| /* | 
 | 	kmod, the new module loader (replaces kerneld) | 
 | 	Kirk Petersen | 
 |  | 
 | 	Reorganized not to be a daemon by Adam Richter, with guidance | 
 | 	from Greg Zornetzer. | 
 |  | 
 | 	Modified to avoid chroot and file sharing problems. | 
 | 	Mikael Pettersson | 
 |  | 
 | 	Limit the concurrent number of kmod modprobes to catch loops from | 
 | 	"modprobe needs a service that is in a module". | 
 | 	Keith Owens <kaos@ocs.com.au> December 1999 | 
 |  | 
 | 	Unblock all signals when we exec a usermode process. | 
 | 	Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000 | 
 |  | 
 | 	call_usermodehelper wait flag, and remove exec_usermodehelper. | 
 | 	Rusty Russell <rusty@rustcorp.com.au>  Jan 2003 | 
 | */ | 
 | #include <linux/module.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/unistd.h> | 
 | #include <linux/kmod.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/mnt_namespace.h> | 
 | #include <linux/completion.h> | 
 | #include <linux/file.h> | 
 | #include <linux/workqueue.h> | 
 | #include <linux/security.h> | 
 | #include <linux/mount.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/init.h> | 
 | #include <linux/resource.h> | 
 | #include <asm/uaccess.h> | 
 |  | 
 | extern int max_threads; | 
 |  | 
 | static struct workqueue_struct *khelper_wq; | 
 |  | 
 | #ifdef CONFIG_KMOD | 
 |  | 
 | /* | 
 | 	modprobe_path is set via /proc/sys. | 
 | */ | 
 | char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe"; | 
 |  | 
 | /** | 
 |  * request_module - try to load a kernel module | 
 |  * @fmt:     printf style format string for the name of the module | 
 |  * @varargs: arguements as specified in the format string | 
 |  * | 
 |  * Load a module using the user mode module loader. The function returns | 
 |  * zero on success or a negative errno code on failure. Note that a | 
 |  * successful module load does not mean the module did not then unload | 
 |  * and exit on an error of its own. Callers must check that the service | 
 |  * they requested is now available not blindly invoke it. | 
 |  * | 
 |  * If module auto-loading support is disabled then this function | 
 |  * becomes a no-operation. | 
 |  */ | 
 | int request_module(const char *fmt, ...) | 
 | { | 
 | 	va_list args; | 
 | 	char module_name[MODULE_NAME_LEN]; | 
 | 	unsigned int max_modprobes; | 
 | 	int ret; | 
 | 	char *argv[] = { modprobe_path, "-q", "--", module_name, NULL }; | 
 | 	static char *envp[] = { "HOME=/", | 
 | 				"TERM=linux", | 
 | 				"PATH=/sbin:/usr/sbin:/bin:/usr/bin", | 
 | 				NULL }; | 
 | 	static atomic_t kmod_concurrent = ATOMIC_INIT(0); | 
 | #define MAX_KMOD_CONCURRENT 50	/* Completely arbitrary value - KAO */ | 
 | 	static int kmod_loop_msg; | 
 |  | 
 | 	va_start(args, fmt); | 
 | 	ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args); | 
 | 	va_end(args); | 
 | 	if (ret >= MODULE_NAME_LEN) | 
 | 		return -ENAMETOOLONG; | 
 |  | 
 | 	/* If modprobe needs a service that is in a module, we get a recursive | 
 | 	 * loop.  Limit the number of running kmod threads to max_threads/2 or | 
 | 	 * MAX_KMOD_CONCURRENT, whichever is the smaller.  A cleaner method | 
 | 	 * would be to run the parents of this process, counting how many times | 
 | 	 * kmod was invoked.  That would mean accessing the internals of the | 
 | 	 * process tables to get the command line, proc_pid_cmdline is static | 
 | 	 * and it is not worth changing the proc code just to handle this case.  | 
 | 	 * KAO. | 
 | 	 * | 
 | 	 * "trace the ppid" is simple, but will fail if someone's | 
