| /* | 
 | ** SMP Support | 
 | ** | 
 | ** Copyright (C) 1999 Walt Drummond <drummond@valinux.com> | 
 | ** Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com> | 
 | ** Copyright (C) 2001,2004 Grant Grundler <grundler@parisc-linux.org> | 
 | **  | 
 | ** Lots of stuff stolen from arch/alpha/kernel/smp.c | 
 | ** ...and then parisc stole from arch/ia64/kernel/smp.c. Thanks David! :^) | 
 | ** | 
 | ** Thanks to John Curry and Ullas Ponnadi. I learned a lot from their work. | 
 | ** -grant (1/12/2001) | 
 | ** | 
 | **	This program is free software; you can redistribute it and/or modify | 
 | **	it under the terms of the GNU General Public License as published by | 
 | **      the Free Software Foundation; either version 2 of the License, or | 
 | **      (at your option) any later version. | 
 | */ | 
 | #include <linux/types.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/slab.h> | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/module.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/init.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/kernel_stat.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/err.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/ftrace.h> | 
 |  | 
 | #include <asm/system.h> | 
 | #include <asm/atomic.h> | 
 | #include <asm/current.h> | 
 | #include <asm/delay.h> | 
 | #include <asm/tlbflush.h> | 
 |  | 
 | #include <asm/io.h> | 
 | #include <asm/irq.h>		/* for CPU_IRQ_REGION and friends */ | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/page.h> | 
 | #include <asm/pgtable.h> | 
 | #include <asm/pgalloc.h> | 
 | #include <asm/processor.h> | 
 | #include <asm/ptrace.h> | 
 | #include <asm/unistd.h> | 
 | #include <asm/cacheflush.h> | 
 |  | 
 | #undef DEBUG_SMP | 
 | #ifdef DEBUG_SMP | 
 | static int smp_debug_lvl = 0; | 
 | #define smp_debug(lvl, printargs...)		\ | 
 | 		if (lvl >= smp_debug_lvl)	\ | 
 | 			printk(printargs); | 
 | #else | 
 | #define smp_debug(lvl, ...)	do { } while(0) | 
 | #endif /* DEBUG_SMP */ | 
 |  | 
 | DEFINE_SPINLOCK(smp_lock); | 
 |  | 
 | volatile struct task_struct *smp_init_current_idle_task; | 
 |  | 
 | /* track which CPU is booting */ | 
 | static volatile int cpu_now_booting __cpuinitdata; | 
 |  | 
 | static int parisc_max_cpus __cpuinitdata = 1; | 
 |  | 
 | DEFINE_PER_CPU(spinlock_t, ipi_lock) = SPIN_LOCK_UNLOCKED; | 
 |  | 
 | enum ipi_message_type { | 
 | 	IPI_NOP=0, | 
 | 	IPI_RESCHEDULE=1, | 
 | 	IPI_CALL_FUNC, | 
 | 	IPI_CALL_FUNC_SINGLE, | 
 | 	IPI_CPU_START, | 
 | 	IPI_CPU_STOP, | 
 | 	IPI_CPU_TEST | 
 | }; | 
 |  | 
 |  | 
 | /********** SMP inter processor interrupt and communication routines */ | 
 |  | 
 | #undef PER_CPU_IRQ_REGION | 
 | #ifdef PER_CPU_IRQ_REGION | 
 | /* XXX REVISIT Ignore for now. | 
 | **    *May* need this "hook" to register IPI handler | 
 | **    once we have perCPU ExtIntr switch tables. | 
 | */ | 
 | static void | 
 | ipi_init(int cpuid) | 
 | { | 
 | #error verify IRQ_OFFSET(IPI_IRQ) is ipi_interrupt() in new IRQ region | 
 |  | 
 | 	if(cpu_online(cpuid) ) | 
 | 	{ | 
 | 		switch_to_idle_task(current); | 
 | 	} | 
 |  | 
 | 	return; | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | /* | 
 | ** Yoink this CPU from the runnable list...  | 
 | ** | 
 | */ | 
 | static void | 
 | halt_processor(void)  | 
 | { | 
 | 	/* REVISIT : redirect I/O Interrupts to another CPU? */ | 
 | 	/* REVISIT : does PM *know* this CPU isn't available? */ | 
