| /* | 
 |  *  linux/fs/namespace.c | 
 |  * | 
 |  * (C) Copyright Al Viro 2000, 2001 | 
 |  *	Released under GPL v2. | 
 |  * | 
 |  * Based on code from fs/super.c, copyright Linus Torvalds and others. | 
 |  * Heavily rewritten. | 
 |  */ | 
 |  | 
 | #include <linux/syscalls.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/smp_lock.h> | 
 | #include <linux/init.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/acct.h> | 
 | #include <linux/capability.h> | 
 | #include <linux/cpumask.h> | 
 | #include <linux/module.h> | 
 | #include <linux/sysfs.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/mnt_namespace.h> | 
 | #include <linux/namei.h> | 
 | #include <linux/security.h> | 
 | #include <linux/mount.h> | 
 | #include <linux/ramfs.h> | 
 | #include <linux/log2.h> | 
 | #include <linux/idr.h> | 
 | #include <linux/fs_struct.h> | 
 | #include <asm/uaccess.h> | 
 | #include <asm/unistd.h> | 
 | #include "pnode.h" | 
 | #include "internal.h" | 
 |  | 
 | #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head)) | 
 | #define HASH_SIZE (1UL << HASH_SHIFT) | 
 |  | 
 | /* spinlock for vfsmount related operations, inplace of dcache_lock */ | 
 | __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock); | 
 |  | 
 | static int event; | 
 | static DEFINE_IDA(mnt_id_ida); | 
 | static DEFINE_IDA(mnt_group_ida); | 
 |  | 
 | static struct list_head *mount_hashtable __read_mostly; | 
 | static struct kmem_cache *mnt_cache __read_mostly; | 
 | static struct rw_semaphore namespace_sem; | 
 |  | 
 | /* /sys/fs */ | 
 | struct kobject *fs_kobj; | 
 | EXPORT_SYMBOL_GPL(fs_kobj); | 
 |  | 
 | static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry) | 
 | { | 
 | 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); | 
 | 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES); | 
 | 	tmp = tmp + (tmp >> HASH_SHIFT); | 
 | 	return tmp & (HASH_SIZE - 1); | 
 | } | 
 |  | 
 | #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16) | 
 |  | 
 | /* allocation is serialized by namespace_sem */ | 
 | static int mnt_alloc_id(struct vfsmount *mnt) | 
 | { | 
 | 	int res; | 
 |  | 
 | retry: | 
 | 	ida_pre_get(&mnt_id_ida, GFP_KERNEL); | 
 | 	spin_lock(&vfsmount_lock); | 
 | 	res = ida_get_new(&mnt_id_ida, &mnt->mnt_id); | 
 | 	spin_unlock(&vfsmount_lock); | 
 | 	if (res == -EAGAIN) | 
 | 		goto retry; | 
 |  | 
 | 	return res; | 
 | } | 
 |  | 
 | static void mnt_free_id(struct vfsmount *mnt) | 
 | { | 
 | 	spin_lock(&vfsmount_lock); | 
 | 	ida_remove(&mnt_id_ida, mnt->mnt_id); | 
 | 	spin_unlock(&vfsmount_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate a new peer group ID | 
 |  * | 
 |  * mnt_group_ida is protected by namespace_sem | 
 |  */ | 
 | static int mnt_alloc_group_id(struct vfsmount *mnt) | 
 | { | 
 | 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	return ida_get_new_above(&mnt_group_ida, 1, &mnt->mnt_group_id); | 
 | } | 
 |  | 
 | /* | 
 |  * Release a peer group ID | 
 |  */ | 
 | void mnt_release_group_id(struct vfsmount *mnt) | 
 | { | 
 | 	ida_remove(&mnt_group_ida, mnt->mnt_group_id); | 
 | 	mnt->mnt_group_id = 0; | 
 | } | 
 |  | 
 | struct vfsmount *alloc_vfsmnt(const char *name) | 
 | { | 
 | 	struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); | 
 | 	if (mnt) { | 
 | 		int err; | 
 |  | 
 | 		err = mnt_alloc_id(mnt); | 
 | 		if (err) | 
 | 			goto out_free_cache; | 
 |  | 
 | 		if (name) { | 
 | 			mnt->mnt_devname = kstrdup(name, GFP_KERNEL); | 
 | 			if (!mnt->mnt_devname) | 
 | 				goto out_free_id; | 
 | 		} | 
 |  | 
 | 		atomic_set(&mnt->mnt_count, 1); | 
 | 		INIT_LIST_HEAD(&mnt->mnt_hash); | 
 | 		INIT_LIST_HEAD(&mnt->mnt_child); | 
 | 		INIT_LIST_HEAD(&mnt->mnt_mounts); | 
 | 		INIT_LIST_HEAD(&mnt->mnt_list); | 
 | 		INIT_LIST_HEAD(&mnt->mnt_expire); | 
 | 		INIT_LIST_HEAD(&mnt->mnt_share); | 
 | 		INIT_LIST_HEAD(&mnt->mnt_slave_list); | 
 | 		INIT_LIST_HEAD(&mnt->mnt_slave); | 
 | 		atomic_set(&mnt->__mnt_writers, 0); | 
 | 	} | 
 | 	return mnt; | 
 |  | 
 | out_free_id: | 
 | 	mnt_free_id(mnt); | 
 | out_free_cache: | 
 | 	kmem_cache_free(mnt_cache, mnt); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Most r/o checks on a fs are for operations that take | 
 |  * discrete amounts of time, like a write() or unlink(). | 
 |  * We must keep track of when those operations start | 
 |  * (for permission checks) and when they end, so that | 
 |  * we can determine when writes are able to occur to | 
 |  * a filesystem. | 
 |  */ | 
 | /* | 
 |  * __mnt_is_readonly: check whether a mount is read-only | 
 |  * @mnt: the mount to check for its write status | 
 |  * | 
 |  * This shouldn't be used directly ouside of the VFS. | 
 |  * It does not guarantee that the filesystem will stay | 
 |  * r/w, just that it is right *now*.  This can not and | 
 |  * should not be used in place of IS_RDONLY(inode). | 
 |  * mnt_want/drop_write() will _keep_ the filesystem | 
 |  * r/w. | 
 |  */ | 
 | int __mnt_is_readonly(struct vfsmount *mnt) | 
 | { | 
 | 	if (mnt->mnt_flags & MNT_READONLY) | 
 | 		return 1; | 
 | 	if (mnt->mnt_sb->s_flags & MS_RDONLY) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(__mnt_is_readonly); | 
 |  | 
 | struct mnt_writer { | 
 | 	/* | 
 | 	 * If holding multiple instances of this lock, they | 
 | 	 * must be ordered by cpu number. | 
 | 	 */ | 
 | 	spinlock_t lock; | 
 | 	struct lock_class_key lock_class; /* compiles out with !lockdep */ | 
 | 	unsigned long count; | 
 | 	struct vfsmount *mnt; | 
 | } ____cacheline_aligned_in_smp; | 
 | static DEFINE_PER_CPU(struct mnt_writer, mnt_writers); | 
 |  | 
 | static int __init init_mnt_writers(void) | 
 | { | 
 | 	int cpu; | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		struct mnt_writer *writer = &per_cpu(mnt_writers, cpu); | 
 | 		spin_lock_init(&writer->lock); | 
 | 		lockdep_set_class(&writer->lock, &writer->lock_class); | 
 | 		writer->count = 0; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | fs_initcall(init_mnt_writers); | 
 |  | 
 | static void unlock_mnt_writers(void) | 
 | { | 
 | 	int cpu; | 
 | 	struct mnt_writer *cpu_writer; | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		cpu_writer = &per_cpu(mnt_writers, cpu); | 
 | 		spin_unlock(&cpu_writer->lock); | 
 | 	} | 
 | } | 
 |  | 
 | static inline void __clear_mnt_count(struct mnt_writer *cpu_writer) | 
 | { | 
 | 	if (!cpu_writer->mnt) | 
 | 		return; | 
 | 	/* | 
 | 	 * This is in case anyone ever leaves an invalid, | 
 | 	 * old ->mnt and a count of 0. | 
 | 	 */ | 
 | 	if (!cpu_writer->count) | 
 | 		return; | 
 | 	atomic_add(cpu_writer->count, &cpu_writer->mnt->__mnt_writers); | 
 | 	cpu_writer->count = 0; | 
 | } | 
 |  /* | 
 |  * must hold cpu_writer->lock | 
 |  */ | 
 | static inline void use_cpu_writer_for_mount(struct mnt_writer *cpu_writer, | 
 | 					  struct vfsmount *mnt) | 
 | { | 
 | 	if (cpu_writer->mnt == mnt) | 
 | 		return; | 
 | 	__clear_mnt_count(cpu_writer); | 
 | 	cpu_writer->mnt = mnt; | 
 | } | 
 |  | 
 | /* | 
 |  * Most r/o checks on a fs are for operations that take | 
 |  * discrete amounts of time, like a write() or unlink(). | 
 |  * We must keep track of when those operations start | 
 |  * (for permission checks) and when they end, so that | 
 |  * we can determine when writes are able to occur to | 
 |  * a filesystem. | 
 |  */ | 
 | /** | 
 |  * mnt_want_write - get write access to a mount | 
 |  * @mnt: the mount on which to take a write | 
 |  * | 
 |  * This tells the low-level filesystem that a write is | 
 |  * about to be performed to it, and makes sure that | 
 |  * writes are allowed before returning success.  When | 
 |  * the write operation is finished, mnt_drop_write() | 
 |  * must be called.  This is effectively a refcount. | 
 |  */ | 
 | int mnt_want_write(struct vfsmount *mnt) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct mnt_writer *cpu_writer; | 
 |  | 
 | 	cpu_writer = &get_cpu_var(mnt_writers); | 
 | 	spin_lock(&cpu_writer->lock); | 
 | 	if (__mnt_is_readonly(mnt)) { | 
 | 		ret = -EROFS; | 
 | 		goto out; | 
 | 	} | 
 | 	use_cpu_writer_for_mount(cpu_writer, mnt); | 
 | 	cpu_writer->count++; | 
 | out: | 
 | 	spin_unlock(&cpu_writer->lock); | 
 | 	put_cpu_var(mnt_writers); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(mnt_want_write); | 
 |  | 
 | static void lock_mnt_writers(void) | 
 | { | 
 | 	int cpu; | 
 | 	struct mnt_writer *cpu_writer; | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		cpu_writer = &per_cpu(mnt_writers, cpu); | 
 | 		spin_lock(&cpu_writer->lock); | 
 | 		__clear_mnt_count(cpu_writer); | 
 | 		cpu_writer->mnt = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * These per-cpu write counts are not guaranteed to have | 
 |  * matched increments and decrements on any given cpu. | 
 |  * A file open()ed for write on one cpu and close()d on | 
 |  * another cpu will imbalance this count.  Make sure it | 
 |  * does not get too far out of whack. | 
 |  */ | 
 | static void handle_write_count_underflow(struct vfsmount *mnt) | 
