| /* | 
 |  * Copyright (C) 2008 Oracle.  All rights reserved. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public | 
 |  * License v2 as published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |  * General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public | 
 |  * License along with this program; if not, write to the | 
 |  * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 
 |  * Boston, MA 021110-1307, USA. | 
 |  */ | 
 |  | 
 | #include <linux/sched.h> | 
 | #include "ctree.h" | 
 | #include "transaction.h" | 
 | #include "disk-io.h" | 
 | #include "locking.h" | 
 | #include "print-tree.h" | 
 | #include "compat.h" | 
 | #include "tree-log.h" | 
 |  | 
 | /* magic values for the inode_only field in btrfs_log_inode: | 
 |  * | 
 |  * LOG_INODE_ALL means to log everything | 
 |  * LOG_INODE_EXISTS means to log just enough to recreate the inode | 
 |  * during log replay | 
 |  */ | 
 | #define LOG_INODE_ALL 0 | 
 | #define LOG_INODE_EXISTS 1 | 
 |  | 
 | /* | 
 |  * directory trouble cases | 
 |  * | 
 |  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync | 
 |  * log, we must force a full commit before doing an fsync of the directory | 
 |  * where the unlink was done. | 
 |  * ---> record transid of last unlink/rename per directory | 
 |  * | 
 |  * mkdir foo/some_dir | 
 |  * normal commit | 
 |  * rename foo/some_dir foo2/some_dir | 
 |  * mkdir foo/some_dir | 
 |  * fsync foo/some_dir/some_file | 
 |  * | 
 |  * The fsync above will unlink the original some_dir without recording | 
 |  * it in its new location (foo2).  After a crash, some_dir will be gone | 
 |  * unless the fsync of some_file forces a full commit | 
 |  * | 
 |  * 2) we must log any new names for any file or dir that is in the fsync | 
 |  * log. ---> check inode while renaming/linking. | 
 |  * | 
 |  * 2a) we must log any new names for any file or dir during rename | 
 |  * when the directory they are being removed from was logged. | 
 |  * ---> check inode and old parent dir during rename | 
 |  * | 
 |  *  2a is actually the more important variant.  With the extra logging | 
 |  *  a crash might unlink the old name without recreating the new one | 
 |  * | 
 |  * 3) after a crash, we must go through any directories with a link count | 
 |  * of zero and redo the rm -rf | 
 |  * | 
 |  * mkdir f1/foo | 
 |  * normal commit | 
 |  * rm -rf f1/foo | 
 |  * fsync(f1) | 
 |  * | 
 |  * The directory f1 was fully removed from the FS, but fsync was never | 
 |  * called on f1, only its parent dir.  After a crash the rm -rf must | 
 |  * be replayed.  This must be able to recurse down the entire | 
 |  * directory tree.  The inode link count fixup code takes care of the | 
 |  * ugly details. | 
 |  */ | 
 |  | 
 | /* | 
 |  * stages for the tree walking.  The first | 
 |  * stage (0) is to only pin down the blocks we find | 
 |  * the second stage (1) is to make sure that all the inodes | 
 |  * we find in the log are created in the subvolume. | 
 |  * | 
 |  * The last stage is to deal with directories and links and extents | 
 |  * and all the other fun semantics | 
 |  */ | 
 | #define LOG_WALK_PIN_ONLY 0 | 
 | #define LOG_WALK_REPLAY_INODES 1 | 
 | #define LOG_WALK_REPLAY_ALL 2 | 
 |  | 
 | static int btrfs_log_inode(struct btrfs_trans_handle *trans, | 
 | 			     struct btrfs_root *root, struct inode *inode, | 
 | 			     int inode_only); | 
 | static int link_to_fixup_dir(struct btrfs_trans_handle *trans, | 
 | 			     struct btrfs_root *root, | 
 | 			     struct btrfs_path *path, u64 objectid); | 
 | static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, | 
 | 				       struct btrfs_root *root, | 
 | 				       struct btrfs_root *log, | 
 | 				       struct btrfs_path *path, | 
 | 				       u64 dirid, int del_all); | 
 |  | 
 | /* | 
 |  * tree logging is a special write ahead log used to make sure that | 
 |  * fsyncs and O_SYNCs can happen without doing full tree commits. | 
 |  * | 
 |  * Full tree commits are expensive because they require commonly | 
 |  * modified blocks to be recowed, creating many dirty pages in the | 
 |  * extent tree an 4x-6x higher write load than ext3. | 
 |  * | 
 |  * Instead of doing a tree commit on every fsync, we use the | 
 |  * key ranges and transaction ids to find items for a given file or directory | 
 |  * that have changed in this transaction.  Those items are copied into | 
 |  * a special tree (one per subvolume root), that tree is written to disk | 
 |  * and then the fsync is considered complete. | 
 |  * | 
 |  * After a crash, items are copied out of the log-tree back into the | 
 |  * subvolume tree.  Any file data extents found are recorded in the extent | 
 |  * allocation tree, and the log-tree freed. | 
 |  * | 
 |  * The log tree is read three times, once to pin down all the extents it is | 
 |  * using in ram and once, once to create all the inodes logged in the tree | 
 |  * and once to do all the other items. | 
 |  */ | 
 |  | 
 | /* | 
 |  * start a sub transaction and setup the log tree | 
 |  * this increments the log tree writer count to make the people | 
 |  * syncing the tree wait for us to finish | 
 |  */ | 
 | static int start_log_trans(struct btrfs_trans_handle *trans, | 
 | 			   struct btrfs_root *root) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	mutex_lock(&root->log_mutex); | 
 | 	if (root->log_root) { | 
 | 		root->log_batch++; | 
 | 		atomic_inc(&root->log_writers); | 
 | 		mutex_unlock(&root->log_mutex); | 
 | 		return 0; | 
 | 	} | 
 | 	mutex_lock(&root->fs_info->tree_log_mutex); | 
 | 	if (!root->fs_info->log_root_tree) { | 
 | 		ret = btrfs_init_log_root_tree(trans, root->fs_info); | 
 | 		BUG_ON(ret); | 
 | 	} | 
 | 	if (!root->log_root) { | 
 | 		ret = btrfs_add_log_tree(trans, root); | 
 | 		BUG_ON(ret); | 
 | 	} | 
 | 	mutex_unlock(&root->fs_info->tree_log_mutex); | 
 | 	root->log_batch++; | 
 | 	atomic_inc(&root->log_writers); | 
 | 	mutex_unlock(&root->log_mutex); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * returns 0 if there was a log transaction running and we were able | 
 |  * to join, or returns -ENOENT if there were not transactions | 
 |  * in progress | 
 |  */ | 
 | static int join_running_log_trans(struct btrfs_root *root) | 
 | { | 
 | 	int ret = -ENOENT; | 
 |  | 
 | 	smp_mb(); | 
 | 	if (!root->log_root) | 
 | 		return -ENOENT; | 
 |  | 
 | 	mutex_lock(&root->log_mutex); | 
 | 	if (root->log_root) { | 
 | 		ret = 0; | 
 | 		atomic_inc(&root->log_writers); | 
 | 	} | 
 | 	mutex_unlock(&root->log_mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * This either makes the current running log transaction wait | 
 |  * until you call btrfs_end_log_trans() or it makes any future | 
 |  * log transactions wait until you call btrfs_end_log_trans() | 
 |  */ | 
 | int btrfs_pin_log_trans(struct btrfs_root *root) | 
 | { | 
 | 	int ret = -ENOENT; | 
 |  | 
 | 	mutex_lock(&root->log_mutex); | 
 | 	atomic_inc(&root->log_writers); | 
 | 	mutex_unlock(&root->log_mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * indicate we're done making changes to the log tree | 
 |  * and wake up anyone waiting to do a sync | 
 |  */ | 
 | int btrfs_end_log_trans(struct btrfs_root *root) | 
 | { | 
 | 	if (atomic_dec_and_test(&root->log_writers)) { | 
 | 		smp_mb(); | 
 | 		if (waitqueue_active(&root->log_writer_wait)) | 
 | 			wake_up(&root->log_writer_wait); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * the walk control struct is used to pass state down the chain when | 
 |  * processing the log tree.  The stage field tells us which part | 
 |  * of the log tree processing we are currently doing.  The others | 
 |  * are state fields used for that specific part | 
 |  */ | 
 | struct walk_control { | 
 | 	/* should we free the extent on disk when done?  This is used | 
 | 	 * at transaction commit time while freeing a log tree | 
 | 	 */ | 
 | 	int free; | 
 |  | 
 | 	/* should we write out the extent buffer?  This is used | 
 | 	 * while flushing the log tree to disk during a sync | 
 | 	 */ | 
 | 	int write; | 
 |  | 
 | 	/* should we wait for the extent buffer io to finish?  Also used | 
 | 	 * while flushing the log tree to disk for a sync | 
 | 	 */ | 
 | 	int wait; | 
 |  | 
 | 	/* pin only walk, we record which extents on disk belong to the | 
 | 	 * log trees | 
 | 	 */ | 
 | 	int pin; | 
 |  | 
 | 	/* what stage of the replay code we're currently in */ | 
 | 	int stage; | 
 |  | 
 | 	/* the root we are currently replaying */ | 
 | 	struct btrfs_root *replay_dest; | 
 |  | 
 | 	/* the trans handle for the current replay */ | 
 | 	struct btrfs_trans_handle *trans; | 
 |  | 
 | 	/* the function that gets used to process blocks we find in the | 
 | 	 * tree.  Note the extent_buffer might not be up to date when it is | 
 | 	 * passed in, and it must be checked or read if you need the data | 
 | 	 * inside it | 
 | 	 */ | 
 | 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, | 
 | 			    struct walk_control *wc, u64 gen); | 
 | }; | 
 |  | 
 | /* | 
 |  * process_func used to pin down extents, write them or wait on them | 
 |  */ | 
 | static int process_one_buffer(struct btrfs_root *log, | 
 | 			      struct extent_buffer *eb, | 
 | 			      struct walk_control *wc, u64 gen) | 
 | { | 
 | 	if (wc->pin) | 
 | 		btrfs_update_pinned_extents(log->fs_info->extent_root, | 
 | 					    eb->start, eb->len, 1); | 
 |  | 
 | 	if (btrfs_buffer_uptodate(eb, gen)) { | 
 | 		if (wc->write) | 
 | 			btrfs_write_tree_block(eb); | 
 | 		if (wc->wait) | 
 | 			btrfs_wait_tree_block_writeback(eb); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Item overwrite used by replay and tree logging.  eb, slot and key all refer | 
 |  * to the src data we are copying out. | 
 |  * | 
 |  * root is the tree we are copying into, and path is a scratch | 
 |  * path for use in this function (it should be released on entry and | 
 |  * will be released on exit). | 
 |  * | 
 |  * If the key is already in the destination tree the existing item is | 
 |  * overwritten.  If the existing item isn't big enough, it is extended. | 
 |  * If it is too large, it is truncated. | 
 |  * | 
 |  * If the key isn't in the destination yet, a new item is inserted. | 
 |  */ | 
 | static noinline int overwrite_item(struct btrfs_trans_handle *trans, | 
 | 				   struct btrfs_root *root, | 
 | 				   struct btrfs_path *path, | 
 | 				   struct extent_buffer *eb, int slot, | 
 | 				   struct btrfs_key *key) | 
 | { | 
 | 	int ret; | 
 | 	u32 item_size; | 
 | 	u64 saved_i_size = 0; | 
 | 	int save_old_i_size = 0; | 
 | 	unsigned long src_ptr; | 
 | 	unsigned long dst_ptr; | 
 | 	int overwrite_root = 0; | 
 |  | 
 | 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) | 
 | 		overwrite_root = 1; | 
 |  | 
 | 	item_size = btrfs_item_size_nr(eb, slot); | 
 | 	src_ptr = btrfs_item_ptr_offset(eb, slot); | 
 |  | 
 | 	/* look for the key in the destination tree */ | 
 | 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0); | 
 | 	if (ret == 0) { | 
 | 		char *src_copy; | 
 | 		char *dst_copy; | 
 | 		u32 dst_size = btrfs_item_size_nr(path->nodes[0], | 
 | 						  path->slots[0]); | 
 | 		if (dst_size != item_size) | 
 | 			goto insert; | 
 |  | 
 | 		if (item_size == 0) { | 
 | 			btrfs_release_path(root, path); | 
 | 			return 0; | 
 | 		} | 
 | 		dst_copy = kmalloc(item_size, GFP_NOFS); | 
 | 		src_copy = kmalloc(item_size, GFP_NOFS); | 
 |  | 
 | 		read_extent_buffer(eb, src_copy, src_ptr, item_size); | 
 |  | 
 | 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); | 
 | 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, | 
 | 				   item_size); | 
 | 		ret = memcmp(dst_copy, src_copy, item_size); | 
 |  | 
 | 		kfree(dst_copy); | 
 | 		kfree(src_copy); | 
 | 		/* | 
 | 		 * they have the same contents, just return, this saves | 
 | 		 * us from cowing blocks in the destination tree and doing | 
 | 		 * extra writes that may not have been done by a previous | 
 | 		 * sync | 
 | 		 */ | 
 | 		if (ret == 0) { | 
 | 			btrfs_release_path(root, path); | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 	} | 
 | insert: | 
 | 	btrfs_release_path(root, path); | 
 | 	/* try to insert the key into the destination tree */ | 
 | 	ret = btrfs_insert_empty_item(trans, root, path, | 
 | 				      key, item_size); | 
 |  | 
 | 	/* make sure any existing item is the correct size */ | 
 | 	if (ret == -EEXIST) { | 
 | 		u32 found_size; | 
 | 		found_size = btrfs_item_size_nr(path->nodes[0], | 
 | 						path->slots[0]); | 
 | 		if (found_size > item_size) { | 
 | 			btrfs_truncate_item(trans, root, path, item_size, 1); | 
 | 		} else if (found_size < item_size) { | 
 | 			ret = btrfs_extend_item(trans, root, path, | 
 | 						item_size - found_size); | 
 | 			BUG_ON(ret); | 
 | 		} | 
 | 	} else if (ret) { | 
 | 		BUG(); | 
 | 	} | 
 | 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0], | 
 | 					path->slots[0]); | 
 |  | 