 | 	set_cpu_online(smp_processor_id(), false); | 
 | 	local_irq_disable(); | 
 | 	for (;;) | 
 | 		; | 
 | } | 
 |  | 
 |  | 
 | irqreturn_t __irq_entry | 
 | ipi_interrupt(int irq, void *dev_id)  | 
 | { | 
 | 	int this_cpu = smp_processor_id(); | 
 | 	struct cpuinfo_parisc *p = &per_cpu(cpu_data, this_cpu); | 
 | 	unsigned long ops; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* Count this now; we may make a call that never returns. */ | 
 | 	p->ipi_count++; | 
 |  | 
 | 	mb();	/* Order interrupt and bit testing. */ | 
 |  | 
 | 	for (;;) { | 
 | 		spinlock_t *lock = &per_cpu(ipi_lock, this_cpu); | 
 | 		spin_lock_irqsave(lock, flags); | 
 | 		ops = p->pending_ipi; | 
 | 		p->pending_ipi = 0; | 
 | 		spin_unlock_irqrestore(lock, flags); | 
 |  | 
 | 		mb(); /* Order bit clearing and data access. */ | 
 |  | 
 | 		if (!ops) | 
 | 		    break; | 
 |  | 
 | 		while (ops) { | 
 | 			unsigned long which = ffz(~ops); | 
 |  | 
 | 			ops &= ~(1 << which); | 
 |  | 
 | 			switch (which) { | 
 | 			case IPI_NOP: | 
 | 				smp_debug(100, KERN_DEBUG "CPU%d IPI_NOP\n", this_cpu); | 
 | 				break; | 
 | 				 | 
 | 			case IPI_RESCHEDULE: | 
 | 				smp_debug(100, KERN_DEBUG "CPU%d IPI_RESCHEDULE\n", this_cpu); | 
 | 				/* | 
 | 				 * Reschedule callback.  Everything to be | 
 | 				 * done is done by the interrupt return path. | 
 | 				 */ | 
 | 				break; | 
 |  | 
 | 			case IPI_CALL_FUNC: | 
 | 				smp_debug(100, KERN_DEBUG "CPU%d IPI_CALL_FUNC\n", this_cpu); | 
 | 				generic_smp_call_function_interrupt(); | 
 | 				break; | 
 |  | 
 | 			case IPI_CALL_FUNC_SINGLE: | 
 | 				smp_debug(100, KERN_DEBUG "CPU%d IPI_CALL_FUNC_SINGLE\n", this_cpu); | 
 | 				generic_smp_call_function_single_interrupt(); | 
 | 				break; | 
 |  | 
 | 			case IPI_CPU_START: | 
 | 				smp_debug(100, KERN_DEBUG "CPU%d IPI_CPU_START\n", this_cpu); | 
 | 				break; | 
 |  | 
 | 			case IPI_CPU_STOP: | 
 | 				smp_debug(100, KERN_DEBUG "CPU%d IPI_CPU_STOP\n", this_cpu); | 
 | 				halt_processor(); | 
 | 				break; | 
 |  | 
 | 			case IPI_CPU_TEST: | 
 | 				smp_debug(100, KERN_DEBUG "CPU%d is alive!\n", this_cpu); | 
 | 				break; | 
 |  | 
 | 			default: | 
 | 				printk(KERN_CRIT "Unknown IPI num on CPU%d: %lu\n", | 
 | 					this_cpu, which); | 
 | 				return IRQ_NONE; | 
 | 			} /* Switch */ | 
 | 		/* let in any pending interrupts */ | 
 | 		local_irq_enable(); | 
 | 		local_irq_disable(); | 
 | 		} /* while (ops) */ | 
 | 	} | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 |  | 
 | static inline void | 
 | ipi_send(int cpu, enum ipi_message_type op) | 
 | { | 
 | 	struct cpuinfo_parisc *p = &per_cpu(cpu_data, cpu); | 
 | 	spinlock_t *lock = &per_cpu(ipi_lock, cpu); | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(lock, flags); | 
 | 	p->pending_ipi |= 1 << op; | 
 | 	gsc_writel(IPI_IRQ - CPU_IRQ_BASE, p->hpa); | 
 | 	spin_unlock_irqrestore(lock, flags); | 
 | } | 
 |  | 
 | static void | 
 | send_IPI_mask(const struct cpumask *mask, enum ipi_message_type op) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	for_each_cpu(cpu, mask) | 
 | 		ipi_send(cpu, op); | 
 | } | 
 |  | 
 | static inline void | 
 | send_IPI_single(int dest_cpu, enum ipi_message_type op) | 
 | { | 
 | 	BUG_ON(dest_cpu == NO_PROC_ID); | 
 |  | 
 | 	ipi_send(dest_cpu, op); | 
 | } | 
 |  | 
 | static inline void | 
 | send_IPI_allbutself(enum ipi_message_type op) | 
 | { | 
 | 	int i; | 
 | 	 | 