 | { | 
 | 	if (atomic_read(&mnt->__mnt_writers) >= | 
 | 	    MNT_WRITER_UNDERFLOW_LIMIT) | 
 | 		return; | 
 | 	/* | 
 | 	 * It isn't necessary to hold all of the locks | 
 | 	 * at the same time, but doing it this way makes | 
 | 	 * us share a lot more code. | 
 | 	 */ | 
 | 	lock_mnt_writers(); | 
 | 	/* | 
 | 	 * vfsmount_lock is for mnt_flags. | 
 | 	 */ | 
 | 	spin_lock(&vfsmount_lock); | 
 | 	/* | 
 | 	 * If coalescing the per-cpu writer counts did not | 
 | 	 * get us back to a positive writer count, we have | 
 | 	 * a bug. | 
 | 	 */ | 
 | 	if ((atomic_read(&mnt->__mnt_writers) < 0) && | 
 | 	    !(mnt->mnt_flags & MNT_IMBALANCED_WRITE_COUNT)) { | 
 | 		WARN(1, KERN_DEBUG "leak detected on mount(%p) writers " | 
 | 				"count: %d\n", | 
 | 			mnt, atomic_read(&mnt->__mnt_writers)); | 
 | 		/* use the flag to keep the dmesg spam down */ | 
 | 		mnt->mnt_flags |= MNT_IMBALANCED_WRITE_COUNT; | 
 | 	} | 
 | 	spin_unlock(&vfsmount_lock); | 
 | 	unlock_mnt_writers(); | 
 | } | 
 |  | 
 | /** | 
 |  * mnt_drop_write - give up write access to a mount | 
 |  * @mnt: the mount on which to give up write access | 
 |  * | 
 |  * Tells the low-level filesystem that we are done | 
 |  * performing writes to it.  Must be matched with | 
 |  * mnt_want_write() call above. | 
 |  */ | 
 | void mnt_drop_write(struct vfsmount *mnt) | 
 | { | 
 | 	int must_check_underflow = 0; | 
 | 	struct mnt_writer *cpu_writer; | 
 |  | 
 | 	cpu_writer = &get_cpu_var(mnt_writers); | 
 | 	spin_lock(&cpu_writer->lock); | 
 |  | 
 | 	use_cpu_writer_for_mount(cpu_writer, mnt); | 
 | 	if (cpu_writer->count > 0) { | 
 | 		cpu_writer->count--; | 
 | 	} else { | 
 | 		must_check_underflow = 1; | 
 | 		atomic_dec(&mnt->__mnt_writers); | 
 | 	} | 
 |  | 
 | 	spin_unlock(&cpu_writer->lock); | 
 | 	/* | 
 | 	 * Logically, we could call this each time, | 
 | 	 * but the __mnt_writers cacheline tends to | 
 | 	 * be cold, and makes this expensive. | 
 | 	 */ | 
 | 	if (must_check_underflow) | 
 | 		handle_write_count_underflow(mnt); | 
 | 	/* | 
 | 	 * This could be done right after the spinlock | 
 | 	 * is taken because the spinlock keeps us on | 
 | 	 * the cpu, and disables preemption.  However, | 
 | 	 * putting it here bounds the amount that | 
 | 	 * __mnt_writers can underflow.  Without it, | 
 | 	 * we could theoretically wrap __mnt_writers. | 
 | 	 */ | 
 | 	put_cpu_var(mnt_writers); | 
 | } | 
 | EXPORT_SYMBOL_GPL(mnt_drop_write); | 
 |  | 
 | static int mnt_make_readonly(struct vfsmount *mnt) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	lock_mnt_writers(); | 
 | 	/* | 
 | 	 * With all the locks held, this value is stable | 
 | 	 */ | 
 | 	if (atomic_read(&mnt->__mnt_writers) > 0) { | 
 | 		ret = -EBUSY; | 
 | 		goto out; | 
 | 	} | 
 | 	/* | 
 | 	 * nobody can do a successful mnt_want_write() with all | 
 | 	 * of the counts in MNT_DENIED_WRITE and the locks held. | 
 | 	 */ | 
 | 	spin_lock(&vfsmount_lock); | 
 | 	if (!ret) | 
 | 		mnt->mnt_flags |= MNT_READONLY; | 
 | 	spin_unlock(&vfsmount_lock); | 
 | out: | 
 | 	unlock_mnt_writers(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void __mnt_unmake_readonly(struct vfsmount *mnt) | 
 | { | 
 | 	spin_lock(&vfsmount_lock); | 
 | 	mnt->mnt_flags &= ~MNT_READONLY; | 
 | 	spin_unlock(&vfsmount_lock); | 
 | } | 
 |  | 
 | void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb) | 
 | { | 
 | 	mnt->mnt_sb = sb; | 
 | 	mnt->mnt_root = dget(sb->s_root); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(simple_set_mnt); | 
 |  | 
 | void free_vfsmnt(struct vfsmount *mnt) | 
 | { | 
 | 	kfree(mnt->mnt_devname); | 
 | 	mnt_free_id(mnt); | 
 | 	kmem_cache_free(mnt_cache, mnt); | 
 | } | 
 |  | 
 | /* | 
 |  * find the first or last mount at @dentry on vfsmount @mnt depending on | 
 |  * @dir. If @dir is set return the first mount else return the last mount. | 
 |  */ | 
 | struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry, | 
 | 			      int dir) | 
 | { | 
 | 	struct list_head *head = mount_hashtable + hash(mnt, dentry); | 
 | 	struct list_head *tmp = head; | 
 | 	struct vfsmount *p, *found = NULL; | 
 |  | 
 | 	for (;;) { | 
 | 		tmp = dir ? tmp->next : tmp->prev; | 
 | 		p = NULL; | 
 | 		if (tmp == head) | 
 | 			break; | 
 | 		p = list_entry(tmp, struct vfsmount, mnt_hash); | 
 | 		if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) { | 
 | 			found = p; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	return found; | 
 | } | 
 |  | 
 | /* | 
 |  * lookup_mnt increments the ref count before returning | 
 |  * the vfsmount struct. | 
 |  */ | 
 | struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) | 
 | { | 
 | 	struct vfsmount *child_mnt; | 
 | 	spin_lock(&vfsmount_lock); | 
 | 	if ((child_mnt = __lookup_mnt(mnt, dentry, 1))) | 
 | 		mntget(child_mnt); | 
 | 	spin_unlock(&vfsmount_lock); | 
 | 	return child_mnt; | 
 | } | 
 |  | 
 | static inline int check_mnt(struct vfsmount *mnt) | 
 | { | 
 | 	return mnt->mnt_ns == current->nsproxy->mnt_ns; | 
 | } | 
 |  | 
 | static void touch_mnt_namespace(struct mnt_namespace *ns) | 
 | { | 
 | 	if (ns) { | 
 | 		ns->event = ++event; | 
 | 		wake_up_interruptible(&ns->poll); | 
 | 	} | 
 | } | 
 |  | 
 | static void __touch_mnt_namespace(struct mnt_namespace *ns) | 
 | { | 
 | 	if (ns && ns->event != event) { | 
 | 		ns->event = event; | 
 | 		wake_up_interruptible(&ns->poll); | 
 | 	} | 
 | } | 
 |  | 
 | static void detach_mnt(struct vfsmount *mnt, struct path *old_path) | 
 | { | 
 | 	old_path->dentry = mnt->mnt_mountpoint; | 
 | 	old_path->mnt = mnt->mnt_parent; | 
 | 	mnt->mnt_parent = mnt; | 
 | 	mnt->mnt_mountpoint = mnt->mnt_root; | 
 | 	list_del_init(&mnt->mnt_child); | 
 | 	list_del_init(&mnt->mnt_hash); | 
 | 	old_path->dentry->d_mounted--; | 
 | } | 
 |  | 
 | void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry, | 
 | 			struct vfsmount *child_mnt) | 
 | { | 
 | 	child_mnt->mnt_parent = mntget(mnt); | 
 | 	child_mnt->mnt_mountpoint = dget(dentry); | 
 | 	dentry->d_mounted++; | 
 | } | 
 |  | 
 | static void attach_mnt(struct vfsmount *mnt, struct path *path) | 
 | { | 
 | 	mnt_set_mountpoint(path->mnt, path->dentry, mnt); | 
 | 	list_add_tail(&mnt->mnt_hash, mount_hashtable + | 
 | 			hash(path->mnt, path->dentry)); | 
 | 	list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts); | 
 | } | 
 |  | 
 | /* | 
 |  * the caller must hold vfsmount_lock | 
 |  */ | 
 | static void commit_tree(struct vfsmount *mnt) | 
 | { | 
 | 	struct vfsmount *parent = mnt->mnt_parent; | 
 | 	struct vfsmount *m; | 
 | 	LIST_HEAD(head); | 
 | 	struct mnt_namespace *n = parent->mnt_ns; | 
 |  | 
 | 	BUG_ON(parent == mnt); | 
 |  | 
 | 	list_add_tail(&head, &mnt->mnt_list); | 
 | 	list_for_each_entry(m, &head, mnt_list) | 
 | 		m->mnt_ns = n; | 
 | 	list_splice(&head, n->list.prev); | 
 |  | 
 | 	list_add_tail(&mnt->mnt_hash, mount_hashtable + | 
 | 				hash(parent, mnt->mnt_mountpoint)); | 
 | 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); | 
 | 	touch_mnt_namespace(n); | 
 | } | 
 |  | 
 | static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root) | 
 | { | 
 | 	struct list_head *next = p->mnt_mounts.next; | 
 | 	if (next == &p->mnt_mounts) { | 
 | 		while (1) { | 
 | 			if (p == root) | 
 | 				return NULL; | 
 | 			next = p->mnt_child.next; | 
 | 			if (next != &p->mnt_parent->mnt_mounts) | 
 | 				break; | 
 | 			p = p->mnt_parent; | 
 | 		} | 
 | 	} | 
 | 	return list_entry(next, struct vfsmount, mnt_child); | 
 | } | 
 |  | 
 | static struct vfsmount *skip_mnt_tree(struct vfsmount *p) | 
 | { | 
 | 	struct list_head *prev = p->mnt_mounts.prev; | 
 | 	while (prev != &p->mnt_mounts) { | 
 | 		p = list_entry(prev, struct vfsmount, mnt_child); | 
 | 		prev = p->mnt_mounts.prev; | 
 | 	} | 
 | 	return p; | 
 | } | 
 |  | 
 | static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root, | 
 | 					int flag) | 
 | { | 
 | 	struct super_block *sb = old->mnt_sb; | 
 | 	struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname); | 
 |  | 
 | 	if (mnt) { | 
 | 		if (flag & (CL_SLAVE | CL_PRIVATE)) | 
 | 			mnt->mnt_group_id = 0; /* not a peer of original */ | 
 | 		else | 
 | 			mnt->mnt_group_id = old->mnt_group_id; | 
 |  | 
 | 		if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { | 
 | 			int err = mnt_alloc_group_id(mnt); | 
 | 			if (err) | 
 | 				goto out_free; | 
 | 		} | 
 |  | 
 | 		mnt->mnt_flags = old->mnt_flags; | 
 | 		atomic_inc(&sb->s_active); | 
 | 		mnt->mnt_sb = sb; | 
 | 		mnt->mnt_root = dget(root); | 
 | 		mnt->mnt_mountpoint = mnt->mnt_root; | 
 | 		mnt->mnt_parent = mnt; | 
 |  | 
 | 		if (flag & CL_SLAVE) { | 
 | 			list_add(&mnt->mnt_slave, &old->mnt_slave_list); | 
 | 			mnt->mnt_master = old; | 
 | 			CLEAR_MNT_SHARED(mnt); | 
 | 		} else if (!(flag & CL_PRIVATE)) { | 
 | 			if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old)) | 
 | 				list_add(&mnt->mnt_share, &old->mnt_share); | 
 | 			if (IS_MNT_SLAVE(old)) | 
 | 				list_add(&mnt->mnt_slave, &old->mnt_slave); | 