 | 	 * parent exits.  I think this is as good as it gets. --RR | 
 | 	 */ | 
 | 	max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT); | 
 | 	atomic_inc(&kmod_concurrent); | 
 | 	if (atomic_read(&kmod_concurrent) > max_modprobes) { | 
 | 		/* We may be blaming an innocent here, but unlikely */ | 
 | 		if (kmod_loop_msg++ < 5) | 
 | 			printk(KERN_ERR | 
 | 			       "request_module: runaway loop modprobe %s\n", | 
 | 			       module_name); | 
 | 		atomic_dec(&kmod_concurrent); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	ret = call_usermodehelper(modprobe_path, argv, envp, 1); | 
 | 	atomic_dec(&kmod_concurrent); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(request_module); | 
 | #endif /* CONFIG_KMOD */ | 
 |  | 
 | struct subprocess_info { | 
 | 	struct work_struct work; | 
 | 	struct completion *complete; | 
 | 	char *path; | 
 | 	char **argv; | 
 | 	char **envp; | 
 | 	struct key *ring; | 
 | 	int wait; | 
 | 	int retval; | 
 | 	struct file *stdin; | 
 | }; | 
 |  | 
 | /* | 
 |  * This is the task which runs the usermode application | 
 |  */ | 
 | static int ____call_usermodehelper(void *data) | 
 | { | 
 | 	struct subprocess_info *sub_info = data; | 
 | 	struct key *new_session, *old_session; | 
 | 	int retval; | 
 |  | 
 | 	/* Unblock all signals and set the session keyring. */ | 
 | 	new_session = key_get(sub_info->ring); | 
 | 	spin_lock_irq(¤t->sighand->siglock); | 
 | 	old_session = __install_session_keyring(current, new_session); | 
 | 	flush_signal_handlers(current, 1); | 
 | 	sigemptyset(¤t->blocked); | 
 | 	recalc_sigpending(); | 
 | 	spin_unlock_irq(¤t->sighand->siglock); | 
 |  | 
 | 	key_put(old_session); | 
 |  | 
 | 	/* Install input pipe when needed */ | 
 | 	if (sub_info->stdin) { | 
 | 		struct files_struct *f = current->files; | 
 | 		struct fdtable *fdt; | 
 | 		/* no races because files should be private here */ | 
 | 		sys_close(0); | 
 | 		fd_install(0, sub_info->stdin); | 
 | 		spin_lock(&f->file_lock); | 
 | 		fdt = files_fdtable(f); | 
 | 		FD_SET(0, fdt->open_fds); | 
 | 		FD_CLR(0, fdt->close_on_exec); | 
 | 		spin_unlock(&f->file_lock); | 
 |  | 
 | 		/* and disallow core files too */ | 
 | 		current->signal->rlim[RLIMIT_CORE] = (struct rlimit){0, 0}; | 
 | 	} | 
 |  | 
 | 	/* We can run anywhere, unlike our parent keventd(). */ | 
 | 	set_cpus_allowed(current, CPU_MASK_ALL); | 
 |  | 
 | 	/* | 
 | 	 * Our parent is keventd, which runs with elevated scheduling priority. | 
 | 	 * Avoid propagating that into the userspace child. | 
 | 	 */ | 
 | 	set_user_nice(current, 0); | 
 |  | 
 | 	retval = -EPERM; | 
 | 	if (current->fs->root) | 
 | 		retval = kernel_execve(sub_info->path, | 
 | 				sub_info->argv, sub_info->envp); | 
 |  | 
 | 	/* Exec failed? */ | 
 | 	sub_info->retval = retval; | 
 | 	do_exit(0); | 
 | } | 
 |  | 
 | /* Keventd can't block, but this (a child) can. */ | 
 | static int wait_for_helper(void *data) | 
 | { | 
 | 	struct subprocess_info *sub_info = data; | 
 | 	pid_t pid; | 
 |  | 
 | 	/* Install a handler: if SIGCLD isn't handled sys_wait4 won't | 
 | 	 * populate the status, but will return -ECHILD. */ | 
 | 	allow_signal(SIGCHLD); | 
 |  | 
 | 	pid = kernel_thread(____call_usermodehelper, sub_info, SIGCHLD); | 
 | 	if (pid < 0) { | 
 | 		sub_info->retval = pid; | 
 | 	} else { | 
 | 		int ret; | 
 |  | 
 | 		/* | 
 | 		 * Normally it is bogus to call wait4() from in-kernel because | 
 | 		 * wait4() wants to write the exit code to a userspace address. | 
 | 		 * But wait_for_helper() always runs as keventd, and put_user() | 