 | 	for_each_online_cpu(i) { | 
 | 		if (i != smp_processor_id()) | 
 | 			send_IPI_single(i, op); | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | inline void  | 
 | smp_send_stop(void)	{ send_IPI_allbutself(IPI_CPU_STOP); } | 
 |  | 
 | static inline void | 
 | smp_send_start(void)	{ send_IPI_allbutself(IPI_CPU_START); } | 
 |  | 
 | void  | 
 | smp_send_reschedule(int cpu) { send_IPI_single(cpu, IPI_RESCHEDULE); } | 
 |  | 
 | void | 
 | smp_send_all_nop(void) | 
 | { | 
 | 	send_IPI_allbutself(IPI_NOP); | 
 | } | 
 |  | 
 | void arch_send_call_function_ipi_mask(const struct cpumask *mask) | 
 | { | 
 | 	send_IPI_mask(mask, IPI_CALL_FUNC); | 
 | } | 
 |  | 
 | void arch_send_call_function_single_ipi(int cpu) | 
 | { | 
 | 	send_IPI_single(cpu, IPI_CALL_FUNC_SINGLE); | 
 | } | 
 |  | 
 | /* | 
 |  * Flush all other CPU's tlb and then mine.  Do this with on_each_cpu() | 
 |  * as we want to ensure all TLB's flushed before proceeding. | 
 |  */ | 
 |  | 
 | void | 
 | smp_flush_tlb_all(void) | 
 | { | 
 | 	on_each_cpu(flush_tlb_all_local, NULL, 1); | 
 | } | 
 |  | 
 | /* | 
 |  * Called by secondaries to update state and initialize CPU registers. | 
 |  */ | 
 | static void __init | 
 | smp_cpu_init(int cpunum) | 
 | { | 
 | 	extern int init_per_cpu(int);  /* arch/parisc/kernel/processor.c */ | 
 | 	extern void init_IRQ(void);    /* arch/parisc/kernel/irq.c */ | 
 | 	extern void start_cpu_itimer(void); /* arch/parisc/kernel/time.c */ | 
 |  | 
 | 	/* Set modes and Enable floating point coprocessor */ | 
 | 	(void) init_per_cpu(cpunum); | 
 |  | 
 | 	disable_sr_hashing(); | 
 |  | 
 | 	mb(); | 
 |  | 
 | 	/* Well, support 2.4 linux scheme as well. */ | 
 | 	if (cpu_isset(cpunum, cpu_online_map)) | 
 | 	{ | 
 | 		extern void machine_halt(void); /* arch/parisc.../process.c */ | 
 |  | 
 | 		printk(KERN_CRIT "CPU#%d already initialized!\n", cpunum); | 
 | 		machine_halt(); | 
 | 	}   | 
 | 	set_cpu_online(cpunum, true); | 
 |  | 
 | 	/* Initialise the idle task for this CPU */ | 
 | 	atomic_inc(&init_mm.mm_count); | 
 | 	current->active_mm = &init_mm; | 
 | 	BUG_ON(current->mm); | 
 | 	enter_lazy_tlb(&init_mm, current); | 
 |  | 
 | 	init_IRQ();   /* make sure no IRQs are enabled or pending */ | 
 | 	start_cpu_itimer(); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Slaves start using C here. Indirectly called from smp_slave_stext. | 
 |  * Do what start_kernel() and main() do for boot strap processor (aka monarch) | 
 |  */ | 
 | void __init smp_callin(void) | 
 | { | 
 | 	int slave_id = cpu_now_booting; | 
 |  | 
 | 	smp_cpu_init(slave_id); | 
 | 	preempt_disable(); | 
 |  | 
 | 	flush_cache_all_local(); /* start with known state */ | 
 | 	flush_tlb_all_local(NULL); | 
 |  | 
 | 	local_irq_enable();  /* Interrupts have been off until now */ | 
 |  | 
 | 	cpu_idle();      /* Wait for timer to schedule some work */ | 
 |  | 
 | 	/* NOTREACHED */ | 
 | 	panic("smp_callin() AAAAaaaaahhhh....\n"); | 
 | } | 
 |  | 
 | /* | 
 |  * Bring one cpu online. | 
 |  */ | 
 | int __cpuinit smp_boot_one_cpu(int cpuid) | 
 | { | 
 | 	const struct cpuinfo_parisc *p = &per_cpu(cpu_data, cpuid); | 
 | 	struct task_struct *idle; | 
 | 	long timeout; | 
 |  | 
 | 	/*  | 
 | 	 * Create an idle task for this CPU.  Note the address wed* give  | 
 | 	 * to kernel_thread is irrelevant -- it's going to start | 
 | 	 * where OS_BOOT_RENDEVZ vector in SAL says to start.  But | 