 | 			mnt->mnt_master = old->mnt_master; | 
 | 		} | 
 | 		if (flag & CL_MAKE_SHARED) | 
 | 			set_mnt_shared(mnt); | 
 |  | 
 | 		/* stick the duplicate mount on the same expiry list | 
 | 		 * as the original if that was on one */ | 
 | 		if (flag & CL_EXPIRE) { | 
 | 			if (!list_empty(&old->mnt_expire)) | 
 | 				list_add(&mnt->mnt_expire, &old->mnt_expire); | 
 | 		} | 
 | 	} | 
 | 	return mnt; | 
 |  | 
 |  out_free: | 
 | 	free_vfsmnt(mnt); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static inline void __mntput(struct vfsmount *mnt) | 
 | { | 
 | 	int cpu; | 
 | 	struct super_block *sb = mnt->mnt_sb; | 
 | 	/* | 
 | 	 * We don't have to hold all of the locks at the | 
 | 	 * same time here because we know that we're the | 
 | 	 * last reference to mnt and that no new writers | 
 | 	 * can come in. | 
 | 	 */ | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		struct mnt_writer *cpu_writer = &per_cpu(mnt_writers, cpu); | 
 | 		spin_lock(&cpu_writer->lock); | 
 | 		if (cpu_writer->mnt != mnt) { | 
 | 			spin_unlock(&cpu_writer->lock); | 
 | 			continue; | 
 | 		} | 
 | 		atomic_add(cpu_writer->count, &mnt->__mnt_writers); | 
 | 		cpu_writer->count = 0; | 
 | 		/* | 
 | 		 * Might as well do this so that no one | 
 | 		 * ever sees the pointer and expects | 
 | 		 * it to be valid. | 
 | 		 */ | 
 | 		cpu_writer->mnt = NULL; | 
 | 		spin_unlock(&cpu_writer->lock); | 
 | 	} | 
 | 	/* | 
 | 	 * This probably indicates that somebody messed | 
 | 	 * up a mnt_want/drop_write() pair.  If this | 
 | 	 * happens, the filesystem was probably unable | 
 | 	 * to make r/w->r/o transitions. | 
 | 	 */ | 
 | 	WARN_ON(atomic_read(&mnt->__mnt_writers)); | 
 | 	dput(mnt->mnt_root); | 
 | 	free_vfsmnt(mnt); | 
 | 	deactivate_super(sb); | 
 | } | 
 |  | 
 | void mntput_no_expire(struct vfsmount *mnt) | 
 | { | 
 | repeat: | 
 | 	if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) { | 
 | 		if (likely(!mnt->mnt_pinned)) { | 
 | 			spin_unlock(&vfsmount_lock); | 
 | 			__mntput(mnt); | 
 | 			return; | 
 | 		} | 
 | 		atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count); | 
 | 		mnt->mnt_pinned = 0; | 
 | 		spin_unlock(&vfsmount_lock); | 
 | 		acct_auto_close_mnt(mnt); | 
 | 		security_sb_umount_close(mnt); | 
 | 		goto repeat; | 
 | 	} | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(mntput_no_expire); | 
 |  | 
 | void mnt_pin(struct vfsmount *mnt) | 
 | { | 
 | 	spin_lock(&vfsmount_lock); | 
 | 	mnt->mnt_pinned++; | 
 | 	spin_unlock(&vfsmount_lock); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(mnt_pin); | 
 |  | 
 | void mnt_unpin(struct vfsmount *mnt) | 
 | { | 
 | 	spin_lock(&vfsmount_lock); | 
 | 	if (mnt->mnt_pinned) { | 
 | 		atomic_inc(&mnt->mnt_count); | 
 | 		mnt->mnt_pinned--; | 
 | 	} | 
 | 	spin_unlock(&vfsmount_lock); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(mnt_unpin); | 
 |  | 
 | static inline void mangle(struct seq_file *m, const char *s) | 
 | { | 
 | 	seq_escape(m, s, " \t\n\\"); | 
 | } | 
 |  | 
 | /* | 
 |  * Simple .show_options callback for filesystems which don't want to | 
 |  * implement more complex mount option showing. | 
 |  * | 
 |  * See also save_mount_options(). | 
 |  */ | 
 | int generic_show_options(struct seq_file *m, struct vfsmount *mnt) | 
 | { | 
 | 	const char *options; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	options = rcu_dereference(mnt->mnt_sb->s_options); | 
 |  | 
 | 	if (options != NULL && options[0]) { | 
 | 		seq_putc(m, ','); | 
 | 		mangle(m, options); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(generic_show_options); | 
 |  | 
 | /* | 
 |  * If filesystem uses generic_show_options(), this function should be | 
 |  * called from the fill_super() callback. | 
 |  * | 
 |  * The .remount_fs callback usually needs to be handled in a special | 
 |  * way, to make sure, that previous options are not overwritten if the | 
 |  * remount fails. | 
 |  * | 
 |  * Also note, that if the filesystem's .remount_fs function doesn't | 
 |  * reset all options to their default value, but changes only newly | 
 |  * given options, then the displayed options will not reflect reality | 
 |  * any more. | 
 |  */ | 
 | void save_mount_options(struct super_block *sb, char *options) | 
 | { | 
 | 	BUG_ON(sb->s_options); | 
 | 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL)); | 
 | } | 
 | EXPORT_SYMBOL(save_mount_options); | 
 |  | 
 | void replace_mount_options(struct super_block *sb, char *options) | 
 | { | 
 | 	char *old = sb->s_options; | 
 | 	rcu_assign_pointer(sb->s_options, options); | 
 | 	if (old) { | 
 | 		synchronize_rcu(); | 
 | 		kfree(old); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(replace_mount_options); | 
 |  | 
 | #ifdef CONFIG_PROC_FS | 
 | /* iterator */ | 
 | static void *m_start(struct seq_file *m, loff_t *pos) | 
 | { | 
 | 	struct proc_mounts *p = m->private; | 
 |  | 
 | 	down_read(&namespace_sem); | 
 | 	return seq_list_start(&p->ns->list, *pos); | 
 | } | 
 |  | 
 | static void *m_next(struct seq_file *m, void *v, loff_t *pos) | 
 | { | 
 | 	struct proc_mounts *p = m->private; | 
 |  | 
 | 	return seq_list_next(v, &p->ns->list, pos); | 
 | } | 
 |  | 
 | static void m_stop(struct seq_file *m, void *v) | 
 | { | 
 | 	up_read(&namespace_sem); | 
 | } | 
 |  | 
 | struct proc_fs_info { | 
 | 	int flag; | 
 | 	const char *str; | 
 | }; | 
 |  | 
 | static int show_sb_opts(struct seq_file *m, struct super_block *sb) | 
 | { | 
 | 	static const struct proc_fs_info fs_info[] = { | 
 | 		{ MS_SYNCHRONOUS, ",sync" }, | 
 | 		{ MS_DIRSYNC, ",dirsync" }, | 
 | 		{ MS_MANDLOCK, ",mand" }, | 
 | 		{ 0, NULL } | 
 | 	}; | 
 | 	const struct proc_fs_info *fs_infop; | 
 |  | 
 | 	for (fs_infop = fs_info; fs_infop->flag; fs_infop++) { | 
 | 		if (sb->s_flags & fs_infop->flag) | 
 | 			seq_puts(m, fs_infop->str); | 
 | 	} | 
 |  | 
 | 	return security_sb_show_options(m, sb); | 
 | } | 
 |  | 
 | static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt) | 
 | { | 
 | 	static const struct proc_fs_info mnt_info[] = { | 
 | 		{ MNT_NOSUID, ",nosuid" }, | 
 | 		{ MNT_NODEV, ",nodev" }, | 
 | 		{ MNT_NOEXEC, ",noexec" }, | 
 | 		{ MNT_NOATIME, ",noatime" }, | 
 | 		{ MNT_NODIRATIME, ",nodiratime" }, | 
 | 		{ MNT_RELATIME, ",relatime" }, | 
 | 		{ MNT_STRICTATIME, ",strictatime" }, | 
 | 		{ 0, NULL } | 
 | 	}; | 
 | 	const struct proc_fs_info *fs_infop; | 
 |  | 
 | 	for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) { | 
 | 		if (mnt->mnt_flags & fs_infop->flag) | 
 | 			seq_puts(m, fs_infop->str); | 
 | 	} | 
 | } | 
 |  | 
 | static void show_type(struct seq_file *m, struct super_block *sb) | 
 | { | 
 | 	mangle(m, sb->s_type->name); | 
 | 	if (sb->s_subtype && sb->s_subtype[0]) { | 
 | 		seq_putc(m, '.'); | 
 | 		mangle(m, sb->s_subtype); | 
 | 	} | 
 | } | 
 |  | 
 | static int show_vfsmnt(struct seq_file *m, void *v) | 
 | { | 
 | 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); | 
 | 	int err = 0; | 
 | 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; | 
 |  | 
 | 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none"); | 
 | 	seq_putc(m, ' '); | 
 | 	seq_path(m, &mnt_path, " \t\n\\"); | 
 | 	seq_putc(m, ' '); | 
 | 	show_type(m, mnt->mnt_sb); | 
 | 	seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw"); | 
 | 	err = show_sb_opts(m, mnt->mnt_sb); | 
 | 	if (err) | 
 | 		goto out; | 
 | 	show_mnt_opts(m, mnt); | 
 | 	if (mnt->mnt_sb->s_op->show_options) | 
 | 		err = mnt->mnt_sb->s_op->show_options(m, mnt); | 
 | 	seq_puts(m, " 0 0\n"); | 
 | out: | 
 | 	return err; | 
 | } | 
 |  | 
 | const struct seq_operations mounts_op = { | 
 | 	.start	= m_start, | 
 | 	.next	= m_next, | 
 | 	.stop	= m_stop, | 
 | 	.show	= show_vfsmnt | 
 | }; | 
 |  | 
 | static int show_mountinfo(struct seq_file *m, void *v) | 
 | { | 
 | 	struct proc_mounts *p = m->private; | 
 | 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); | 
 | 	struct super_block *sb = mnt->mnt_sb; | 
 | 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; | 
 | 	struct path root = p->root; | 
 | 	int err = 0; | 
 |  | 
 | 	seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id, | 
 | 		   MAJOR(sb->s_dev), MINOR(sb->s_dev)); | 
 | 	seq_dentry(m, mnt->mnt_root, " \t\n\\"); | 
 | 	seq_putc(m, ' '); | 
 | 	seq_path_root(m, &mnt_path, &root, " \t\n\\"); | 
 | 	if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) { | 
 | 		/* | 
 | 		 * Mountpoint is outside root, discard that one.  Ugly, | 
 | 		 * but less so than trying to do that in iterator in a | 
 | 		 * race-free way (due to renames). | 
 | 		 */ | 
 | 		return SEQ_SKIP; | 
 | 	} | 
 | 	seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw"); | 
 | 	show_mnt_opts(m, mnt); | 
 |  | 
 | 	/* Tagged fields ("foo:X" or "bar") */ | 
 | 	if (IS_MNT_SHARED(mnt)) | 
 | 		seq_printf(m, " shared:%i", mnt->mnt_group_id); | 
 | 	if (IS_MNT_SLAVE(mnt)) { | 
 | 		int master = mnt->mnt_master->mnt_group_id; | 
 | 		int dom = get_dominating_id(mnt, &p->root); | 
