); | 
|  | break; | 
|  | case IO_DS_IN_ERROR: | 
|  | pm8001_dev = pw->data; | 
|  | dev = pm8001_dev->sas_device; | 
|  | pm8001_I_T_nexus_reset(dev); | 
|  | break; | 
|  | case IO_DS_NON_OPERATIONAL: | 
|  | pm8001_dev = pw->data; | 
|  | dev = pm8001_dev->sas_device; | 
|  | pm8001_I_T_nexus_reset(dev); | 
|  | break; | 
|  | } | 
|  | kfree(pw); | 
|  | } | 
|  |  | 
|  | static int pm8001_handle_event(struct pm8001_hba_info *pm8001_ha, void *data, | 
|  | int handler) | 
|  | { | 
|  | struct pm8001_work *pw; | 
|  | int ret = 0; | 
|  |  | 
|  | pw = kmalloc(sizeof(struct pm8001_work), GFP_ATOMIC); | 
|  | if (pw) { | 
|  | pw->pm8001_ha = pm8001_ha; | 
|  | pw->data = data; | 
|  | pw->handler = handler; | 
|  | INIT_WORK(&pw->work, pm8001_work_fn); | 
|  | queue_work(pm8001_wq, &pw->work); | 
|  | } else | 
|  | ret = -ENOMEM; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mpi_ssp_completion- process the event that FW response to the SSP request. | 
|  | * @pm8001_ha: our hba card information | 
|  | * @piomb: the message contents of this outbound message. | 
|  | * | 
|  | * When FW has completed a ssp request for example a IO request, after it has | 
|  | * filled the SG data with the data, it will trigger this event represent | 
|  | * that he has finished the job,please check the coresponding buffer. | 
|  | * So we will tell the caller who maybe waiting the result to tell upper layer | 
|  | * that the task has been finished. | 
|  | */ | 
|  | static void | 
|  | mpi_ssp_completion(struct pm8001_hba_info *pm8001_ha , void *piomb) | 
|  | { | 
|  | struct sas_task *t; | 
|  | struct pm8001_ccb_info *ccb; | 
|  | unsigned long flags; | 
|  | u32 status; | 
|  | u32 param; | 
|  | u32 tag; | 
|  | struct ssp_completion_resp *psspPayload; | 
|  | struct task_status_struct *ts; | 
|  | struct ssp_response_iu *iu; | 
|  | struct pm8001_device *pm8001_dev; | 
|  | psspPayload = (struct ssp_completion_resp *)(piomb + 4); | 
|  | status = le32_to_cpu(psspPayload->status); | 
|  | tag = le32_to_cpu(psspPayload->tag); | 
|  | ccb = &pm8001_ha->ccb_info[tag]; | 
|  | pm8001_dev = ccb->device; | 
|  | param = le32_to_cpu(psspPayload->param); | 
|  |  | 
|  | t = ccb->task; | 
|  |  | 
|  | if (status && status != IO_UNDERFLOW) | 
|  | PM8001_FAIL_DBG(pm8001_ha, | 
|  | pm8001_printk("sas IO status 0x%x\n", status)); | 
|  | if (unlikely(!t || !t->lldd_task || !t->dev)) | 
|  | return; | 
|  | ts = &t->task_status; | 
|  | switch (status) { | 
|  | case IO_SUCCESS: | 
|  | PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_SUCCESS" | 
|  | ",param = %d\n", param)); | 
|  | if (param == 0) { | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAM_STAT_GOOD; | 
|  | } else { | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_PROTO_RESPONSE; | 
|  | ts->residual = param; | 
|  | iu = &psspPayload->ssp_resp_iu; | 
|  | sas_ssp_task_response(pm8001_ha->dev, t, iu); | 
|  | } | 
|  | if (pm8001_dev) | 
|  | pm8001_dev->running_req--; | 
|  | break; | 
|  | case IO_ABORTED: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_ABORTED IOMB Tag\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_ABORTED_TASK; | 
|  | break; | 
|  | case IO_UNDERFLOW: | 
|  | /* SSP Completion with error */ | 
|  | PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_UNDERFLOW" | 
|  | ",param = %d\n", param)); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_DATA_UNDERRUN; | 
|  | ts->residual = param; | 
|  | if (pm8001_dev) | 
|  | pm8001_dev->running_req--; | 
|  | break; | 
|  | case IO_NO_DEVICE: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_NO_DEVICE\n")); | 
|  | ts->resp = SAS_TASK_UNDELIVERED; | 
|  | ts->stat = SAS_PHY_DOWN; | 
|  | break; | 
|  | case IO_XFER_ERROR_BREAK: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_ERROR_BREAK\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | break; | 
|  | case IO_XFER_ERROR_PHY_NOT_READY: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_ERROR_PHY_NOT_READY\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_EPROTO; | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_UNKNOWN; | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_BREAK: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_BREAK\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_UNKNOWN; | 
|  | if (!t->uldd_task) | 
|  | pm8001_handle_event(pm8001_ha, | 
|  | pm8001_dev, | 
|  | IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_BAD_DESTINATION: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_BAD_DESTINATION\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_BAD_DEST; | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_CONNECTION_RATE_" | 
|  | "NOT_SUPPORTED\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_CONN_RATE; | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n")); | 
|  | ts->resp = SAS_TASK_UNDELIVERED; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_WRONG_DEST; | 
|  | break; | 
|  | case IO_XFER_ERROR_NAK_RECEIVED: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_ERROR_NAK_RECEIVED\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; | 
|  | break; | 
|  | case IO_XFER_ERROR_ACK_NAK_TIMEOUT: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_ERROR_ACK_NAK_TIMEOUT\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_NAK_R_ERR; | 
|  | break; | 
|  | case IO_XFER_ERROR_DMA: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_ERROR_DMA\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | break; | 
|  | case IO_XFER_OPEN_RETRY_TIMEOUT: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_OPEN_RETRY_TIMEOUT\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; | 
|  | break; | 
|  | case IO_XFER_ERROR_OFFSET_MISMATCH: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_ERROR_OFFSET_MISMATCH\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | break; | 
|  | case IO_PORT_IN_RESET: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_PORT_IN_RESET\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | break; | 
|  | case IO_DS_NON_OPERATIONAL: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_DS_NON_OPERATIONAL\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | if (!t->uldd_task) | 
|  | pm8001_handle_event(pm8001_ha, | 
|  | pm8001_dev, | 
|  | IO_DS_NON_OPERATIONAL); | 
|  | break; | 
|  | case IO_DS_IN_RECOVERY: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_DS_IN_RECOVERY\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | break; | 
|  | case IO_TM_TAG_NOT_FOUND: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_TM_TAG_NOT_FOUND\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | break; | 
|  | case IO_SSP_EXT_IU_ZERO_LEN_ERROR: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_SSP_EXT_IU_ZERO_LEN_ERROR\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; | 
|  | break; | 
|  | default: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("Unknown status 0x%x\n", status)); | 
|  | /* not allowed case. Therefore, return failed status */ | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | break; | 
|  | } | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("scsi_status = %x \n ", | 
|  | psspPayload->ssp_resp_iu.status)); | 
|  | spin_lock_irqsave(&t->task_state_lock, flags); | 
|  | t->task_state_flags &= ~SAS_TASK_STATE_PENDING; | 
|  | t->task_state_flags &= ~SAS_TASK_AT_INITIATOR; | 
|  | t->task_state_flags |= SAS_TASK_STATE_DONE; | 
|  | if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { | 
|  | spin_unlock_irqrestore(&t->task_state_lock, flags); | 
|  | PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("task 0x%p done with" | 
|  | " io_status 0x%x resp 0x%x " | 
|  | "stat 0x%x but aborted by upper layer!\n", | 
|  | t, status, ts->resp, ts->stat)); | 
|  | pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); | 
|  | } else { | 
|  | spin_unlock_irqrestore(&t->task_state_lock, flags); | 
|  | pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); | 
|  | mb();/* in order to force CPU ordering */ | 
|  | t->task_done(t); | 
|  | } | 
|  | } | 
|  |  | 
|  | /*See the comments for mpi_ssp_completion */ | 
|  | static void mpi_ssp_event(struct pm8001_hba_info *pm8001_ha , void *piomb) | 
|  | { | 
|  | struct sas_task *t; | 
|  | unsigned long flags; | 
|  | struct task_status_struct *ts; | 
|  | struct pm8001_ccb_info *ccb; | 
|  | struct pm8001_device *pm8001_dev; | 
|  | struct ssp_event_resp *psspPayload = | 
|  | (struct ssp_event_resp *)(piomb + 4); | 
|  | u32 event = le32_to_cpu(psspPayload->event); | 
|  | u32 tag = le32_to_cpu(psspPayload->tag); | 
|  | u32 port_id = le32_to_cpu(psspPayload->port_id); | 
|  | u32 dev_id = le32_to_cpu(psspPayload->device_id); | 
|  |  | 
|  | ccb = &pm8001_ha->ccb_info[tag]; | 
|  | t = ccb->task; | 
|  | pm8001_dev = ccb->device; | 
|  | if (event) | 
|  | PM8001_FAIL_DBG(pm8001_ha, | 
|  | pm8001_printk("sas IO status 0x%x\n", event)); | 
|  | if (unlikely(!t || !t->lldd_task || !t->dev)) | 
|  | return; | 
|  | ts = &t->task_status; | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("port_id = %x,device_id = %x\n", | 
|  | port_id, dev_id)); | 
|  | switch (event) { | 
|  | case IO_OVERFLOW: | 
|  | PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_UNDERFLOW\n");) | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_DATA_OVERRUN; | 
|  | ts->residual = 0; | 
|  | if (pm8001_dev) | 
|  | pm8001_dev->running_req--; | 
|  | break; | 
|  | case IO_XFER_ERROR_BREAK: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_ERROR_BREAK\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_INTERRUPTED; | 
|  | break; | 
|  | case IO_XFER_ERROR_PHY_NOT_READY: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_ERROR_PHY_NOT_READY\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_PROTOCOL_NOT" | 
|  | "_SUPPORTED\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_EPROTO; | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_UNKNOWN; | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_BREAK: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_BREAK\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_UNKNOWN; | 
|  | if (!t->uldd_task) | 
|  | pm8001_handle_event(pm8001_ha, | 
|  | pm8001_dev, | 
|  | IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_BAD_DESTINATION: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_BAD_DESTINATION\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_BAD_DEST; | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_CONNECTION_RATE_" | 
|  | "NOT_SUPPORTED\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_CONN_RATE; | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_WRONG_DEST; | 
|  | break; | 
|  | case IO_XFER_ERROR_NAK_RECEIVED: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_ERROR_NAK_RECEIVED\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; | 
|  | break; | 
|  | case IO_XFER_ERROR_ACK_NAK_TIMEOUT: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_ERROR_ACK_NAK_TIMEOUT\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_NAK_R_ERR; | 
|  | break; | 
|  | case IO_XFER_OPEN_RETRY_TIMEOUT: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_OPEN_RETRY_TIMEOUT\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; | 
|  | break; | 
|  | case IO_XFER_ERROR_UNEXPECTED_PHASE: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_ERROR_UNEXPECTED_PHASE\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_DATA_OVERRUN; | 
|  | break; | 
|  | case IO_XFER_ERROR_XFER_RDY_OVERRUN: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_ERROR_XFER_RDY_OVERRUN\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_DATA_OVERRUN; | 
|  | break; | 
|  | case IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_DATA_OVERRUN; | 
|  | break; | 
|  | case IO_XFER_ERROR_CMD_ISSUE_ACK_NAK_TIMEOUT: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_ERROR_CMD_ISSUE_ACK_NAK_TIMEOUT\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_DATA_OVERRUN; | 
|  | break; | 
|  | case IO_XFER_ERROR_OFFSET_MISMATCH: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_ERROR_OFFSET_MISMATCH\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_DATA_OVERRUN; | 
|  | break; | 
|  | case IO_XFER_ERROR_XFER_ZERO_DATA_LEN: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_ERROR_XFER_ZERO_DATA_LEN\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_DATA_OVERRUN; | 
|  | break; | 
|  | case IO_XFER_CMD_FRAME_ISSUED: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("  IO_XFER_CMD_FRAME_ISSUED\n")); | 
|  | return; | 
|  | default: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("Unknown status 0x%x\n", event)); | 
|  | /* not allowed case. Therefore, return failed status */ | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_DATA_OVERRUN; | 
|  | break; | 
|  | } | 
|  | spin_lock_irqsave(&t->task_state_lock, flags); | 
|  | t->task_state_flags &= ~SAS_TASK_STATE_PENDING; | 
|  | t->task_state_flags &= ~SAS_TASK_AT_INITIATOR; | 
|  | t->task_state_flags |= SAS_TASK_STATE_DONE; | 
|  | if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { | 
|  | spin_unlock_irqrestore(&t->task_state_lock, flags); | 
|  | PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("task 0x%p done with" | 
|  | " event 0x%x resp 0x%x " | 
|  | "stat 0x%x but aborted by upper layer!\n", | 
|  | t, event, ts->resp, ts->stat)); | 
|  | pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); | 
|  | } else { | 
|  | spin_unlock_irqrestore(&t->task_state_lock, flags); | 
|  | pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); | 
|  | mb();/* in order to force CPU ordering */ | 
|  | t->task_done(t); | 
|  | } | 
|  | } | 
|  |  | 
|  | /*See the comments for mpi_ssp_completion */ | 
|  | static void | 