 | 	 * this gets all the other task-y sort of data structures set | 
 | 	 * up like we wish.   We need to pull the just created idle task  | 
 | 	 * off the run queue and stuff it into the init_tasks[] array.   | 
 | 	 * Sheesh . . . | 
 | 	 */ | 
 |  | 
 | 	idle = fork_idle(cpuid); | 
 | 	if (IS_ERR(idle)) | 
 | 		panic("SMP: fork failed for CPU:%d", cpuid); | 
 |  | 
 | 	task_thread_info(idle)->cpu = cpuid; | 
 |  | 
 | 	/* Let _start know what logical CPU we're booting | 
 | 	** (offset into init_tasks[],cpu_data[]) | 
 | 	*/ | 
 | 	cpu_now_booting = cpuid; | 
 |  | 
 | 	/*  | 
 | 	** boot strap code needs to know the task address since | 
 | 	** it also contains the process stack. | 
 | 	*/ | 
 | 	smp_init_current_idle_task = idle ; | 
 | 	mb(); | 
 |  | 
 | 	printk(KERN_INFO "Releasing cpu %d now, hpa=%lx\n", cpuid, p->hpa); | 
 |  | 
 | 	/* | 
 | 	** This gets PDC to release the CPU from a very tight loop. | 
 | 	** | 
 | 	** From the PA-RISC 2.0 Firmware Architecture Reference Specification: | 
 | 	** "The MEM_RENDEZ vector specifies the location of OS_RENDEZ which  | 
 | 	** is executed after receiving the rendezvous signal (an interrupt to  | 
 | 	** EIR{0}). MEM_RENDEZ is valid only when it is nonzero and the  | 
 | 	** contents of memory are valid." | 
 | 	*/ | 
 | 	gsc_writel(TIMER_IRQ - CPU_IRQ_BASE, p->hpa); | 
 | 	mb(); | 
 |  | 
 | 	/*  | 
 | 	 * OK, wait a bit for that CPU to finish staggering about.  | 
 | 	 * Slave will set a bit when it reaches smp_cpu_init(). | 
 | 	 * Once the "monarch CPU" sees the bit change, it can move on. | 
 | 	 */ | 
 | 	for (timeout = 0; timeout < 10000; timeout++) { | 
 | 		if(cpu_online(cpuid)) { | 
 | 			/* Which implies Slave has started up */ | 
 | 			cpu_now_booting = 0; | 
 | 			smp_init_current_idle_task = NULL; | 
 | 			goto alive ; | 
 | 		} | 
 | 		udelay(100); | 
 | 		barrier(); | 
 | 	} | 
 |  | 
 | 	put_task_struct(idle); | 
 | 	idle = NULL; | 
 |  | 
 | 	printk(KERN_CRIT "SMP: CPU:%d is stuck.\n", cpuid); | 
 | 	return -1; | 
 |  | 
 | alive: | 
 | 	/* Remember the Slave data */ | 
 | 	smp_debug(100, KERN_DEBUG "SMP: CPU:%d came alive after %ld _us\n", | 
 | 		cpuid, timeout * 100); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __init smp_prepare_boot_cpu(void) | 
 | { | 
 | 	int bootstrap_processor = per_cpu(cpu_data, 0).cpuid; | 
 |  | 
 | 	/* Setup BSP mappings */ | 
 | 	printk(KERN_INFO "SMP: bootstrap CPU ID is %d\n", bootstrap_processor); | 
 |  | 
 | 	set_cpu_online(bootstrap_processor, true); | 
 | 	set_cpu_present(bootstrap_processor, true); | 
 | } | 
 |  | 
 |  | 
 |  | 
 | /* | 
 | ** inventory.c:do_inventory() hasn't yet been run and thus we | 
 | ** don't 'discover' the additional CPUs until later. | 
 | */ | 
 | void __init smp_prepare_cpus(unsigned int max_cpus) | 
 | { | 
 | 	init_cpu_present(cpumask_of(0)); | 
 |  | 
 | 	parisc_max_cpus = max_cpus; | 
 | 	if (!max_cpus) | 
 | 		printk(KERN_INFO "SMP mode deactivated.\n"); | 
 | } | 
 |  | 
 |  | 
 | void smp_cpus_done(unsigned int cpu_max) | 
 | { | 
 | 	return; | 
 | } | 
 |  | 
 |  | 
 | int __cpuinit __cpu_up(unsigned int cpu) | 
 | { | 
 | 	if (cpu != 0 && cpu < parisc_max_cpus) | 
 | 		smp_boot_one_cpu(cpu); | 
 |  | 
 | 	return cpu_online(cpu) ? 0 : -ENOSYS; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PROC_FS | 
 | int __init | 
 | setup_profiling_timer(unsigned int multiplier) | 
 | { | 
 | 	return -EINVAL; | 
 | } | 
 | #endif |