 | 		seq_printf(m, " master:%i", master); | 
 | 		if (dom && dom != master) | 
 | 			seq_printf(m, " propagate_from:%i", dom); | 
 | 	} | 
 | 	if (IS_MNT_UNBINDABLE(mnt)) | 
 | 		seq_puts(m, " unbindable"); | 
 |  | 
 | 	/* Filesystem specific data */ | 
 | 	seq_puts(m, " - "); | 
 | 	show_type(m, sb); | 
 | 	seq_putc(m, ' '); | 
 | 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none"); | 
 | 	seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw"); | 
 | 	err = show_sb_opts(m, sb); | 
 | 	if (err) | 
 | 		goto out; | 
 | 	if (sb->s_op->show_options) | 
 | 		err = sb->s_op->show_options(m, mnt); | 
 | 	seq_putc(m, '\n'); | 
 | out: | 
 | 	return err; | 
 | } | 
 |  | 
 | const struct seq_operations mountinfo_op = { | 
 | 	.start	= m_start, | 
 | 	.next	= m_next, | 
 | 	.stop	= m_stop, | 
 | 	.show	= show_mountinfo, | 
 | }; | 
 |  | 
 | static int show_vfsstat(struct seq_file *m, void *v) | 
 | { | 
 | 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list); | 
 | 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; | 
 | 	int err = 0; | 
 |  | 
 | 	/* device */ | 
 | 	if (mnt->mnt_devname) { | 
 | 		seq_puts(m, "device "); | 
 | 		mangle(m, mnt->mnt_devname); | 
 | 	} else | 
 | 		seq_puts(m, "no device"); | 
 |  | 
 | 	/* mount point */ | 
 | 	seq_puts(m, " mounted on "); | 
 | 	seq_path(m, &mnt_path, " \t\n\\"); | 
 | 	seq_putc(m, ' '); | 
 |  | 
 | 	/* file system type */ | 
 | 	seq_puts(m, "with fstype "); | 
 | 	show_type(m, mnt->mnt_sb); | 
 |  | 
 | 	/* optional statistics */ | 
 | 	if (mnt->mnt_sb->s_op->show_stats) { | 
 | 		seq_putc(m, ' '); | 
 | 		err = mnt->mnt_sb->s_op->show_stats(m, mnt); | 
 | 	} | 
 |  | 
 | 	seq_putc(m, '\n'); | 
 | 	return err; | 
 | } | 
 |  | 
 | const struct seq_operations mountstats_op = { | 
 | 	.start	= m_start, | 
 | 	.next	= m_next, | 
 | 	.stop	= m_stop, | 
 | 	.show	= show_vfsstat, | 
 | }; | 
 | #endif  /* CONFIG_PROC_FS */ | 
 |  | 
 | /** | 
 |  * may_umount_tree - check if a mount tree is busy | 
 |  * @mnt: root of mount tree | 
 |  * | 
 |  * This is called to check if a tree of mounts has any | 
 |  * open files, pwds, chroots or sub mounts that are | 
 |  * busy. | 
 |  */ | 
 | int may_umount_tree(struct vfsmount *mnt) | 
 | { | 
 | 	int actual_refs = 0; | 
 | 	int minimum_refs = 0; | 
 | 	struct vfsmount *p; | 
 |  | 
 | 	spin_lock(&vfsmount_lock); | 
 | 	for (p = mnt; p; p = next_mnt(p, mnt)) { | 
 | 		actual_refs += atomic_read(&p->mnt_count); | 
 | 		minimum_refs += 2; | 
 | 	} | 
 | 	spin_unlock(&vfsmount_lock); | 
 |  | 
 | 	if (actual_refs > minimum_refs) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(may_umount_tree); | 
 |  | 
 | /** | 
 |  * may_umount - check if a mount point is busy | 
 |  * @mnt: root of mount | 
 |  * | 
 |  * This is called to check if a mount point has any | 
 |  * open files, pwds, chroots or sub mounts. If the | 
 |  * mount has sub mounts this will return busy | 
 |  * regardless of whether the sub mounts are busy. | 
 |  * | 
 |  * Doesn't take quota and stuff into account. IOW, in some cases it will | 
 |  * give false negatives. The main reason why it's here is that we need | 
 |  * a non-destructive way to look for easily umountable filesystems. | 
 |  */ | 
 | int may_umount(struct vfsmount *mnt) | 
 | { | 
 | 	int ret = 1; | 
 | 	spin_lock(&vfsmount_lock); | 
 | 	if (propagate_mount_busy(mnt, 2)) | 
 | 		ret = 0; | 
 | 	spin_unlock(&vfsmount_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(may_umount); | 
 |  | 
 | void release_mounts(struct list_head *head) | 
 | { | 
 | 	struct vfsmount *mnt; | 
 | 	while (!list_empty(head)) { | 
 | 		mnt = list_first_entry(head, struct vfsmount, mnt_hash); | 
 | 		list_del_init(&mnt->mnt_hash); | 
 | 		if (mnt->mnt_parent != mnt) { | 
 | 			struct dentry *dentry; | 
 | 			struct vfsmount *m; | 
 | 			spin_lock(&vfsmount_lock); | 
 | 			dentry = mnt->mnt_mountpoint; | 
 | 			m = mnt->mnt_parent; | 
 | 			mnt->mnt_mountpoint = mnt->mnt_root; | 
 | 			mnt->mnt_parent = mnt; | 
 | 			m->mnt_ghosts--; | 
 | 			spin_unlock(&vfsmount_lock); | 
 | 			dput(dentry); | 
 | 			mntput(m); | 
 | 		} | 
 | 		mntput(mnt); | 
 | 	} | 
 | } | 
 |  | 
 | void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill) | 
 | { | 
 | 	struct vfsmount *p; | 
 |  | 
 | 	for (p = mnt; p; p = next_mnt(p, mnt)) | 
 | 		list_move(&p->mnt_hash, kill); | 
 |  | 
 | 	if (propagate) | 
 | 		propagate_umount(kill); | 
 |  | 
 | 	list_for_each_entry(p, kill, mnt_hash) { | 
 | 		list_del_init(&p->mnt_expire); | 
 | 		list_del_init(&p->mnt_list); | 
 | 		__touch_mnt_namespace(p->mnt_ns); | 
 | 		p->mnt_ns = NULL; | 
 | 		list_del_init(&p->mnt_child); | 
 | 		if (p->mnt_parent != p) { | 
 | 			p->mnt_parent->mnt_ghosts++; | 
 | 			p->mnt_mountpoint->d_mounted--; | 
 | 		} | 
 | 		change_mnt_propagation(p, MS_PRIVATE); | 
 | 	} | 
 | } | 
 |  | 
 | static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts); | 
 |  | 
 | static int do_umount(struct vfsmount *mnt, int flags) | 
 | { | 
 | 	struct super_block *sb = mnt->mnt_sb; | 
 | 	int retval; | 
 | 	LIST_HEAD(umount_list); | 
 |  | 
 | 	retval = security_sb_umount(mnt, flags); | 
 | 	if (retval) | 
 | 		return retval; | 
 |  | 
 | 	/* | 
 | 	 * Allow userspace to request a mountpoint be expired rather than | 
 | 	 * unmounting unconditionally. Unmount only happens if: | 
 | 	 *  (1) the mark is already set (the mark is cleared by mntput()) | 
 | 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] | 
 | 	 */ | 
 | 	if (flags & MNT_EXPIRE) { | 
 | 		if (mnt == current->fs->root.mnt || | 
 | 		    flags & (MNT_FORCE | MNT_DETACH)) | 
 | 			return -EINVAL; | 
 |  | 
 | 		if (atomic_read(&mnt->mnt_count) != 2) | 
 | 			return -EBUSY; | 
 |  | 
 | 		if (!xchg(&mnt->mnt_expiry_mark, 1)) | 
 | 			return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we may have to abort operations to get out of this | 
 | 	 * mount, and they will themselves hold resources we must | 
 | 	 * allow the fs to do things. In the Unix tradition of | 
 | 	 * 'Gee thats tricky lets do it in userspace' the umount_begin | 
 | 	 * might fail to complete on the first run through as other tasks | 
 | 	 * must return, and the like. Thats for the mount program to worry | 
 | 	 * about for the moment. | 
 | 	 */ | 
 |  | 
 | 	if (flags & MNT_FORCE && sb->s_op->umount_begin) { | 
 | 		sb->s_op->umount_begin(sb); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * No sense to grab the lock for this test, but test itself looks | 
 | 	 * somewhat bogus. Suggestions for better replacement? | 
 | 	 * Ho-hum... In principle, we might treat that as umount + switch | 
 | 	 * to rootfs. GC would eventually take care of the old vfsmount. | 
 | 	 * Actually it makes sense, especially if rootfs would contain a | 
 | 	 * /reboot - static binary that would close all descriptors and | 
 | 	 * call reboot(9). Then init(8) could umount root and exec /reboot. | 
 | 	 */ | 
 | 	if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { | 
 | 		/* | 
 | 		 * Special case for "unmounting" root ... | 
 | 		 * we just try to remount it readonly. | 
 | 		 */ | 
 | 		down_write(&sb->s_umount); | 
 | 		if (!(sb->s_flags & MS_RDONLY)) { | 
 | 			lock_kernel(); | 
 | 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); | 
 | 			unlock_kernel(); | 
 | 		} | 
 | 		up_write(&sb->s_umount); | 
 | 		return retval; | 
 | 	} | 
 |  | 
 | 	down_write(&namespace_sem); | 
 | 	spin_lock(&vfsmount_lock); | 
 | 	event++; | 
 |  | 
 | 	if (!(flags & MNT_DETACH)) | 
 | 		shrink_submounts(mnt, &umount_list); | 
 |  | 
 | 	retval = -EBUSY; | 
 | 	if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) { | 
 | 		if (!list_empty(&mnt->mnt_list)) | 
 | 			umount_tree(mnt, 1, &umount_list); | 
 | 		retval = 0; | 
 | 	} | 
 | 	spin_unlock(&vfsmount_lock); | 
 | 	if (retval) | 
 | 		security_sb_umount_busy(mnt); | 
 | 	up_write(&namespace_sem); | 
 | 	release_mounts(&umount_list); | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* | 
 |  * Now umount can handle mount points as well as block devices. | 
 |  * This is important for filesystems which use unnamed block devices. | 
 |  * | 
 |  * We now support a flag for forced unmount like the other 'big iron' | 
 |  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD | 
 |  */ | 
 |  | 
 | SYSCALL_DEFINE2(umount, char __user *, name, int, flags) | 
 | { | 
 | 	struct path path; | 
 | 	int retval; | 
 |  | 
 | 	retval = user_path(name, &path); | 
 | 	if (retval) | 
 | 		goto out; | 
 | 	retval = -EINVAL; | 
 | 	if (path.dentry != path.mnt->mnt_root) | 
 | 		goto dput_and_out; | 
 | 	if (!check_mnt(path.mnt)) | 
 | 		goto dput_and_out; | 
 |  | 
 | 	retval = -EPERM; | 
 | 	if (!capable(CAP_SYS_ADMIN)) | 
 | 		goto dput_and_out; | 
 |  | 
 | 	retval = do_umount(path.mnt, flags); | 
 | dput_and_out: | 
 | 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */ | 
 | 	dput(path.dentry); | 
 | 	mntput_no_expire(path.mnt); | 
 | out: | 
 | 	return retval; | 
 | } | 
 |  | 