|  | mpi_sata_completion(struct pm8001_hba_info *pm8001_ha, void *piomb) | 
|  | { | 
|  | struct sas_task *t; | 
|  | struct pm8001_ccb_info *ccb; | 
|  | unsigned long flags = 0; | 
|  | u32 param; | 
|  | u32 status; | 
|  | u32 tag; | 
|  | struct sata_completion_resp *psataPayload; | 
|  | struct task_status_struct *ts; | 
|  | struct ata_task_resp *resp ; | 
|  | u32 *sata_resp; | 
|  | struct pm8001_device *pm8001_dev; | 
|  |  | 
|  | psataPayload = (struct sata_completion_resp *)(piomb + 4); | 
|  | status = le32_to_cpu(psataPayload->status); | 
|  | tag = le32_to_cpu(psataPayload->tag); | 
|  |  | 
|  | ccb = &pm8001_ha->ccb_info[tag]; | 
|  | param = le32_to_cpu(psataPayload->param); | 
|  | t = ccb->task; | 
|  | ts = &t->task_status; | 
|  | pm8001_dev = ccb->device; | 
|  | if (status) | 
|  | PM8001_FAIL_DBG(pm8001_ha, | 
|  | pm8001_printk("sata IO status 0x%x\n", status)); | 
|  | if (unlikely(!t || !t->lldd_task || !t->dev)) | 
|  | return; | 
|  |  | 
|  | switch (status) { | 
|  | case IO_SUCCESS: | 
|  | PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_SUCCESS\n")); | 
|  | if (param == 0) { | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAM_STAT_GOOD; | 
|  | } else { | 
|  | u8 len; | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_PROTO_RESPONSE; | 
|  | ts->residual = param; | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("SAS_PROTO_RESPONSE len = %d\n", | 
|  | param)); | 
|  | sata_resp = &psataPayload->sata_resp[0]; | 
|  | resp = (struct ata_task_resp *)ts->buf; | 
|  | if (t->ata_task.dma_xfer == 0 && | 
|  | t->data_dir == PCI_DMA_FROMDEVICE) { | 
|  | len = sizeof(struct pio_setup_fis); | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("PIO read len = %d\n", len)); | 
|  | } else if (t->ata_task.use_ncq) { | 
|  | len = sizeof(struct set_dev_bits_fis); | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("FPDMA len = %d\n", len)); | 
|  | } else { | 
|  | len = sizeof(struct dev_to_host_fis); | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("other len = %d\n", len)); | 
|  | } | 
|  | if (SAS_STATUS_BUF_SIZE >= sizeof(*resp)) { | 
|  | resp->frame_len = len; | 
|  | memcpy(&resp->ending_fis[0], sata_resp, len); | 
|  | ts->buf_valid_size = sizeof(*resp); | 
|  | } else | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("response to large\n")); | 
|  | } | 
|  | if (pm8001_dev) | 
|  | pm8001_dev->running_req--; | 
|  | break; | 
|  | case IO_ABORTED: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_ABORTED IOMB Tag\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_ABORTED_TASK; | 
|  | if (pm8001_dev) | 
|  | pm8001_dev->running_req--; | 
|  | break; | 
|  | /* following cases are to do cases */ | 
|  | case IO_UNDERFLOW: | 
|  | /* SATA Completion with error */ | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_UNDERFLOW param = %d\n", param)); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_DATA_UNDERRUN; | 
|  | ts->residual =  param; | 
|  | if (pm8001_dev) | 
|  | pm8001_dev->running_req--; | 
|  | break; | 
|  | case IO_NO_DEVICE: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_NO_DEVICE\n")); | 
|  | ts->resp = SAS_TASK_UNDELIVERED; | 
|  | ts->stat = SAS_PHY_DOWN; | 
|  | break; | 
|  | case IO_XFER_ERROR_BREAK: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_ERROR_BREAK\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_INTERRUPTED; | 
|  | break; | 
|  | case IO_XFER_ERROR_PHY_NOT_READY: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_ERROR_PHY_NOT_READY\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_PROTOCOL_NOT" | 
|  | "_SUPPORTED\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_EPROTO; | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_UNKNOWN; | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_BREAK: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_BREAK\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_RSVD_CONT0; | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_DEV_NO_RESPONSE; | 
|  | if (!t->uldd_task) { | 
|  | pm8001_handle_event(pm8001_ha, | 
|  | pm8001_dev, | 
|  | IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); | 
|  | ts->resp = SAS_TASK_UNDELIVERED; | 
|  | ts->stat = SAS_QUEUE_FULL; | 
|  | pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); | 
|  | mb();/*in order to force CPU ordering*/ | 
|  | spin_unlock_irqrestore(&pm8001_ha->lock, flags); | 
|  | t->task_done(t); | 
|  | spin_lock_irqsave(&pm8001_ha->lock, flags); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_BAD_DESTINATION: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_BAD_DESTINATION\n")); | 
|  | ts->resp = SAS_TASK_UNDELIVERED; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_BAD_DEST; | 
|  | if (!t->uldd_task) { | 
|  | pm8001_handle_event(pm8001_ha, | 
|  | pm8001_dev, | 
|  | IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); | 
|  | ts->resp = SAS_TASK_UNDELIVERED; | 
|  | ts->stat = SAS_QUEUE_FULL; | 
|  | pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); | 
|  | mb();/*ditto*/ | 
|  | spin_unlock_irqrestore(&pm8001_ha->lock, flags); | 
|  | t->task_done(t); | 
|  | spin_lock_irqsave(&pm8001_ha->lock, flags); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_CONNECTION_RATE_" | 
|  | "NOT_SUPPORTED\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_CONN_RATE; | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_STP_RESOURCES" | 
|  | "_BUSY\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_DEV_NO_RESPONSE; | 
|  | if (!t->uldd_task) { | 
|  | pm8001_handle_event(pm8001_ha, | 
|  | pm8001_dev, | 
|  | IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY); | 
|  | ts->resp = SAS_TASK_UNDELIVERED; | 
|  | ts->stat = SAS_QUEUE_FULL; | 
|  | pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); | 
|  | mb();/* ditto*/ | 
|  | spin_unlock_irqrestore(&pm8001_ha->lock, flags); | 
|  | t->task_done(t); | 
|  | spin_lock_irqsave(&pm8001_ha->lock, flags); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_WRONG_DEST; | 
|  | break; | 
|  | case IO_XFER_ERROR_NAK_RECEIVED: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_ERROR_NAK_RECEIVED\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_NAK_R_ERR; | 
|  | break; | 
|  | case IO_XFER_ERROR_ACK_NAK_TIMEOUT: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_ERROR_ACK_NAK_TIMEOUT\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_NAK_R_ERR; | 
|  | break; | 
|  | case IO_XFER_ERROR_DMA: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_ERROR_DMA\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_ABORTED_TASK; | 
|  | break; | 
|  | case IO_XFER_ERROR_SATA_LINK_TIMEOUT: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_ERROR_SATA_LINK_TIMEOUT\n")); | 
|  | ts->resp = SAS_TASK_UNDELIVERED; | 
|  | ts->stat = SAS_DEV_NO_RESPONSE; | 
|  | break; | 
|  | case IO_XFER_ERROR_REJECTED_NCQ_MODE: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_ERROR_REJECTED_NCQ_MODE\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_DATA_UNDERRUN; | 
|  | break; | 
|  | case IO_XFER_OPEN_RETRY_TIMEOUT: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_OPEN_RETRY_TIMEOUT\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_TO; | 
|  | break; | 
|  | case IO_PORT_IN_RESET: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_PORT_IN_RESET\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_DEV_NO_RESPONSE; | 
|  | break; | 
|  | case IO_DS_NON_OPERATIONAL: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_DS_NON_OPERATIONAL\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_DEV_NO_RESPONSE; | 
|  | if (!t->uldd_task) { | 
|  | pm8001_handle_event(pm8001_ha, pm8001_dev, | 
|  | IO_DS_NON_OPERATIONAL); | 
|  | ts->resp = SAS_TASK_UNDELIVERED; | 
|  | ts->stat = SAS_QUEUE_FULL; | 
|  | pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); | 
|  | mb();/*ditto*/ | 
|  | spin_unlock_irqrestore(&pm8001_ha->lock, flags); | 
|  | t->task_done(t); | 
|  | spin_lock_irqsave(&pm8001_ha->lock, flags); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case IO_DS_IN_RECOVERY: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("  IO_DS_IN_RECOVERY\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_DEV_NO_RESPONSE; | 
|  | break; | 
|  | case IO_DS_IN_ERROR: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_DS_IN_ERROR\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_DEV_NO_RESPONSE; | 
|  | if (!t->uldd_task) { | 
|  | pm8001_handle_event(pm8001_ha, pm8001_dev, | 
|  | IO_DS_IN_ERROR); | 
|  | ts->resp = SAS_TASK_UNDELIVERED; | 
|  | ts->stat = SAS_QUEUE_FULL; | 
|  | pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); | 
|  | mb();/*ditto*/ | 
|  | spin_unlock_irqrestore(&pm8001_ha->lock, flags); | 
|  | t->task_done(t); | 
|  | spin_lock_irqsave(&pm8001_ha->lock, flags); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; | 
|  | default: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("Unknown status 0x%x\n", status)); | 
|  | /* not allowed case. Therefore, return failed status */ | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_DEV_NO_RESPONSE; | 
|  | break; | 
|  | } | 
|  | spin_lock_irqsave(&t->task_state_lock, flags); | 
|  | t->task_state_flags &= ~SAS_TASK_STATE_PENDING; | 
|  | t->task_state_flags &= ~SAS_TASK_AT_INITIATOR; | 
|  | t->task_state_flags |= SAS_TASK_STATE_DONE; | 
|  | if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { | 
|  | spin_unlock_irqrestore(&t->task_state_lock, flags); | 
|  | PM8001_FAIL_DBG(pm8001_ha, | 
|  | pm8001_printk("task 0x%p done with io_status 0x%x" | 
|  | " resp 0x%x stat 0x%x but aborted by upper layer!\n", | 
|  | t, status, ts->resp, ts->stat)); | 
|  | pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); | 
|  | } else if (t->uldd_task) { | 
|  | spin_unlock_irqrestore(&t->task_state_lock, flags); | 
|  | pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); | 
|  | mb();/* ditto */ | 
|  | spin_unlock_irqrestore(&pm8001_ha->lock, flags); | 
|  | t->task_done(t); | 
|  | spin_lock_irqsave(&pm8001_ha->lock, flags); | 
|  | } else if (!t->uldd_task) { | 
|  | spin_unlock_irqrestore(&t->task_state_lock, flags); | 
|  | pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); | 
|  | mb();/*ditto*/ | 
|  | spin_unlock_irqrestore(&pm8001_ha->lock, flags); | 
|  | t->task_done(t); | 
|  | spin_lock_irqsave(&pm8001_ha->lock, flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | /*See the comments for mpi_ssp_completion */ | 
|  | static void mpi_sata_event(struct pm8001_hba_info *pm8001_ha , void *piomb) | 
|  | { | 
|  | struct sas_task *t; | 
|  | unsigned long flags = 0; | 
|  | struct task_status_struct *ts; | 
|  | struct pm8001_ccb_info *ccb; | 
|  | struct pm8001_device *pm8001_dev; | 
|  | struct sata_event_resp *psataPayload = | 
|  | (struct sata_event_resp *)(piomb + 4); | 
|  | u32 event = le32_to_cpu(psataPayload->event); | 
|  | u32 tag = le32_to_cpu(psataPayload->tag); | 
|  | u32 port_id = le32_to_cpu(psataPayload->port_id); | 
|  | u32 dev_id = le32_to_cpu(psataPayload->device_id); | 
|  |  | 
|  | ccb = &pm8001_ha->ccb_info[tag]; | 
|  | t = ccb->task; | 
|  | pm8001_dev = ccb->device; | 
|  | if (event) | 
|  | PM8001_FAIL_DBG(pm8001_ha, | 
|  | pm8001_printk("sata IO status 0x%x\n", event)); | 
|  | if (unlikely(!t || !t->lldd_task || !t->dev)) | 
|  | return; | 
|  | ts = &t->task_status; | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("port_id = %x,device_id = %x\n", | 
|  | port_id, dev_id)); | 
|  | switch (event) { | 
|  | case IO_OVERFLOW: | 
|  | PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_UNDERFLOW\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_DATA_OVERRUN; | 
|  | ts->residual = 0; | 
|  | if (pm8001_dev) | 
|  | pm8001_dev->running_req--; | 
|  | break; | 
|  | case IO_XFER_ERROR_BREAK: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_ERROR_BREAK\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_INTERRUPTED; | 
|  | break; | 
|  | case IO_XFER_ERROR_PHY_NOT_READY: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_ERROR_PHY_NOT_READY\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_PROTOCOL_NOT" | 
|  | "_SUPPORTED\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_EPROTO; | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_UNKNOWN; | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_BREAK: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_BREAK\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_RSVD_CONT0; | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n")); | 
|  | ts->resp = SAS_TASK_UNDELIVERED; | 
|  | ts->stat = SAS_DEV_NO_RESPONSE; | 
|  | if (!t->uldd_task) { | 
|  | pm8001_handle_event(pm8001_ha, | 
|  | pm8001_dev, | 
|  | IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_QUEUE_FULL; | 
|  | pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); | 
|  | mb();/*ditto*/ | 
|  | spin_unlock_irqrestore(&pm8001_ha->lock, flags); | 
|  | t->task_done(t); | 
|  | spin_lock_irqsave(&pm8001_ha->lock, flags); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_BAD_DESTINATION: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_BAD_DESTINATION\n")); | 
|  | ts->resp = SAS_TASK_UNDELIVERED; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_BAD_DEST; | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_CONNECTION_RATE_" | 
|  | "NOT_SUPPORTED\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_CONN_RATE; | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_WRONG_DEST; | 
|  | break; | 
|  | case IO_XFER_ERROR_NAK_RECEIVED: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_ERROR_NAK_RECEIVED\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_NAK_R_ERR; | 
|  | break; | 