 | 	/* don't overwrite an existing inode if the generation number | 
 | 	 * was logged as zero.  This is done when the tree logging code | 
 | 	 * is just logging an inode to make sure it exists after recovery. | 
 | 	 * | 
 | 	 * Also, don't overwrite i_size on directories during replay. | 
 | 	 * log replay inserts and removes directory items based on the | 
 | 	 * state of the tree found in the subvolume, and i_size is modified | 
 | 	 * as it goes | 
 | 	 */ | 
 | 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { | 
 | 		struct btrfs_inode_item *src_item; | 
 | 		struct btrfs_inode_item *dst_item; | 
 |  | 
 | 		src_item = (struct btrfs_inode_item *)src_ptr; | 
 | 		dst_item = (struct btrfs_inode_item *)dst_ptr; | 
 |  | 
 | 		if (btrfs_inode_generation(eb, src_item) == 0) | 
 | 			goto no_copy; | 
 |  | 
 | 		if (overwrite_root && | 
 | 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) && | 
 | 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { | 
 | 			save_old_i_size = 1; | 
 | 			saved_i_size = btrfs_inode_size(path->nodes[0], | 
 | 							dst_item); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	copy_extent_buffer(path->nodes[0], eb, dst_ptr, | 
 | 			   src_ptr, item_size); | 
 |  | 
 | 	if (save_old_i_size) { | 
 | 		struct btrfs_inode_item *dst_item; | 
 | 		dst_item = (struct btrfs_inode_item *)dst_ptr; | 
 | 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); | 
 | 	} | 
 |  | 
 | 	/* make sure the generation is filled in */ | 
 | 	if (key->type == BTRFS_INODE_ITEM_KEY) { | 
 | 		struct btrfs_inode_item *dst_item; | 
 | 		dst_item = (struct btrfs_inode_item *)dst_ptr; | 
 | 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { | 
 | 			btrfs_set_inode_generation(path->nodes[0], dst_item, | 
 | 						   trans->transid); | 
 | 		} | 
 | 	} | 
 | no_copy: | 
 | 	btrfs_mark_buffer_dirty(path->nodes[0]); | 
 | 	btrfs_release_path(root, path); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * simple helper to read an inode off the disk from a given root | 
 |  * This can only be called for subvolume roots and not for the log | 
 |  */ | 
 | static noinline struct inode *read_one_inode(struct btrfs_root *root, | 
 | 					     u64 objectid) | 
 | { | 
 | 	struct inode *inode; | 
 | 	inode = btrfs_iget_locked(root->fs_info->sb, objectid, root); | 
 | 	if (inode->i_state & I_NEW) { | 
 | 		BTRFS_I(inode)->root = root; | 
 | 		BTRFS_I(inode)->location.objectid = objectid; | 
 | 		BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; | 
 | 		BTRFS_I(inode)->location.offset = 0; | 
 | 		btrfs_read_locked_inode(inode); | 
 | 		unlock_new_inode(inode); | 
 |  | 
 | 	} | 
 | 	if (is_bad_inode(inode)) { | 
 | 		iput(inode); | 
 | 		inode = NULL; | 
 | 	} | 
 | 	return inode; | 
 | } | 
 |  | 
 | /* replays a single extent in 'eb' at 'slot' with 'key' into the | 
 |  * subvolume 'root'.  path is released on entry and should be released | 
 |  * on exit. | 
 |  * | 
 |  * extents in the log tree have not been allocated out of the extent | 
 |  * tree yet.  So, this completes the allocation, taking a reference | 
 |  * as required if the extent already exists or creating a new extent | 
 |  * if it isn't in the extent allocation tree yet. | 
 |  * | 
 |  * The extent is inserted into the file, dropping any existing extents | 
 |  * from the file that overlap the new one. | 
 |  */ | 
 | static noinline int replay_one_extent(struct btrfs_trans_handle *trans, | 
 | 				      struct btrfs_root *root, | 
 | 				      struct btrfs_path *path, | 
 | 				      struct extent_buffer *eb, int slot, | 
 | 				      struct btrfs_key *key) | 
 | { | 
 | 	int found_type; | 
 | 	u64 mask = root->sectorsize - 1; | 
 | 	u64 extent_end; | 
 | 	u64 alloc_hint; | 
 | 	u64 start = key->offset; | 
 | 	u64 saved_nbytes; | 
 | 	struct btrfs_file_extent_item *item; | 
 | 	struct inode *inode = NULL; | 
 | 	unsigned long size; | 
 | 	int ret = 0; | 
 |  | 
 | 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); | 
 | 	found_type = btrfs_file_extent_type(eb, item); | 
 |  | 
 | 	if (found_type == BTRFS_FILE_EXTENT_REG || | 
 | 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) | 
 | 		extent_end = start + btrfs_file_extent_num_bytes(eb, item); | 
 | 	else if (found_type == BTRFS_FILE_EXTENT_INLINE) { | 
 | 		size = btrfs_file_extent_inline_len(eb, item); | 
 | 		extent_end = (start + size + mask) & ~mask; | 
 | 	} else { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	inode = read_one_inode(root, key->objectid); | 
 | 	if (!inode) { | 
 | 		ret = -EIO; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * first check to see if we already have this extent in the | 
 | 	 * file.  This must be done before the btrfs_drop_extents run | 
 | 	 * so we don't try to drop this extent. | 
 | 	 */ | 
 | 	ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, | 
 | 				       start, 0); | 
 |  | 
 | 	if (ret == 0 && | 
 | 	    (found_type == BTRFS_FILE_EXTENT_REG || | 
 | 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) { | 
 | 		struct btrfs_file_extent_item cmp1; | 
 | 		struct btrfs_file_extent_item cmp2; | 
 | 		struct btrfs_file_extent_item *existing; | 
 | 		struct extent_buffer *leaf; | 
 |  | 
 | 		leaf = path->nodes[0]; | 
 | 		existing = btrfs_item_ptr(leaf, path->slots[0], | 
 | 					  struct btrfs_file_extent_item); | 
 |  | 
 | 		read_extent_buffer(eb, &cmp1, (unsigned long)item, | 
 | 				   sizeof(cmp1)); | 
 | 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing, | 
 | 				   sizeof(cmp2)); | 
 |  | 
 | 		/* | 
 | 		 * we already have a pointer to this exact extent, | 
 | 		 * we don't have to do anything | 
 | 		 */ | 
 | 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { | 
 | 			btrfs_release_path(root, path); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 | 	btrfs_release_path(root, path); | 
 |  | 
 | 	saved_nbytes = inode_get_bytes(inode); | 
 | 	/* drop any overlapping extents */ | 
 | 	ret = btrfs_drop_extents(trans, root, inode, | 
 | 			 start, extent_end, start, &alloc_hint); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	if (found_type == BTRFS_FILE_EXTENT_REG || | 
 | 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) { | 
 | 		unsigned long dest_offset; | 
 | 		struct btrfs_key ins; | 
 |  | 
 | 		ret = btrfs_insert_empty_item(trans, root, path, key, | 
 | 					      sizeof(*item)); | 
 | 		BUG_ON(ret); | 
 | 		dest_offset = btrfs_item_ptr_offset(path->nodes[0], | 
 | 						    path->slots[0]); | 
 | 		copy_extent_buffer(path->nodes[0], eb, dest_offset, | 
 | 				(unsigned long)item,  sizeof(*item)); | 
 |  | 
 | 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); | 
 | 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); | 
 | 		ins.type = BTRFS_EXTENT_ITEM_KEY; | 
 |  | 
 | 		if (ins.objectid > 0) { | 
 | 			u64 csum_start; | 
 | 			u64 csum_end; | 
 | 			LIST_HEAD(ordered_sums); | 
 | 			/* | 
 | 			 * is this extent already allocated in the extent | 
 | 			 * allocation tree?  If so, just add a reference | 
 | 			 */ | 
 | 			ret = btrfs_lookup_extent(root, ins.objectid, | 
 | 						ins.offset); | 
 | 			if (ret == 0) { | 
 | 				ret = btrfs_inc_extent_ref(trans, root, | 
 | 						ins.objectid, ins.offset, | 
 | 						path->nodes[0]->start, | 
 | 						root->root_key.objectid, | 
 | 						trans->transid, key->objectid); | 
 | 			} else { | 
 | 				/* | 
 | 				 * insert the extent pointer in the extent | 
 | 				 * allocation tree | 
 | 				 */ | 
 | 				ret = btrfs_alloc_logged_extent(trans, root, | 
 | 						path->nodes[0]->start, | 
 | 						root->root_key.objectid, | 
 | 						trans->transid, key->objectid, | 
 | 						&ins); | 
 | 				BUG_ON(ret); | 
 | 			} | 
 | 			btrfs_release_path(root, path); | 
 |  | 
 | 			if (btrfs_file_extent_compression(eb, item)) { | 
 | 				csum_start = ins.objectid; | 
 | 				csum_end = csum_start + ins.offset; | 
 | 			} else { | 
 | 				csum_start = ins.objectid + | 
 | 					btrfs_file_extent_offset(eb, item); | 
 | 				csum_end = csum_start + | 
 | 					btrfs_file_extent_num_bytes(eb, item); | 
 | 			} | 
 |  | 
 | 			ret = btrfs_lookup_csums_range(root->log_root, | 
 | 						csum_start, csum_end - 1, | 
 | 						&ordered_sums); | 
 | 			BUG_ON(ret); | 
 | 			while (!list_empty(&ordered_sums)) { | 
 | 				struct btrfs_ordered_sum *sums; | 
 | 				sums = list_entry(ordered_sums.next, | 
 | 						struct btrfs_ordered_sum, | 
 | 						list); | 
 | 				ret = btrfs_csum_file_blocks(trans, | 
 | 						root->fs_info->csum_root, | 
 | 						sums); | 
 | 				BUG_ON(ret); | 
 | 				list_del(&sums->list); | 
 | 				kfree(sums); | 
 | 			} | 
 | 		} else { | 
 | 			btrfs_release_path(root, path); | 
 | 		} | 
 | 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) { | 
 | 		/* inline extents are easy, we just overwrite them */ | 
 | 		ret = overwrite_item(trans, root, path, eb, slot, key); | 
 | 		BUG_ON(ret); | 
 | 	} | 
 |  | 
 | 	inode_set_bytes(inode, saved_nbytes); | 
 | 	btrfs_update_inode(trans, root, inode); | 
 | out: | 
 | 	if (inode) | 
 | 		iput(inode); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * when cleaning up conflicts between the directory names in the | 
 |  * subvolume, directory names in the log and directory names in the | 
 |  * inode back references, we may have to unlink inodes from directories. | 
 |  * | 
 |  * This is a helper function to do the unlink of a specific directory | 
 |  * item | 
 |  */ | 
 | static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, | 
 | 				      struct btrfs_root *root, | 
 | 				      struct btrfs_path *path, | 
 | 				      struct inode *dir, | 
 | 				      struct btrfs_dir_item *di) | 
 | { | 
 | 	struct inode *inode; | 
 | 	char *name; | 
 | 	int name_len; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_key location; | 
 | 	int ret; | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 |  | 
 | 	btrfs_dir_item_key_to_cpu(leaf, di, &location); | 
 | 	name_len = btrfs_dir_name_len(leaf, di); | 
 | 	name = kmalloc(name_len, GFP_NOFS); | 
 | 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); | 
 | 	btrfs_release_path(root, path); | 
 |  | 
 | 	inode = read_one_inode(root, location.objectid); | 
 | 	BUG_ON(!inode); | 
 |  | 
 | 	ret = link_to_fixup_dir(trans, root, path, location.objectid); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len); | 
 | 	BUG_ON(ret); | 
 | 	kfree(name); | 
 |  | 
 | 	iput(inode); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * helper function to see if a given name and sequence number found | 
 |  * in an inode back reference are already in a directory and correctly | 
 |  * point to this inode | 
 |  */ | 
 | static noinline int inode_in_dir(struct btrfs_root *root, | 
 | 				 struct btrfs_path *path, | 
 | 				 u64 dirid, u64 objectid, u64 index, | 
 | 				 const char *name, int name_len) | 
 | { | 
 | 	struct btrfs_dir_item *di; | 
 | 	struct btrfs_key location; | 
 | 	int match = 0; | 
 |  | 
 | 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, | 
 | 					 index, name, name_len, 0); | 
 | 	if (di && !IS_ERR(di)) { | 
 | 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); | 
 | 		if (location.objectid != objectid) | 
 | 			goto out; | 
 | 	} else | 
 | 		goto out; | 
 | 	btrfs_release_path(root, path); | 
 |  | 
 | 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); | 
 | 	if (di && !IS_ERR(di)) { | 
 | 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); | 
 | 		if (location.objectid != objectid) | 
 | 			goto out; | 
 | 	} else | 
 | 		goto out; | 
 | 	match = 1; | 
 | out: | 
 | 	btrfs_release_path(root, path); | 
 | 	return match; | 
 | } | 
 |  | 
 | /* | 
 |  * helper function to check a log tree for a named back reference in | 
 |  * an inode.  This is used to decide if a back reference that is | 
 |  * found in the subvolume conflicts with what we find in the log. | 
 |  * | 
 |  * inode backreferences may have multiple refs in a single item, | 
 |  * during replay we process one reference at a time, and we don't | 
 |  * want to delete valid links to a file from the subvolume if that | 
 |  * link is also in the log. | 
 |  */ | 
 | static noinline int backref_in_log(struct btrfs_root *log, | 
 | 				   struct btrfs_key *key, | 
 | 				   char *name, int namelen) | 
 | { | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_inode_ref *ref; | 
 | 	unsigned long ptr; | 
 | 	unsigned long ptr_end; | 
 | 	unsigned long name_ptr; | 
 | 	int found_name_len; | 
 | 	int item_size; | 
 | 	int ret; | 
 | 	int match = 0; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0); | 
 | 	if (ret != 0) | 
 | 		goto out; | 
 |  | 
 | 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); | 
 | 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); | 
 | 	ptr_end = ptr + item_size; | 
 | 	while (ptr < ptr_end) { | 
 | 		ref = (struct btrfs_inode_ref *)ptr; | 
 | 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref); | 
 | 		if (found_name_len == namelen) { | 
 | 			name_ptr = (unsigned long)(ref + 1); | 