 | #ifdef __ARCH_WANT_SYS_OLDUMOUNT | 
 |  | 
 | /* | 
 |  *	The 2.0 compatible umount. No flags. | 
 |  */ | 
 | SYSCALL_DEFINE1(oldumount, char __user *, name) | 
 | { | 
 | 	return sys_umount(name, 0); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | static int mount_is_safe(struct path *path) | 
 | { | 
 | 	if (capable(CAP_SYS_ADMIN)) | 
 | 		return 0; | 
 | 	return -EPERM; | 
 | #ifdef notyet | 
 | 	if (S_ISLNK(path->dentry->d_inode->i_mode)) | 
 | 		return -EPERM; | 
 | 	if (path->dentry->d_inode->i_mode & S_ISVTX) { | 
 | 		if (current_uid() != path->dentry->d_inode->i_uid) | 
 | 			return -EPERM; | 
 | 	} | 
 | 	if (inode_permission(path->dentry->d_inode, MAY_WRITE)) | 
 | 		return -EPERM; | 
 | 	return 0; | 
 | #endif | 
 | } | 
 |  | 
 | struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry, | 
 | 					int flag) | 
 | { | 
 | 	struct vfsmount *res, *p, *q, *r, *s; | 
 | 	struct path path; | 
 |  | 
 | 	if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt)) | 
 | 		return NULL; | 
 |  | 
 | 	res = q = clone_mnt(mnt, dentry, flag); | 
 | 	if (!q) | 
 | 		goto Enomem; | 
 | 	q->mnt_mountpoint = mnt->mnt_mountpoint; | 
 |  | 
 | 	p = mnt; | 
 | 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { | 
 | 		if (!is_subdir(r->mnt_mountpoint, dentry)) | 
 | 			continue; | 
 |  | 
 | 		for (s = r; s; s = next_mnt(s, r)) { | 
 | 			if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) { | 
 | 				s = skip_mnt_tree(s); | 
 | 				continue; | 
 | 			} | 
 | 			while (p != s->mnt_parent) { | 
 | 				p = p->mnt_parent; | 
 | 				q = q->mnt_parent; | 
 | 			} | 
 | 			p = s; | 
 | 			path.mnt = q; | 
 | 			path.dentry = p->mnt_mountpoint; | 
 | 			q = clone_mnt(p, p->mnt_root, flag); | 
 | 			if (!q) | 
 | 				goto Enomem; | 
 | 			spin_lock(&vfsmount_lock); | 
 | 			list_add_tail(&q->mnt_list, &res->mnt_list); | 
 | 			attach_mnt(q, &path); | 
 | 			spin_unlock(&vfsmount_lock); | 
 | 		} | 
 | 	} | 
 | 	return res; | 
 | Enomem: | 
 | 	if (res) { | 
 | 		LIST_HEAD(umount_list); | 
 | 		spin_lock(&vfsmount_lock); | 
 | 		umount_tree(res, 0, &umount_list); | 
 | 		spin_unlock(&vfsmount_lock); | 
 | 		release_mounts(&umount_list); | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry) | 
 | { | 
 | 	struct vfsmount *tree; | 
 | 	down_write(&namespace_sem); | 
 | 	tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE); | 
 | 	up_write(&namespace_sem); | 
 | 	return tree; | 
 | } | 
 |  | 
 | void drop_collected_mounts(struct vfsmount *mnt) | 
 | { | 
 | 	LIST_HEAD(umount_list); | 
 | 	down_write(&namespace_sem); | 
 | 	spin_lock(&vfsmount_lock); | 
 | 	umount_tree(mnt, 0, &umount_list); | 
 | 	spin_unlock(&vfsmount_lock); | 
 | 	up_write(&namespace_sem); | 
 | 	release_mounts(&umount_list); | 
 | } | 
 |  | 
 | static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end) | 
 | { | 
 | 	struct vfsmount *p; | 
 |  | 
 | 	for (p = mnt; p != end; p = next_mnt(p, mnt)) { | 
 | 		if (p->mnt_group_id && !IS_MNT_SHARED(p)) | 
 | 			mnt_release_group_id(p); | 
 | 	} | 
 | } | 
 |  | 
 | static int invent_group_ids(struct vfsmount *mnt, bool recurse) | 
 | { | 
 | 	struct vfsmount *p; | 
 |  | 
 | 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { | 
 | 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { | 
 | 			int err = mnt_alloc_group_id(p); | 
 | 			if (err) { | 
 | 				cleanup_group_ids(mnt, p); | 
 | 				return err; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  *  @source_mnt : mount tree to be attached | 
 |  *  @nd         : place the mount tree @source_mnt is attached | 
 |  *  @parent_nd  : if non-null, detach the source_mnt from its parent and | 
 |  *  		   store the parent mount and mountpoint dentry. | 
 |  *  		   (done when source_mnt is moved) | 
 |  * | 
 |  *  NOTE: in the table below explains the semantics when a source mount | 
 |  *  of a given type is attached to a destination mount of a given type. | 
 |  * --------------------------------------------------------------------------- | 
 |  * |         BIND MOUNT OPERATION                                            | | 
 |  * |************************************************************************** | 
 |  * | source-->| shared        |       private  |       slave    | unbindable | | 
 |  * | dest     |               |                |                |            | | 
 |  * |   |      |               |                |                |            | | 
 |  * |   v      |               |                |                |            | | 
 |  * |************************************************************************** | 
 |  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   | | 
 |  * |          |               |                |                |            | | 
 |  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   | | 
 |  * *************************************************************************** | 
 |  * A bind operation clones the source mount and mounts the clone on the | 
 |  * destination mount. | 
 |  * | 
 |  * (++)  the cloned mount is propagated to all the mounts in the propagation | 
 |  * 	 tree of the destination mount and the cloned mount is added to | 
 |  * 	 the peer group of the source mount. | 
 |  * (+)   the cloned mount is created under the destination mount and is marked | 
 |  *       as shared. The cloned mount is added to the peer group of the source | 
 |  *       mount. | 
 |  * (+++) the mount is propagated to all the mounts in the propagation tree | 
 |  *       of the destination mount and the cloned mount is made slave | 
 |  *       of the same master as that of the source mount. The cloned mount | 
 |  *       is marked as 'shared and slave'. | 
 |  * (*)   the cloned mount is made a slave of the same master as that of the | 
 |  * 	 source mount. | 
 |  * | 
 |  * --------------------------------------------------------------------------- | 
 |  * |         		MOVE MOUNT OPERATION                                 | | 
 |  * |************************************************************************** | 
 |  * | source-->| shared        |       private  |       slave    | unbindable | | 
 |  * | dest     |               |                |                |            | | 
 |  * |   |      |               |                |                |            | | 
 |  * |   v      |               |                |                |            | | 
 |  * |************************************************************************** | 
 |  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   | | 
 |  * |          |               |                |                |            | | 
 |  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable | | 
 |  * *************************************************************************** | 
 |  * | 
 |  * (+)  the mount is moved to the destination. And is then propagated to | 
 |  * 	all the mounts in the propagation tree of the destination mount. | 
 |  * (+*)  the mount is moved to the destination. | 
 |  * (+++)  the mount is moved to the destination and is then propagated to | 
 |  * 	all the mounts belonging to the destination mount's propagation tree. | 
 |  * 	the mount is marked as 'shared and slave'. | 
 |  * (*)	the mount continues to be a slave at the new location. | 
 |  * | 
 |  * if the source mount is a tree, the operations explained above is | 
 |  * applied to each mount in the tree. | 
 |  * Must be called without spinlocks held, since this function can sleep | 
 |  * in allocations. | 
 |  */ | 
 | static int attach_recursive_mnt(struct vfsmount *source_mnt, | 
 | 			struct path *path, struct path *parent_path) | 
 | { | 
 | 	LIST_HEAD(tree_list); | 
 | 	struct vfsmount *dest_mnt = path->mnt; | 
 | 	struct dentry *dest_dentry = path->dentry; | 
 | 	struct vfsmount *child, *p; | 
 | 	int err; | 
 |  | 
 | 	if (IS_MNT_SHARED(dest_mnt)) { | 
 | 		err = invent_group_ids(source_mnt, true); | 
 | 		if (err) | 
 | 			goto out; | 
 | 	} | 
 | 	err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list); | 
 | 	if (err) | 
 | 		goto out_cleanup_ids; | 
 |  | 
 | 	if (IS_MNT_SHARED(dest_mnt)) { | 
 | 		for (p = source_mnt; p; p = next_mnt(p, source_mnt)) | 
 | 			set_mnt_shared(p); | 
 | 	} | 
 |  | 
 | 	spin_lock(&vfsmount_lock); | 
 | 	if (parent_path) { | 
 | 		detach_mnt(source_mnt, parent_path); | 
 | 		attach_mnt(source_mnt, path); | 
 | 		touch_mnt_namespace(parent_path->mnt->mnt_ns); | 
 | 	} else { | 
 | 		mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt); | 
 | 		commit_tree(source_mnt); | 
 | 	} | 
 |  | 
 | 	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) { | 
 | 		list_del_init(&child->mnt_hash); | 
 | 		commit_tree(child); | 
 | 	} | 
 | 	spin_unlock(&vfsmount_lock); | 
 | 	return 0; | 
 |  | 
 |  out_cleanup_ids: | 
 | 	if (IS_MNT_SHARED(dest_mnt)) | 
 | 		cleanup_group_ids(source_mnt, NULL); | 
 |  out: | 
 | 	return err; | 
 | } | 
 |  | 
 | static int graft_tree(struct vfsmount *mnt, struct path *path) | 
 | { | 
 | 	int err; | 