|  | case IO_XFER_ERROR_PEER_ABORTED: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_ERROR_PEER_ABORTED\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_NAK_R_ERR; | 
|  | break; | 
|  | case IO_XFER_ERROR_REJECTED_NCQ_MODE: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_ERROR_REJECTED_NCQ_MODE\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_DATA_UNDERRUN; | 
|  | break; | 
|  | case IO_XFER_OPEN_RETRY_TIMEOUT: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_OPEN_RETRY_TIMEOUT\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_TO; | 
|  | break; | 
|  | case IO_XFER_ERROR_UNEXPECTED_PHASE: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_ERROR_UNEXPECTED_PHASE\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_TO; | 
|  | break; | 
|  | case IO_XFER_ERROR_XFER_RDY_OVERRUN: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_ERROR_XFER_RDY_OVERRUN\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_TO; | 
|  | break; | 
|  | case IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_TO; | 
|  | break; | 
|  | case IO_XFER_ERROR_OFFSET_MISMATCH: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_ERROR_OFFSET_MISMATCH\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_TO; | 
|  | break; | 
|  | case IO_XFER_ERROR_XFER_ZERO_DATA_LEN: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_ERROR_XFER_ZERO_DATA_LEN\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_TO; | 
|  | break; | 
|  | case IO_XFER_CMD_FRAME_ISSUED: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_CMD_FRAME_ISSUED\n")); | 
|  | break; | 
|  | case IO_XFER_PIO_SETUP_ERROR: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_PIO_SETUP_ERROR\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_TO; | 
|  | break; | 
|  | default: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("Unknown status 0x%x\n", event)); | 
|  | /* not allowed case. Therefore, return failed status */ | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_TO; | 
|  | break; | 
|  | } | 
|  | spin_lock_irqsave(&t->task_state_lock, flags); | 
|  | t->task_state_flags &= ~SAS_TASK_STATE_PENDING; | 
|  | t->task_state_flags &= ~SAS_TASK_AT_INITIATOR; | 
|  | t->task_state_flags |= SAS_TASK_STATE_DONE; | 
|  | if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { | 
|  | spin_unlock_irqrestore(&t->task_state_lock, flags); | 
|  | PM8001_FAIL_DBG(pm8001_ha, | 
|  | pm8001_printk("task 0x%p done with io_status 0x%x" | 
|  | " resp 0x%x stat 0x%x but aborted by upper layer!\n", | 
|  | t, event, ts->resp, ts->stat)); | 
|  | pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); | 
|  | } else if (t->uldd_task) { | 
|  | spin_unlock_irqrestore(&t->task_state_lock, flags); | 
|  | pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); | 
|  | mb();/* ditto */ | 
|  | spin_unlock_irqrestore(&pm8001_ha->lock, flags); | 
|  | t->task_done(t); | 
|  | spin_lock_irqsave(&pm8001_ha->lock, flags); | 
|  | } else if (!t->uldd_task) { | 
|  | spin_unlock_irqrestore(&t->task_state_lock, flags); | 
|  | pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); | 
|  | mb();/*ditto*/ | 
|  | spin_unlock_irqrestore(&pm8001_ha->lock, flags); | 
|  | t->task_done(t); | 
|  | spin_lock_irqsave(&pm8001_ha->lock, flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | /*See the comments for mpi_ssp_completion */ | 
|  | static void | 
|  | mpi_smp_completion(struct pm8001_hba_info *pm8001_ha, void *piomb) | 
|  | { | 
|  | u32 param; | 
|  | struct sas_task *t; | 
|  | struct pm8001_ccb_info *ccb; | 
|  | unsigned long flags; | 
|  | u32 status; | 
|  | u32 tag; | 
|  | struct smp_completion_resp *psmpPayload; | 
|  | struct task_status_struct *ts; | 
|  | struct pm8001_device *pm8001_dev; | 
|  |  | 
|  | psmpPayload = (struct smp_completion_resp *)(piomb + 4); | 
|  | status = le32_to_cpu(psmpPayload->status); | 
|  | tag = le32_to_cpu(psmpPayload->tag); | 
|  |  | 
|  | ccb = &pm8001_ha->ccb_info[tag]; | 
|  | param = le32_to_cpu(psmpPayload->param); | 
|  | t = ccb->task; | 
|  | ts = &t->task_status; | 
|  | pm8001_dev = ccb->device; | 
|  | if (status) | 
|  | PM8001_FAIL_DBG(pm8001_ha, | 
|  | pm8001_printk("smp IO status 0x%x\n", status)); | 
|  | if (unlikely(!t || !t->lldd_task || !t->dev)) | 
|  | return; | 
|  |  | 
|  | switch (status) { | 
|  | case IO_SUCCESS: | 
|  | PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_SUCCESS\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAM_STAT_GOOD; | 
|  | if (pm8001_dev) | 
|  | pm8001_dev->running_req--; | 
|  | break; | 
|  | case IO_ABORTED: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_ABORTED IOMB\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_ABORTED_TASK; | 
|  | if (pm8001_dev) | 
|  | pm8001_dev->running_req--; | 
|  | break; | 
|  | case IO_OVERFLOW: | 
|  | PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_UNDERFLOW\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_DATA_OVERRUN; | 
|  | ts->residual = 0; | 
|  | if (pm8001_dev) | 
|  | pm8001_dev->running_req--; | 
|  | break; | 
|  | case IO_NO_DEVICE: | 
|  | PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_NO_DEVICE\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_PHY_DOWN; | 
|  | break; | 
|  | case IO_ERROR_HW_TIMEOUT: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_ERROR_HW_TIMEOUT\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAM_STAT_BUSY; | 
|  | break; | 
|  | case IO_XFER_ERROR_BREAK: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_ERROR_BREAK\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAM_STAT_BUSY; | 
|  | break; | 
|  | case IO_XFER_ERROR_PHY_NOT_READY: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_ERROR_PHY_NOT_READY\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAM_STAT_BUSY; | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_UNKNOWN; | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_UNKNOWN; | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_BREAK: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_BREAK\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_RSVD_CONT0; | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_UNKNOWN; | 
|  | pm8001_handle_event(pm8001_ha, | 
|  | pm8001_dev, | 
|  | IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_BAD_DESTINATION: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_BAD_DESTINATION\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_BAD_DEST; | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_CONNECTION_RATE_" | 
|  | "NOT_SUPPORTED\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_CONN_RATE; | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_WRONG_DEST; | 
|  | break; | 
|  | case IO_XFER_ERROR_RX_FRAME: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_ERROR_RX_FRAME\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_DEV_NO_RESPONSE; | 
|  | break; | 
|  | case IO_XFER_OPEN_RETRY_TIMEOUT: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_XFER_OPEN_RETRY_TIMEOUT\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; | 
|  | break; | 
|  | case IO_ERROR_INTERNAL_SMP_RESOURCE: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_ERROR_INTERNAL_SMP_RESOURCE\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_QUEUE_FULL; | 
|  | break; | 
|  | case IO_PORT_IN_RESET: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_PORT_IN_RESET\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; | 
|  | break; | 
|  | case IO_DS_NON_OPERATIONAL: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_DS_NON_OPERATIONAL\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_DEV_NO_RESPONSE; | 
|  | break; | 
|  | case IO_DS_IN_RECOVERY: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_DS_IN_RECOVERY\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; | 
|  | break; | 
|  | case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_OPEN_REJECT; | 
|  | ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; | 
|  | break; | 
|  | default: | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk("Unknown status 0x%x\n", status)); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAS_DEV_NO_RESPONSE; | 
|  | /* not allowed case. Therefore, return failed status */ | 
|  | break; | 
|  | } | 
|  | spin_lock_irqsave(&t->task_state_lock, flags); | 
|  | t->task_state_flags &= ~SAS_TASK_STATE_PENDING; | 
|  | t->task_state_flags &= ~SAS_TASK_AT_INITIATOR; | 
|  | t->task_state_flags |= SAS_TASK_STATE_DONE; | 
|  | if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { | 
|  | spin_unlock_irqrestore(&t->task_state_lock, flags); | 
|  | PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("task 0x%p done with" | 
|  | " io_status 0x%x resp 0x%x " | 
|  | "stat 0x%x but aborted by upper layer!\n", | 
|  | t, status, ts->resp, ts->stat)); | 
|  | pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); | 
|  | } else { | 
|  | spin_unlock_irqrestore(&t->task_state_lock, flags); | 
|  | pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); | 
|  | mb();/* in order to force CPU ordering */ | 
|  | t->task_done(t); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | mpi_set_dev_state_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) | 
|  | { | 
|  | struct set_dev_state_resp *pPayload = | 
|  | (struct set_dev_state_resp *)(piomb + 4); | 
|  | u32 tag = le32_to_cpu(pPayload->tag); | 
|  | struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag]; | 
|  | struct pm8001_device *pm8001_dev = ccb->device; | 
|  | u32 status = le32_to_cpu(pPayload->status); | 
|  | u32 device_id = le32_to_cpu(pPayload->device_id); | 
|  | u8 pds = le32_to_cpu(pPayload->pds_nds) | PDS_BITS; | 
|  | u8 nds = le32_to_cpu(pPayload->pds_nds) | NDS_BITS; | 
|  | PM8001_MSG_DBG(pm8001_ha, pm8001_printk("Set device id = 0x%x state " | 
|  | "from 0x%x to 0x%x status = 0x%x!\n", | 
|  | device_id, pds, nds, status)); | 
|  | complete(pm8001_dev->setds_completion); | 
|  | ccb->task = NULL; | 
|  | ccb->ccb_tag = 0xFFFFFFFF; | 
|  | pm8001_ccb_free(pm8001_ha, tag); | 
|  | } | 
|  |  | 
|  | static void | 
|  | mpi_set_nvmd_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) | 
|  | { | 
|  | struct get_nvm_data_resp *pPayload = | 
|  | (struct get_nvm_data_resp *)(piomb + 4); | 
|  | u32 tag = le32_to_cpu(pPayload->tag); | 
|  | struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag]; | 
|  | u32 dlen_status = le32_to_cpu(pPayload->dlen_status); | 
|  | complete(pm8001_ha->nvmd_completion); | 
|  | PM8001_MSG_DBG(pm8001_ha, pm8001_printk("Set nvm data complete!\n")); | 
|  | if ((dlen_status & NVMD_STAT) != 0) { | 
|  | PM8001_FAIL_DBG(pm8001_ha, | 
|  | pm8001_printk("Set nvm data error!\n")); | 
|  | return; | 
|  | } | 
|  | ccb->task = NULL; | 
|  | ccb->ccb_tag = 0xFFFFFFFF; | 
|  | pm8001_ccb_free(pm8001_ha, tag); | 
|  | } | 
|  |  | 
|  | static void | 
|  | mpi_get_nvmd_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) | 
|  | { | 
|  | struct fw_control_ex	*fw_control_context; | 
|  | struct get_nvm_data_resp *pPayload = | 
|  | (struct get_nvm_data_resp *)(piomb + 4); | 
|  | u32 tag = le32_to_cpu(pPayload->tag); | 
|  | struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag]; | 
|  | u32 dlen_status = le32_to_cpu(pPayload->dlen_status); | 
|  | u32 ir_tds_bn_dps_das_nvm = | 
|  | le32_to_cpu(pPayload->ir_tda_bn_dps_das_nvm); | 
|  | void *virt_addr = pm8001_ha->memoryMap.region[NVMD].virt_ptr; | 
|  | fw_control_context = ccb->fw_control_context; | 
|  |  | 
|  | PM8001_MSG_DBG(pm8001_ha, pm8001_printk("Get nvm data complete!\n")); | 
|  | if ((dlen_status & NVMD_STAT) != 0) { | 
|  | PM8001_FAIL_DBG(pm8001_ha, | 
|  | pm8001_printk("Get nvm data error!\n")); | 
|  | complete(pm8001_ha->nvmd_completion); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (ir_tds_bn_dps_das_nvm & IPMode) { | 
|  | /* indirect mode - IR bit set */ | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("Get NVMD success, IR=1\n")); | 
|  | if ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == TWI_DEVICE) { | 
|  | if (ir_tds_bn_dps_das_nvm == 0x80a80200) { | 
|  | memcpy(pm8001_ha->sas_addr, | 
|  | ((u8 *)virt_addr + 4), | 
|  | SAS_ADDR_SIZE); | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("Get SAS address" | 
|  | " from VPD successfully!\n")); | 
|  | } | 
|  | } else if (((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == C_SEEPROM) | 
|  | || ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == VPD_FLASH) || | 
|  | ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == EXPAN_ROM)) { | 
|  | ; | 
|  | } else if (((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == AAP1_RDUMP) | 
|  | || ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == IOP_RDUMP)) { | 
|  | ; | 
|  | } else { | 
|  | /* Should not be happened*/ | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("(IR=1)Wrong Device type 0x%x\n", | 
|  | ir_tds_bn_dps_das_nvm)); | 
|  | } | 
|  | } else /* direct mode */{ | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("Get NVMD success, IR=0, dataLen=%d\n", | 
|  | (dlen_status & NVMD_LEN) >> 24)); | 
|  | } | 
|  | memcpy(fw_control_context->usrAddr, | 
|  | pm8001_ha->memoryMap.region[NVMD].virt_ptr, | 
|  | fw_control_context->len); | 
|  | complete(pm8001_ha->nvmd_completion); | 
|  | ccb->task = NULL; | 
|  | ccb->ccb_tag = 0xFFFFFFFF; | 
|  | pm8001_ccb_free(pm8001_ha, tag); | 
|  | } | 
|  |  | 
|  | static int mpi_local_phy_ctl(struct pm8001_hba_info *pm8001_ha, void *piomb) | 
|  | { | 
|  | struct local_phy_ctl_resp *pPayload = | 
|  | (struct local_phy_ctl_resp *)(piomb + 4); | 
|  | u32 status = le32_to_cpu(pPayload->status); | 
|  | u32 phy_id = le32_to_cpu(pPayload->phyop_phyid) & ID_BITS; | 
|  | u32 phy_op = le32_to_cpu(pPayload->phyop_phyid) & OP_BITS; | 