 | 			ret = memcmp_extent_buffer(path->nodes[0], name, | 
 | 						   name_ptr, namelen); | 
 | 			if (ret == 0) { | 
 | 				match = 1; | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 | 		ptr = (unsigned long)(ref + 1) + found_name_len; | 
 | 	} | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return match; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * replay one inode back reference item found in the log tree. | 
 |  * eb, slot and key refer to the buffer and key found in the log tree. | 
 |  * root is the destination we are replaying into, and path is for temp | 
 |  * use by this function.  (it should be released on return). | 
 |  */ | 
 | static noinline int add_inode_ref(struct btrfs_trans_handle *trans, | 
 | 				  struct btrfs_root *root, | 
 | 				  struct btrfs_root *log, | 
 | 				  struct btrfs_path *path, | 
 | 				  struct extent_buffer *eb, int slot, | 
 | 				  struct btrfs_key *key) | 
 | { | 
 | 	struct inode *dir; | 
 | 	int ret; | 
 | 	struct btrfs_key location; | 
 | 	struct btrfs_inode_ref *ref; | 
 | 	struct btrfs_dir_item *di; | 
 | 	struct inode *inode; | 
 | 	char *name; | 
 | 	int namelen; | 
 | 	unsigned long ref_ptr; | 
 | 	unsigned long ref_end; | 
 |  | 
 | 	location.objectid = key->objectid; | 
 | 	location.type = BTRFS_INODE_ITEM_KEY; | 
 | 	location.offset = 0; | 
 |  | 
 | 	/* | 
 | 	 * it is possible that we didn't log all the parent directories | 
 | 	 * for a given inode.  If we don't find the dir, just don't | 
 | 	 * copy the back ref in.  The link count fixup code will take | 
 | 	 * care of the rest | 
 | 	 */ | 
 | 	dir = read_one_inode(root, key->offset); | 
 | 	if (!dir) | 
 | 		return -ENOENT; | 
 |  | 
 | 	inode = read_one_inode(root, key->objectid); | 
 | 	BUG_ON(!dir); | 
 |  | 
 | 	ref_ptr = btrfs_item_ptr_offset(eb, slot); | 
 | 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot); | 
 |  | 
 | again: | 
 | 	ref = (struct btrfs_inode_ref *)ref_ptr; | 
 |  | 
 | 	namelen = btrfs_inode_ref_name_len(eb, ref); | 
 | 	name = kmalloc(namelen, GFP_NOFS); | 
 | 	BUG_ON(!name); | 
 |  | 
 | 	read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen); | 
 |  | 
 | 	/* if we already have a perfect match, we're done */ | 
 | 	if (inode_in_dir(root, path, dir->i_ino, inode->i_ino, | 
 | 			 btrfs_inode_ref_index(eb, ref), | 
 | 			 name, namelen)) { | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * look for a conflicting back reference in the metadata. | 
 | 	 * if we find one we have to unlink that name of the file | 
 | 	 * before we add our new link.  Later on, we overwrite any | 
 | 	 * existing back reference, and we don't want to create | 
 | 	 * dangling pointers in the directory. | 
 | 	 */ | 
 | conflict_again: | 
 | 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0); | 
 | 	if (ret == 0) { | 
 | 		char *victim_name; | 
 | 		int victim_name_len; | 
 | 		struct btrfs_inode_ref *victim_ref; | 
 | 		unsigned long ptr; | 
 | 		unsigned long ptr_end; | 
 | 		struct extent_buffer *leaf = path->nodes[0]; | 
 |  | 
 | 		/* are we trying to overwrite a back ref for the root directory | 
 | 		 * if so, just jump out, we're done | 
 | 		 */ | 
 | 		if (key->objectid == key->offset) | 
 | 			goto out_nowrite; | 
 |  | 
 | 		/* check all the names in this back reference to see | 
 | 		 * if they are in the log.  if so, we allow them to stay | 
 | 		 * otherwise they must be unlinked as a conflict | 
 | 		 */ | 
 | 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); | 
 | 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]); | 
 | 		while (ptr < ptr_end) { | 
 | 			victim_ref = (struct btrfs_inode_ref *)ptr; | 
 | 			victim_name_len = btrfs_inode_ref_name_len(leaf, | 
 | 								   victim_ref); | 
 | 			victim_name = kmalloc(victim_name_len, GFP_NOFS); | 
 | 			BUG_ON(!victim_name); | 
 |  | 
 | 			read_extent_buffer(leaf, victim_name, | 
 | 					   (unsigned long)(victim_ref + 1), | 
 | 					   victim_name_len); | 
 |  | 
 | 			if (!backref_in_log(log, key, victim_name, | 
 | 					    victim_name_len)) { | 
 | 				btrfs_inc_nlink(inode); | 
 | 				btrfs_release_path(root, path); | 
 |  | 
 | 				ret = btrfs_unlink_inode(trans, root, dir, | 
 | 							 inode, victim_name, | 
 | 							 victim_name_len); | 
 | 				kfree(victim_name); | 
 | 				btrfs_release_path(root, path); | 
 | 				goto conflict_again; | 
 | 			} | 
 | 			kfree(victim_name); | 
 | 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len; | 
 | 		} | 
 | 		BUG_ON(ret); | 
 | 	} | 
 | 	btrfs_release_path(root, path); | 
 |  | 
 | 	/* look for a conflicting sequence number */ | 
 | 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, | 
 | 					 btrfs_inode_ref_index(eb, ref), | 
 | 					 name, namelen, 0); | 
 | 	if (di && !IS_ERR(di)) { | 
 | 		ret = drop_one_dir_item(trans, root, path, dir, di); | 
 | 		BUG_ON(ret); | 
 | 	} | 
 | 	btrfs_release_path(root, path); | 
 |  | 
 |  | 
 | 	/* look for a conflicting name */ | 
 | 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, | 
 | 				   name, namelen, 0); | 
 | 	if (di && !IS_ERR(di)) { | 
 | 		ret = drop_one_dir_item(trans, root, path, dir, di); | 
 | 		BUG_ON(ret); | 
 | 	} | 
 | 	btrfs_release_path(root, path); | 
 |  | 
 | 	/* insert our name */ | 
 | 	ret = btrfs_add_link(trans, dir, inode, name, namelen, 0, | 
 | 			     btrfs_inode_ref_index(eb, ref)); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	btrfs_update_inode(trans, root, inode); | 
 |  | 
 | out: | 
 | 	ref_ptr = (unsigned long)(ref + 1) + namelen; | 
 | 	kfree(name); | 
 | 	if (ref_ptr < ref_end) | 
 | 		goto again; | 
 |  | 
 | 	/* finally write the back reference in the inode */ | 
 | 	ret = overwrite_item(trans, root, path, eb, slot, key); | 
 | 	BUG_ON(ret); | 
 |  | 
 | out_nowrite: | 
 | 	btrfs_release_path(root, path); | 
 | 	iput(dir); | 
 | 	iput(inode); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * There are a few corners where the link count of the file can't | 
 |  * be properly maintained during replay.  So, instead of adding | 
 |  * lots of complexity to the log code, we just scan the backrefs | 
 |  * for any file that has been through replay. | 
 |  * | 
 |  * The scan will update the link count on the inode to reflect the | 
 |  * number of back refs found.  If it goes down to zero, the iput | 
 |  * will free the inode. | 
 |  */ | 
 | static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, | 
 | 					   struct btrfs_root *root, | 
 | 					   struct inode *inode) | 
 | { | 
 | 	struct btrfs_path *path; | 
 | 	int ret; | 
 | 	struct btrfs_key key; | 
 | 	u64 nlink = 0; | 
 | 	unsigned long ptr; | 
 | 	unsigned long ptr_end; | 
 | 	int name_len; | 
 |  | 
 | 	key.objectid = inode->i_ino; | 
 | 	key.type = BTRFS_INODE_REF_KEY; | 
 | 	key.offset = (u64)-1; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 |  | 
 | 	while (1) { | 
 | 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 		if (ret < 0) | 
 | 			break; | 
 | 		if (ret > 0) { | 
 | 			if (path->slots[0] == 0) | 
 | 				break; | 
 | 			path->slots[0]--; | 
 | 		} | 
 | 		btrfs_item_key_to_cpu(path->nodes[0], &key, | 
 | 				      path->slots[0]); | 
 | 		if (key.objectid != inode->i_ino || | 
 | 		    key.type != BTRFS_INODE_REF_KEY) | 
 | 			break; | 
 | 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); | 
 | 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0], | 
 | 						   path->slots[0]); | 
 | 		while (ptr < ptr_end) { | 
 | 			struct btrfs_inode_ref *ref; | 
 |  | 
 | 			ref = (struct btrfs_inode_ref *)ptr; | 
 | 			name_len = btrfs_inode_ref_name_len(path->nodes[0], | 
 | 							    ref); | 
 | 			ptr = (unsigned long)(ref + 1) + name_len; | 
 | 			nlink++; | 
 | 		} | 
 |  | 
 | 		if (key.offset == 0) | 
 | 			break; | 
 | 		key.offset--; | 
 | 		btrfs_release_path(root, path); | 
 | 	} | 
 | 	btrfs_release_path(root, path); | 
 | 	if (nlink != inode->i_nlink) { | 
 | 		inode->i_nlink = nlink; | 
 | 		btrfs_update_inode(trans, root, inode); | 
 | 	} | 
 | 	BTRFS_I(inode)->index_cnt = (u64)-1; | 
 |  | 
 | 	if (inode->i_nlink == 0 && S_ISDIR(inode->i_mode)) { | 
 | 		ret = replay_dir_deletes(trans, root, NULL, path, | 
 | 					 inode->i_ino, 1); | 
 | 		BUG_ON(ret); | 
 | 	} | 
 | 	btrfs_free_path(path); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, | 
 | 					    struct btrfs_root *root, | 
 | 					    struct btrfs_path *path) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_key key; | 
 | 	struct inode *inode; | 
 |  | 
 | 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; | 
 | 	key.type = BTRFS_ORPHAN_ITEM_KEY; | 
 | 	key.offset = (u64)-1; | 
 | 	while (1) { | 
 | 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
 | 		if (ret < 0) | 
 | 			break; | 
 |  | 
 | 		if (ret == 1) { | 
 | 			if (path->slots[0] == 0) | 
 | 				break; | 
 | 			path->slots[0]--; | 
 | 		} | 
 |  | 
 | 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
 | 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || | 
 | 		    key.type != BTRFS_ORPHAN_ITEM_KEY) | 
 | 			break; | 
 |  | 
 | 		ret = btrfs_del_item(trans, root, path); | 
 | 		BUG_ON(ret); | 
 |  | 
 | 		btrfs_release_path(root, path); | 
 | 		inode = read_one_inode(root, key.offset); | 
 | 		BUG_ON(!inode); | 
 |  | 
 | 		ret = fixup_inode_link_count(trans, root, inode); | 
 | 		BUG_ON(ret); | 
 |  | 
 | 		iput(inode); | 
 |  | 
 | 		/* | 
 | 		 * fixup on a directory may create new entries, | 
 | 		 * make sure we always look for the highset possible | 
 | 		 * offset | 
 | 		 */ | 
 | 		key.offset = (u64)-1; | 
 | 	} | 
 | 	btrfs_release_path(root, path); | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * record a given inode in the fixup dir so we can check its link | 
 |  * count when replay is done.  The link count is incremented here | 
 |  * so the inode won't go away until we check it | 
 |  */ | 
 | static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, | 
 | 				      struct btrfs_root *root, | 
 | 				      struct btrfs_path *path, | 
 | 				      u64 objectid) | 
 | { | 
 | 	struct btrfs_key key; | 
 | 	int ret = 0; | 
 | 	struct inode *inode; | 
 |  | 
 | 	inode = read_one_inode(root, objectid); | 
 | 	BUG_ON(!inode); | 
 |  | 
 | 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; | 
 | 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); | 
 | 	key.offset = objectid; | 
 |  | 
 | 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0); | 
 |  | 
 | 	btrfs_release_path(root, path); | 
 | 	if (ret == 0) { | 
 | 		btrfs_inc_nlink(inode); | 
 | 		btrfs_update_inode(trans, root, inode); | 
 | 	} else if (ret == -EEXIST) { | 
 | 		ret = 0; | 
 | 	} else { | 
 | 		BUG(); | 
 | 	} | 
 | 	iput(inode); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * when replaying the log for a directory, we only insert names | 
 |  * for inodes that actually exist.  This means an fsync on a directory | 
 |  * does not implicitly fsync all the new files in it | 
 |  */ | 
 | static noinline int insert_one_name(struct btrfs_trans_handle *trans, | 
 | 				    struct btrfs_root *root, | 
 | 				    struct btrfs_path *path, | 
 | 				    u64 dirid, u64 index, | 
 | 				    char *name, int name_len, u8 type, | 
 | 				    struct btrfs_key *location) | 
 | { | 
 | 	struct inode *inode; | 
 | 	struct inode *dir; | 
 | 	int ret; | 
 |  | 
 | 	inode = read_one_inode(root, location->objectid); | 
 | 	if (!inode) | 
 | 		return -ENOENT; | 
 |  | 
 | 	dir = read_one_inode(root, dirid); | 
 | 	if (!dir) { | 
 | 		iput(inode); | 
 | 		return -EIO; | 
 | 	} | 
 | 	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index); | 
 |  | 
 | 	/* FIXME, put inode into FIXUP list */ | 
 |  | 
 | 	iput(inode); | 
 | 	iput(dir); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * take a single entry in a log directory item and replay it into | 
 |  * the subvolume. | 
 |  * | 
 |  * if a conflicting item exists in the subdirectory already, | 
 |  * the inode it points to is unlinked and put into the link count | 
 |  * fix up tree. | 
 |  * | 
 |  * If a name from the log points to a file or directory that does | 
 |  * not exist in the FS, it is skipped.  fsyncs on directories | 
 |  * do not force down inodes inside that directory, just changes to the | 
 |  * names or unlinks in a directory. | 
 |  */ | 
 | static noinline int replay_one_name(struct btrfs_trans_handle *trans, | 
 | 				    struct btrfs_root *root, | 
 | 				    struct btrfs_path *path, | 
 | 				    struct extent_buffer *eb, | 
 | 				    struct btrfs_dir_item *di, | 
 | 				    struct btrfs_key *key) | 
 | { | 
 | 	char *name; | 
 | 	int name_len; | 
 | 	struct btrfs_dir_item *dst_di; | 
 | 	struct btrfs_key found_key; | 
 | 	struct btrfs_key log_key; | 
 | 	struct inode *dir; | 
 | 	u8 log_type; | 
 | 	int exists; | 
 | 	int ret; | 
 |  | 
 | 	dir = read_one_inode(root, key->objectid); | 
 | 	BUG_ON(!dir); | 
 |  | 
 | 	name_len = btrfs_dir_name_len(eb, di); | 
 | 	name = kmalloc(name_len, GFP_NOFS); | 