 | 	if (mnt->mnt_sb->s_flags & MS_NOUSER) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (S_ISDIR(path->dentry->d_inode->i_mode) != | 
 | 	      S_ISDIR(mnt->mnt_root->d_inode->i_mode)) | 
 | 		return -ENOTDIR; | 
 |  | 
 | 	err = -ENOENT; | 
 | 	mutex_lock(&path->dentry->d_inode->i_mutex); | 
 | 	if (IS_DEADDIR(path->dentry->d_inode)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	err = security_sb_check_sb(mnt, path); | 
 | 	if (err) | 
 | 		goto out_unlock; | 
 |  | 
 | 	err = -ENOENT; | 
 | 	if (IS_ROOT(path->dentry) || !d_unhashed(path->dentry)) | 
 | 		err = attach_recursive_mnt(mnt, path, NULL); | 
 | out_unlock: | 
 | 	mutex_unlock(&path->dentry->d_inode->i_mutex); | 
 | 	if (!err) | 
 | 		security_sb_post_addmount(mnt, path); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * recursively change the type of the mountpoint. | 
 |  */ | 
 | static int do_change_type(struct path *path, int flag) | 
 | { | 
 | 	struct vfsmount *m, *mnt = path->mnt; | 
 | 	int recurse = flag & MS_REC; | 
 | 	int type = flag & ~MS_REC; | 
 | 	int err = 0; | 
 |  | 
 | 	if (!capable(CAP_SYS_ADMIN)) | 
 | 		return -EPERM; | 
 |  | 
 | 	if (path->dentry != path->mnt->mnt_root) | 
 | 		return -EINVAL; | 
 |  | 
 | 	down_write(&namespace_sem); | 
 | 	if (type == MS_SHARED) { | 
 | 		err = invent_group_ids(mnt, recurse); | 
 | 		if (err) | 
 | 			goto out_unlock; | 
 | 	} | 
 |  | 
 | 	spin_lock(&vfsmount_lock); | 
 | 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) | 
 | 		change_mnt_propagation(m, type); | 
 | 	spin_unlock(&vfsmount_lock); | 
 |  | 
 |  out_unlock: | 
 | 	up_write(&namespace_sem); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * do loopback mount. | 
 |  */ | 
 | static int do_loopback(struct path *path, char *old_name, | 
 | 				int recurse) | 
 | { | 
 | 	struct path old_path; | 
 | 	struct vfsmount *mnt = NULL; | 
 | 	int err = mount_is_safe(path); | 
 | 	if (err) | 
 | 		return err; | 
 | 	if (!old_name || !*old_name) | 
 | 		return -EINVAL; | 
 | 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	down_write(&namespace_sem); | 
 | 	err = -EINVAL; | 
 | 	if (IS_MNT_UNBINDABLE(old_path.mnt)) | 
 | 		goto out; | 
 |  | 
 | 	if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt)) | 
 | 		goto out; | 
 |  | 
 | 	err = -ENOMEM; | 
 | 	if (recurse) | 
 | 		mnt = copy_tree(old_path.mnt, old_path.dentry, 0); | 
 | 	else | 
 | 		mnt = clone_mnt(old_path.mnt, old_path.dentry, 0); | 
 |  | 
 | 	if (!mnt) | 
 | 		goto out; | 
 |  | 
 | 	err = graft_tree(mnt, path); | 
 | 	if (err) { | 
 | 		LIST_HEAD(umount_list); | 
 | 		spin_lock(&vfsmount_lock); | 
 | 		umount_tree(mnt, 0, &umount_list); | 
 | 		spin_unlock(&vfsmount_lock); | 
 | 		release_mounts(&umount_list); | 
 | 	} | 
 |  | 
 | out: | 
 | 	up_write(&namespace_sem); | 
 | 	path_put(&old_path); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int change_mount_flags(struct vfsmount *mnt, int ms_flags) | 
 | { | 
 | 	int error = 0; | 
 | 	int readonly_request = 0; | 
 |  | 
 | 	if (ms_flags & MS_RDONLY) | 
 | 		readonly_request = 1; | 
 | 	if (readonly_request == __mnt_is_readonly(mnt)) | 
 | 		return 0; | 
 |  | 
 | 	if (readonly_request) | 
 | 		error = mnt_make_readonly(mnt); | 
 | 	else | 
 | 		__mnt_unmake_readonly(mnt); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * change filesystem flags. dir should be a physical root of filesystem. | 
 |  * If you've mounted a non-root directory somewhere and want to do remount | 
 |  * on it - tough luck. | 
 |  */ | 
 | static int do_remount(struct path *path, int flags, int mnt_flags, | 
 | 		      void *data) | 
 | { | 
 | 	int err; | 
 | 	struct super_block *sb = path->mnt->mnt_sb; | 
 |  | 
 | 	if (!capable(CAP_SYS_ADMIN)) | 
 | 		return -EPERM; | 
 |  | 
 | 	if (!check_mnt(path->mnt)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (path->dentry != path->mnt->mnt_root) | 
 | 		return -EINVAL; | 
 |  | 
 | 	down_write(&sb->s_umount); | 
 | 	if (flags & MS_BIND) | 
 | 		err = change_mount_flags(path->mnt, flags); | 
 | 	else | 
 | 		err = do_remount_sb(sb, flags, data, 0); | 
 | 	if (!err) | 
 | 		path->mnt->mnt_flags = mnt_flags; | 
 | 	up_write(&sb->s_umount); | 
 | 	if (!err) { | 
 | 		security_sb_post_remount(path->mnt, flags, data); | 
 |  | 
 | 		spin_lock(&vfsmount_lock); | 
 | 		touch_mnt_namespace(path->mnt->mnt_ns); | 
 | 		spin_unlock(&vfsmount_lock); | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | static inline int tree_contains_unbindable(struct vfsmount *mnt) | 
 | { | 
 | 	struct vfsmount *p; | 
 | 	for (p = mnt; p; p = next_mnt(p, mnt)) { | 
 | 		if (IS_MNT_UNBINDABLE(p)) | 
 | 			return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int do_move_mount(struct path *path, char *old_name) | 
 | { | 
 | 	struct path old_path, parent_path; | 
 | 	struct vfsmount *p; | 
 | 	int err = 0; | 
 | 	if (!capable(CAP_SYS_ADMIN)) | 
 | 		return -EPERM; | 
 | 	if (!old_name || !*old_name) | 
 | 		return -EINVAL; | 
 | 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	down_write(&namespace_sem); | 
 | 	while (d_mountpoint(path->dentry) && | 
 | 	       follow_down(&path->mnt, &path->dentry)) | 
 | 		; | 
 | 	err = -EINVAL; | 
 | 	if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt)) | 
 | 		goto out; | 
 |  | 
 | 	err = -ENOENT; | 
 | 	mutex_lock(&path->dentry->d_inode->i_mutex); | 
 | 	if (IS_DEADDIR(path->dentry->d_inode)) | 
 | 		goto out1; | 
 |  | 
 | 	if (!IS_ROOT(path->dentry) && d_unhashed(path->dentry)) | 
 | 		goto out1; | 
 |  | 
 | 	err = -EINVAL; | 
 | 	if (old_path.dentry != old_path.mnt->mnt_root) | 
 | 		goto out1; | 
 |  | 
 | 	if (old_path.mnt == old_path.mnt->mnt_parent) | 
 | 		goto out1; | 
 |  | 
 | 	if (S_ISDIR(path->dentry->d_inode->i_mode) != | 
 | 	      S_ISDIR(old_path.dentry->d_inode->i_mode)) | 
 | 		goto out1; | 
 | 	/* | 
 | 	 * Don't move a mount residing in a shared parent. | 
 | 	 */ | 
 | 	if (old_path.mnt->mnt_parent && | 
 | 	    IS_MNT_SHARED(old_path.mnt->mnt_parent)) | 
 | 		goto out1; | 
 | 	/* | 
 | 	 * Don't move a mount tree containing unbindable mounts to a destination | 
 | 	 * mount which is shared. | 
 | 	 */ | 
 | 	if (IS_MNT_SHARED(path->mnt) && | 
 | 	    tree_contains_unbindable(old_path.mnt)) | 
 | 		goto out1; | 
 | 	err = -ELOOP; | 
 | 	for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent) | 
 | 		if (p == old_path.mnt) | 
 | 			goto out1; | 
 |  | 
 | 	err = attach_recursive_mnt(old_path.mnt, path, &parent_path); | 
 | 	if (err) | 
 | 		goto out1; | 
 |  | 
 | 	/* if the mount is moved, it should no longer be expire | 
 | 	 * automatically */ | 
 | 	list_del_init(&old_path.mnt->mnt_expire); | 
 | out1: | 
 | 	mutex_unlock(&path->dentry->d_inode->i_mutex); | 
 | out: | 
 | 	up_write(&namespace_sem); | 
 | 	if (!err) | 
 | 		path_put(&parent_path); | 
 | 	path_put(&old_path); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * create a new mount for userspace and request it to be added into the | 
 |  * namespace's tree | 
 |  */ | 
 | static int do_new_mount(struct path *path, char *type, int flags, | 
 | 			int mnt_flags, char *name, void *data) | 
 | { | 
 | 	struct vfsmount *mnt; | 
 |  | 
 | 	if (!type || !memchr(type, 0, PAGE_SIZE)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* we need capabilities... */ | 
 | 	if (!capable(CAP_SYS_ADMIN)) | 
 | 		return -EPERM; | 
 |  | 
 | 	mnt = do_kern_mount(type, flags, name, data); | 
 | 	if (IS_ERR(mnt)) | 
 | 		return PTR_ERR(mnt); | 
 |  | 
 | 	return do_add_mount(mnt, path, mnt_flags, NULL); | 
 | } | 
 |  | 
 | /* | 
 |  * add a mount into a namespace's mount tree | 
 |  * - provide the option of adding the new mount to an expiration list | 
 |  */ | 
 | int do_add_mount(struct vfsmount *newmnt, struct path *path, | 
 | 		 int mnt_flags, struct list_head *fslist) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	down_write(&namespace_sem); | 
 | 	/* Something was mounted here while we slept */ | 
 | 	while (d_mountpoint(path->dentry) && | 
 | 	       follow_down(&path->mnt, &path->dentry)) | 
 | 		; | 
 | 	err = -EINVAL; | 
 | 	if (!check_mnt(path->mnt)) | 
 | 		goto unlock; | 
 |  | 
 | 	/* Refuse the same filesystem on the same mount point */ | 
 | 	err = -EBUSY; | 
 | 	if (path->mnt->mnt_sb == newmnt->mnt_sb && | 
 | 	    path->mnt->mnt_root == path->dentry) | 
 | 		goto unlock; | 
 |  | 
 | 	err = -EINVAL; | 
 | 	if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode)) | 
 | 		goto unlock; | 
 |  | 
 | 	newmnt->mnt_flags = mnt_flags; | 
 | 	if ((err = graft_tree(newmnt, path))) | 
 | 		goto unlock; | 
 |  | 
 | 	if (fslist) /* add to the specified expiration list */ | 
 | 		list_add_tail(&newmnt->mnt_expire, fslist); | 
 |  | 
 | 	up_write(&namespace_sem); | 
 | 	return 0; | 
 |  | 
 | unlock: | 
 | 	up_write(&namespace_sem); | 
 | 	mntput(newmnt); | 
 | 	return err; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL_GPL(do_add_mount); | 
 |  | 
 | /* | 
 |  * process a list of expirable mountpoints with the intent of discarding any | 