|  | if (status != 0) { | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("%x phy execute %x phy op failed!\n", | 
|  | phy_id, phy_op)); | 
|  | } else | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("%x phy execute %x phy op success!\n", | 
|  | phy_id, phy_op)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pm8001_bytes_dmaed - one of the interface function communication with libsas | 
|  | * @pm8001_ha: our hba card information | 
|  | * @i: which phy that received the event. | 
|  | * | 
|  | * when HBA driver received the identify done event or initiate FIS received | 
|  | * event(for SATA), it will invoke this function to notify the sas layer that | 
|  | * the sas toplogy has formed, please discover the the whole sas domain, | 
|  | * while receive a broadcast(change) primitive just tell the sas | 
|  | * layer to discover the changed domain rather than the whole domain. | 
|  | */ | 
|  | static void pm8001_bytes_dmaed(struct pm8001_hba_info *pm8001_ha, int i) | 
|  | { | 
|  | struct pm8001_phy *phy = &pm8001_ha->phy[i]; | 
|  | struct asd_sas_phy *sas_phy = &phy->sas_phy; | 
|  | struct sas_ha_struct *sas_ha; | 
|  | if (!phy->phy_attached) | 
|  | return; | 
|  |  | 
|  | sas_ha = pm8001_ha->sas; | 
|  | if (sas_phy->phy) { | 
|  | struct sas_phy *sphy = sas_phy->phy; | 
|  | sphy->negotiated_linkrate = sas_phy->linkrate; | 
|  | sphy->minimum_linkrate = phy->minimum_linkrate; | 
|  | sphy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS; | 
|  | sphy->maximum_linkrate = phy->maximum_linkrate; | 
|  | sphy->maximum_linkrate_hw = phy->maximum_linkrate; | 
|  | } | 
|  |  | 
|  | if (phy->phy_type & PORT_TYPE_SAS) { | 
|  | struct sas_identify_frame *id; | 
|  | id = (struct sas_identify_frame *)phy->frame_rcvd; | 
|  | id->dev_type = phy->identify.device_type; | 
|  | id->initiator_bits = SAS_PROTOCOL_ALL; | 
|  | id->target_bits = phy->identify.target_port_protocols; | 
|  | } else if (phy->phy_type & PORT_TYPE_SATA) { | 
|  | /*Nothing*/ | 
|  | } | 
|  | PM8001_MSG_DBG(pm8001_ha, pm8001_printk("phy %d byte dmaded.\n", i)); | 
|  |  | 
|  | sas_phy->frame_rcvd_size = phy->frame_rcvd_size; | 
|  | pm8001_ha->sas->notify_port_event(sas_phy, PORTE_BYTES_DMAED); | 
|  | } | 
|  |  | 
|  | /* Get the link rate speed  */ | 
|  | static void get_lrate_mode(struct pm8001_phy *phy, u8 link_rate) | 
|  | { | 
|  | struct sas_phy *sas_phy = phy->sas_phy.phy; | 
|  |  | 
|  | switch (link_rate) { | 
|  | case PHY_SPEED_60: | 
|  | phy->sas_phy.linkrate = SAS_LINK_RATE_6_0_GBPS; | 
|  | phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_6_0_GBPS; | 
|  | break; | 
|  | case PHY_SPEED_30: | 
|  | phy->sas_phy.linkrate = SAS_LINK_RATE_3_0_GBPS; | 
|  | phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_3_0_GBPS; | 
|  | break; | 
|  | case PHY_SPEED_15: | 
|  | phy->sas_phy.linkrate = SAS_LINK_RATE_1_5_GBPS; | 
|  | phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_1_5_GBPS; | 
|  | break; | 
|  | } | 
|  | sas_phy->negotiated_linkrate = phy->sas_phy.linkrate; | 
|  | sas_phy->maximum_linkrate_hw = SAS_LINK_RATE_6_0_GBPS; | 
|  | sas_phy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS; | 
|  | sas_phy->maximum_linkrate = SAS_LINK_RATE_6_0_GBPS; | 
|  | sas_phy->minimum_linkrate = SAS_LINK_RATE_1_5_GBPS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * asd_get_attached_sas_addr -- extract/generate attached SAS address | 
|  | * @phy: pointer to asd_phy | 
|  | * @sas_addr: pointer to buffer where the SAS address is to be written | 
|  | * | 
|  | * This function extracts the SAS address from an IDENTIFY frame | 
|  | * received.  If OOB is SATA, then a SAS address is generated from the | 
|  | * HA tables. | 
|  | * | 
|  | * LOCKING: the frame_rcvd_lock needs to be held since this parses the frame | 
|  | * buffer. | 
|  | */ | 
|  | static void pm8001_get_attached_sas_addr(struct pm8001_phy *phy, | 
|  | u8 *sas_addr) | 
|  | { | 
|  | if (phy->sas_phy.frame_rcvd[0] == 0x34 | 
|  | && phy->sas_phy.oob_mode == SATA_OOB_MODE) { | 
|  | struct pm8001_hba_info *pm8001_ha = phy->sas_phy.ha->lldd_ha; | 
|  | /* FIS device-to-host */ | 
|  | u64 addr = be64_to_cpu(*(__be64 *)pm8001_ha->sas_addr); | 
|  | addr += phy->sas_phy.id; | 
|  | *(__be64 *)sas_addr = cpu_to_be64(addr); | 
|  | } else { | 
|  | struct sas_identify_frame *idframe = | 
|  | (void *) phy->sas_phy.frame_rcvd; | 
|  | memcpy(sas_addr, idframe->sas_addr, SAS_ADDR_SIZE); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pm8001_hw_event_ack_req- For PM8001,some events need to acknowage to FW. | 
|  | * @pm8001_ha: our hba card information | 
|  | * @Qnum: the outbound queue message number. | 
|  | * @SEA: source of event to ack | 
|  | * @port_id: port id. | 
|  | * @phyId: phy id. | 
|  | * @param0: parameter 0. | 
|  | * @param1: parameter 1. | 
|  | */ | 
|  | static void pm8001_hw_event_ack_req(struct pm8001_hba_info *pm8001_ha, | 
|  | u32 Qnum, u32 SEA, u32 port_id, u32 phyId, u32 param0, u32 param1) | 
|  | { | 
|  | struct hw_event_ack_req	 payload; | 
|  | u32 opc = OPC_INB_SAS_HW_EVENT_ACK; | 
|  |  | 
|  | struct inbound_queue_table *circularQ; | 
|  |  | 
|  | memset((u8 *)&payload, 0, sizeof(payload)); | 
|  | circularQ = &pm8001_ha->inbnd_q_tbl[Qnum]; | 
|  | payload.tag = 1; | 
|  | payload.sea_phyid_portid = cpu_to_le32(((SEA & 0xFFFF) << 8) | | 
|  | ((phyId & 0x0F) << 4) | (port_id & 0x0F)); | 
|  | payload.param0 = cpu_to_le32(param0); | 
|  | payload.param1 = cpu_to_le32(param1); | 
|  | mpi_build_cmd(pm8001_ha, circularQ, opc, &payload); | 
|  | } | 
|  |  | 
|  | static int pm8001_chip_phy_ctl_req(struct pm8001_hba_info *pm8001_ha, | 
|  | u32 phyId, u32 phy_op); | 
|  |  | 
|  | /** | 
|  | * hw_event_sas_phy_up -FW tells me a SAS phy up event. | 
|  | * @pm8001_ha: our hba card information | 
|  | * @piomb: IO message buffer | 
|  | */ | 
|  | static void | 
|  | hw_event_sas_phy_up(struct pm8001_hba_info *pm8001_ha, void *piomb) | 
|  | { | 
|  | struct hw_event_resp *pPayload = | 
|  | (struct hw_event_resp *)(piomb + 4); | 
|  | u32 lr_evt_status_phyid_portid = | 
|  | le32_to_cpu(pPayload->lr_evt_status_phyid_portid); | 
|  | u8 link_rate = | 
|  | (u8)((lr_evt_status_phyid_portid & 0xF0000000) >> 28); | 
|  | u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F); | 
|  | u8 phy_id = | 
|  | (u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4); | 
|  | u32 npip_portstate = le32_to_cpu(pPayload->npip_portstate); | 
|  | u8 portstate = (u8)(npip_portstate & 0x0000000F); | 
|  | struct pm8001_port *port = &pm8001_ha->port[port_id]; | 
|  | struct sas_ha_struct *sas_ha = pm8001_ha->sas; | 
|  | struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; | 
|  | unsigned long flags; | 
|  | u8 deviceType = pPayload->sas_identify.dev_type; | 
|  | port->port_state =  portstate; | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("HW_EVENT_SAS_PHY_UP port id = %d, phy id = %d\n", | 
|  | port_id, phy_id)); | 
|  |  | 
|  | switch (deviceType) { | 
|  | case SAS_PHY_UNUSED: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("device type no device.\n")); | 
|  | break; | 
|  | case SAS_END_DEVICE: | 
|  | PM8001_MSG_DBG(pm8001_ha, pm8001_printk("end device.\n")); | 
|  | pm8001_chip_phy_ctl_req(pm8001_ha, phy_id, | 
|  | PHY_NOTIFY_ENABLE_SPINUP); | 
|  | port->port_attached = 1; | 
|  | get_lrate_mode(phy, link_rate); | 
|  | break; | 
|  | case SAS_EDGE_EXPANDER_DEVICE: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("expander device.\n")); | 
|  | port->port_attached = 1; | 
|  | get_lrate_mode(phy, link_rate); | 
|  | break; | 
|  | case SAS_FANOUT_EXPANDER_DEVICE: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("fanout expander device.\n")); | 
|  | port->port_attached = 1; | 
|  | get_lrate_mode(phy, link_rate); | 
|  | break; | 
|  | default: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("unknown device type(%x)\n", deviceType)); | 
|  | break; | 
|  | } | 
|  | phy->phy_type |= PORT_TYPE_SAS; | 
|  | phy->identify.device_type = deviceType; | 
|  | phy->phy_attached = 1; | 
|  | if (phy->identify.device_type == SAS_END_DEV) | 
|  | phy->identify.target_port_protocols = SAS_PROTOCOL_SSP; | 
|  | else if (phy->identify.device_type != NO_DEVICE) | 
|  | phy->identify.target_port_protocols = SAS_PROTOCOL_SMP; | 
|  | phy->sas_phy.oob_mode = SAS_OOB_MODE; | 
|  | sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE); | 
|  | spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags); | 
|  | memcpy(phy->frame_rcvd, &pPayload->sas_identify, | 
|  | sizeof(struct sas_identify_frame)-4); | 
|  | phy->frame_rcvd_size = sizeof(struct sas_identify_frame) - 4; | 
|  | pm8001_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr); | 
|  | spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags); | 
|  | if (pm8001_ha->flags == PM8001F_RUN_TIME) | 
|  | mdelay(200);/*delay a moment to wait disk to spinup*/ | 
|  | pm8001_bytes_dmaed(pm8001_ha, phy_id); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hw_event_sata_phy_up -FW tells me a SATA phy up event. | 
|  | * @pm8001_ha: our hba card information | 
|  | * @piomb: IO message buffer | 
|  | */ | 
|  | static void | 
|  | hw_event_sata_phy_up(struct pm8001_hba_info *pm8001_ha, void *piomb) | 
|  | { | 
|  | struct hw_event_resp *pPayload = | 
|  | (struct hw_event_resp *)(piomb + 4); | 
|  | u32 lr_evt_status_phyid_portid = | 
|  | le32_to_cpu(pPayload->lr_evt_status_phyid_portid); | 
|  | u8 link_rate = | 
|  | (u8)((lr_evt_status_phyid_portid & 0xF0000000) >> 28); | 
|  | u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F); | 
|  | u8 phy_id = | 
|  | (u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4); | 
|  | u32 npip_portstate = le32_to_cpu(pPayload->npip_portstate); | 
|  | u8 portstate = (u8)(npip_portstate & 0x0000000F); | 
|  | struct pm8001_port *port = &pm8001_ha->port[port_id]; | 
|  | struct sas_ha_struct *sas_ha = pm8001_ha->sas; | 
|  | struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; | 
|  | unsigned long flags; | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("HW_EVENT_SATA_PHY_UP port id = %d," | 
|  | " phy id = %d\n", port_id, phy_id)); | 
|  | port->port_state =  portstate; | 
|  | port->port_attached = 1; | 
|  | get_lrate_mode(phy, link_rate); | 
|  | phy->phy_type |= PORT_TYPE_SATA; | 
|  | phy->phy_attached = 1; | 
|  | phy->sas_phy.oob_mode = SATA_OOB_MODE; | 
|  | sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE); | 
|  | spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags); | 
|  | memcpy(phy->frame_rcvd, ((u8 *)&pPayload->sata_fis - 4), | 
|  | sizeof(struct dev_to_host_fis)); | 
|  | phy->frame_rcvd_size = sizeof(struct dev_to_host_fis); | 
|  | phy->identify.target_port_protocols = SAS_PROTOCOL_SATA; | 
|  | phy->identify.device_type = SATA_DEV; | 
|  | pm8001_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr); | 
|  | spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags); | 
|  | pm8001_bytes_dmaed(pm8001_ha, phy_id); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * hw_event_phy_down -we should notify the libsas the phy is down. | 
|  | * @pm8001_ha: our hba card information | 
|  | * @piomb: IO message buffer | 
|  | */ | 
|  | static void | 
|  | hw_event_phy_down(struct pm8001_hba_info *pm8001_ha, void *piomb) | 
|  | { | 
|  | struct hw_event_resp *pPayload = | 
|  | (struct hw_event_resp *)(piomb + 4); | 
|  | u32 lr_evt_status_phyid_portid = | 
|  | le32_to_cpu(pPayload->lr_evt_status_phyid_portid); | 
|  | u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F); | 
|  | u8 phy_id = | 
|  | (u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4); | 
|  | u32 npip_portstate = le32_to_cpu(pPayload->npip_portstate); | 
|  | u8 portstate = (u8)(npip_portstate & 0x0000000F); | 
|  | struct pm8001_port *port = &pm8001_ha->port[port_id]; | 
|  | struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; | 
|  | port->port_state =  portstate; | 
|  | phy->phy_type = 0; | 
|  | phy->identify.device_type = 0; | 
|  | phy->phy_attached = 0; | 
|  | memset(&phy->dev_sas_addr, 0, SAS_ADDR_SIZE); | 
|  | switch (portstate) { | 
|  | case PORT_VALID: | 
|  | break; | 
|  | case PORT_INVALID: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk(" PortInvalid portID %d\n", port_id)); | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk(" Last phy Down and port invalid\n")); | 
|  | port->port_attached = 0; | 
|  | pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_PHY_DOWN, | 
|  | port_id, phy_id, 0, 0); | 
|  | break; | 
|  | case PORT_IN_RESET: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk(" Port In Reset portID %d\n", port_id)); | 
|  | break; | 
|  | case PORT_NOT_ESTABLISHED: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk(" phy Down and PORT_NOT_ESTABLISHED\n")); | 
|  | port->port_attached = 0; | 
|  | break; | 
|  | case PORT_LOSTCOMM: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk(" phy Down and PORT_LOSTCOMM\n")); | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk(" Last phy Down and port invalid\n")); | 
|  | port->port_attached = 0; | 
|  | pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_PHY_DOWN, | 
|  | port_id, phy_id, 0, 0); | 
|  | break; | 
|  | default: | 
|  | port->port_attached = 0; | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk(" phy Down and(default) = %x\n", | 
|  | portstate)); | 
|  | break; | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mpi_reg_resp -process register device ID response. | 
|  | * @pm8001_ha: our hba card information | 
|  | * @piomb: IO message buffer | 
|  | * | 
|  | * when sas layer find a device it will notify LLDD, then the driver register | 