 | 	log_type = btrfs_dir_type(eb, di); | 
 | 	read_extent_buffer(eb, name, (unsigned long)(di + 1), | 
 | 		   name_len); | 
 |  | 
 | 	btrfs_dir_item_key_to_cpu(eb, di, &log_key); | 
 | 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0); | 
 | 	if (exists == 0) | 
 | 		exists = 1; | 
 | 	else | 
 | 		exists = 0; | 
 | 	btrfs_release_path(root, path); | 
 |  | 
 | 	if (key->type == BTRFS_DIR_ITEM_KEY) { | 
 | 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, | 
 | 				       name, name_len, 1); | 
 | 	} else if (key->type == BTRFS_DIR_INDEX_KEY) { | 
 | 		dst_di = btrfs_lookup_dir_index_item(trans, root, path, | 
 | 						     key->objectid, | 
 | 						     key->offset, name, | 
 | 						     name_len, 1); | 
 | 	} else { | 
 | 		BUG(); | 
 | 	} | 
 | 	if (!dst_di || IS_ERR(dst_di)) { | 
 | 		/* we need a sequence number to insert, so we only | 
 | 		 * do inserts for the BTRFS_DIR_INDEX_KEY types | 
 | 		 */ | 
 | 		if (key->type != BTRFS_DIR_INDEX_KEY) | 
 | 			goto out; | 
 | 		goto insert; | 
 | 	} | 
 |  | 
 | 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); | 
 | 	/* the existing item matches the logged item */ | 
 | 	if (found_key.objectid == log_key.objectid && | 
 | 	    found_key.type == log_key.type && | 
 | 	    found_key.offset == log_key.offset && | 
 | 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) { | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * don't drop the conflicting directory entry if the inode | 
 | 	 * for the new entry doesn't exist | 
 | 	 */ | 
 | 	if (!exists) | 
 | 		goto out; | 
 |  | 
 | 	ret = drop_one_dir_item(trans, root, path, dir, dst_di); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	if (key->type == BTRFS_DIR_INDEX_KEY) | 
 | 		goto insert; | 
 | out: | 
 | 	btrfs_release_path(root, path); | 
 | 	kfree(name); | 
 | 	iput(dir); | 
 | 	return 0; | 
 |  | 
 | insert: | 
 | 	btrfs_release_path(root, path); | 
 | 	ret = insert_one_name(trans, root, path, key->objectid, key->offset, | 
 | 			      name, name_len, log_type, &log_key); | 
 |  | 
 | 	BUG_ON(ret && ret != -ENOENT); | 
 | 	goto out; | 
 | } | 
 |  | 
 | /* | 
 |  * find all the names in a directory item and reconcile them into | 
 |  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than | 
 |  * one name in a directory item, but the same code gets used for | 
 |  * both directory index types | 
 |  */ | 
 | static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, | 
 | 					struct btrfs_root *root, | 
 | 					struct btrfs_path *path, | 
 | 					struct extent_buffer *eb, int slot, | 
 | 					struct btrfs_key *key) | 
 | { | 
 | 	int ret; | 
 | 	u32 item_size = btrfs_item_size_nr(eb, slot); | 
 | 	struct btrfs_dir_item *di; | 
 | 	int name_len; | 
 | 	unsigned long ptr; | 
 | 	unsigned long ptr_end; | 
 |  | 
 | 	ptr = btrfs_item_ptr_offset(eb, slot); | 
 | 	ptr_end = ptr + item_size; | 
 | 	while (ptr < ptr_end) { | 
 | 		di = (struct btrfs_dir_item *)ptr; | 
 | 		name_len = btrfs_dir_name_len(eb, di); | 
 | 		ret = replay_one_name(trans, root, path, eb, di, key); | 
 | 		BUG_ON(ret); | 
 | 		ptr = (unsigned long)(di + 1); | 
 | 		ptr += name_len; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * directory replay has two parts.  There are the standard directory | 
 |  * items in the log copied from the subvolume, and range items | 
 |  * created in the log while the subvolume was logged. | 
 |  * | 
 |  * The range items tell us which parts of the key space the log | 
 |  * is authoritative for.  During replay, if a key in the subvolume | 
 |  * directory is in a logged range item, but not actually in the log | 
 |  * that means it was deleted from the directory before the fsync | 
 |  * and should be removed. | 
 |  */ | 
 | static noinline int find_dir_range(struct btrfs_root *root, | 
 | 				   struct btrfs_path *path, | 
 | 				   u64 dirid, int key_type, | 
 | 				   u64 *start_ret, u64 *end_ret) | 
 | { | 
 | 	struct btrfs_key key; | 
 | 	u64 found_end; | 
 | 	struct btrfs_dir_log_item *item; | 
 | 	int ret; | 
 | 	int nritems; | 
 |  | 
 | 	if (*start_ret == (u64)-1) | 
 | 		return 1; | 
 |  | 
 | 	key.objectid = dirid; | 
 | 	key.type = key_type; | 
 | 	key.offset = *start_ret; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	if (ret > 0) { | 
 | 		if (path->slots[0] == 0) | 
 | 			goto out; | 
 | 		path->slots[0]--; | 
 | 	} | 
 | 	if (ret != 0) | 
 | 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
 |  | 
 | 	if (key.type != key_type || key.objectid != dirid) { | 
 | 		ret = 1; | 
 | 		goto next; | 
 | 	} | 
 | 	item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
 | 			      struct btrfs_dir_log_item); | 
 | 	found_end = btrfs_dir_log_end(path->nodes[0], item); | 
 |  | 
 | 	if (*start_ret >= key.offset && *start_ret <= found_end) { | 
 | 		ret = 0; | 
 | 		*start_ret = key.offset; | 
 | 		*end_ret = found_end; | 
 | 		goto out; | 
 | 	} | 
 | 	ret = 1; | 
 | next: | 
 | 	/* check the next slot in the tree to see if it is a valid item */ | 
 | 	nritems = btrfs_header_nritems(path->nodes[0]); | 
 | 	if (path->slots[0] >= nritems) { | 
 | 		ret = btrfs_next_leaf(root, path); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 	} else { | 
 | 		path->slots[0]++; | 
 | 	} | 
 |  | 
 | 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
 |  | 
 | 	if (key.type != key_type || key.objectid != dirid) { | 
 | 		ret = 1; | 
 | 		goto out; | 
 | 	} | 
 | 	item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
 | 			      struct btrfs_dir_log_item); | 
 | 	found_end = btrfs_dir_log_end(path->nodes[0], item); | 
 | 	*start_ret = key.offset; | 
 | 	*end_ret = found_end; | 
 | 	ret = 0; | 
 | out: | 
 | 	btrfs_release_path(root, path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * this looks for a given directory item in the log.  If the directory | 
 |  * item is not in the log, the item is removed and the inode it points | 
 |  * to is unlinked | 
 |  */ | 
 | static noinline int check_item_in_log(struct btrfs_trans_handle *trans, | 
 | 				      struct btrfs_root *root, | 
 | 				      struct btrfs_root *log, | 
 | 				      struct btrfs_path *path, | 
 | 				      struct btrfs_path *log_path, | 
 | 				      struct inode *dir, | 
 | 				      struct btrfs_key *dir_key) | 
 | { | 
 | 	int ret; | 
 | 	struct extent_buffer *eb; | 
 | 	int slot; | 
 | 	u32 item_size; | 
 | 	struct btrfs_dir_item *di; | 
 | 	struct btrfs_dir_item *log_di; | 
 | 	int name_len; | 
 | 	unsigned long ptr; | 
 | 	unsigned long ptr_end; | 
 | 	char *name; | 
 | 	struct inode *inode; | 
 | 	struct btrfs_key location; | 
 |  | 
 | again: | 
 | 	eb = path->nodes[0]; | 
 | 	slot = path->slots[0]; | 
 | 	item_size = btrfs_item_size_nr(eb, slot); | 
 | 	ptr = btrfs_item_ptr_offset(eb, slot); | 
 | 	ptr_end = ptr + item_size; | 
 | 	while (ptr < ptr_end) { | 
 | 		di = (struct btrfs_dir_item *)ptr; | 
 | 		name_len = btrfs_dir_name_len(eb, di); | 
 | 		name = kmalloc(name_len, GFP_NOFS); | 
 | 		if (!name) { | 
 | 			ret = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 | 		read_extent_buffer(eb, name, (unsigned long)(di + 1), | 
 | 				  name_len); | 
 | 		log_di = NULL; | 
 | 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) { | 
 | 			log_di = btrfs_lookup_dir_item(trans, log, log_path, | 
 | 						       dir_key->objectid, | 
 | 						       name, name_len, 0); | 
 | 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) { | 
 | 			log_di = btrfs_lookup_dir_index_item(trans, log, | 
 | 						     log_path, | 
 | 						     dir_key->objectid, | 
 | 						     dir_key->offset, | 
 | 						     name, name_len, 0); | 
 | 		} | 
 | 		if (!log_di || IS_ERR(log_di)) { | 
 | 			btrfs_dir_item_key_to_cpu(eb, di, &location); | 
 | 			btrfs_release_path(root, path); | 
 | 			btrfs_release_path(log, log_path); | 
 | 			inode = read_one_inode(root, location.objectid); | 
 | 			BUG_ON(!inode); | 
 |  | 
 | 			ret = link_to_fixup_dir(trans, root, | 
 | 						path, location.objectid); | 
 | 			BUG_ON(ret); | 
 | 			btrfs_inc_nlink(inode); | 
 | 			ret = btrfs_unlink_inode(trans, root, dir, inode, | 
 | 						 name, name_len); | 
 | 			BUG_ON(ret); | 
 | 			kfree(name); | 
 | 			iput(inode); | 
 |  | 
 | 			/* there might still be more names under this key | 
 | 			 * check and repeat if required | 
 | 			 */ | 
 | 			ret = btrfs_search_slot(NULL, root, dir_key, path, | 
 | 						0, 0); | 
 | 			if (ret == 0) | 
 | 				goto again; | 
 | 			ret = 0; | 
 | 			goto out; | 
 | 		} | 
 | 		btrfs_release_path(log, log_path); | 
 | 		kfree(name); | 
 |  | 
 | 		ptr = (unsigned long)(di + 1); | 
 | 		ptr += name_len; | 
 | 	} | 
 | 	ret = 0; | 
 | out: | 
 | 	btrfs_release_path(root, path); | 
 | 	btrfs_release_path(log, log_path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * deletion replay happens before we copy any new directory items | 
 |  * out of the log or out of backreferences from inodes.  It | 
 |  * scans the log to find ranges of keys that log is authoritative for, | 
 |  * and then scans the directory to find items in those ranges that are | 
 |  * not present in the log. | 
 |  * | 
 |  * Anything we don't find in the log is unlinked and removed from the | 
 |  * directory. | 
 |  */ | 
 | static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, | 
 | 				       struct btrfs_root *root, | 
 | 				       struct btrfs_root *log, | 
 | 				       struct btrfs_path *path, | 
 | 				       u64 dirid, int del_all) | 
 | { | 
 | 	u64 range_start; | 
 | 	u64 range_end; | 
 | 	int key_type = BTRFS_DIR_LOG_ITEM_KEY; | 
 | 	int ret = 0; | 
 | 	struct btrfs_key dir_key; | 
 | 	struct btrfs_key found_key; | 
 | 	struct btrfs_path *log_path; | 
 | 	struct inode *dir; | 
 |  | 
 | 	dir_key.objectid = dirid; | 
 | 	dir_key.type = BTRFS_DIR_ITEM_KEY; | 
 | 	log_path = btrfs_alloc_path(); | 
 | 	if (!log_path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	dir = read_one_inode(root, dirid); | 
 | 	/* it isn't an error if the inode isn't there, that can happen | 
 | 	 * because we replay the deletes before we copy in the inode item | 
 | 	 * from the log | 
 | 	 */ | 
 | 	if (!dir) { | 
 | 		btrfs_free_path(log_path); | 
 | 		return 0; | 
 | 	} | 
 | again: | 
 | 	range_start = 0; | 
 | 	range_end = 0; | 
 | 	while (1) { | 
 | 		if (del_all) | 
 | 			range_end = (u64)-1; | 
 | 		else { | 
 | 			ret = find_dir_range(log, path, dirid, key_type, | 
 | 					     &range_start, &range_end); | 
 | 			if (ret != 0) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		dir_key.offset = range_start; | 
 | 		while (1) { | 
 | 			int nritems; | 
 | 			ret = btrfs_search_slot(NULL, root, &dir_key, path, | 
 | 						0, 0); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 |  | 
 | 			nritems = btrfs_header_nritems(path->nodes[0]); | 
 | 			if (path->slots[0] >= nritems) { | 
 | 				ret = btrfs_next_leaf(root, path); | 
 | 				if (ret) | 
 | 					break; | 
 | 			} | 
 | 			btrfs_item_key_to_cpu(path->nodes[0], &found_key, | 
 | 					      path->slots[0]); | 
 | 			if (found_key.objectid != dirid || | 
 | 			    found_key.type != dir_key.type) | 
 | 				goto next_type; | 
 |  | 
 | 			if (found_key.offset > range_end) | 
 | 				break; | 
 |  | 
 | 			ret = check_item_in_log(trans, root, log, path, | 
 | 						log_path, dir, | 
 | 						&found_key); | 
 | 			BUG_ON(ret); | 
 | 			if (found_key.offset == (u64)-1) | 
 | 				break; | 
 | 			dir_key.offset = found_key.offset + 1; | 
 | 		} | 
 | 		btrfs_release_path(root, path); | 
 | 		if (range_end == (u64)-1) | 
 | 			break; | 
 | 		range_start = range_end + 1; | 
 | 	} | 
 |  | 
 | next_type: | 
 | 	ret = 0; | 
 | 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) { | 
 | 		key_type = BTRFS_DIR_LOG_INDEX_KEY; | 
 | 		dir_key.type = BTRFS_DIR_INDEX_KEY; | 
 | 		btrfs_release_path(root, path); | 
 | 		goto again; | 
 | 	} | 
 | out: | 
 | 	btrfs_release_path(root, path); | 
 | 	btrfs_free_path(log_path); | 
 | 	iput(dir); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * the process_func used to replay items from the log tree.  This | 
 |  * gets called in two different stages.  The first stage just looks | 
 |  * for inodes and makes sure they are all copied into the subvolume. | 
 |  * | 
 |  * The second stage copies all the other item types from the log into | 
 |  * the subvolume.  The two stage approach is slower, but gets rid of | 
 |  * lots of complexity around inodes referencing other inodes that exist | 
 |  * only in the log (references come from either directory items or inode | 
 |  * back refs). | 
 |  */ | 
 | static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, | 
 | 			     struct walk_control *wc, u64 gen) | 
 | { | 
 | 	int nritems; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_root *root = wc->replay_dest; | 
 | 	struct btrfs_key key; | 
 | 	u32 item_size; | 
 | 	int level; | 
 | 	int i; | 
 | 	int ret; | 
 |  | 
 | 	btrfs_read_buffer(eb, gen); | 
 |  | 
 | 	level = btrfs_header_level(eb); | 
 |  | 