 |  * mountpoints that aren't in use and haven't been touched since last we came | 
 |  * here | 
 |  */ | 
 | void mark_mounts_for_expiry(struct list_head *mounts) | 
 | { | 
 | 	struct vfsmount *mnt, *next; | 
 | 	LIST_HEAD(graveyard); | 
 | 	LIST_HEAD(umounts); | 
 |  | 
 | 	if (list_empty(mounts)) | 
 | 		return; | 
 |  | 
 | 	down_write(&namespace_sem); | 
 | 	spin_lock(&vfsmount_lock); | 
 |  | 
 | 	/* extract from the expiration list every vfsmount that matches the | 
 | 	 * following criteria: | 
 | 	 * - only referenced by its parent vfsmount | 
 | 	 * - still marked for expiry (marked on the last call here; marks are | 
 | 	 *   cleared by mntput()) | 
 | 	 */ | 
 | 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { | 
 | 		if (!xchg(&mnt->mnt_expiry_mark, 1) || | 
 | 			propagate_mount_busy(mnt, 1)) | 
 | 			continue; | 
 | 		list_move(&mnt->mnt_expire, &graveyard); | 
 | 	} | 
 | 	while (!list_empty(&graveyard)) { | 
 | 		mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire); | 
 | 		touch_mnt_namespace(mnt->mnt_ns); | 
 | 		umount_tree(mnt, 1, &umounts); | 
 | 	} | 
 | 	spin_unlock(&vfsmount_lock); | 
 | 	up_write(&namespace_sem); | 
 |  | 
 | 	release_mounts(&umounts); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); | 
 |  | 
 | /* | 
 |  * Ripoff of 'select_parent()' | 
 |  * | 
 |  * search the list of submounts for a given mountpoint, and move any | 
 |  * shrinkable submounts to the 'graveyard' list. | 
 |  */ | 
 | static int select_submounts(struct vfsmount *parent, struct list_head *graveyard) | 
 | { | 
 | 	struct vfsmount *this_parent = parent; | 
 | 	struct list_head *next; | 
 | 	int found = 0; | 
 |  | 
 | repeat: | 
 | 	next = this_parent->mnt_mounts.next; | 
 | resume: | 
 | 	while (next != &this_parent->mnt_mounts) { | 
 | 		struct list_head *tmp = next; | 
 | 		struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child); | 
 |  | 
 | 		next = tmp->next; | 
 | 		if (!(mnt->mnt_flags & MNT_SHRINKABLE)) | 
 | 			continue; | 
 | 		/* | 
 | 		 * Descend a level if the d_mounts list is non-empty. | 
 | 		 */ | 
 | 		if (!list_empty(&mnt->mnt_mounts)) { | 
 | 			this_parent = mnt; | 
 | 			goto repeat; | 
 | 		} | 
 |  | 
 | 		if (!propagate_mount_busy(mnt, 1)) { | 
 | 			list_move_tail(&mnt->mnt_expire, graveyard); | 
 | 			found++; | 
 | 		} | 
 | 	} | 
 | 	/* | 
 | 	 * All done at this level ... ascend and resume the search | 
 | 	 */ | 
 | 	if (this_parent != parent) { | 
 | 		next = this_parent->mnt_child.next; | 
 | 		this_parent = this_parent->mnt_parent; | 
 | 		goto resume; | 
 | 	} | 
 | 	return found; | 
 | } | 
 |  | 
 | /* | 
 |  * process a list of expirable mountpoints with the intent of discarding any | 
 |  * submounts of a specific parent mountpoint | 
 |  */ | 
 | static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts) | 
 | { | 
 | 	LIST_HEAD(graveyard); | 
 | 	struct vfsmount *m; | 
 |  | 
 | 	/* extract submounts of 'mountpoint' from the expiration list */ | 
 | 	while (select_submounts(mnt, &graveyard)) { | 
 | 		while (!list_empty(&graveyard)) { | 
 | 			m = list_first_entry(&graveyard, struct vfsmount, | 
 | 						mnt_expire); | 
 | 			touch_mnt_namespace(m->mnt_ns); | 
 | 			umount_tree(m, 1, umounts); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Some copy_from_user() implementations do not return the exact number of | 
 |  * bytes remaining to copy on a fault.  But copy_mount_options() requires that. | 
 |  * Note that this function differs from copy_from_user() in that it will oops | 
 |  * on bad values of `to', rather than returning a short copy. | 
 |  */ | 
 | static long exact_copy_from_user(void *to, const void __user * from, | 
 | 				 unsigned long n) | 
 | { | 
 | 	char *t = to; | 
 | 	const char __user *f = from; | 
 | 	char c; | 
 |  | 
 | 	if (!access_ok(VERIFY_READ, from, n)) | 
 | 		return n; | 
 |  | 
 | 	while (n) { | 
 | 		if (__get_user(c, f)) { | 
 | 			memset(t, 0, n); | 
 | 			break; | 
 | 		} | 
 | 		*t++ = c; | 
 | 		f++; | 
 | 		n--; | 
 | 	} | 
 | 	return n; | 
 | } | 
 |  | 
 | int copy_mount_options(const void __user * data, unsigned long *where) | 
 | { | 
 | 	int i; | 
 | 	unsigned long page; | 
 | 	unsigned long size; | 
 |  | 
 | 	*where = 0; | 
 | 	if (!data) | 
 | 		return 0; | 
 |  | 
 | 	if (!(page = __get_free_page(GFP_KERNEL))) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* We only care that *some* data at the address the user | 
 | 	 * gave us is valid.  Just in case, we'll zero | 
 | 	 * the remainder of the page. | 
 | 	 */ | 
 | 	/* copy_from_user cannot cross TASK_SIZE ! */ | 
 | 	size = TASK_SIZE - (unsigned long)data; | 
 | 	if (size > PAGE_SIZE) | 
 | 		size = PAGE_SIZE; | 
 |  | 
 | 	i = size - exact_copy_from_user((void *)page, data, size); | 
 | 	if (!i) { | 
 | 		free_page(page); | 
 | 		return -EFAULT; | 
 | 	} | 
 | 	if (i != PAGE_SIZE) | 
 | 		memset((char *)page + i, 0, PAGE_SIZE - i); | 
 | 	*where = page; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to | 
 |  * be given to the mount() call (ie: read-only, no-dev, no-suid etc). | 
 |  * | 
 |  * data is a (void *) that can point to any structure up to | 
 |  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent | 
 |  * information (or be NULL). | 
 |  * | 
 |  * Pre-0.97 versions of mount() didn't have a flags word. | 
 |  * When the flags word was introduced its top half was required | 
 |  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. | 
 |  * Therefore, if this magic number is present, it carries no information | 
 |  * and must be discarded. | 
 |  */ | 
 | long do_mount(char *dev_name, char *dir_name, char *type_page, | 
 | 		  unsigned long flags, void *data_page) | 
 | { | 
 | 	struct path path; | 
 | 	int retval = 0; | 
 | 	int mnt_flags = 0; | 
 |  | 
 | 	/* Discard magic */ | 
 | 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL) | 
 | 		flags &= ~MS_MGC_MSK; | 
 |  | 
 | 	/* Basic sanity checks */ | 
 |  | 
 | 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE)) | 
 | 		return -EINVAL; | 
 | 	if (dev_name && !memchr(dev_name, 0, PAGE_SIZE)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (data_page) | 
 | 		((char *)data_page)[PAGE_SIZE - 1] = 0; | 
 |  | 
 | 	/* Default to relatime unless overriden */ | 
 | 	if (!(flags & MS_NOATIME)) | 
 | 		mnt_flags |= MNT_RELATIME; | 
 |  | 
 | 	/* Separate the per-mountpoint flags */ | 
 | 	if (flags & MS_NOSUID) | 
 | 		mnt_flags |= MNT_NOSUID; | 
 | 	if (flags & MS_NODEV) | 
 | 		mnt_flags |= MNT_NODEV; | 
 | 	if (flags & MS_NOEXEC) | 
 | 		mnt_flags |= MNT_NOEXEC; | 
 | 	if (flags & MS_NOATIME) | 
 | 		mnt_flags |= MNT_NOATIME; | 
 | 	if (flags & MS_NODIRATIME) | 
 | 		mnt_flags |= MNT_NODIRATIME; | 
 | 	if (flags & MS_STRICTATIME) | 
 | 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); | 
 | 	if (flags & MS_RDONLY) | 
 | 		mnt_flags |= MNT_READONLY; | 
 |  | 
 | 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | | 
 | 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT | | 
 | 		   MS_STRICTATIME); | 
 |  | 
 | 	/* ... and get the mountpoint */ | 
 | 	retval = kern_path(dir_name, LOOKUP_FOLLOW, &path); | 
 | 	if (retval) | 
 | 		return retval; | 
 |  | 
 | 	retval = security_sb_mount(dev_name, &path, | 
 | 				   type_page, flags, data_page); | 
 | 	if (retval) | 
 | 		goto dput_out; | 
 |  | 
 | 	if (flags & MS_REMOUNT) | 
 | 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags, | 
 | 				    data_page); | 
 | 	else if (flags & MS_BIND) | 
 | 		retval = do_loopback(&path, dev_name, flags & MS_REC); | 
 | 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) | 
 | 		retval = do_change_type(&path, flags); | 
 | 	else if (flags & MS_MOVE) | 
 | 		retval = do_move_mount(&path, dev_name); | 
 | 	else | 
 | 		retval = do_new_mount(&path, type_page, flags, mnt_flags, | 
 | 				      dev_name, data_page); | 
 | dput_out: | 
 | 	path_put(&path); | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate a new namespace structure and populate it with contents | 
 |  * copied from the namespace of the passed in task structure. | 
 |  */ | 
 | static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns, | 
 | 		struct fs_struct *fs) | 
 | { | 
 | 	struct mnt_namespace *new_ns; | 
 | 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; | 
 | 	struct vfsmount *p, *q; | 
 |  | 
 | 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); | 
 | 	if (!new_ns) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	atomic_set(&new_ns->count, 1); | 
 | 	INIT_LIST_HEAD(&new_ns->list); | 
 | 	init_waitqueue_head(&new_ns->poll); | 
 | 	new_ns->event = 0; | 
 |  | 
 | 	down_write(&namespace_sem); | 
 | 	/* First pass: copy the tree topology */ | 
 | 	new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root, | 
 | 					CL_COPY_ALL | CL_EXPIRE); | 
 | 	if (!new_ns->root) { | 
 | 		up_write(&namespace_sem); | 
 | 		kfree(new_ns); | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	} | 
 | 	spin_lock(&vfsmount_lock); | 
 | 	list_add_tail(&new_ns->list, &new_ns->root->mnt_list); | 