|  | * the domain device to FW, this event is the return device ID which the FW | 
|  | * has assigned, from now,inter-communication with FW is no longer using the | 
|  | * SAS address, use device ID which FW assigned. | 
|  | */ | 
|  | static int mpi_reg_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) | 
|  | { | 
|  | u32 status; | 
|  | u32 device_id; | 
|  | u32 htag; | 
|  | struct pm8001_ccb_info *ccb; | 
|  | struct pm8001_device *pm8001_dev; | 
|  | struct dev_reg_resp *registerRespPayload = | 
|  | (struct dev_reg_resp *)(piomb + 4); | 
|  |  | 
|  | htag = le32_to_cpu(registerRespPayload->tag); | 
|  | ccb = &pm8001_ha->ccb_info[registerRespPayload->tag]; | 
|  | pm8001_dev = ccb->device; | 
|  | status = le32_to_cpu(registerRespPayload->status); | 
|  | device_id = le32_to_cpu(registerRespPayload->device_id); | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk(" register device is status = %d\n", status)); | 
|  | switch (status) { | 
|  | case DEVREG_SUCCESS: | 
|  | PM8001_MSG_DBG(pm8001_ha, pm8001_printk("DEVREG_SUCCESS\n")); | 
|  | pm8001_dev->device_id = device_id; | 
|  | break; | 
|  | case DEVREG_FAILURE_OUT_OF_RESOURCE: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("DEVREG_FAILURE_OUT_OF_RESOURCE\n")); | 
|  | break; | 
|  | case DEVREG_FAILURE_DEVICE_ALREADY_REGISTERED: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("DEVREG_FAILURE_DEVICE_ALREADY_REGISTERED\n")); | 
|  | break; | 
|  | case DEVREG_FAILURE_INVALID_PHY_ID: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("DEVREG_FAILURE_INVALID_PHY_ID\n")); | 
|  | break; | 
|  | case DEVREG_FAILURE_PHY_ID_ALREADY_REGISTERED: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("DEVREG_FAILURE_PHY_ID_ALREADY_REGISTERED\n")); | 
|  | break; | 
|  | case DEVREG_FAILURE_PORT_ID_OUT_OF_RANGE: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("DEVREG_FAILURE_PORT_ID_OUT_OF_RANGE\n")); | 
|  | break; | 
|  | case DEVREG_FAILURE_PORT_NOT_VALID_STATE: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("DEVREG_FAILURE_PORT_NOT_VALID_STATE\n")); | 
|  | break; | 
|  | case DEVREG_FAILURE_DEVICE_TYPE_NOT_VALID: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("DEVREG_FAILURE_DEVICE_TYPE_NOT_VALID\n")); | 
|  | break; | 
|  | default: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("DEVREG_FAILURE_DEVICE_TYPE_NOT_UNSORPORTED\n")); | 
|  | break; | 
|  | } | 
|  | complete(pm8001_dev->dcompletion); | 
|  | ccb->task = NULL; | 
|  | ccb->ccb_tag = 0xFFFFFFFF; | 
|  | pm8001_ccb_free(pm8001_ha, htag); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int mpi_dereg_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) | 
|  | { | 
|  | u32 status; | 
|  | u32 device_id; | 
|  | struct dev_reg_resp *registerRespPayload = | 
|  | (struct dev_reg_resp *)(piomb + 4); | 
|  |  | 
|  | status = le32_to_cpu(registerRespPayload->status); | 
|  | device_id = le32_to_cpu(registerRespPayload->device_id); | 
|  | if (status != 0) | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk(" deregister device failed ,status = %x" | 
|  | ", device_id = %x\n", status, device_id)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | mpi_fw_flash_update_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) | 
|  | { | 
|  | u32 status; | 
|  | struct fw_control_ex	fw_control_context; | 
|  | struct fw_flash_Update_resp *ppayload = | 
|  | (struct fw_flash_Update_resp *)(piomb + 4); | 
|  | u32 tag = le32_to_cpu(ppayload->tag); | 
|  | struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag]; | 
|  | status = le32_to_cpu(ppayload->status); | 
|  | memcpy(&fw_control_context, | 
|  | ccb->fw_control_context, | 
|  | sizeof(fw_control_context)); | 
|  | switch (status) { | 
|  | case FLASH_UPDATE_COMPLETE_PENDING_REBOOT: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk(": FLASH_UPDATE_COMPLETE_PENDING_REBOOT\n")); | 
|  | break; | 
|  | case FLASH_UPDATE_IN_PROGRESS: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk(": FLASH_UPDATE_IN_PROGRESS\n")); | 
|  | break; | 
|  | case FLASH_UPDATE_HDR_ERR: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk(": FLASH_UPDATE_HDR_ERR\n")); | 
|  | break; | 
|  | case FLASH_UPDATE_OFFSET_ERR: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk(": FLASH_UPDATE_OFFSET_ERR\n")); | 
|  | break; | 
|  | case FLASH_UPDATE_CRC_ERR: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk(": FLASH_UPDATE_CRC_ERR\n")); | 
|  | break; | 
|  | case FLASH_UPDATE_LENGTH_ERR: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk(": FLASH_UPDATE_LENGTH_ERR\n")); | 
|  | break; | 
|  | case FLASH_UPDATE_HW_ERR: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk(": FLASH_UPDATE_HW_ERR\n")); | 
|  | break; | 
|  | case FLASH_UPDATE_DNLD_NOT_SUPPORTED: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk(": FLASH_UPDATE_DNLD_NOT_SUPPORTED\n")); | 
|  | break; | 
|  | case FLASH_UPDATE_DISABLED: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk(": FLASH_UPDATE_DISABLED\n")); | 
|  | break; | 
|  | default: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("No matched status = %d\n", status)); | 
|  | break; | 
|  | } | 
|  | ccb->fw_control_context->fw_control->retcode = status; | 
|  | pci_free_consistent(pm8001_ha->pdev, | 
|  | fw_control_context.len, | 
|  | fw_control_context.virtAddr, | 
|  | fw_control_context.phys_addr); | 
|  | complete(pm8001_ha->nvmd_completion); | 
|  | ccb->task = NULL; | 
|  | ccb->ccb_tag = 0xFFFFFFFF; | 
|  | pm8001_ccb_free(pm8001_ha, tag); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | mpi_general_event(struct pm8001_hba_info *pm8001_ha , void *piomb) | 
|  | { | 
|  | u32 status; | 
|  | int i; | 
|  | struct general_event_resp *pPayload = | 
|  | (struct general_event_resp *)(piomb + 4); | 
|  | status = le32_to_cpu(pPayload->status); | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk(" status = 0x%x\n", status)); | 
|  | for (i = 0; i < GENERAL_EVENT_PAYLOAD; i++) | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("inb_IOMB_payload[0x%x] 0x%x,\n", i, | 
|  | pPayload->inb_IOMB_payload[i])); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | mpi_task_abort_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) | 
|  | { | 
|  | struct sas_task *t; | 
|  | struct pm8001_ccb_info *ccb; | 
|  | unsigned long flags; | 
|  | u32 status ; | 
|  | u32 tag, scp; | 
|  | struct task_status_struct *ts; | 
|  |  | 
|  | struct task_abort_resp *pPayload = | 
|  | (struct task_abort_resp *)(piomb + 4); | 
|  | ccb = &pm8001_ha->ccb_info[pPayload->tag]; | 
|  | t = ccb->task; | 
|  |  | 
|  |  | 
|  | status = le32_to_cpu(pPayload->status); | 
|  | tag = le32_to_cpu(pPayload->tag); | 
|  | scp = le32_to_cpu(pPayload->scp); | 
|  | PM8001_IO_DBG(pm8001_ha, | 
|  | pm8001_printk(" status = 0x%x\n", status)); | 
|  | if (t == NULL) | 
|  | return -1; | 
|  | ts = &t->task_status; | 
|  | if (status != 0) | 
|  | PM8001_FAIL_DBG(pm8001_ha, | 
|  | pm8001_printk("task abort failed status 0x%x ," | 
|  | "tag = 0x%x, scp= 0x%x\n", status, tag, scp)); | 
|  | switch (status) { | 
|  | case IO_SUCCESS: | 
|  | PM8001_EH_DBG(pm8001_ha, pm8001_printk("IO_SUCCESS\n")); | 
|  | ts->resp = SAS_TASK_COMPLETE; | 
|  | ts->stat = SAM_STAT_GOOD; | 
|  | break; | 
|  | case IO_NOT_VALID: | 
|  | PM8001_EH_DBG(pm8001_ha, pm8001_printk("IO_NOT_VALID\n")); | 
|  | ts->resp = TMF_RESP_FUNC_FAILED; | 
|  | break; | 
|  | } | 
|  | spin_lock_irqsave(&t->task_state_lock, flags); | 
|  | t->task_state_flags &= ~SAS_TASK_STATE_PENDING; | 
|  | t->task_state_flags &= ~SAS_TASK_AT_INITIATOR; | 
|  | t->task_state_flags |= SAS_TASK_STATE_DONE; | 
|  | spin_unlock_irqrestore(&t->task_state_lock, flags); | 
|  | pm8001_ccb_task_free(pm8001_ha, t, ccb, pPayload->tag); | 
|  | mb(); | 
|  | t->task_done(t); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mpi_hw_event -The hw event has come. | 
|  | * @pm8001_ha: our hba card information | 
|  | * @piomb: IO message buffer | 
|  | */ | 
|  | static int mpi_hw_event(struct pm8001_hba_info *pm8001_ha, void* piomb) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct hw_event_resp *pPayload = | 
|  | (struct hw_event_resp *)(piomb + 4); | 
|  | u32 lr_evt_status_phyid_portid = | 
|  | le32_to_cpu(pPayload->lr_evt_status_phyid_portid); | 
|  | u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F); | 
|  | u8 phy_id = | 
|  | (u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4); | 
|  | u16 eventType = | 
|  | (u16)((lr_evt_status_phyid_portid & 0x00FFFF00) >> 8); | 
|  | u8 status = | 
|  | (u8)((lr_evt_status_phyid_portid & 0x0F000000) >> 24); | 
|  | struct sas_ha_struct *sas_ha = pm8001_ha->sas; | 
|  | struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; | 
|  | struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id]; | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("outbound queue HW event & event type : ")); | 
|  | switch (eventType) { | 
|  | case HW_EVENT_PHY_START_STATUS: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("HW_EVENT_PHY_START_STATUS" | 
|  | " status = %x\n", status)); | 
|  | if (status == 0) { | 
|  | phy->phy_state = 1; | 
|  | if (pm8001_ha->flags == PM8001F_RUN_TIME) | 
|  | complete(phy->enable_completion); | 
|  | } | 
|  | break; | 
|  | case HW_EVENT_SAS_PHY_UP: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("HW_EVENT_PHY_START_STATUS\n")); | 
|  | hw_event_sas_phy_up(pm8001_ha, piomb); | 
|  | break; | 
|  | case HW_EVENT_SATA_PHY_UP: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("HW_EVENT_SATA_PHY_UP\n")); | 
|  | hw_event_sata_phy_up(pm8001_ha, piomb); | 
|  | break; | 
|  | case HW_EVENT_PHY_STOP_STATUS: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("HW_EVENT_PHY_STOP_STATUS " | 
|  | "status = %x\n", status)); | 
|  | if (status == 0) | 
|  | phy->phy_state = 0; | 
|  | break; | 
|  | case HW_EVENT_SATA_SPINUP_HOLD: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("HW_EVENT_SATA_SPINUP_HOLD\n")); | 
|  | sas_ha->notify_phy_event(&phy->sas_phy, PHYE_SPINUP_HOLD); | 
|  | break; | 
|  | case HW_EVENT_PHY_DOWN: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("HW_EVENT_PHY_DOWN\n")); | 
|  | sas_ha->notify_phy_event(&phy->sas_phy, PHYE_LOSS_OF_SIGNAL); | 
|  | phy->phy_attached = 0; | 
|  | phy->phy_state = 0; | 
|  | hw_event_phy_down(pm8001_ha, piomb); | 
|  | break; | 
|  | case HW_EVENT_PORT_INVALID: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("HW_EVENT_PORT_INVALID\n")); | 
|  | sas_phy_disconnected(sas_phy); | 
|  | phy->phy_attached = 0; | 
|  | sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR); | 
|  | break; | 
|  | /* the broadcast change primitive received, tell the LIBSAS this event | 
|  | to revalidate the sas domain*/ | 
|  | case HW_EVENT_BROADCAST_CHANGE: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("HW_EVENT_BROADCAST_CHANGE\n")); | 
|  | pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_BROADCAST_CHANGE, | 
|  | port_id, phy_id, 1, 0); | 
|  | spin_lock_irqsave(&sas_phy->sas_prim_lock, flags); | 
|  | sas_phy->sas_prim = HW_EVENT_BROADCAST_CHANGE; | 
|  | spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags); | 
|  | sas_ha->notify_port_event(sas_phy, PORTE_BROADCAST_RCVD); | 
|  | break; | 
|  | case HW_EVENT_PHY_ERROR: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("HW_EVENT_PHY_ERROR\n")); | 
|  | sas_phy_disconnected(&phy->sas_phy); | 
|  | phy->phy_attached = 0; | 
|  | sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_ERROR); | 
|  | break; | 
|  | case HW_EVENT_BROADCAST_EXP: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("HW_EVENT_BROADCAST_EXP\n")); | 
|  | spin_lock_irqsave(&sas_phy->sas_prim_lock, flags); | 
|  | sas_phy->sas_prim = HW_EVENT_BROADCAST_EXP; | 
|  | spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags); | 
|  | sas_ha->notify_port_event(sas_phy, PORTE_BROADCAST_RCVD); | 
|  | break; | 
|  | case HW_EVENT_LINK_ERR_INVALID_DWORD: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("HW_EVENT_LINK_ERR_INVALID_DWORD\n")); | 
|  | pm8001_hw_event_ack_req(pm8001_ha, 0, | 
|  | HW_EVENT_LINK_ERR_INVALID_DWORD, port_id, phy_id, 0, 0); | 
|  | sas_phy_disconnected(sas_phy); | 
|  | phy->phy_attached = 0; | 
|  | sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR); | 
|  | break; | 
|  | case HW_EVENT_LINK_ERR_DISPARITY_ERROR: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("HW_EVENT_LINK_ERR_DISPARITY_ERROR\n")); | 
|  | pm8001_hw_event_ack_req(pm8001_ha, 0, | 
|  | HW_EVENT_LINK_ERR_DISPARITY_ERROR, | 
|  | port_id, phy_id, 0, 0); | 
|  | sas_phy_disconnected(sas_phy); | 
|  | phy->phy_attached = 0; | 
|  | sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR); | 
|  | break; | 
|  | case HW_EVENT_LINK_ERR_CODE_VIOLATION: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("HW_EVENT_LINK_ERR_CODE_VIOLATION\n")); | 
|  | pm8001_hw_event_ack_req(pm8001_ha, 0, | 
|  | HW_EVENT_LINK_ERR_CODE_VIOLATION, | 
|  | port_id, phy_id, 0, 0); | 
|  | sas_phy_disconnected(sas_phy); | 
|  | phy->phy_attached = 0; | 
|  | sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR); | 
|  | break; | 
|  | case HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH\n")); | 
|  | pm8001_hw_event_ack_req(pm8001_ha, 0, | 
|  | HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH, | 
|  | port_id, phy_id, 0, 0); | 
|  | sas_phy_disconnected(sas_phy); | 
|  | phy->phy_attached = 0; | 
|  | sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR); | 
|  | break; | 
|  | case HW_EVENT_MALFUNCTION: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("HW_EVENT_MALFUNCTION\n")); | 
|  | break; | 
|  | case HW_EVENT_BROADCAST_SES: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("HW_EVENT_BROADCAST_SES\n")); | 