 | 	if (level != 0) | 
 | 		return 0; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	BUG_ON(!path); | 
 |  | 
 | 	nritems = btrfs_header_nritems(eb); | 
 | 	for (i = 0; i < nritems; i++) { | 
 | 		btrfs_item_key_to_cpu(eb, &key, i); | 
 | 		item_size = btrfs_item_size_nr(eb, i); | 
 |  | 
 | 		/* inode keys are done during the first stage */ | 
 | 		if (key.type == BTRFS_INODE_ITEM_KEY && | 
 | 		    wc->stage == LOG_WALK_REPLAY_INODES) { | 
 | 			struct inode *inode; | 
 | 			struct btrfs_inode_item *inode_item; | 
 | 			u32 mode; | 
 |  | 
 | 			inode_item = btrfs_item_ptr(eb, i, | 
 | 					    struct btrfs_inode_item); | 
 | 			mode = btrfs_inode_mode(eb, inode_item); | 
 | 			if (S_ISDIR(mode)) { | 
 | 				ret = replay_dir_deletes(wc->trans, | 
 | 					 root, log, path, key.objectid, 0); | 
 | 				BUG_ON(ret); | 
 | 			} | 
 | 			ret = overwrite_item(wc->trans, root, path, | 
 | 					     eb, i, &key); | 
 | 			BUG_ON(ret); | 
 |  | 
 | 			/* for regular files, truncate away | 
 | 			 * extents past the new EOF | 
 | 			 */ | 
 | 			if (S_ISREG(mode)) { | 
 | 				inode = read_one_inode(root, | 
 | 						       key.objectid); | 
 | 				BUG_ON(!inode); | 
 |  | 
 | 				ret = btrfs_truncate_inode_items(wc->trans, | 
 | 					root, inode, inode->i_size, | 
 | 					BTRFS_EXTENT_DATA_KEY); | 
 | 				BUG_ON(ret); | 
 |  | 
 | 				/* if the nlink count is zero here, the iput | 
 | 				 * will free the inode.  We bump it to make | 
 | 				 * sure it doesn't get freed until the link | 
 | 				 * count fixup is done | 
 | 				 */ | 
 | 				if (inode->i_nlink == 0) { | 
 | 					btrfs_inc_nlink(inode); | 
 | 					btrfs_update_inode(wc->trans, | 
 | 							   root, inode); | 
 | 				} | 
 | 				iput(inode); | 
 | 			} | 
 | 			ret = link_to_fixup_dir(wc->trans, root, | 
 | 						path, key.objectid); | 
 | 			BUG_ON(ret); | 
 | 		} | 
 | 		if (wc->stage < LOG_WALK_REPLAY_ALL) | 
 | 			continue; | 
 |  | 
 | 		/* these keys are simply copied */ | 
 | 		if (key.type == BTRFS_XATTR_ITEM_KEY) { | 
 | 			ret = overwrite_item(wc->trans, root, path, | 
 | 					     eb, i, &key); | 
 | 			BUG_ON(ret); | 
 | 		} else if (key.type == BTRFS_INODE_REF_KEY) { | 
 | 			ret = add_inode_ref(wc->trans, root, log, path, | 
 | 					    eb, i, &key); | 
 | 			BUG_ON(ret && ret != -ENOENT); | 
 | 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) { | 
 | 			ret = replay_one_extent(wc->trans, root, path, | 
 | 						eb, i, &key); | 
 | 			BUG_ON(ret); | 
 | 		} else if (key.type == BTRFS_DIR_ITEM_KEY || | 
 | 			   key.type == BTRFS_DIR_INDEX_KEY) { | 
 | 			ret = replay_one_dir_item(wc->trans, root, path, | 
 | 						  eb, i, &key); | 
 | 			BUG_ON(ret); | 
 | 		} | 
 | 	} | 
 | 	btrfs_free_path(path); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, | 
 | 				   struct btrfs_root *root, | 
 | 				   struct btrfs_path *path, int *level, | 
 | 				   struct walk_control *wc) | 
 | { | 
 | 	u64 root_owner; | 
 | 	u64 root_gen; | 
 | 	u64 bytenr; | 
 | 	u64 ptr_gen; | 
 | 	struct extent_buffer *next; | 
 | 	struct extent_buffer *cur; | 
 | 	struct extent_buffer *parent; | 
 | 	u32 blocksize; | 
 | 	int ret = 0; | 
 |  | 
 | 	WARN_ON(*level < 0); | 
 | 	WARN_ON(*level >= BTRFS_MAX_LEVEL); | 
 |  | 
 | 	while (*level > 0) { | 
 | 		WARN_ON(*level < 0); | 
 | 		WARN_ON(*level >= BTRFS_MAX_LEVEL); | 
 | 		cur = path->nodes[*level]; | 
 |  | 
 | 		if (btrfs_header_level(cur) != *level) | 
 | 			WARN_ON(1); | 
 |  | 
 | 		if (path->slots[*level] >= | 
 | 		    btrfs_header_nritems(cur)) | 
 | 			break; | 
 |  | 
 | 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]); | 
 | 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); | 
 | 		blocksize = btrfs_level_size(root, *level - 1); | 
 |  | 
 | 		parent = path->nodes[*level]; | 
 | 		root_owner = btrfs_header_owner(parent); | 
 | 		root_gen = btrfs_header_generation(parent); | 
 |  | 
 | 		next = btrfs_find_create_tree_block(root, bytenr, blocksize); | 
 |  | 
 | 		wc->process_func(root, next, wc, ptr_gen); | 
 |  | 
 | 		if (*level == 1) { | 
 | 			path->slots[*level]++; | 
 | 			if (wc->free) { | 
 | 				btrfs_read_buffer(next, ptr_gen); | 
 |  | 
 | 				btrfs_tree_lock(next); | 
 | 				clean_tree_block(trans, root, next); | 
 | 				btrfs_set_lock_blocking(next); | 
 | 				btrfs_wait_tree_block_writeback(next); | 
 | 				btrfs_tree_unlock(next); | 
 |  | 
 | 				ret = btrfs_drop_leaf_ref(trans, root, next); | 
 | 				BUG_ON(ret); | 
 |  | 
 | 				WARN_ON(root_owner != | 
 | 					BTRFS_TREE_LOG_OBJECTID); | 
 | 				ret = btrfs_free_reserved_extent(root, | 
 | 							 bytenr, blocksize); | 
 | 				BUG_ON(ret); | 
 | 			} | 
 | 			free_extent_buffer(next); | 
 | 			continue; | 
 | 		} | 
 | 		btrfs_read_buffer(next, ptr_gen); | 
 |  | 
 | 		WARN_ON(*level <= 0); | 
 | 		if (path->nodes[*level-1]) | 
 | 			free_extent_buffer(path->nodes[*level-1]); | 
 | 		path->nodes[*level-1] = next; | 
 | 		*level = btrfs_header_level(next); | 
 | 		path->slots[*level] = 0; | 
 | 		cond_resched(); | 
 | 	} | 
 | 	WARN_ON(*level < 0); | 
 | 	WARN_ON(*level >= BTRFS_MAX_LEVEL); | 
 |  | 
 | 	if (path->nodes[*level] == root->node) | 
 | 		parent = path->nodes[*level]; | 
 | 	else | 
 | 		parent = path->nodes[*level + 1]; | 
 |  | 
 | 	bytenr = path->nodes[*level]->start; | 
 |  | 
 | 	blocksize = btrfs_level_size(root, *level); | 
 | 	root_owner = btrfs_header_owner(parent); | 
 | 	root_gen = btrfs_header_generation(parent); | 
 |  | 
 | 	wc->process_func(root, path->nodes[*level], wc, | 
 | 			 btrfs_header_generation(path->nodes[*level])); | 
 |  | 
 | 	if (wc->free) { | 
 | 		next = path->nodes[*level]; | 
 | 		btrfs_tree_lock(next); | 
 | 		clean_tree_block(trans, root, next); | 
 | 		btrfs_set_lock_blocking(next); | 
 | 		btrfs_wait_tree_block_writeback(next); | 
 | 		btrfs_tree_unlock(next); | 
 |  | 
 | 		if (*level == 0) { | 
 | 			ret = btrfs_drop_leaf_ref(trans, root, next); | 
 | 			BUG_ON(ret); | 
 | 		} | 
 | 		WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); | 
 | 		ret = btrfs_free_reserved_extent(root, bytenr, blocksize); | 
 | 		BUG_ON(ret); | 
 | 	} | 
 | 	free_extent_buffer(path->nodes[*level]); | 
 | 	path->nodes[*level] = NULL; | 
 | 	*level += 1; | 
 |  | 
 | 	cond_resched(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, | 
 | 				 struct btrfs_root *root, | 
 | 				 struct btrfs_path *path, int *level, | 
 | 				 struct walk_control *wc) | 
 | { | 
 | 	u64 root_owner; | 
 | 	u64 root_gen; | 
 | 	int i; | 
 | 	int slot; | 
 | 	int ret; | 
 |  | 
 | 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { | 
 | 		slot = path->slots[i]; | 
 | 		if (slot < btrfs_header_nritems(path->nodes[i]) - 1) { | 
 | 			struct extent_buffer *node; | 
 | 			node = path->nodes[i]; | 
 | 			path->slots[i]++; | 
 | 			*level = i; | 
 | 			WARN_ON(*level == 0); | 
 | 			return 0; | 
 | 		} else { | 
 | 			struct extent_buffer *parent; | 
 | 			if (path->nodes[*level] == root->node) | 
 | 				parent = path->nodes[*level]; | 
 | 			else | 
 | 				parent = path->nodes[*level + 1]; | 
 |  | 
 | 			root_owner = btrfs_header_owner(parent); | 
 | 			root_gen = btrfs_header_generation(parent); | 
 | 			wc->process_func(root, path->nodes[*level], wc, | 
 | 				 btrfs_header_generation(path->nodes[*level])); | 
 | 			if (wc->free) { | 
 | 				struct extent_buffer *next; | 
 |  | 
 | 				next = path->nodes[*level]; | 
 |  | 
 | 				btrfs_tree_lock(next); | 
 | 				clean_tree_block(trans, root, next); | 
 | 				btrfs_set_lock_blocking(next); | 
 | 				btrfs_wait_tree_block_writeback(next); | 
 | 				btrfs_tree_unlock(next); | 
 |  | 
 | 				if (*level == 0) { | 
 | 					ret = btrfs_drop_leaf_ref(trans, root, | 
 | 								  next); | 
 | 					BUG_ON(ret); | 
 | 				} | 
 |  | 
 | 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); | 
 | 				ret = btrfs_free_reserved_extent(root, | 
 | 						path->nodes[*level]->start, | 
 | 						path->nodes[*level]->len); | 
 | 				BUG_ON(ret); | 
 | 			} | 
 | 			free_extent_buffer(path->nodes[*level]); | 
 | 			path->nodes[*level] = NULL; | 
 | 			*level = i + 1; | 
 | 		} | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * drop the reference count on the tree rooted at 'snap'.  This traverses | 
 |  * the tree freeing any blocks that have a ref count of zero after being | 
 |  * decremented. | 
 |  */ | 
 | static int walk_log_tree(struct btrfs_trans_handle *trans, | 
 | 			 struct btrfs_root *log, struct walk_control *wc) | 
 | { | 
 | 	int ret = 0; | 
 | 	int wret; | 
 | 	int level; | 
 | 	struct btrfs_path *path; | 
 | 	int i; | 
 | 	int orig_level; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	BUG_ON(!path); | 
 |  | 
 | 	level = btrfs_header_level(log->node); | 
 | 	orig_level = level; | 
 | 	path->nodes[level] = log->node; | 
 | 	extent_buffer_get(log->node); | 
 | 	path->slots[level] = 0; | 
 |  | 
 | 	while (1) { | 
 | 		wret = walk_down_log_tree(trans, log, path, &level, wc); | 
 | 		if (wret > 0) | 
 | 			break; | 
 | 		if (wret < 0) | 
 | 			ret = wret; | 
 |  | 
 | 		wret = walk_up_log_tree(trans, log, path, &level, wc); | 
 | 		if (wret > 0) | 
 | 			break; | 
 | 		if (wret < 0) | 
 | 			ret = wret; | 
 | 	} | 
 |  | 
 | 	/* was the root node processed? if not, catch it here */ | 
 | 	if (path->nodes[orig_level]) { | 
 | 		wc->process_func(log, path->nodes[orig_level], wc, | 
 | 			 btrfs_header_generation(path->nodes[orig_level])); | 
 | 		if (wc->free) { | 
 | 			struct extent_buffer *next; | 
 |  | 
 | 			next = path->nodes[orig_level]; | 
 |  | 
 | 			btrfs_tree_lock(next); | 
 | 			clean_tree_block(trans, log, next); | 
 | 			btrfs_set_lock_blocking(next); | 
 | 			btrfs_wait_tree_block_writeback(next); | 
 | 			btrfs_tree_unlock(next); | 
 |  | 
 | 			if (orig_level == 0) { | 
 | 				ret = btrfs_drop_leaf_ref(trans, log, | 
 | 							  next); | 
 | 				BUG_ON(ret); | 
 | 			} | 
 | 			WARN_ON(log->root_key.objectid != | 
 | 				BTRFS_TREE_LOG_OBJECTID); | 
 | 			ret = btrfs_free_reserved_extent(log, next->start, | 
 | 							 next->len); | 
 | 			BUG_ON(ret); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for (i = 0; i <= orig_level; i++) { | 
 | 		if (path->nodes[i]) { | 
 | 			free_extent_buffer(path->nodes[i]); | 
 | 			path->nodes[i] = NULL; | 
 | 		} | 
 | 	} | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * helper function to update the item for a given subvolumes log root | 
 |  * in the tree of log roots | 
 |  */ | 
 | static int update_log_root(struct btrfs_trans_handle *trans, | 
 | 			   struct btrfs_root *log) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (log->log_transid == 1) { | 
 | 		/* insert root item on the first sync */ | 
 | 		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree, | 
 | 				&log->root_key, &log->root_item); | 
 | 	} else { | 
 | 		ret = btrfs_update_root(trans, log->fs_info->log_root_tree, | 
 | 				&log->root_key, &log->root_item); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int wait_log_commit(struct btrfs_trans_handle *trans, | 
 | 			   struct btrfs_root *root, unsigned long transid) | 
 | { | 
 | 	DEFINE_WAIT(wait); | 
 | 	int index = transid % 2; | 
 |  | 
 | 	/* | 
 | 	 * we only allow two pending log transactions at a time, | 
 | 	 * so we know that if ours is more than 2 older than the | 
 | 	 * current transaction, we're done | 
 | 	 */ | 
 | 	do { | 
 | 		prepare_to_wait(&root->log_commit_wait[index], | 
 | 				&wait, TASK_UNINTERRUPTIBLE); | 
 | 		mutex_unlock(&root->log_mutex); | 
 |  | 
 | 		if (root->fs_info->last_trans_log_full_commit != | 
 | 		    trans->transid && root->log_transid < transid + 2 && | 
 | 		    atomic_read(&root->log_commit[index])) | 
 | 			schedule(); | 
 |  | 
 | 		finish_wait(&root->log_commit_wait[index], &wait); | 
 | 		mutex_lock(&root->log_mutex); | 
 | 	} while (root->log_transid < transid + 2 && | 
 | 		 atomic_read(&root->log_commit[index])); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int wait_for_writer(struct btrfs_trans_handle *trans, | 
 | 			   struct btrfs_root *root) | 
 | { | 
 | 	DEFINE_WAIT(wait); | 
 | 	while (atomic_read(&root->log_writers)) { | 
 | 		prepare_to_wait(&root->log_writer_wait, | 
 | 				&wait, TASK_UNINTERRUPTIBLE); | 
 | 		mutex_unlock(&root->log_mutex); | 
 | 		if (root->fs_info->last_trans_log_full_commit != | 
 | 		    trans->transid && atomic_read(&root->log_writers)) | 
 | 			schedule(); | 
 | 		mutex_lock(&root->log_mutex); | 
 | 		finish_wait(&root->log_writer_wait, &wait); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * btrfs_sync_log does sends a given tree log down to the disk and | 
 |  * updates the super blocks to record it.  When this call is done, | 
 |  * you know that any inodes previously logged are safely on disk only | 
 |  * if it returns 0. | 
 |  * | 
 |  * Any other return value means you need to call btrfs_commit_transaction. | 
 |  * Some of the edge cases for fsyncing directories that have had unlinks | 
 |  * or renames done in the past mean that sometimes the only safe | 