 | 	spin_unlock(&vfsmount_lock); | 
 |  | 
 | 	/* | 
 | 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts | 
 | 	 * as belonging to new namespace.  We have already acquired a private | 
 | 	 * fs_struct, so tsk->fs->lock is not needed. | 
 | 	 */ | 
 | 	p = mnt_ns->root; | 
 | 	q = new_ns->root; | 
 | 	while (p) { | 
 | 		q->mnt_ns = new_ns; | 
 | 		if (fs) { | 
 | 			if (p == fs->root.mnt) { | 
 | 				rootmnt = p; | 
 | 				fs->root.mnt = mntget(q); | 
 | 			} | 
 | 			if (p == fs->pwd.mnt) { | 
 | 				pwdmnt = p; | 
 | 				fs->pwd.mnt = mntget(q); | 
 | 			} | 
 | 		} | 
 | 		p = next_mnt(p, mnt_ns->root); | 
 | 		q = next_mnt(q, new_ns->root); | 
 | 	} | 
 | 	up_write(&namespace_sem); | 
 |  | 
 | 	if (rootmnt) | 
 | 		mntput(rootmnt); | 
 | 	if (pwdmnt) | 
 | 		mntput(pwdmnt); | 
 |  | 
 | 	return new_ns; | 
 | } | 
 |  | 
 | struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, | 
 | 		struct fs_struct *new_fs) | 
 | { | 
 | 	struct mnt_namespace *new_ns; | 
 |  | 
 | 	BUG_ON(!ns); | 
 | 	get_mnt_ns(ns); | 
 |  | 
 | 	if (!(flags & CLONE_NEWNS)) | 
 | 		return ns; | 
 |  | 
 | 	new_ns = dup_mnt_ns(ns, new_fs); | 
 |  | 
 | 	put_mnt_ns(ns); | 
 | 	return new_ns; | 
 | } | 
 |  | 
 | SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, | 
 | 		char __user *, type, unsigned long, flags, void __user *, data) | 
 | { | 
 | 	int retval; | 
 | 	unsigned long data_page; | 
 | 	unsigned long type_page; | 
 | 	unsigned long dev_page; | 
 | 	char *dir_page; | 
 |  | 
 | 	retval = copy_mount_options(type, &type_page); | 
 | 	if (retval < 0) | 
 | 		return retval; | 
 |  | 
 | 	dir_page = getname(dir_name); | 
 | 	retval = PTR_ERR(dir_page); | 
 | 	if (IS_ERR(dir_page)) | 
 | 		goto out1; | 
 |  | 
 | 	retval = copy_mount_options(dev_name, &dev_page); | 
 | 	if (retval < 0) | 
 | 		goto out2; | 
 |  | 
 | 	retval = copy_mount_options(data, &data_page); | 
 | 	if (retval < 0) | 
 | 		goto out3; | 
 |  | 
 | 	lock_kernel(); | 
 | 	retval = do_mount((char *)dev_page, dir_page, (char *)type_page, | 
 | 			  flags, (void *)data_page); | 
 | 	unlock_kernel(); | 
 | 	free_page(data_page); | 
 |  | 
 | out3: | 
 | 	free_page(dev_page); | 
 | out2: | 
 | 	putname(dir_page); | 
 | out1: | 
 | 	free_page(type_page); | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* | 
 |  * pivot_root Semantics: | 
 |  * Moves the root file system of the current process to the directory put_old, | 
 |  * makes new_root as the new root file system of the current process, and sets | 
 |  * root/cwd of all processes which had them on the current root to new_root. | 
 |  * | 
 |  * Restrictions: | 
 |  * The new_root and put_old must be directories, and  must not be on the | 
 |  * same file  system as the current process root. The put_old  must  be | 
 |  * underneath new_root,  i.e. adding a non-zero number of /.. to the string | 
 |  * pointed to by put_old must yield the same directory as new_root. No other | 
 |  * file system may be mounted on put_old. After all, new_root is a mountpoint. | 
 |  * | 
 |  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. | 
 |  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives | 
 |  * in this situation. | 
 |  * | 
 |  * Notes: | 
 |  *  - we don't move root/cwd if they are not at the root (reason: if something | 
 |  *    cared enough to change them, it's probably wrong to force them elsewhere) | 
 |  *  - it's okay to pick a root that isn't the root of a file system, e.g. | 
 |  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint, | 
 |  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root | 
 |  *    first. | 
 |  */ | 
 | SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, | 
 | 		const char __user *, put_old) | 
 | { | 
 | 	struct vfsmount *tmp; | 
 | 	struct path new, old, parent_path, root_parent, root; | 
 | 	int error; | 
 |  | 
 | 	if (!capable(CAP_SYS_ADMIN)) | 
 | 		return -EPERM; | 
 |  | 
 | 	error = user_path_dir(new_root, &new); | 
 | 	if (error) | 
 | 		goto out0; | 
 | 	error = -EINVAL; | 
 | 	if (!check_mnt(new.mnt)) | 
 | 		goto out1; | 
 |  | 
 | 	error = user_path_dir(put_old, &old); | 
 | 	if (error) | 
 | 		goto out1; | 
 |  | 
 | 	error = security_sb_pivotroot(&old, &new); | 
 | 	if (error) { | 
 | 		path_put(&old); | 
 | 		goto out1; | 
 | 	} | 
 |  | 
 | 	read_lock(¤t->fs->lock); | 
 | 	root = current->fs->root; | 
 | 	path_get(¤t->fs->root); | 
 | 	read_unlock(¤t->fs->lock); | 
 | 	down_write(&namespace_sem); | 
 | 	mutex_lock(&old.dentry->d_inode->i_mutex); | 
 | 	error = -EINVAL; | 
 | 	if (IS_MNT_SHARED(old.mnt) || | 
 | 		IS_MNT_SHARED(new.mnt->mnt_parent) || | 
 | 		IS_MNT_SHARED(root.mnt->mnt_parent)) | 
 | 		goto out2; | 
 | 	if (!check_mnt(root.mnt)) | 
 | 		goto out2; | 
 | 	error = -ENOENT; | 
 | 	if (IS_DEADDIR(new.dentry->d_inode)) | 
 | 		goto out2; | 
 | 	if (d_unhashed(new.dentry) && !IS_ROOT(new.dentry)) | 
 | 		goto out2; | 
 | 	if (d_unhashed(old.dentry) && !IS_ROOT(old.dentry)) | 
 | 		goto out2; | 
 | 	error = -EBUSY; | 
 | 	if (new.mnt == root.mnt || | 
 | 	    old.mnt == root.mnt) | 
 | 		goto out2; /* loop, on the same file system  */ | 
 | 	error = -EINVAL; | 
 | 	if (root.mnt->mnt_root != root.dentry) | 
 | 		goto out2; /* not a mountpoint */ | 
 | 	if (root.mnt->mnt_parent == root.mnt) | 
 | 		goto out2; /* not attached */ | 
 | 	if (new.mnt->mnt_root != new.dentry) | 
 | 		goto out2; /* not a mountpoint */ | 
 | 	if (new.mnt->mnt_parent == new.mnt) | 
 | 		goto out2; /* not attached */ | 
 | 	/* make sure we can reach put_old from new_root */ | 
 | 	tmp = old.mnt; | 
 | 	spin_lock(&vfsmount_lock); | 
 | 	if (tmp != new.mnt) { | 
 | 		for (;;) { | 
 | 			if (tmp->mnt_parent == tmp) | 
 | 				goto out3; /* already mounted on put_old */ | 
 | 			if (tmp->mnt_parent == new.mnt) | 
 | 				break; | 
 | 			tmp = tmp->mnt_parent; | 
 | 		} | 
 | 		if (!is_subdir(tmp->mnt_mountpoint, new.dentry)) | 
 | 			goto out3; | 
 | 	} else if (!is_subdir(old.dentry, new.dentry)) | 
 | 		goto out3; | 
 | 	detach_mnt(new.mnt, &parent_path); | 
 | 	detach_mnt(root.mnt, &root_parent); | 
 | 	/* mount old root on put_old */ | 
 | 	attach_mnt(root.mnt, &old); | 
 | 	/* mount new_root on / */ | 
 | 	attach_mnt(new.mnt, &root_parent); | 
 | 	touch_mnt_namespace(current->nsproxy->mnt_ns); | 
 | 	spin_unlock(&vfsmount_lock); | 
 | 	chroot_fs_refs(&root, &new); | 
 | 	security_sb_post_pivotroot(&root, &new); | 
 | 	error = 0; | 
 | 	path_put(&root_parent); | 
 | 	path_put(&parent_path); | 
 | out2: | 
 | 	mutex_unlock(&old.dentry->d_inode->i_mutex); | 
 | 	up_write(&namespace_sem); | 
 | 	path_put(&root); | 
 | 	path_put(&old); | 
 | out1: | 
 | 	path_put(&new); | 
 | out0: | 
 | 	return error; | 
 | out3: | 
 | 	spin_unlock(&vfsmount_lock); | 
 | 	goto out2; | 
 | } | 
 |  | 
 | static void __init init_mount_tree(void) | 
 | { | 
 | 	struct vfsmount *mnt; | 
 | 	struct mnt_namespace *ns; | 
 | 	struct path root; | 
 |  | 
 | 	mnt = do_kern_mount("rootfs", 0, "rootfs", NULL); | 
 | 	if (IS_ERR(mnt)) | 
 | 		panic("Can't create rootfs"); | 
 | 	ns = kmalloc(sizeof(*ns), GFP_KERNEL); | 
 | 	if (!ns) | 
 | 		panic("Can't allocate initial namespace"); | 
 | 	atomic_set(&ns->count, 1); | 
 | 	INIT_LIST_HEAD(&ns->list); | 
 | 	init_waitqueue_head(&ns->poll); | 
 | 	ns->event = 0; | 
 | 	list_add(&mnt->mnt_list, &ns->list); | 
 | 	ns->root = mnt; | 
 | 	mnt->mnt_ns = ns; | 
 |  | 
 | 	init_task.nsproxy->mnt_ns = ns; | 
 | 	get_mnt_ns(ns); | 
 |  | 
 | 	root.mnt = ns->root; | 
 | 	root.dentry = ns->root->mnt_root; | 
 |  | 
 | 	set_fs_pwd(current->fs, &root); | 
 | 	set_fs_root(current->fs, &root); | 
 | } | 
 |  | 
 | void __init mnt_init(void) | 
 | { | 
 | 	unsigned u; | 
 | 	int err; | 
 |  | 
 | 	init_rwsem(&namespace_sem); | 
 |  | 
 | 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount), | 
 | 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); | 
 |  | 
 | 	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC); | 
 |  | 
 | 	if (!mount_hashtable) | 
 | 		panic("Failed to allocate mount hash table\n"); | 
 |  | 
 | 	printk("Mount-cache hash table entries: %lu\n", HASH_SIZE); | 
 |  | 
 | 	for (u = 0; u < HASH_SIZE; u++) | 
 | 		INIT_LIST_HEAD(&mount_hashtable[u]); | 
 |  | 
 | 	err = sysfs_init(); | 
 | 	if (err) | 
 | 		printk(KERN_WARNING "%s: sysfs_init error: %d\n", | 
 | 			__func__, err); | 
 | 	fs_kobj = kobject_create_and_add("fs", NULL); | 
 | 	if (!fs_kobj) | 
 | 		printk(KERN_WARNING "%s: kobj create error\n", __func__); | 
 | 	init_rootfs(); | 
 | 	init_mount_tree(); | 
 | } | 
 |  | 
 | void __put_mnt_ns(struct mnt_namespace *ns) | 
 | { | 
 | 	struct vfsmount *root = ns->root; | 
 | 	LIST_HEAD(umount_list); | 
 | 	ns->root = NULL; | 
 | 	spin_unlock(&vfsmount_lock); | 
 | 	down_write(&namespace_sem); | 
 | 	spin_lock(&vfsmount_lock); | 
 | 	umount_tree(root, 0, &umount_list); | 
 | 	spin_unlock(&vfsmount_lock); | 
 | 	up_write(&namespace_sem); | 
 | 	release_mounts(&umount_list); | 
 | 	kfree(ns); | 
 | } |