|  | spin_lock_irqsave(&sas_phy->sas_prim_lock, flags); | 
|  | sas_phy->sas_prim = HW_EVENT_BROADCAST_SES; | 
|  | spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags); | 
|  | sas_ha->notify_port_event(sas_phy, PORTE_BROADCAST_RCVD); | 
|  | break; | 
|  | case HW_EVENT_INBOUND_CRC_ERROR: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("HW_EVENT_INBOUND_CRC_ERROR\n")); | 
|  | pm8001_hw_event_ack_req(pm8001_ha, 0, | 
|  | HW_EVENT_INBOUND_CRC_ERROR, | 
|  | port_id, phy_id, 0, 0); | 
|  | break; | 
|  | case HW_EVENT_HARD_RESET_RECEIVED: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("HW_EVENT_HARD_RESET_RECEIVED\n")); | 
|  | sas_ha->notify_port_event(sas_phy, PORTE_HARD_RESET); | 
|  | break; | 
|  | case HW_EVENT_ID_FRAME_TIMEOUT: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("HW_EVENT_ID_FRAME_TIMEOUT\n")); | 
|  | sas_phy_disconnected(sas_phy); | 
|  | phy->phy_attached = 0; | 
|  | sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR); | 
|  | break; | 
|  | case HW_EVENT_LINK_ERR_PHY_RESET_FAILED: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("HW_EVENT_LINK_ERR_PHY_RESET_FAILED\n")); | 
|  | pm8001_hw_event_ack_req(pm8001_ha, 0, | 
|  | HW_EVENT_LINK_ERR_PHY_RESET_FAILED, | 
|  | port_id, phy_id, 0, 0); | 
|  | sas_phy_disconnected(sas_phy); | 
|  | phy->phy_attached = 0; | 
|  | sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR); | 
|  | break; | 
|  | case HW_EVENT_PORT_RESET_TIMER_TMO: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("HW_EVENT_PORT_RESET_TIMER_TMO\n")); | 
|  | sas_phy_disconnected(sas_phy); | 
|  | phy->phy_attached = 0; | 
|  | sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR); | 
|  | break; | 
|  | case HW_EVENT_PORT_RECOVERY_TIMER_TMO: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("HW_EVENT_PORT_RECOVERY_TIMER_TMO\n")); | 
|  | sas_phy_disconnected(sas_phy); | 
|  | phy->phy_attached = 0; | 
|  | sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR); | 
|  | break; | 
|  | case HW_EVENT_PORT_RECOVER: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("HW_EVENT_PORT_RECOVER\n")); | 
|  | break; | 
|  | case HW_EVENT_PORT_RESET_COMPLETE: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("HW_EVENT_PORT_RESET_COMPLETE\n")); | 
|  | break; | 
|  | case EVENT_BROADCAST_ASYNCH_EVENT: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("EVENT_BROADCAST_ASYNCH_EVENT\n")); | 
|  | break; | 
|  | default: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("Unknown event type = %x\n", eventType)); | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * process_one_iomb - process one outbound Queue memory block | 
|  | * @pm8001_ha: our hba card information | 
|  | * @piomb: IO message buffer | 
|  | */ | 
|  | static void process_one_iomb(struct pm8001_hba_info *pm8001_ha, void *piomb) | 
|  | { | 
|  | u32 pHeader = (u32)*(u32 *)piomb; | 
|  | u8 opc = (u8)((le32_to_cpu(pHeader)) & 0xFFF); | 
|  |  | 
|  | PM8001_MSG_DBG(pm8001_ha, pm8001_printk("process_one_iomb:")); | 
|  |  | 
|  | switch (opc) { | 
|  | case OPC_OUB_ECHO: | 
|  | PM8001_MSG_DBG(pm8001_ha, pm8001_printk("OPC_OUB_ECHO\n")); | 
|  | break; | 
|  | case OPC_OUB_HW_EVENT: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("OPC_OUB_HW_EVENT\n")); | 
|  | mpi_hw_event(pm8001_ha, piomb); | 
|  | break; | 
|  | case OPC_OUB_SSP_COMP: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("OPC_OUB_SSP_COMP\n")); | 
|  | mpi_ssp_completion(pm8001_ha, piomb); | 
|  | break; | 
|  | case OPC_OUB_SMP_COMP: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("OPC_OUB_SMP_COMP\n")); | 
|  | mpi_smp_completion(pm8001_ha, piomb); | 
|  | break; | 
|  | case OPC_OUB_LOCAL_PHY_CNTRL: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("OPC_OUB_LOCAL_PHY_CNTRL\n")); | 
|  | mpi_local_phy_ctl(pm8001_ha, piomb); | 
|  | break; | 
|  | case OPC_OUB_DEV_REGIST: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("OPC_OUB_DEV_REGIST\n")); | 
|  | mpi_reg_resp(pm8001_ha, piomb); | 
|  | break; | 
|  | case OPC_OUB_DEREG_DEV: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("unresgister the deviece\n")); | 
|  | mpi_dereg_resp(pm8001_ha, piomb); | 
|  | break; | 
|  | case OPC_OUB_GET_DEV_HANDLE: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("OPC_OUB_GET_DEV_HANDLE\n")); | 
|  | break; | 
|  | case OPC_OUB_SATA_COMP: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("OPC_OUB_SATA_COMP\n")); | 
|  | mpi_sata_completion(pm8001_ha, piomb); | 
|  | break; | 
|  | case OPC_OUB_SATA_EVENT: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("OPC_OUB_SATA_EVENT\n")); | 
|  | mpi_sata_event(pm8001_ha, piomb); | 
|  | break; | 
|  | case OPC_OUB_SSP_EVENT: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("OPC_OUB_SSP_EVENT\n")); | 
|  | mpi_ssp_event(pm8001_ha, piomb); | 
|  | break; | 
|  | case OPC_OUB_DEV_HANDLE_ARRIV: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("OPC_OUB_DEV_HANDLE_ARRIV\n")); | 
|  | /*This is for target*/ | 
|  | break; | 
|  | case OPC_OUB_SSP_RECV_EVENT: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("OPC_OUB_SSP_RECV_EVENT\n")); | 
|  | /*This is for target*/ | 
|  | break; | 
|  | case OPC_OUB_DEV_INFO: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("OPC_OUB_DEV_INFO\n")); | 
|  | break; | 
|  | case OPC_OUB_FW_FLASH_UPDATE: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("OPC_OUB_FW_FLASH_UPDATE\n")); | 
|  | mpi_fw_flash_update_resp(pm8001_ha, piomb); | 
|  | break; | 
|  | case OPC_OUB_GPIO_RESPONSE: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("OPC_OUB_GPIO_RESPONSE\n")); | 
|  | break; | 
|  | case OPC_OUB_GPIO_EVENT: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("OPC_OUB_GPIO_EVENT\n")); | 
|  | break; | 
|  | case OPC_OUB_GENERAL_EVENT: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("OPC_OUB_GENERAL_EVENT\n")); | 
|  | mpi_general_event(pm8001_ha, piomb); | 
|  | break; | 
|  | case OPC_OUB_SSP_ABORT_RSP: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("OPC_OUB_SSP_ABORT_RSP\n")); | 
|  | mpi_task_abort_resp(pm8001_ha, piomb); | 
|  | break; | 
|  | case OPC_OUB_SATA_ABORT_RSP: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("OPC_OUB_SATA_ABORT_RSP\n")); | 
|  | mpi_task_abort_resp(pm8001_ha, piomb); | 
|  | break; | 
|  | case OPC_OUB_SAS_DIAG_MODE_START_END: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("OPC_OUB_SAS_DIAG_MODE_START_END\n")); | 
|  | break; | 
|  | case OPC_OUB_SAS_DIAG_EXECUTE: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("OPC_OUB_SAS_DIAG_EXECUTE\n")); | 
|  | break; | 
|  | case OPC_OUB_GET_TIME_STAMP: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("OPC_OUB_GET_TIME_STAMP\n")); | 
|  | break; | 
|  | case OPC_OUB_SAS_HW_EVENT_ACK: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("OPC_OUB_SAS_HW_EVENT_ACK\n")); | 
|  | break; | 
|  | case OPC_OUB_PORT_CONTROL: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("OPC_OUB_PORT_CONTROL\n")); | 
|  | break; | 
|  | case OPC_OUB_SMP_ABORT_RSP: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("OPC_OUB_SMP_ABORT_RSP\n")); | 
|  | mpi_task_abort_resp(pm8001_ha, piomb); | 
|  | break; | 
|  | case OPC_OUB_GET_NVMD_DATA: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("OPC_OUB_GET_NVMD_DATA\n")); | 
|  | mpi_get_nvmd_resp(pm8001_ha, piomb); | 
|  | break; | 
|  | case OPC_OUB_SET_NVMD_DATA: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("OPC_OUB_SET_NVMD_DATA\n")); | 
|  | mpi_set_nvmd_resp(pm8001_ha, piomb); | 
|  | break; | 
|  | case OPC_OUB_DEVICE_HANDLE_REMOVAL: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("OPC_OUB_DEVICE_HANDLE_REMOVAL\n")); | 
|  | break; | 
|  | case OPC_OUB_SET_DEVICE_STATE: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("OPC_OUB_SET_DEVICE_STATE\n")); | 
|  | mpi_set_dev_state_resp(pm8001_ha, piomb); | 
|  | break; | 
|  | case OPC_OUB_GET_DEVICE_STATE: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("OPC_OUB_GET_DEVICE_STATE\n")); | 
|  | break; | 
|  | case OPC_OUB_SET_DEV_INFO: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("OPC_OUB_SET_DEV_INFO\n")); | 
|  | break; | 
|  | case OPC_OUB_SAS_RE_INITIALIZE: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("OPC_OUB_SAS_RE_INITIALIZE\n")); | 
|  | break; | 
|  | default: | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("Unknown outbound Queue IOMB OPC = %x\n", | 
|  | opc)); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int process_oq(struct pm8001_hba_info *pm8001_ha) | 
|  | { | 
|  | struct outbound_queue_table *circularQ; | 
|  | void *pMsg1 = NULL; | 
|  | u8 bc = 0; | 
|  | u32 ret = MPI_IO_STATUS_FAIL; | 
|  |  | 
|  | circularQ = &pm8001_ha->outbnd_q_tbl[0]; | 
|  | do { | 
|  | ret = mpi_msg_consume(pm8001_ha, circularQ, &pMsg1, &bc); | 
|  | if (MPI_IO_STATUS_SUCCESS == ret) { | 
|  | /* process the outbound message */ | 
|  | process_one_iomb(pm8001_ha, (void *)(pMsg1 - 4)); | 
|  | /* free the message from the outbound circular buffer */ | 
|  | mpi_msg_free_set(pm8001_ha, pMsg1, circularQ, bc); | 
|  | } | 
|  | if (MPI_IO_STATUS_BUSY == ret) { | 
|  | u32 producer_idx; | 
|  | /* Update the producer index from SPC */ | 
|  | producer_idx = pm8001_read_32(circularQ->pi_virt); | 
|  | circularQ->producer_index = cpu_to_le32(producer_idx); | 
|  | if (circularQ->producer_index == | 
|  | circularQ->consumer_idx) | 
|  | /* OQ is empty */ | 
|  | break; | 
|  | } | 
|  | } while (1); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* PCI_DMA_... to our direction translation. */ | 
|  | static const u8 data_dir_flags[] = { | 
|  | [PCI_DMA_BIDIRECTIONAL] = DATA_DIR_BYRECIPIENT,/* UNSPECIFIED */ | 
|  | [PCI_DMA_TODEVICE]	= DATA_DIR_OUT,/* OUTBOUND */ | 
|  | [PCI_DMA_FROMDEVICE]	= DATA_DIR_IN,/* INBOUND */ | 
|  | [PCI_DMA_NONE]		= DATA_DIR_NONE,/* NO TRANSFER */ | 
|  | }; | 
|  | static void | 
|  | pm8001_chip_make_sg(struct scatterlist *scatter, int nr, void *prd) | 
|  | { | 
|  | int i; | 
|  | struct scatterlist *sg; | 
|  | struct pm8001_prd *buf_prd = prd; | 
|  |  | 
|  | for_each_sg(scatter, sg, nr, i) { | 
|  | buf_prd->addr = cpu_to_le64(sg_dma_address(sg)); | 
|  | buf_prd->im_len.len = cpu_to_le32(sg_dma_len(sg)); | 
|  | buf_prd->im_len.e = 0; | 
|  | buf_prd++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void build_smp_cmd(u32 deviceID, u32 hTag, struct smp_req *psmp_cmd) | 
|  | { | 
|  | psmp_cmd->tag = cpu_to_le32(hTag); | 
|  | psmp_cmd->device_id = cpu_to_le32(deviceID); | 
|  | psmp_cmd->len_ip_ir = cpu_to_le32(1|(1 << 1)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pm8001_chip_smp_req - send a SMP task to FW | 
|  | * @pm8001_ha: our hba card information. | 
|  | * @ccb: the ccb information this request used. | 
|  | */ | 
|  | static int pm8001_chip_smp_req(struct pm8001_hba_info *pm8001_ha, | 
|  | struct pm8001_ccb_info *ccb) | 
|  | { | 
|  | int elem, rc; | 
|  | struct sas_task *task = ccb->task; | 
|  | struct domain_device *dev = task->dev; | 
|  | struct pm8001_device *pm8001_dev = dev->lldd_dev; | 
|  | struct scatterlist *sg_req, *sg_resp; | 
|  | u32 req_len, resp_len; | 
|  | struct smp_req smp_cmd; | 
|  | u32 opc; | 
|  | struct inbound_queue_table *circularQ; | 
|  |  | 
|  | memset(&smp_cmd, 0, sizeof(smp_cmd)); | 
|  | /* | 
|  | * DMA-map SMP request, response buffers | 
|  | */ | 
|  | sg_req = &task->smp_task.smp_req; | 
|  | elem = dma_map_sg(pm8001_ha->dev, sg_req, 1, PCI_DMA_TODEVICE); | 
|  | if (!elem) | 
|  | return -ENOMEM; | 
|  | req_len = sg_dma_len(sg_req); | 
|  |  | 
|  | sg_resp = &task->smp_task.smp_resp; | 
|  | elem = dma_map_sg(pm8001_ha->dev, sg_resp, 1, PCI_DMA_FROMDEVICE); | 
|  | if (!elem) { | 
|  | rc = -ENOMEM; | 
|  | goto err_out; | 
|  | } | 
|  | resp_len = sg_dma_len(sg_resp); | 
|  | /* must be in dwords */ | 
|  | if ((req_len & 0x3) || (resp_len & 0x3)) { | 
|  | rc = -EINVAL; | 
|  | goto err_out_2; | 
|  | } | 
|  |  | 
|  | opc = OPC_INB_SMP_REQUEST; | 
|  | circularQ = &pm8001_ha->inbnd_q_tbl[0]; | 
|  | smp_cmd.tag = cpu_to_le32(ccb->ccb_tag); | 
|  | smp_cmd.long_smp_req.long_req_addr = | 
|  | cpu_to_le64((u64)sg_dma_address(&task->smp_task.smp_req)); | 
|  | smp_cmd.long_smp_req.long_req_size = | 
|  | cpu_to_le32((u32)sg_dma_len(&task->smp_task.smp_req)-4); | 
|  | smp_cmd.long_smp_req.long_resp_addr = | 
|  | cpu_to_le64((u64)sg_dma_address(&task->smp_task.smp_resp)); | 
|  | smp_cmd.long_smp_req.long_resp_size = | 
|  | cpu_to_le32((u32)sg_dma_len(&task->smp_task.smp_resp)-4); | 
|  | build_smp_cmd(pm8001_dev->device_id, smp_cmd.tag, &smp_cmd); | 
|  | mpi_build_cmd(pm8001_ha, circularQ, opc, (u32 *)&smp_cmd); | 
|  | return 0; | 
|  |  | 
|  | err_out_2: | 
|  | dma_unmap_sg(pm8001_ha->dev, &ccb->task->smp_task.smp_resp, 1, | 
|  | PCI_DMA_FROMDEVICE); | 
|  | err_out: | 
|  | dma_unmap_sg(pm8001_ha->dev, &ccb->task->smp_task.smp_req, 1, | 
|  | PCI_DMA_TODEVICE); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pm8001_chip_ssp_io_req - send a SSP task to FW | 
|  | * @pm8001_ha: our hba card information. | 
|  | * @ccb: the ccb information this request used. | 
|  | */ | 
|  | static int pm8001_chip_ssp_io_req(struct pm8001_hba_info *pm8001_ha, | 
|  | struct pm8001_ccb_info *ccb) | 
|  | { | 
|  | struct sas_task *task = ccb->task; | 
|  | struct domain_device *dev = task->dev; | 
|  | struct pm8001_device *pm8001_dev = dev->lldd_dev; | 
|  | struct ssp_ini_io_start_req ssp_cmd; | 
|  | u32 tag = ccb->ccb_tag; | 
|  | int ret; | 
|  | __le64 phys_addr; | 
|  | struct inbound_queue_table *circularQ; | 
|  | u32 opc = OPC_INB_SSPINIIOSTART; | 
|  | memset(&ssp_cmd, 0, sizeof(ssp_cmd)); | 
|  | memcpy(ssp_cmd.ssp_iu.lun, task->ssp_task.LUN, 8); | 