 |  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN, | 
 |  * that has happened. | 
 |  */ | 
 | int btrfs_sync_log(struct btrfs_trans_handle *trans, | 
 | 		   struct btrfs_root *root) | 
 | { | 
 | 	int index1; | 
 | 	int index2; | 
 | 	int ret; | 
 | 	struct btrfs_root *log = root->log_root; | 
 | 	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree; | 
 |  | 
 | 	mutex_lock(&root->log_mutex); | 
 | 	index1 = root->log_transid % 2; | 
 | 	if (atomic_read(&root->log_commit[index1])) { | 
 | 		wait_log_commit(trans, root, root->log_transid); | 
 | 		mutex_unlock(&root->log_mutex); | 
 | 		return 0; | 
 | 	} | 
 | 	atomic_set(&root->log_commit[index1], 1); | 
 |  | 
 | 	/* wait for previous tree log sync to complete */ | 
 | 	if (atomic_read(&root->log_commit[(index1 + 1) % 2])) | 
 | 		wait_log_commit(trans, root, root->log_transid - 1); | 
 |  | 
 | 	while (1) { | 
 | 		unsigned long batch = root->log_batch; | 
 | 		mutex_unlock(&root->log_mutex); | 
 | 		schedule_timeout_uninterruptible(1); | 
 | 		mutex_lock(&root->log_mutex); | 
 |  | 
 | 		wait_for_writer(trans, root); | 
 | 		if (batch == root->log_batch) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	/* bail out if we need to do a full commit */ | 
 | 	if (root->fs_info->last_trans_log_full_commit == trans->transid) { | 
 | 		ret = -EAGAIN; | 
 | 		mutex_unlock(&root->log_mutex); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_write_and_wait_marked_extents(log, &log->dirty_log_pages); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	btrfs_set_root_bytenr(&log->root_item, log->node->start); | 
 | 	btrfs_set_root_generation(&log->root_item, trans->transid); | 
 | 	btrfs_set_root_level(&log->root_item, btrfs_header_level(log->node)); | 
 |  | 
 | 	root->log_batch = 0; | 
 | 	root->log_transid++; | 
 | 	log->log_transid = root->log_transid; | 
 | 	smp_mb(); | 
 | 	/* | 
 | 	 * log tree has been flushed to disk, new modifications of | 
 | 	 * the log will be written to new positions. so it's safe to | 
 | 	 * allow log writers to go in. | 
 | 	 */ | 
 | 	mutex_unlock(&root->log_mutex); | 
 |  | 
 | 	mutex_lock(&log_root_tree->log_mutex); | 
 | 	log_root_tree->log_batch++; | 
 | 	atomic_inc(&log_root_tree->log_writers); | 
 | 	mutex_unlock(&log_root_tree->log_mutex); | 
 |  | 
 | 	ret = update_log_root(trans, log); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	mutex_lock(&log_root_tree->log_mutex); | 
 | 	if (atomic_dec_and_test(&log_root_tree->log_writers)) { | 
 | 		smp_mb(); | 
 | 		if (waitqueue_active(&log_root_tree->log_writer_wait)) | 
 | 			wake_up(&log_root_tree->log_writer_wait); | 
 | 	} | 
 |  | 
 | 	index2 = log_root_tree->log_transid % 2; | 
 | 	if (atomic_read(&log_root_tree->log_commit[index2])) { | 
 | 		wait_log_commit(trans, log_root_tree, | 
 | 				log_root_tree->log_transid); | 
 | 		mutex_unlock(&log_root_tree->log_mutex); | 
 | 		goto out; | 
 | 	} | 
 | 	atomic_set(&log_root_tree->log_commit[index2], 1); | 
 |  | 
 | 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { | 
 | 		wait_log_commit(trans, log_root_tree, | 
 | 				log_root_tree->log_transid - 1); | 
 | 	} | 
 |  | 
 | 	wait_for_writer(trans, log_root_tree); | 
 |  | 
 | 	/* | 
 | 	 * now that we've moved on to the tree of log tree roots, | 
 | 	 * check the full commit flag again | 
 | 	 */ | 
 | 	if (root->fs_info->last_trans_log_full_commit == trans->transid) { | 
 | 		mutex_unlock(&log_root_tree->log_mutex); | 
 | 		ret = -EAGAIN; | 
 | 		goto out_wake_log_root; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_write_and_wait_marked_extents(log_root_tree, | 
 | 				&log_root_tree->dirty_log_pages); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	btrfs_set_super_log_root(&root->fs_info->super_for_commit, | 
 | 				log_root_tree->node->start); | 
 | 	btrfs_set_super_log_root_level(&root->fs_info->super_for_commit, | 
 | 				btrfs_header_level(log_root_tree->node)); | 
 |  | 
 | 	log_root_tree->log_batch = 0; | 
 | 	log_root_tree->log_transid++; | 
 | 	smp_mb(); | 
 |  | 
 | 	mutex_unlock(&log_root_tree->log_mutex); | 
 |  | 
 | 	/* | 
 | 	 * nobody else is going to jump in and write the the ctree | 
 | 	 * super here because the log_commit atomic below is protecting | 
 | 	 * us.  We must be called with a transaction handle pinning | 
 | 	 * the running transaction open, so a full commit can't hop | 
 | 	 * in and cause problems either. | 
 | 	 */ | 
 | 	write_ctree_super(trans, root->fs_info->tree_root, 2); | 
 | 	ret = 0; | 
 |  | 
 | out_wake_log_root: | 
 | 	atomic_set(&log_root_tree->log_commit[index2], 0); | 
 | 	smp_mb(); | 
 | 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2])) | 
 | 		wake_up(&log_root_tree->log_commit_wait[index2]); | 
 | out: | 
 | 	atomic_set(&root->log_commit[index1], 0); | 
 | 	smp_mb(); | 
 | 	if (waitqueue_active(&root->log_commit_wait[index1])) | 
 | 		wake_up(&root->log_commit_wait[index1]); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * free all the extents used by the tree log.  This should be called | 
 |  * at commit time of the full transaction | 
 |  */ | 
 | int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_root *log; | 
 | 	struct key; | 
 | 	u64 start; | 
 | 	u64 end; | 
 | 	struct walk_control wc = { | 
 | 		.free = 1, | 
 | 		.process_func = process_one_buffer | 
 | 	}; | 
 |  | 
 | 	if (!root->log_root || root->fs_info->log_root_recovering) | 
 | 		return 0; | 
 |  | 
 | 	log = root->log_root; | 
 | 	ret = walk_log_tree(trans, log, &wc); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	while (1) { | 
 | 		ret = find_first_extent_bit(&log->dirty_log_pages, | 
 | 				    0, &start, &end, EXTENT_DIRTY); | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		clear_extent_dirty(&log->dirty_log_pages, | 
 | 				   start, end, GFP_NOFS); | 
 | 	} | 
 |  | 
 | 	if (log->log_transid > 0) { | 
 | 		ret = btrfs_del_root(trans, root->fs_info->log_root_tree, | 
 | 				     &log->root_key); | 
 | 		BUG_ON(ret); | 
 | 	} | 
 | 	root->log_root = NULL; | 
 | 	free_extent_buffer(log->node); | 
 | 	kfree(log); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * If both a file and directory are logged, and unlinks or renames are | 
 |  * mixed in, we have a few interesting corners: | 
 |  * | 
 |  * create file X in dir Y | 
 |  * link file X to X.link in dir Y | 
 |  * fsync file X | 
 |  * unlink file X but leave X.link | 
 |  * fsync dir Y | 
 |  * | 
 |  * After a crash we would expect only X.link to exist.  But file X | 
 |  * didn't get fsync'd again so the log has back refs for X and X.link. | 
 |  * | 
 |  * We solve this by removing directory entries and inode backrefs from the | 
 |  * log when a file that was logged in the current transaction is | 
 |  * unlinked.  Any later fsync will include the updated log entries, and | 
 |  * we'll be able to reconstruct the proper directory items from backrefs. | 
 |  * | 
 |  * This optimizations allows us to avoid relogging the entire inode | 
 |  * or the entire directory. | 
 |  */ | 
 | int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, | 
 | 				 struct btrfs_root *root, | 
 | 				 const char *name, int name_len, | 
 | 				 struct inode *dir, u64 index) | 
 | { | 
 | 	struct btrfs_root *log; | 
 | 	struct btrfs_dir_item *di; | 
 | 	struct btrfs_path *path; | 
 | 	int ret; | 
 | 	int bytes_del = 0; | 
 |  | 
 | 	if (BTRFS_I(dir)->logged_trans < trans->transid) | 
 | 		return 0; | 
 |  | 
 | 	ret = join_running_log_trans(root); | 
 | 	if (ret) | 
 | 		return 0; | 
 |  | 
 | 	mutex_lock(&BTRFS_I(dir)->log_mutex); | 
 |  | 
 | 	log = root->log_root; | 
 | 	path = btrfs_alloc_path(); | 
 | 	di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino, | 
 | 				   name, name_len, -1); | 
 | 	if (di && !IS_ERR(di)) { | 
 | 		ret = btrfs_delete_one_dir_name(trans, log, path, di); | 
 | 		bytes_del += name_len; | 
 | 		BUG_ON(ret); | 
 | 	} | 
 | 	btrfs_release_path(log, path); | 
 | 	di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino, | 
 | 					 index, name, name_len, -1); | 
 | 	if (di && !IS_ERR(di)) { | 
 | 		ret = btrfs_delete_one_dir_name(trans, log, path, di); | 
 | 		bytes_del += name_len; | 
 | 		BUG_ON(ret); | 
 | 	} | 
 |  | 
 | 	/* update the directory size in the log to reflect the names | 
 | 	 * we have removed | 
 | 	 */ | 
 | 	if (bytes_del) { | 
 | 		struct btrfs_key key; | 
 |  | 
 | 		key.objectid = dir->i_ino; | 
 | 		key.offset = 0; | 
 | 		key.type = BTRFS_INODE_ITEM_KEY; | 
 | 		btrfs_release_path(log, path); | 
 |  | 
 | 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1); | 
 | 		if (ret == 0) { | 
 | 			struct btrfs_inode_item *item; | 
 | 			u64 i_size; | 
 |  | 
 | 			item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
 | 					      struct btrfs_inode_item); | 
 | 			i_size = btrfs_inode_size(path->nodes[0], item); | 
 | 			if (i_size > bytes_del) | 
 | 				i_size -= bytes_del; | 
 | 			else | 
 | 				i_size = 0; | 
 | 			btrfs_set_inode_size(path->nodes[0], item, i_size); | 
 | 			btrfs_mark_buffer_dirty(path->nodes[0]); | 
 | 		} else | 
 | 			ret = 0; | 
 | 		btrfs_release_path(log, path); | 
 | 	} | 
 |  | 
 | 	btrfs_free_path(path); | 
 | 	mutex_unlock(&BTRFS_I(dir)->log_mutex); | 
 | 	btrfs_end_log_trans(root); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* see comments for btrfs_del_dir_entries_in_log */ | 
 | int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, | 
 | 			       struct btrfs_root *root, | 
 | 			       const char *name, int name_len, | 
 | 			       struct inode *inode, u64 dirid) | 
 | { | 
 | 	struct btrfs_root *log; | 
 | 	u64 index; | 
 | 	int ret; | 
 |  | 
 | 	if (BTRFS_I(inode)->logged_trans < trans->transid) | 
 | 		return 0; | 
 |  | 
 | 	ret = join_running_log_trans(root); | 
 | 	if (ret) | 
 | 		return 0; | 
 | 	log = root->log_root; | 
 | 	mutex_lock(&BTRFS_I(inode)->log_mutex); | 
 |  | 
 | 	ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino, | 
 | 				  dirid, &index); | 
 | 	mutex_unlock(&BTRFS_I(inode)->log_mutex); | 
 | 	btrfs_end_log_trans(root); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * creates a range item in the log for 'dirid'.  first_offset and | 
 |  * last_offset tell us which parts of the key space the log should | 
 |  * be considered authoritative for. | 
 |  */ | 
 | static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, | 
 | 				       struct btrfs_root *log, | 
 | 				       struct btrfs_path *path, | 
 | 				       int key_type, u64 dirid, | 
 | 				       u64 first_offset, u64 last_offset) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_dir_log_item *item; | 
 |  | 
 | 	key.objectid = dirid; | 
 | 	key.offset = first_offset; | 
 | 	if (key_type == BTRFS_DIR_ITEM_KEY) | 
 | 		key.type = BTRFS_DIR_LOG_ITEM_KEY; | 
 | 	else | 
 | 		key.type = BTRFS_DIR_LOG_INDEX_KEY; | 
 | 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
 | 			      struct btrfs_dir_log_item); | 
 | 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset); | 
 | 	btrfs_mark_buffer_dirty(path->nodes[0]); | 
 | 	btrfs_release_path(log, path); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * log all the items included in the current transaction for a given | 
 |  * directory.  This also creates the range items in the log tree required | 
 |  * to replay anything deleted before the fsync | 
 |  */ | 
 | static noinline int log_dir_items(struct btrfs_trans_handle *trans, | 
 | 			  struct btrfs_root *root, struct inode *inode, | 
 | 			  struct btrfs_path *path, | 
 | 			  struct btrfs_path *dst_path, int key_type, | 
 | 			  u64 min_offset, u64 *last_offset_ret) | 
 | { | 
 | 	struct btrfs_key min_key; | 
 | 	struct btrfs_key max_key; | 
 | 	struct btrfs_root *log = root->log_root; | 
 | 	struct extent_buffer *src; | 
 | 	int ret; | 
 | 	int i; | 
 | 	int nritems; | 
 | 	u64 first_offset = min_offset; | 
 | 	u64 last_offset = (u64)-1; | 
 |  | 
 | 	log = root->log_root; | 
 | 	max_key.objectid = inode->i_ino; | 
 | 	max_key.offset = (u64)-1; | 
 | 	max_key.type = key_type; | 
 |  | 
 | 	min_key.objectid = inode->i_ino; | 
 | 	min_key.type = key_type; | 
 | 	min_key.offset = min_offset; | 
 |  | 
 | 	path->keep_locks = 1; | 
 |  | 
 | 	ret = btrfs_search_forward(root, &min_key, &max_key, | 
 | 				   path, 0, trans->transid); | 
 |  | 
 | 	/* | 
 | 	 * we didn't find anything from this transaction, see if there | 
 | 	 * is anything at all | 
 | 	 */ | 
 | 	if (ret != 0 || min_key.objectid != inode->i_ino || | 
 | 	    min_key.type != key_type) { | 
 | 		min_key.objectid = inode->i_ino; | 
 | 		min_key.type = key_type; | 
 | 		min_key.offset = (u64)-1; | 
 | 		btrfs_release_path(root, path); | 
 | 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); | 
 | 		if (ret < 0) { | 
 | 			btrfs_release_path(root, path); | 
 | 			return ret; | 
 | 		} | 
 | 		ret = btrfs_previous_item(root, path, inode->i_ino, key_type); | 
 |  | 
 | 		/* if ret == 0 there are items for this type, | 