|  | ssp_cmd.dir_m_tlr = | 
|  | cpu_to_le32(data_dir_flags[task->data_dir] << 8 | 0x0);/*0 for | 
|  | SAS 1.1 compatible TLR*/ | 
|  | ssp_cmd.data_len = cpu_to_le32(task->total_xfer_len); | 
|  | ssp_cmd.device_id = cpu_to_le32(pm8001_dev->device_id); | 
|  | ssp_cmd.tag = cpu_to_le32(tag); | 
|  | if (task->ssp_task.enable_first_burst) | 
|  | ssp_cmd.ssp_iu.efb_prio_attr |= 0x80; | 
|  | ssp_cmd.ssp_iu.efb_prio_attr |= (task->ssp_task.task_prio << 3); | 
|  | ssp_cmd.ssp_iu.efb_prio_attr |= (task->ssp_task.task_attr & 7); | 
|  | memcpy(ssp_cmd.ssp_iu.cdb, task->ssp_task.cdb, 16); | 
|  | circularQ = &pm8001_ha->inbnd_q_tbl[0]; | 
|  |  | 
|  | /* fill in PRD (scatter/gather) table, if any */ | 
|  | if (task->num_scatter > 1) { | 
|  | pm8001_chip_make_sg(task->scatter, ccb->n_elem, ccb->buf_prd); | 
|  | phys_addr = cpu_to_le64(ccb->ccb_dma_handle + | 
|  | offsetof(struct pm8001_ccb_info, buf_prd[0])); | 
|  | ssp_cmd.addr_low = lower_32_bits(phys_addr); | 
|  | ssp_cmd.addr_high = upper_32_bits(phys_addr); | 
|  | ssp_cmd.esgl = cpu_to_le32(1<<31); | 
|  | } else if (task->num_scatter == 1) { | 
|  | __le64 dma_addr = cpu_to_le64(sg_dma_address(task->scatter)); | 
|  | ssp_cmd.addr_low = lower_32_bits(dma_addr); | 
|  | ssp_cmd.addr_high = upper_32_bits(dma_addr); | 
|  | ssp_cmd.len = cpu_to_le32(task->total_xfer_len); | 
|  | ssp_cmd.esgl = 0; | 
|  | } else if (task->num_scatter == 0) { | 
|  | ssp_cmd.addr_low = 0; | 
|  | ssp_cmd.addr_high = 0; | 
|  | ssp_cmd.len = cpu_to_le32(task->total_xfer_len); | 
|  | ssp_cmd.esgl = 0; | 
|  | } | 
|  | ret = mpi_build_cmd(pm8001_ha, circularQ, opc, &ssp_cmd); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int pm8001_chip_sata_req(struct pm8001_hba_info *pm8001_ha, | 
|  | struct pm8001_ccb_info *ccb) | 
|  | { | 
|  | struct sas_task *task = ccb->task; | 
|  | struct domain_device *dev = task->dev; | 
|  | struct pm8001_device *pm8001_ha_dev = dev->lldd_dev; | 
|  | u32 tag = ccb->ccb_tag; | 
|  | int ret; | 
|  | struct sata_start_req sata_cmd; | 
|  | u32 hdr_tag, ncg_tag = 0; | 
|  | __le64 phys_addr; | 
|  | u32 ATAP = 0x0; | 
|  | u32 dir; | 
|  | struct inbound_queue_table *circularQ; | 
|  | u32  opc = OPC_INB_SATA_HOST_OPSTART; | 
|  | memset(&sata_cmd, 0, sizeof(sata_cmd)); | 
|  | circularQ = &pm8001_ha->inbnd_q_tbl[0]; | 
|  | if (task->data_dir == PCI_DMA_NONE) { | 
|  | ATAP = 0x04;  /* no data*/ | 
|  | PM8001_IO_DBG(pm8001_ha, pm8001_printk("no data\n")); | 
|  | } else if (likely(!task->ata_task.device_control_reg_update)) { | 
|  | if (task->ata_task.dma_xfer) { | 
|  | ATAP = 0x06; /* DMA */ | 
|  | PM8001_IO_DBG(pm8001_ha, pm8001_printk("DMA\n")); | 
|  | } else { | 
|  | ATAP = 0x05; /* PIO*/ | 
|  | PM8001_IO_DBG(pm8001_ha, pm8001_printk("PIO\n")); | 
|  | } | 
|  | if (task->ata_task.use_ncq && | 
|  | dev->sata_dev.command_set != ATAPI_COMMAND_SET) { | 
|  | ATAP = 0x07; /* FPDMA */ | 
|  | PM8001_IO_DBG(pm8001_ha, pm8001_printk("FPDMA\n")); | 
|  | } | 
|  | } | 
|  | if (task->ata_task.use_ncq && pm8001_get_ncq_tag(task, &hdr_tag)) | 
|  | ncg_tag = hdr_tag; | 
|  | dir = data_dir_flags[task->data_dir] << 8; | 
|  | sata_cmd.tag = cpu_to_le32(tag); | 
|  | sata_cmd.device_id = cpu_to_le32(pm8001_ha_dev->device_id); | 
|  | sata_cmd.data_len = cpu_to_le32(task->total_xfer_len); | 
|  | sata_cmd.ncqtag_atap_dir_m = | 
|  | cpu_to_le32(((ncg_tag & 0xff)<<16)|((ATAP & 0x3f) << 10) | dir); | 
|  | sata_cmd.sata_fis = task->ata_task.fis; | 
|  | if (likely(!task->ata_task.device_control_reg_update)) | 
|  | sata_cmd.sata_fis.flags |= 0x80;/* C=1: update ATA cmd reg */ | 
|  | sata_cmd.sata_fis.flags &= 0xF0;/* PM_PORT field shall be 0 */ | 
|  | /* fill in PRD (scatter/gather) table, if any */ | 
|  | if (task->num_scatter > 1) { | 
|  | pm8001_chip_make_sg(task->scatter, ccb->n_elem, ccb->buf_prd); | 
|  | phys_addr = cpu_to_le64(ccb->ccb_dma_handle + | 
|  | offsetof(struct pm8001_ccb_info, buf_prd[0])); | 
|  | sata_cmd.addr_low = lower_32_bits(phys_addr); | 
|  | sata_cmd.addr_high = upper_32_bits(phys_addr); | 
|  | sata_cmd.esgl = cpu_to_le32(1 << 31); | 
|  | } else if (task->num_scatter == 1) { | 
|  | __le64 dma_addr = cpu_to_le64(sg_dma_address(task->scatter)); | 
|  | sata_cmd.addr_low = lower_32_bits(dma_addr); | 
|  | sata_cmd.addr_high = upper_32_bits(dma_addr); | 
|  | sata_cmd.len = cpu_to_le32(task->total_xfer_len); | 
|  | sata_cmd.esgl = 0; | 
|  | } else if (task->num_scatter == 0) { | 
|  | sata_cmd.addr_low = 0; | 
|  | sata_cmd.addr_high = 0; | 
|  | sata_cmd.len = cpu_to_le32(task->total_xfer_len); | 
|  | sata_cmd.esgl = 0; | 
|  | } | 
|  | ret = mpi_build_cmd(pm8001_ha, circularQ, opc, &sata_cmd); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pm8001_chip_phy_start_req - start phy via PHY_START COMMAND | 
|  | * @pm8001_ha: our hba card information. | 
|  | * @num: the inbound queue number | 
|  | * @phy_id: the phy id which we wanted to start up. | 
|  | */ | 
|  | static int | 
|  | pm8001_chip_phy_start_req(struct pm8001_hba_info *pm8001_ha, u8 phy_id) | 
|  | { | 
|  | struct phy_start_req payload; | 
|  | struct inbound_queue_table *circularQ; | 
|  | int ret; | 
|  | u32 tag = 0x01; | 
|  | u32 opcode = OPC_INB_PHYSTART; | 
|  | circularQ = &pm8001_ha->inbnd_q_tbl[0]; | 
|  | memset(&payload, 0, sizeof(payload)); | 
|  | payload.tag = cpu_to_le32(tag); | 
|  | /* | 
|  | ** [0:7]   PHY Identifier | 
|  | ** [8:11]  link rate 1.5G, 3G, 6G | 
|  | ** [12:13] link mode 01b SAS mode; 10b SATA mode; 11b both | 
|  | ** [14]    0b disable spin up hold; 1b enable spin up hold | 
|  | */ | 
|  | payload.ase_sh_lm_slr_phyid = cpu_to_le32(SPINHOLD_DISABLE | | 
|  | LINKMODE_AUTO |	LINKRATE_15 | | 
|  | LINKRATE_30 | LINKRATE_60 | phy_id); | 
|  | payload.sas_identify.dev_type = SAS_END_DEV; | 
|  | payload.sas_identify.initiator_bits = SAS_PROTOCOL_ALL; | 
|  | memcpy(payload.sas_identify.sas_addr, | 
|  | pm8001_ha->sas_addr, SAS_ADDR_SIZE); | 
|  | payload.sas_identify.phy_id = phy_id; | 
|  | ret = mpi_build_cmd(pm8001_ha, circularQ, opcode, &payload); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pm8001_chip_phy_stop_req - start phy via PHY_STOP COMMAND | 
|  | * @pm8001_ha: our hba card information. | 
|  | * @num: the inbound queue number | 
|  | * @phy_id: the phy id which we wanted to start up. | 
|  | */ | 
|  | static int pm8001_chip_phy_stop_req(struct pm8001_hba_info *pm8001_ha, | 
|  | u8 phy_id) | 
|  | { | 
|  | struct phy_stop_req payload; | 
|  | struct inbound_queue_table *circularQ; | 
|  | int ret; | 
|  | u32 tag = 0x01; | 
|  | u32 opcode = OPC_INB_PHYSTOP; | 
|  | circularQ = &pm8001_ha->inbnd_q_tbl[0]; | 
|  | memset(&payload, 0, sizeof(payload)); | 
|  | payload.tag = cpu_to_le32(tag); | 
|  | payload.phy_id = cpu_to_le32(phy_id); | 
|  | ret = mpi_build_cmd(pm8001_ha, circularQ, opcode, &payload); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * see comments on mpi_reg_resp. | 
|  | */ | 
|  | static int pm8001_chip_reg_dev_req(struct pm8001_hba_info *pm8001_ha, | 
|  | struct pm8001_device *pm8001_dev, u32 flag) | 
|  | { | 
|  | struct reg_dev_req payload; | 
|  | u32	opc; | 
|  | u32 stp_sspsmp_sata = 0x4; | 
|  | struct inbound_queue_table *circularQ; | 
|  | u32 linkrate, phy_id; | 
|  | int rc, tag = 0xdeadbeef; | 
|  | struct pm8001_ccb_info *ccb; | 
|  | u8 retryFlag = 0x1; | 
|  | u16 firstBurstSize = 0; | 
|  | u16 ITNT = 2000; | 
|  | struct domain_device *dev = pm8001_dev->sas_device; | 
|  | struct domain_device *parent_dev = dev->parent; | 
|  | circularQ = &pm8001_ha->inbnd_q_tbl[0]; | 
|  |  | 
|  | memset(&payload, 0, sizeof(payload)); | 
|  | rc = pm8001_tag_alloc(pm8001_ha, &tag); | 
|  | if (rc) | 
|  | return rc; | 
|  | ccb = &pm8001_ha->ccb_info[tag]; | 
|  | ccb->device = pm8001_dev; | 
|  | ccb->ccb_tag = tag; | 
|  | payload.tag = cpu_to_le32(tag); | 
|  | if (flag == 1) | 
|  | stp_sspsmp_sata = 0x02; /*direct attached sata */ | 
|  | else { | 
|  | if (pm8001_dev->dev_type == SATA_DEV) | 
|  | stp_sspsmp_sata = 0x00; /* stp*/ | 
|  | else if (pm8001_dev->dev_type == SAS_END_DEV || | 
|  | pm8001_dev->dev_type == EDGE_DEV || | 
|  | pm8001_dev->dev_type == FANOUT_DEV) | 
|  | stp_sspsmp_sata = 0x01; /*ssp or smp*/ | 
|  | } | 
|  | if (parent_dev && DEV_IS_EXPANDER(parent_dev->dev_type)) | 
|  | phy_id = parent_dev->ex_dev.ex_phy->phy_id; | 
|  | else | 
|  | phy_id = pm8001_dev->attached_phy; | 
|  | opc = OPC_INB_REG_DEV; | 
|  | linkrate = (pm8001_dev->sas_device->linkrate < dev->port->linkrate) ? | 
|  | pm8001_dev->sas_device->linkrate : dev->port->linkrate; | 
|  | payload.phyid_portid = | 
|  | cpu_to_le32(((pm8001_dev->sas_device->port->id) & 0x0F) | | 
|  | ((phy_id & 0x0F) << 4)); | 
|  | payload.dtype_dlr_retry = cpu_to_le32((retryFlag & 0x01) | | 
|  | ((linkrate & 0x0F) * 0x1000000) | | 
|  | ((stp_sspsmp_sata & 0x03) * 0x10000000)); | 
|  | payload.firstburstsize_ITNexustimeout = | 
|  | cpu_to_le32(ITNT | (firstBurstSize * 0x10000)); | 
|  | memcpy(payload.sas_addr, pm8001_dev->sas_device->sas_addr, | 
|  | SAS_ADDR_SIZE); | 
|  | rc = mpi_build_cmd(pm8001_ha, circularQ, opc, &payload); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * see comments on mpi_reg_resp. | 
|  | */ | 
|  | static int pm8001_chip_dereg_dev_req(struct pm8001_hba_info *pm8001_ha, | 
|  | u32 device_id) | 
|  | { | 
|  | struct dereg_dev_req payload; | 
|  | u32 opc = OPC_INB_DEREG_DEV_HANDLE; | 
|  | int ret; | 
|  | struct inbound_queue_table *circularQ; | 
|  |  | 
|  | circularQ = &pm8001_ha->inbnd_q_tbl[0]; | 
|  | memset(&payload, 0, sizeof(payload)); | 
|  | payload.tag = 1; | 
|  | payload.device_id = cpu_to_le32(device_id); | 
|  | PM8001_MSG_DBG(pm8001_ha, | 
|  | pm8001_printk("unregister device device_id = %d\n", device_id)); | 
|  | ret = mpi_build_cmd(pm8001_ha, circularQ, opc, &payload); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pm8001_chip_phy_ctl_req - support the local phy operation | 
|  | * @pm8001_ha: our hba card information. | 
|  | * @num: the inbound queue number | 
|  | * @phy_id: the phy id which we wanted to operate | 
|  | * @phy_op: | 
|  | */ | 
|  | static int pm8001_chip_phy_ctl_req(struct pm8001_hba_info *pm8001_ha, | 
|  | u32 phyId, u32 phy_op) | 
|  | { | 
|  | struct local_phy_ctl_req payload; | 
|  | struct inbound_queue_table *circularQ; | 
|  | int ret; | 
|  | u32 opc = OPC_INB_LOCAL_PHY_CONTROL; | 
|  | memset(&payload, 0, sizeof(payload)); | 
|  | circularQ = &pm8001_ha->inbnd_q_tbl[0]; | 
|  | payload.tag = 1; | 
|  | payload.phyop_phyid = | 
|  | cpu_to_le32(((phy_op & 0xff) << 8) | (phyId & 0x0F)); | 
|  | ret = mpi_build_cmd(pm8001_ha, circularQ, opc, &payload); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static u32 pm8001_chip_is_our_interupt(struct pm8001_hba_info *pm8001_ha) | 
|  | { | 
|  | u32 value; | 
|  | #ifdef PM8001_USE_MSIX | 
|  | return 1; | 
|  | #endif | 
|  | value = pm8001_cr32(pm8001_ha, 0, MSGU_ODR); | 
|  | if (value) | 
|  | return 1; | 
|  | return 0; | 
|  |  | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pm8001_chip_isr - PM8001 isr handler. | 
|  | * @pm8001_ha: our hba card information. | 
|  | * @irq: irq number. | 
|  | * @stat: stat. | 
|  | */ | 
|  | static irqreturn_t | 
|  | pm8001_chip_isr(struct pm8001_hba_info *pm8001_ha) | 
|  | { | 
|  | unsigned long flags; | 
|  | spin_lock_irqsave(&pm8001_ha->lock, flags); | 
|  | pm8001_chip_interrupt_disable(pm8001_ha); | 
|  | process_oq(pm8001_ha); | 
|  | pm8001_chip_interrupt_enable(pm8001_ha); | 
|  | spin_unlock_irqrestore(&pm8001_ha->lock, flags); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static int send_task_abort(struct pm8001_hba_info *pm8001_ha, u32 opc, | 
|  | u32 dev_id, u8 flag, u32 task_tag, u32 cmd_tag) | 
|  | { | 
|  | struct task_abort_req task_abort; | 
|  | struct inbound_queue_table *circularQ; | 
|  | int ret; | 
|  | circularQ = &pm8001_ha->inbnd_q_tbl[0]; | 
|  | memset(&task_abort, 0, sizeof(task_abort)); | 
|  | if (ABORT_SINGLE == (flag & ABORT_MASK)) { | 
|  | task_abort.abort_all = 0; | 
|  | task_abort.device_id = cpu_to_le32(dev_id); | 
|  | task_abort.tag_to_abort = cpu_to_le32(task_tag); | 
|  | task_abort.tag = cpu_to_le32(cmd_tag); | 
|  | } else if (ABORT_ALL == (flag & ABORT_MASK)) { | 
|  | task_abort.abort_all = cpu_to_le32(1); | 
|  | task_abort.device_id = cpu_to_le32(dev_id); | 
|  | task_abort.tag = cpu_to_le32(cmd_tag); | 
|  | } | 
|  | ret = mpi_build_cmd(pm8001_ha, circularQ, opc, &task_abort); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pm8001_chip_abort_task - SAS abort task when error or exception happened. | 
|  | * @task: the task we wanted to aborted. | 
|  | * @flag: the abort flag. | 
|  | */ | 
|  | static int pm8001_chip_abort_task(struct pm8001_hba_info *pm8001_ha, | 
|  | struct pm8001_device *pm8001_dev, u8 flag, u32 task_tag, u32 cmd_tag) | 
|  | { | 
|  | u32 opc, device_id; | 
|  | int rc = TMF_RESP_FUNC_FAILED; | 
|  | PM8001_EH_DBG(pm8001_ha, pm8001_printk("cmd_tag = %x, abort task tag" | 
|  | " = %x", cmd_tag, task_tag)); | 
|  | if (pm8001_dev->dev_type == SAS_END_DEV) | 
|  | opc = OPC_INB_SSP_ABORT; | 
|  | else if (pm8001_dev->dev_type == SATA_DEV) | 
|  | opc = OPC_INB_SATA_ABORT; | 
|  | else | 
|  | opc = OPC_INB_SMP_ABORT;/* SMP */ | 
|  | device_id = pm8001_dev->device_id; | 
|  | rc = send_task_abort(pm8001_ha, opc, device_id, flag, | 
|  | task_tag, cmd_tag); | 
|  | if (rc != TMF_RESP_FUNC_COMPLETE) | 
|  | PM8001_EH_DBG(pm8001_ha, pm8001_printk("rc= %d\n", rc)); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pm8001_chip_ssp_tm_req - built the task management command. | 
|  | * @pm8001_ha: our hba card information. | 
|  | * @ccb: the ccb information. | 
|  | * @tmf: task management function. | 
|  | */ | 
|  | static int pm8001_chip_ssp_tm_req(struct pm8001_hba_info *pm8001_ha, | 
|  | struct pm8001_ccb_info *ccb, struct pm8001_tmf_task *tmf) | 
|  | { | 
|  | struct sas_task *task = ccb->task; | 
|  | struct domain_device *dev = task->dev; | 
|  | struct pm8001_device *pm8001_dev = dev->lldd_dev; | 
|  | u32 opc = OPC_INB_SSPINITMSTART; | 
|  | struct inbound_queue_table *circularQ; | 
|  | struct ssp_ini_tm_start_req sspTMCmd; | 
|  | int ret; | 
|  |  | 
|  | memset(&sspTMCmd, 0, sizeof(sspTMCmd)); | 
|  | sspTMCmd.device_id = cpu_to_le32(pm8001_dev->device_id); | 
|  | sspTMCmd.relate_tag = cpu_to_le32(tmf->tag_of_task_to_be_managed); | 
|  | sspTMCmd.tmf = cpu_to_le32(tmf->tmf); | 
|  | memcpy(sspTMCmd.lun, task->ssp_task.LUN, 8); | 
|  | sspTMCmd.tag = cpu_to_le32(ccb->ccb_tag); | 
|  | circularQ = &pm8001_ha->inbnd_q_tbl[0]; | 
|  | ret = mpi_build_cmd(pm8001_ha, circularQ, opc, &sspTMCmd); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int pm8001_chip_get_nvmd_req(struct pm8001_hba_info *pm8001_ha, | 
|  | void *payload) | 
|  | { | 
|  | u32 opc = OPC_INB_GET_NVMD_DATA; | 
|  | u32 nvmd_type; | 
|  | int rc; | 
|  | u32 tag; | 
|  | struct pm8001_ccb_info *ccb; | 
|  | struct inbound_queue_table *circularQ; | 
|  | struct get_nvm_data_req nvmd_req; | 
|  | struct fw_control_ex *fw_control_context; | 
|  | struct pm8001_ioctl_payload *ioctl_payload = payload; | 
|  |  | 
|  | nvmd_type = ioctl_payload->minor_function; | 
|  | fw_control_context = kzalloc(sizeof(struct fw_control_ex), GFP_KERNEL); | 
|  | if (!fw_control_context) | 
|  | return -ENOMEM; | 
|  | fw_control_context->usrAddr = (u8 *)&ioctl_payload->func_specific[0]; | 
|  | fw_control_context->len = ioctl_payload->length; | 
|  | circularQ = &pm8001_ha->inbnd_q_tbl[0]; | 
|  | memset(&nvmd_req, 0, sizeof(nvmd_req)); | 
|  | rc = pm8001_tag_alloc(pm8001_ha, &tag); | 
|  | if (rc) { | 
|  | kfree(fw_control_context); | 
|  | return rc; | 
|  | } | 
|  | ccb = &pm8001_ha->ccb_info[tag]; | 
|  | ccb->ccb_tag = tag; | 
|  | ccb->fw_control_context = fw_control_context; | 
|  | nvmd_req.tag = cpu_to_le32(tag); | 
|  |  | 
|  | switch (nvmd_type) { | 
|  | case TWI_DEVICE: { | 
|  | u32 twi_addr, twi_page_size; | 
|  | twi_addr = 0xa8; | 
|  | twi_page_size = 2; | 
|  |  | 
|  | nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | twi_addr << 16 | | 
|  | twi_page_size << 8 | TWI_DEVICE); | 
|  | nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length); | 
|  | nvmd_req.resp_addr_hi = | 
|  | cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); | 
|  | nvmd_req.resp_addr_lo = | 
|  | cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); | 
|  | break; | 
|  | } | 
|  | case C_SEEPROM: { | 
|  | nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | C_SEEPROM); | 
|  | nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length); | 
|  | nvmd_req.resp_addr_hi = | 
|  | cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); | 
|  | nvmd_req.resp_addr_lo = | 
|  | cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); | 
|  | break; | 
|  | } | 
|  | case VPD_FLASH: { | 
|  | nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | VPD_FLASH); | 
|  | nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length); | 
|  | nvmd_req.resp_addr_hi = | 
|  | cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); | 
|  | nvmd_req.resp_addr_lo = | 
|  | cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); | 
|  | break; | 
|  | } | 
|  | case EXPAN_ROM: { | 
|  | nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | EXPAN_ROM); | 
|  | nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length); | 
|  | nvmd_req.resp_addr_hi = | 
|  | cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); | 
|  | nvmd_req.resp_addr_lo = | 
|  | cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  | rc = mpi_build_cmd(pm8001_ha, circularQ, opc, &nvmd_req); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int pm8001_chip_set_nvmd_req(struct pm8001_hba_info *pm8001_ha, | 
|  | void *payload) | 
|  | { | 
|  | u32 opc = OPC_INB_SET_NVMD_DATA; | 
|  | u32 nvmd_type; | 
|  | int rc; | 
|  | u32 tag; | 
|  | struct pm8001_ccb_info *ccb; | 
|  | struct inbound_queue_table *circularQ; | 
|  | struct set_nvm_data_req nvmd_req; | 
|  | struct fw_control_ex *fw_control_context; | 
|  | struct pm8001_ioctl_payload *ioctl_payload = payload; | 
|  |  | 
|  | nvmd_type = ioctl_payload->minor_function; | 
|  | fw_control_context = kzalloc(sizeof(struct fw_control_ex), GFP_KERNEL); | 
|  | if (!fw_control_context) | 
|  | return -ENOMEM; | 
|  | circularQ = &pm8001_ha->inbnd_q_tbl[0]; | 
|  | memcpy(pm8001_ha->memoryMap.region[NVMD].virt_ptr, | 
|  | ioctl_payload->func_specific, | 
|  | ioctl_payload->length); | 
|  | memset(&nvmd_req, 0, sizeof(nvmd_req)); | 
|  | rc = pm8001_tag_alloc(pm8001_ha, &tag); | 
|  | if (rc) { | 
|  | kfree(fw_control_context); | 
|  | return rc; | 
|  | } | 
|  | ccb = &pm8001_ha->ccb_info[tag]; | 
|  | ccb->fw_control_context = fw_control_context; | 
|  | ccb->ccb_tag = tag; | 
|  | nvmd_req.tag = cpu_to_le32(tag); | 
|  | switch (nvmd_type) { | 
|  | case TWI_DEVICE: { | 
|  | u32 twi_addr, twi_page_size; | 
|  | twi_addr = 0xa8; | 
|  | twi_page_size = 2; | 
|  | nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98); | 
|  | nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | twi_addr << 16 | | 
|  | twi_page_size << 8 | TWI_DEVICE); | 
|  | nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length); | 
|  | nvmd_req.resp_addr_hi = | 
|  | cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); | 
|  | nvmd_req.resp_addr_lo = | 
|  | cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); | 
|  | break; | 
|  | } | 
|  | case C_SEEPROM: | 
|  | nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | C_SEEPROM); | 
|  | nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length); | 
|  | nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98); | 
|  | nvmd_req.resp_addr_hi = | 
|  | cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); | 
|  | nvmd_req.resp_addr_lo = | 
|  | cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); | 
|  | break; | 
|  | case VPD_FLASH: | 
|  | nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | VPD_FLASH); | 
|  | nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length); | 
|  | nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98); | 
|  | nvmd_req.resp_addr_hi = | 
|  | cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); | 
|  | nvmd_req.resp_addr_lo = | 
|  | cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); | 
|  | break; | 
|  | case EXPAN_ROM: | 
|  | nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | EXPAN_ROM); | 
|  | nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length); | 
|  | nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98); | 
|  | nvmd_req.resp_addr_hi = | 
|  | cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); | 
|  | nvmd_req.resp_addr_lo = | 
|  | cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | rc = mpi_build_cmd(pm8001_ha, circularQ, opc, &nvmd_req); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pm8001_chip_fw_flash_update_build - support the firmware update operation | 
|  | * @pm8001_ha: our hba card information. | 
|  | * @fw_flash_updata_info: firmware flash update param | 
|  | */ | 
|  | static int | 
|  | pm8001_chip_fw_flash_update_build(struct pm8001_hba_info *pm8001_ha, | 
|  | void *fw_flash_updata_info, u32 tag) | 
|  | { | 
|  | struct fw_flash_Update_req payload; | 
|  | struct fw_flash_updata_info *info; | 
|  | struct inbound_queue_table *circularQ; | 
|  | int ret; | 
|  | u32 opc = OPC_INB_FW_FLASH_UPDATE; | 
|  |  | 
|  | memset(&payload, 0, sizeof(struct fw_flash_Update_req)); | 
|  | circularQ = &pm8001_ha->inbnd_q_tbl[0]; | 
|  | info = fw_flash_updata_info; | 
|  | payload.tag = cpu_to_le32(tag); | 
|  | payload.cur_image_len = cpu_to_le32(info->cur_image_len); | 
|  | payload.cur_image_offset = cpu_to_le32(info->cur_image_offset); | 
|  | payload.total_image_len = cpu_to_le32(info->total_image_len); | 
|  | payload.len = info->sgl.im_len.len ; | 
|  | payload.sgl_addr_lo = lower_32_bits(info->sgl.addr); | 
|  | payload.sgl_addr_hi = upper_32_bits(info->sgl.addr); | 
|  | ret = mpi_build_cmd(pm8001_ha, circularQ, opc, &payload); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int | 
|  | pm8001_chip_fw_flash_update_req(struct pm8001_hba_info *pm8001_ha, | 
|  | void *payload) | 
|  | { | 
|  | struct fw_flash_updata_info flash_update_info; | 
|  | struct fw_control_info *fw_control; | 
|  | struct fw_control_ex *fw_control_context; | 
|  | int rc; | 
|  | u32 tag; | 
|  | struct pm8001_ccb_info *ccb; | 
|  | void *buffer = NULL; | 
|  | dma_addr_t phys_addr; | 
|  | u32 phys_addr_hi; | 
|  | u32 phys_addr_lo; | 
|  | struct pm8001_ioctl_payload *ioctl_payload = payload; | 
|  |  | 
|  | fw_control_context = kzalloc(sizeof(struct fw_control_ex), GFP_KERNEL); | 
|  | if (!fw_control_context) | 
|  | return -ENOMEM; | 
|  | fw_control = (struct fw_control_info *)&ioctl_payload->func_specific[0]; | 
|  | if (fw_control->len != 0) { | 
|  | if (pm8001_mem_alloc(pm8001_ha->pdev, | 
|  | (void **)&buffer, | 
|  | &phys_addr, | 
|  | &phys_addr_hi, | 
|  | &phys_addr_lo, | 
|  | fw_control->len, 0) != 0) { | 
|  | PM8001_FAIL_DBG(pm8001_ha, | 
|  | pm8001_printk("Mem alloc failure\n")); | 
|  | kfree(fw_control_context); | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  | memcpy(buffer, fw_control->buffer, fw_control->len); | 
|  | flash_update_info.sgl.addr = cpu_to_le64(phys_addr); | 
|  | flash_update_info.sgl.im_len.len = cpu_to_le32(fw_control->len); | 
|  | flash_update_info.sgl.im_len.e = 0; | 
|  | flash_update_info.cur_image_offset = fw_control->offset; | 
|  | flash_update_info.cur_image_len = fw_control->len; | 
|  | flash_update_info.total_image_len = fw_control->size; | 
|  | fw_control_context->fw_control = fw_control; | 
|  | fw_control_context->virtAddr = buffer; | 
|  | fw_control_context->len = fw_control->len; | 
|  | rc = pm8001_tag_alloc(pm8001_ha, &tag); | 
|  | if (rc) { | 
|  | kfree(fw_control_context); | 
|  | return rc; | 
|  | } | 
|  | ccb = &pm8001_ha->ccb_info[tag]; | 
|  | ccb->fw_control_context = fw_control_context; | 
|  | ccb->ccb_tag = tag; | 
|  | rc = pm8001_chip_fw_flash_update_build(pm8001_ha, &flash_update_info, | 
|  | tag); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int | 
|  | pm8001_chip_set_dev_state_req(struct pm8001_hba_info *pm8001_ha, | 
|  | struct pm8001_device *pm8001_dev, u32 state) | 
|  | { | 
|  | struct set_dev_state_req payload; | 
|  | struct inbound_queue_table *circularQ; | 
|  | struct pm8001_ccb_info *ccb; | 
|  | int rc; | 
|  | u32 tag; | 
|  | u32 opc = OPC_INB_SET_DEVICE_STATE; | 
|  | memset(&payload, 0, sizeof(payload)); | 
|  | rc = pm8001_tag_alloc(pm8001_ha, &tag); | 
|  | if (rc) | 
|  | return -1; | 
|  | ccb = &pm8001_ha->ccb_info[tag]; | 
|  | ccb->ccb_tag = tag; | 
|  | ccb->device = pm8001_dev; | 
|  | circularQ = &pm8001_ha->inbnd_q_tbl[0]; | 
|  | payload.tag = cpu_to_le32(tag); | 
|  | payload.device_id = cpu_to_le32(pm8001_dev->device_id); | 
|  | payload.nds = cpu_to_le32(state); | 
|  | rc = mpi_build_cmd(pm8001_ha, circularQ, opc, &payload); | 
|  | return rc; | 
|  |  | 
|  | } | 
|  |  | 
|  | static int | 
|  | pm8001_chip_sas_re_initialization(struct pm8001_hba_info *pm8001_ha) | 
|  | { | 
|  | struct sas_re_initialization_req payload; | 
|  | struct inbound_queue_table *circularQ; | 
|  | struct pm8001_ccb_info *ccb; | 
|  | int rc; | 
|  | u32 tag; | 
|  | u32 opc = OPC_INB_SAS_RE_INITIALIZE; | 
|  | memset(&payload, 0, sizeof(payload)); | 
|  | rc = pm8001_tag_alloc(pm8001_ha, &tag); | 
|  | if (rc) | 
|  | return -1; | 
|  | ccb = &pm8001_ha->ccb_info[tag]; | 
|  | ccb->ccb_tag = tag; | 
|  | circularQ = &pm8001_ha->inbnd_q_tbl[0]; | 
|  | payload.tag = cpu_to_le32(tag); | 
|  | payload.SSAHOLT = cpu_to_le32(0xd << 25); | 
|  | payload.sata_hol_tmo = cpu_to_le32(80); | 
|  | payload.open_reject_cmdretries_data_retries = cpu_to_le32(0xff00ff); | 
|  | rc = mpi_build_cmd(pm8001_ha, circularQ, opc, &payload); | 
|  | return rc; | 
|  |  | 
|  | } | 
|  |  | 
|  | const struct pm8001_dispatch pm8001_8001_dispatch = { | 
|  | .name			= "pmc8001", | 
|  | .chip_init		= pm8001_chip_init, | 
|  | .chip_soft_rst		= pm8001_chip_soft_rst, | 
|  | .chip_rst		= pm8001_hw_chip_rst, | 
|  | .chip_iounmap		= pm8001_chip_iounmap, | 
|  | .isr			= pm8001_chip_isr, | 
|  | .is_our_interupt	= pm8001_chip_is_our_interupt, | 
|  | .isr_process_oq		= process_oq, | 
|  | .interrupt_enable 	= pm8001_chip_interrupt_enable, | 
|  | .interrupt_disable	= pm8001_chip_interrupt_disable, | 
|  | .make_prd		= pm8001_chip_make_sg, | 
|  | .smp_req		= pm8001_chip_smp_req, | 
|  | .ssp_io_req		= pm8001_chip_ssp_io_req, | 
|  | .sata_req		= pm8001_chip_sata_req, | 
|  | .phy_start_req		= pm8001_chip_phy_start_req, | 
|  | .phy_stop_req		= pm8001_chip_phy_stop_req, | 
|  | .reg_dev_req		= pm8001_chip_reg_dev_req, | 
|  | .dereg_dev_req		= pm8001_chip_dereg_dev_req, | 
|  | .phy_ctl_req		= pm8001_chip_phy_ctl_req, | 
|  | .task_abort		= pm8001_chip_abort_task, | 
|  | .ssp_tm_req		= pm8001_chip_ssp_tm_req, | 
|  | .get_nvmd_req		= pm8001_chip_get_nvmd_req, | 
|  | .set_nvmd_req		= pm8001_chip_set_nvmd_req, | 
|  | .fw_flash_update_req	= pm8001_chip_fw_flash_update_req, | 
|  | .set_dev_state_req	= pm8001_chip_set_dev_state_req, | 
|  | .sas_re_init_req	= pm8001_chip_sas_re_initialization, | 
|  | }; | 
|  |  |