 | 		 * create a range to tell us the last key of this type. | 
 | 		 * otherwise, there are no items in this directory after | 
 | 		 * *min_offset, and we create a range to indicate that. | 
 | 		 */ | 
 | 		if (ret == 0) { | 
 | 			struct btrfs_key tmp; | 
 | 			btrfs_item_key_to_cpu(path->nodes[0], &tmp, | 
 | 					      path->slots[0]); | 
 | 			if (key_type == tmp.type) | 
 | 				first_offset = max(min_offset, tmp.offset) + 1; | 
 | 		} | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	/* go backward to find any previous key */ | 
 | 	ret = btrfs_previous_item(root, path, inode->i_ino, key_type); | 
 | 	if (ret == 0) { | 
 | 		struct btrfs_key tmp; | 
 | 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); | 
 | 		if (key_type == tmp.type) { | 
 | 			first_offset = tmp.offset; | 
 | 			ret = overwrite_item(trans, log, dst_path, | 
 | 					     path->nodes[0], path->slots[0], | 
 | 					     &tmp); | 
 | 		} | 
 | 	} | 
 | 	btrfs_release_path(root, path); | 
 |  | 
 | 	/* find the first key from this transaction again */ | 
 | 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); | 
 | 	if (ret != 0) { | 
 | 		WARN_ON(1); | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * we have a block from this transaction, log every item in it | 
 | 	 * from our directory | 
 | 	 */ | 
 | 	while (1) { | 
 | 		struct btrfs_key tmp; | 
 | 		src = path->nodes[0]; | 
 | 		nritems = btrfs_header_nritems(src); | 
 | 		for (i = path->slots[0]; i < nritems; i++) { | 
 | 			btrfs_item_key_to_cpu(src, &min_key, i); | 
 |  | 
 | 			if (min_key.objectid != inode->i_ino || | 
 | 			    min_key.type != key_type) | 
 | 				goto done; | 
 | 			ret = overwrite_item(trans, log, dst_path, src, i, | 
 | 					     &min_key); | 
 | 			BUG_ON(ret); | 
 | 		} | 
 | 		path->slots[0] = nritems; | 
 |  | 
 | 		/* | 
 | 		 * look ahead to the next item and see if it is also | 
 | 		 * from this directory and from this transaction | 
 | 		 */ | 
 | 		ret = btrfs_next_leaf(root, path); | 
 | 		if (ret == 1) { | 
 | 			last_offset = (u64)-1; | 
 | 			goto done; | 
 | 		} | 
 | 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); | 
 | 		if (tmp.objectid != inode->i_ino || tmp.type != key_type) { | 
 | 			last_offset = (u64)-1; | 
 | 			goto done; | 
 | 		} | 
 | 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) { | 
 | 			ret = overwrite_item(trans, log, dst_path, | 
 | 					     path->nodes[0], path->slots[0], | 
 | 					     &tmp); | 
 |  | 
 | 			BUG_ON(ret); | 
 | 			last_offset = tmp.offset; | 
 | 			goto done; | 
 | 		} | 
 | 	} | 
 | done: | 
 | 	*last_offset_ret = last_offset; | 
 | 	btrfs_release_path(root, path); | 
 | 	btrfs_release_path(log, dst_path); | 
 |  | 
 | 	/* insert the log range keys to indicate where the log is valid */ | 
 | 	ret = insert_dir_log_key(trans, log, path, key_type, inode->i_ino, | 
 | 				 first_offset, last_offset); | 
 | 	BUG_ON(ret); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * logging directories is very similar to logging inodes, We find all the items | 
 |  * from the current transaction and write them to the log. | 
 |  * | 
 |  * The recovery code scans the directory in the subvolume, and if it finds a | 
 |  * key in the range logged that is not present in the log tree, then it means | 
 |  * that dir entry was unlinked during the transaction. | 
 |  * | 
 |  * In order for that scan to work, we must include one key smaller than | 
 |  * the smallest logged by this transaction and one key larger than the largest | 
 |  * key logged by this transaction. | 
 |  */ | 
 | static noinline int log_directory_changes(struct btrfs_trans_handle *trans, | 
 | 			  struct btrfs_root *root, struct inode *inode, | 
 | 			  struct btrfs_path *path, | 
 | 			  struct btrfs_path *dst_path) | 
 | { | 
 | 	u64 min_key; | 
 | 	u64 max_key; | 
 | 	int ret; | 
 | 	int key_type = BTRFS_DIR_ITEM_KEY; | 
 |  | 
 | again: | 
 | 	min_key = 0; | 
 | 	max_key = 0; | 
 | 	while (1) { | 
 | 		ret = log_dir_items(trans, root, inode, path, | 
 | 				    dst_path, key_type, min_key, | 
 | 				    &max_key); | 
 | 		BUG_ON(ret); | 
 | 		if (max_key == (u64)-1) | 
 | 			break; | 
 | 		min_key = max_key + 1; | 
 | 	} | 
 |  | 
 | 	if (key_type == BTRFS_DIR_ITEM_KEY) { | 
 | 		key_type = BTRFS_DIR_INDEX_KEY; | 
 | 		goto again; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * a helper function to drop items from the log before we relog an | 
 |  * inode.  max_key_type indicates the highest item type to remove. | 
 |  * This cannot be run for file data extents because it does not | 
 |  * free the extents they point to. | 
 |  */ | 
 | static int drop_objectid_items(struct btrfs_trans_handle *trans, | 
 | 				  struct btrfs_root *log, | 
 | 				  struct btrfs_path *path, | 
 | 				  u64 objectid, int max_key_type) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key found_key; | 
 |  | 
 | 	key.objectid = objectid; | 
 | 	key.type = max_key_type; | 
 | 	key.offset = (u64)-1; | 
 |  | 
 | 	while (1) { | 
 | 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1); | 
 |  | 
 | 		if (ret != 1) | 
 | 			break; | 
 |  | 
 | 		if (path->slots[0] == 0) | 
 | 			break; | 
 |  | 
 | 		path->slots[0]--; | 
 | 		btrfs_item_key_to_cpu(path->nodes[0], &found_key, | 
 | 				      path->slots[0]); | 
 |  | 
 | 		if (found_key.objectid != objectid) | 
 | 			break; | 
 |  | 
 | 		ret = btrfs_del_item(trans, log, path); | 
 | 		BUG_ON(ret); | 
 | 		btrfs_release_path(log, path); | 
 | 	} | 
 | 	btrfs_release_path(log, path); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static noinline int copy_items(struct btrfs_trans_handle *trans, | 
 | 			       struct btrfs_root *log, | 
 | 			       struct btrfs_path *dst_path, | 
 | 			       struct extent_buffer *src, | 
 | 			       int start_slot, int nr, int inode_only) | 
 | { | 
 | 	unsigned long src_offset; | 
 | 	unsigned long dst_offset; | 
 | 	struct btrfs_file_extent_item *extent; | 
 | 	struct btrfs_inode_item *inode_item; | 
 | 	int ret; | 
 | 	struct btrfs_key *ins_keys; | 
 | 	u32 *ins_sizes; | 
 | 	char *ins_data; | 
 | 	int i; | 
 | 	struct list_head ordered_sums; | 
 |  | 
 | 	INIT_LIST_HEAD(&ordered_sums); | 
 |  | 
 | 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) + | 
 | 			   nr * sizeof(u32), GFP_NOFS); | 
 | 	ins_sizes = (u32 *)ins_data; | 
 | 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); | 
 |  | 
 | 	for (i = 0; i < nr; i++) { | 
 | 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot); | 
 | 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); | 
 | 	} | 
 | 	ret = btrfs_insert_empty_items(trans, log, dst_path, | 
 | 				       ins_keys, ins_sizes, nr); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	for (i = 0; i < nr; i++) { | 
 | 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], | 
 | 						   dst_path->slots[0]); | 
 |  | 
 | 		src_offset = btrfs_item_ptr_offset(src, start_slot + i); | 
 |  | 
 | 		copy_extent_buffer(dst_path->nodes[0], src, dst_offset, | 
 | 				   src_offset, ins_sizes[i]); | 
 |  | 
 | 		if (inode_only == LOG_INODE_EXISTS && | 
 | 		    ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { | 
 | 			inode_item = btrfs_item_ptr(dst_path->nodes[0], | 
 | 						    dst_path->slots[0], | 
 | 						    struct btrfs_inode_item); | 
 | 			btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0); | 
 |  | 
 | 			/* set the generation to zero so the recover code | 
 | 			 * can tell the difference between an logging | 
 | 			 * just to say 'this inode exists' and a logging | 
 | 			 * to say 'update this inode with these values' | 
 | 			 */ | 
 | 			btrfs_set_inode_generation(dst_path->nodes[0], | 
 | 						   inode_item, 0); | 
 | 		} | 
 | 		/* take a reference on file data extents so that truncates | 
 | 		 * or deletes of this inode don't have to relog the inode | 
 | 		 * again | 
 | 		 */ | 
 | 		if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) { | 
 | 			int found_type; | 
 | 			extent = btrfs_item_ptr(src, start_slot + i, | 
 | 						struct btrfs_file_extent_item); | 
 |  | 
 | 			found_type = btrfs_file_extent_type(src, extent); | 
 | 			if (found_type == BTRFS_FILE_EXTENT_REG || | 
 | 			    found_type == BTRFS_FILE_EXTENT_PREALLOC) { | 
 | 				u64 ds = btrfs_file_extent_disk_bytenr(src, | 
 | 								   extent); | 
 | 				u64 dl = btrfs_file_extent_disk_num_bytes(src, | 
 | 								      extent); | 
 | 				u64 cs = btrfs_file_extent_offset(src, extent); | 
 | 				u64 cl = btrfs_file_extent_num_bytes(src, | 
 | 								     extent);; | 
 | 				if (btrfs_file_extent_compression(src, | 
 | 								  extent)) { | 
 | 					cs = 0; | 
 | 					cl = dl; | 
 | 				} | 
 | 				/* ds == 0 is a hole */ | 
 | 				if (ds != 0) { | 
 | 					ret = btrfs_inc_extent_ref(trans, log, | 
 | 						   ds, dl, | 
 | 						   dst_path->nodes[0]->start, | 
 | 						   BTRFS_TREE_LOG_OBJECTID, | 
 | 						   trans->transid, | 
 | 						   ins_keys[i].objectid); | 
 | 					BUG_ON(ret); | 
 | 					ret = btrfs_lookup_csums_range( | 
 | 						   log->fs_info->csum_root, | 
 | 						   ds + cs, ds + cs + cl - 1, | 
 | 						   &ordered_sums); | 
 | 					BUG_ON(ret); | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 		dst_path->slots[0]++; | 
 | 	} | 
 |  | 
 | 	btrfs_mark_buffer_dirty(dst_path->nodes[0]); | 
 | 	btrfs_release_path(log, dst_path); | 
 | 	kfree(ins_data); | 
 |  | 
 | 	/* | 
 | 	 * we have to do this after the loop above to avoid changing the | 
 | 	 * log tree while trying to change the log tree. | 
 | 	 */ | 
 | 	while (!list_empty(&ordered_sums)) { | 
 | 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, | 
 | 						   struct btrfs_ordered_sum, | 
 | 						   list); | 
 | 		ret = btrfs_csum_file_blocks(trans, log, sums); | 
 | 		BUG_ON(ret); | 
 | 		list_del(&sums->list); | 
 | 		kfree(sums); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* log a single inode in the tree log. | 
 |  * At least one parent directory for this inode must exist in the tree | 
 |  * or be logged already. | 
 |  * | 
 |  * Any items from this inode changed by the current transaction are copied | 
 |  * to the log tree.  An extra reference is taken on any extents in this | 
 |  * file, allowing us to avoid a whole pile of corner cases around logging | 
 |  * blocks that have been removed from the tree. | 
 |  * | 
 |  * See LOG_INODE_ALL and related defines for a description of what inode_only | 
 |  * does. | 
 |  * | 
 |  * This handles both files and directories. | 
 |  */ | 
 | static int btrfs_log_inode(struct btrfs_trans_handle *trans, | 
 | 			     struct btrfs_root *root, struct inode *inode, | 
 | 			     int inode_only) | 
 | { | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_path *dst_path; | 
 | 	struct btrfs_key min_key; | 
 | 	struct btrfs_key max_key; | 
 | 	struct btrfs_root *log = root->log_root; | 
 | 	struct extent_buffer *src = NULL; | 
 | 	u32 size; | 
 | 	int ret; | 
 | 	int nritems; | 
 | 	int ins_start_slot = 0; | 
 | 	int ins_nr; | 
 |  | 
 | 	log = root->log_root; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	dst_path = btrfs_alloc_path(); | 
 |  | 
 | 	min_key.objectid = inode->i_ino; | 
 | 	min_key.type = BTRFS_INODE_ITEM_KEY; | 
 | 	min_key.offset = 0; | 
 |  | 
 | 	max_key.objectid = inode->i_ino; | 
 |  | 
 | 	/* today the code can only do partial logging of directories */ | 
 | 	if (!S_ISDIR(inode->i_mode)) | 
 | 	    inode_only = LOG_INODE_ALL; | 
 |  | 
 | 	if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode)) | 
 | 		max_key.type = BTRFS_XATTR_ITEM_KEY; | 
 | 	else | 
 | 		max_key.type = (u8)-1; | 
 | 	max_key.offset = (u64)-1; | 
 |  | 
 | 	mutex_lock(&BTRFS_I(inode)->log_mutex); | 
 |  | 
 | 	/* | 
 | 	 * a brute force approach to making sure we get the most uptodate | 
 | 	 * copies of everything. | 
 | 	 */ | 
 | 	if (S_ISDIR(inode->i_mode)) { | 
 | 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; | 
 |  | 
 | 		if (inode_only == LOG_INODE_EXISTS) | 
 | 			max_key_type = BTRFS_XATTR_ITEM_KEY; | 
 | 		ret = drop_objectid_items(trans, log, path, | 
 | 					  inode->i_ino, max_key_type); | 
 | 	} else { | 
 | 		ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0); | 
 | 	} | 
 | 	BUG_ON(ret); | 
 | 	path->keep_locks = 1; | 
 |  | 
 | 	while (1) { | 
 | 		ins_nr = 0; | 
 | 		ret = btrfs_search_forward(root, &min_key, &max_key, | 
 | 					   path, 0, trans->transid); | 
 | 		if (ret != 0) | 
 | 			break; | 
 | again: | 
 | 		/* note, ins_nr might be > 0 here, cleanup outside the loop */ | 
 | 		if (min_key.objectid != inode->i_ino) | 
 | 			break; | 
 | 		if (min_key.type > max_key.type) | 
 | 			break; | 
 |  | 
 | 		src = path->nodes[0]; | 
 | 		size = btrfs_item_size_nr(src, path->slots[0]); | 
 | 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { | 
 | 			ins_nr++; | 
 | 			goto next_slot; | 
 | 		} else if (!ins_nr) { | 
 | 			ins_start_slot = path->slots[0]; | 
 | 			ins_nr = 1; | 
 | 			goto next_slot; | 
 | 		} | 
 |  | 
 | 		ret = copy_items(trans, log, dst_path, src, ins_start_slot, | 
 | 				 ins_nr, inode_only); | 
 | 		BUG_ON(ret); | 
 | 		ins_nr = 1; | 
 | 		ins_start_slot = path->slots[0]; | 
 | next_slot: | 
 |  | 
 | 		nritems = btrfs_header_nritems(path->nodes[0]); | 
 | 		path->slots[0]++; | 
 | 		if (path->slots[0] < nritems) { | 
 | 			btrfs_item_key_to_cpu(path->nodes[0], &min_key, | 
 | 					      path->slots[0]); | 
 | 			goto again; | 
 | 		} | 
 | 		if (ins_nr) { | 
 | 			ret = copy_items(trans, log, dst_path, src, | 
 | 					 ins_start_slot, | 
 | 					 ins_nr, inode_only); | 
 | 			BUG_ON(ret); | 
 | 			ins_nr = 0; | 
 | 		} | 
 | 		btrfs_release_path(root, path); | 
 |  | 
 | 		if (min_key.offset < (u64)-1) | 
 | 			min_key.offset++; | 
 | 		else if (min_key.type < (u8)-1) | 
 | 			min_key.type++; | 
 | 		else if (min_key.objectid < (u64)-1) | 
 | 			min_key.objectid++; | 
 | 		else | 
 | 			break; | 
 | 	} | 
 | 	if (ins_nr) { | 
 | 		ret = copy_items(trans, log, dst_path, src, | 
 | 				 ins_start_slot, | 
 | 				 ins_nr, inode_only); | 
 | 		BUG_ON(ret); | 
 | 		ins_nr = 0; | 
 | 	} | 
 | 	WARN_ON(ins_nr); | 
 | 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) { | 
 | 		btrfs_release_path(root, path); | 
 | 		btrfs_release_path(log, dst_path); | 
 | 		ret = log_directory_changes(trans, root, inode, path, dst_path); | 
 | 		BUG_ON(ret); | 
 | 	} | 
 | 	BTRFS_I(inode)->logged_trans = trans->transid; | 
 | 	mutex_unlock(&BTRFS_I(inode)->log_mutex); | 
 |  | 
 | 	btrfs_free_path(path); | 
 | 	btrfs_free_path(dst_path); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * follow the dentry parent pointers up the chain and see if any | 
 |  * of the directories in it require a full commit before they can | 
 |  * be logged.  Returns zero if nothing special needs to be done or 1 if | 
 |  * a full commit is required. | 
 |  */ | 
 | static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans, | 
 | 					       struct inode *inode, | 
 | 					       struct dentry *parent, | 
 | 					       struct super_block *sb, | 
 | 					       u64 last_committed) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct btrfs_root *root; | 
 |  | 
 | 	/* | 
 | 	 * for regular files, if its inode is already on disk, we don't | 
 | 	 * have to worry about the parents at all.  This is because | 
 | 	 * we can use the last_unlink_trans field to record renames | 
 | 	 * and other fun in this file. | 
 | 	 */ | 
 | 	if (S_ISREG(inode->i_mode) && | 
 | 	    BTRFS_I(inode)->generation <= last_committed && | 
 | 	    BTRFS_I(inode)->last_unlink_trans <= last_committed) | 
 | 			goto out; | 
 |  | 
 | 	if (!S_ISDIR(inode->i_mode)) { | 
 | 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb) | 
 | 			goto out; | 
 | 		inode = parent->d_inode; | 
 | 	} | 
 |  | 
 | 	while (1) { | 
 | 		BTRFS_I(inode)->logged_trans = trans->transid; | 
 | 		smp_mb(); | 
 |  | 
 | 		if (BTRFS_I(inode)->last_unlink_trans > last_committed) { | 
 | 			root = BTRFS_I(inode)->root; | 
 |  | 
 | 			/* | 
 | 			 * make sure any commits to the log are forced | 
 | 			 * to be full commits | 
 | 			 */ | 
 | 			root->fs_info->last_trans_log_full_commit = | 
 | 				trans->transid; | 
 | 			ret = 1; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb) | 
 | 			break; | 
 |  | 
 | 		if (parent == sb->s_root) | 
 | 			break; | 
 |  | 
 | 		parent = parent->d_parent; | 
 | 		inode = parent->d_inode; | 
 |  | 
 | 	} | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * helper function around btrfs_log_inode to make sure newly created | 
 |  * parent directories also end up in the log.  A minimal inode and backref | 
 |  * only logging is done of any parent directories that are older than | 
 |  * the last committed transaction | 
 |  */ | 
 | int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, | 
 | 		    struct btrfs_root *root, struct inode *inode, | 
 | 		    struct dentry *parent, int exists_only) | 
 | { | 
 | 	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL; | 
 | 	struct super_block *sb; | 
 | 	int ret = 0; | 
 | 	u64 last_committed = root->fs_info->last_trans_committed; | 
 |  | 
 | 	sb = inode->i_sb; | 
 |  | 
 | 	if (btrfs_test_opt(root, NOTREELOG)) { | 
 | 		ret = 1; | 
 | 		goto end_no_trans; | 
 | 	} | 
 |  | 
 | 	if (root->fs_info->last_trans_log_full_commit > | 
 | 	    root->fs_info->last_trans_committed) { | 
 | 		ret = 1; | 
 | 		goto end_no_trans; | 
 | 	} | 
 |  | 
 | 	ret = check_parent_dirs_for_sync(trans, inode, parent, | 
 | 					 sb, last_committed); | 
 | 	if (ret) | 
 | 		goto end_no_trans; | 
 |  | 
 | 	start_log_trans(trans, root); | 
 |  | 
 | 	ret = btrfs_log_inode(trans, root, inode, inode_only); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	/* | 
 | 	 * for regular files, if its inode is already on disk, we don't | 
 | 	 * have to worry about the parents at all.  This is because | 
 | 	 * we can use the last_unlink_trans field to record renames | 
 | 	 * and other fun in this file. | 
 | 	 */ | 
 | 	if (S_ISREG(inode->i_mode) && | 
 | 	    BTRFS_I(inode)->generation <= last_committed && | 
 | 	    BTRFS_I(inode)->last_unlink_trans <= last_committed) | 
 | 			goto no_parent; | 
 |  | 
 | 	inode_only = LOG_INODE_EXISTS; | 
 | 	while (1) { | 
 | 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb) | 
 | 			break; | 
 |  | 
 | 		inode = parent->d_inode; | 
 | 		if (BTRFS_I(inode)->generation > | 
 | 		    root->fs_info->last_trans_committed) { | 
 | 			ret = btrfs_log_inode(trans, root, inode, inode_only); | 
 | 			BUG_ON(ret); | 
 | 		} | 
 | 		if (parent == sb->s_root) | 
 | 			break; | 
 |  | 
 | 		parent = parent->d_parent; | 
 | 	} | 
 | no_parent: | 
 | 	ret = 0; | 
 | 	btrfs_end_log_trans(root); | 
 | end_no_trans: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * it is not safe to log dentry if the chunk root has added new | 
 |  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise. | 
 |  * If this returns 1, you must commit the transaction to safely get your | 
 |  * data on disk. | 
 |  */ | 
 | int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, | 
 | 			  struct btrfs_root *root, struct dentry *dentry) | 
 | { | 
 | 	return btrfs_log_inode_parent(trans, root, dentry->d_inode, | 
 | 				      dentry->d_parent, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * should be called during mount to recover any replay any log trees | 
 |  * from the FS | 
 |  */ | 
 | int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key found_key; | 
 | 	struct btrfs_key tmp_key; | 
 | 	struct btrfs_root *log; | 
 | 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info; | 
 | 	u64 highest_inode; | 
 | 	struct walk_control wc = { | 
 | 		.process_func = process_one_buffer, | 
 | 		.stage = 0, | 
 | 	}; | 
 |  | 
 | 	fs_info->log_root_recovering = 1; | 
 | 	path = btrfs_alloc_path(); | 
 | 	BUG_ON(!path); | 
 |  | 
 | 	trans = btrfs_start_transaction(fs_info->tree_root, 1); | 
 |  | 
 | 	wc.trans = trans; | 
 | 	wc.pin = 1; | 
 |  | 
 | 	walk_log_tree(trans, log_root_tree, &wc); | 
 |  | 
 | again: | 
 | 	key.objectid = BTRFS_TREE_LOG_OBJECTID; | 
 | 	key.offset = (u64)-1; | 
 | 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); | 
 |  | 
 | 	while (1) { | 
 | 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); | 
 | 		if (ret < 0) | 
 | 			break; | 
 | 		if (ret > 0) { | 
 | 			if (path->slots[0] == 0) | 
 | 				break; | 
 | 			path->slots[0]--; | 
 | 		} | 
 | 		btrfs_item_key_to_cpu(path->nodes[0], &found_key, | 
 | 				      path->slots[0]); | 
 | 		btrfs_release_path(log_root_tree, path); | 
 | 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) | 
 | 			break; | 
 |  | 
 | 		log = btrfs_read_fs_root_no_radix(log_root_tree, | 
 | 						  &found_key); | 
 | 		BUG_ON(!log); | 
 |  | 
 |  | 
 | 		tmp_key.objectid = found_key.offset; | 
 | 		tmp_key.type = BTRFS_ROOT_ITEM_KEY; | 
 | 		tmp_key.offset = (u64)-1; | 
 |  | 
 | 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key); | 
 | 		BUG_ON(!wc.replay_dest); | 
 |  | 
 | 		wc.replay_dest->log_root = log; | 
 | 		mutex_lock(&fs_info->trans_mutex); | 
 | 		btrfs_record_root_in_trans(wc.replay_dest); | 
 | 		mutex_unlock(&fs_info->trans_mutex); | 
 | 		ret = walk_log_tree(trans, log, &wc); | 
 | 		BUG_ON(ret); | 
 |  | 
 | 		if (wc.stage == LOG_WALK_REPLAY_ALL) { | 
 | 			ret = fixup_inode_link_counts(trans, wc.replay_dest, | 
 | 						      path); | 
 | 			BUG_ON(ret); | 
 | 		} | 
 | 		ret = btrfs_find_highest_inode(wc.replay_dest, &highest_inode); | 
 | 		if (ret == 0) { | 
 | 			wc.replay_dest->highest_inode = highest_inode; | 
 | 			wc.replay_dest->last_inode_alloc = highest_inode; | 
 | 		} | 
 |  | 
 | 		key.offset = found_key.offset - 1; | 
 | 		wc.replay_dest->log_root = NULL; | 
 | 		free_extent_buffer(log->node); | 
 | 		kfree(log); | 
 |  | 
 | 		if (found_key.offset == 0) | 
 | 			break; | 
 | 	} | 
 | 	btrfs_release_path(log_root_tree, path); | 
 |  | 
 | 	/* step one is to pin it all, step two is to replay just inodes */ | 
 | 	if (wc.pin) { | 
 | 		wc.pin = 0; | 
 | 		wc.process_func = replay_one_buffer; | 
 | 		wc.stage = LOG_WALK_REPLAY_INODES; | 
 | 		goto again; | 
 | 	} | 
 | 	/* step three is to replay everything */ | 
 | 	if (wc.stage < LOG_WALK_REPLAY_ALL) { | 
 | 		wc.stage++; | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	btrfs_free_path(path); | 
 |  | 
 | 	free_extent_buffer(log_root_tree->node); | 
 | 	log_root_tree->log_root = NULL; | 
 | 	fs_info->log_root_recovering = 0; | 
 |  | 
 | 	/* step 4: commit the transaction, which also unpins the blocks */ | 
 | 	btrfs_commit_transaction(trans, fs_info->tree_root); | 
 |  | 
 | 	kfree(log_root_tree); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * there are some corner cases where we want to force a full | 
 |  * commit instead of allowing a directory to be logged. | 
 |  * | 
 |  * They revolve around files there were unlinked from the directory, and | 
 |  * this function updates the parent directory so that a full commit is | 
 |  * properly done if it is fsync'd later after the unlinks are done. | 
 |  */ | 
 | void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, | 
 | 			     struct inode *dir, struct inode *inode, | 
 | 			     int for_rename) | 
 | { | 
 | 	/* | 
 | 	 * when we're logging a file, if it hasn't been renamed | 
 | 	 * or unlinked, and its inode is fully committed on disk, | 
 | 	 * we don't have to worry about walking up the directory chain | 
 | 	 * to log its parents. | 
 | 	 * | 
 | 	 * So, we use the last_unlink_trans field to put this transid | 
 | 	 * into the file.  When the file is logged we check it and | 
 | 	 * don't log the parents if the file is fully on disk. | 
 | 	 */ | 
 | 	if (S_ISREG(inode->i_mode)) | 
 | 		BTRFS_I(inode)->last_unlink_trans = trans->transid; | 
 |  | 
 | 	/* | 
 | 	 * if this directory was already logged any new | 
 | 	 * names for this file/dir will get recorded | 
 | 	 */ | 
 | 	smp_mb(); | 
 | 	if (BTRFS_I(dir)->logged_trans == trans->transid) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * if the inode we're about to unlink was logged, | 
 | 	 * the log will be properly updated for any new names | 
 | 	 */ | 
 | 	if (BTRFS_I(inode)->logged_trans == trans->transid) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * when renaming files across directories, if the directory | 
 | 	 * there we're unlinking from gets fsync'd later on, there's | 
 | 	 * no way to find the destination directory later and fsync it | 
 | 	 * properly.  So, we have to be conservative and force commits | 
 | 	 * so the new name gets discovered. | 
 | 	 */ | 
 | 	if (for_rename) | 
 | 		goto record; | 
 |  | 
 | 	/* we can safely do the unlink without any special recording */ | 
 | 	return; | 
 |  | 
 | record: | 
 | 	BTRFS_I(dir)->last_unlink_trans = trans->transid; | 
 | } | 
 |  | 
 | /* | 
 |  * Call this after adding a new name for a file and it will properly | 
 |  * update the log to reflect the new name. | 
 |  * | 
 |  * It will return zero if all goes well, and it will return 1 if a | 
 |  * full transaction commit is required. | 
 |  */ | 
 | int btrfs_log_new_name(struct btrfs_trans_handle *trans, | 
 | 			struct inode *inode, struct inode *old_dir, | 
 | 			struct dentry *parent) | 
 | { | 
 | 	struct btrfs_root * root = BTRFS_I(inode)->root; | 
 |  | 
 | 	/* | 
 | 	 * this will force the logging code to walk the dentry chain | 
 | 	 * up for the file | 
 | 	 */ | 
 | 	if (S_ISREG(inode->i_mode)) | 
 | 		BTRFS_I(inode)->last_unlink_trans = trans->transid; | 
 |  | 
 | 	/* | 
 | 	 * if this inode hasn't been logged and directory we're renaming it | 
 | 	 * from hasn't been logged, we don't need to log it | 
 | 	 */ | 
 | 	if (BTRFS_I(inode)->logged_trans <= | 
 | 	    root->fs_info->last_trans_committed && | 
 | 	    (!old_dir || BTRFS_I(old_dir)->logged_trans <= | 
 | 		    root->fs_info->last_trans_committed)) | 
 | 		return 0; | 
 |  | 
 | 	return btrfs_log_inode_parent(trans, root, inode, parent, 1); | 
 | } | 
 |  |