 | 		 * to a kernel address works OK for kernel threads, due to their | 
 | 		 * having an mm_segment_t which spans the entire address space. | 
 | 		 * | 
 | 		 * Thus the __user pointer cast is valid here. | 
 | 		 */ | 
 | 		sys_wait4(pid, (int __user *)&ret, 0, NULL); | 
 |  | 
 | 		/* | 
 | 		 * If ret is 0, either ____call_usermodehelper failed and the | 
 | 		 * real error code is already in sub_info->retval or | 
 | 		 * sub_info->retval is 0 anyway, so don't mess with it then. | 
 | 		 */ | 
 | 		if (ret) | 
 | 			sub_info->retval = ret; | 
 | 	} | 
 |  | 
 | 	if (sub_info->wait < 0) | 
 | 		kfree(sub_info); | 
 | 	else | 
 | 		complete(sub_info->complete); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* This is run by khelper thread  */ | 
 | static void __call_usermodehelper(struct work_struct *work) | 
 | { | 
 | 	struct subprocess_info *sub_info = | 
 | 		container_of(work, struct subprocess_info, work); | 
 | 	pid_t pid; | 
 | 	int wait = sub_info->wait; | 
 |  | 
 | 	/* CLONE_VFORK: wait until the usermode helper has execve'd | 
 | 	 * successfully We need the data structures to stay around | 
 | 	 * until that is done.  */ | 
 | 	if (wait) | 
 | 		pid = kernel_thread(wait_for_helper, sub_info, | 
 | 				    CLONE_FS | CLONE_FILES | SIGCHLD); | 
 | 	else | 
 | 		pid = kernel_thread(____call_usermodehelper, sub_info, | 
 | 				    CLONE_VFORK | SIGCHLD); | 
 |  | 
 | 	if (wait < 0) | 
 | 		return; | 
 |  | 
 | 	if (pid < 0) { | 
 | 		sub_info->retval = pid; | 
 | 		complete(sub_info->complete); | 
 | 	} else if (!wait) | 
 | 		complete(sub_info->complete); | 
 | } | 
 |  | 
 | /** | 
 |  * call_usermodehelper_keys - start a usermode application | 
 |  * @path: pathname for the application | 
 |  * @argv: null-terminated argument list | 
 |  * @envp: null-terminated environment list | 
 |  * @session_keyring: session keyring for process (NULL for an empty keyring) | 
 |  * @wait: wait for the application to finish and return status. | 
 |  *        when -1 don't wait at all, but you get no useful error back when | 
 |  *        the program couldn't be exec'ed. This makes it safe to call | 
 |  *        from interrupt context. | 
 |  * | 
 |  * Runs a user-space application.  The application is started | 
 |  * asynchronously if wait is not set, and runs as a child of keventd. | 
 |  * (ie. it runs with full root capabilities). | 
 |  * | 
 |  * Must be called from process context.  Returns a negative error code | 
 |  * if program was not execed successfully, or 0. | 
 |  */ | 
 | int call_usermodehelper_keys(char *path, char **argv, char **envp, | 
 | 			     struct key *session_keyring, int wait) | 
 | { | 
 | 	DECLARE_COMPLETION_ONSTACK(done); | 
 | 	struct subprocess_info *sub_info; | 
 | 	int retval; | 
 |  | 
 | 	if (!khelper_wq) | 
 | 		return -EBUSY; | 
 |  | 
 | 	if (path[0] == '\0') | 
 | 		return 0; | 
 |  | 
 | 	sub_info = kzalloc(sizeof(struct subprocess_info),  GFP_ATOMIC); | 
 | 	if (!sub_info) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	INIT_WORK(&sub_info->work, __call_usermodehelper); | 
 | 	sub_info->complete = &done; | 
 | 	sub_info->path = path; | 
 | 	sub_info->argv = argv; | 
 | 	sub_info->envp = envp; | 
 | 	sub_info->ring = session_keyring; | 
 | 	sub_info->wait = wait; | 
 |  | 
 | 	queue_work(khelper_wq, &sub_info->work); | 
 | 	if (wait < 0) /* task has freed sub_info */ | 
 | 		return 0; | 
 | 	wait_for_completion(&done); | 
 | 	retval = sub_info->retval; | 
 | 	kfree(sub_info); | 
 | 	return retval; | 
 | } | 
 | EXPORT_SYMBOL(call_usermodehelper_keys); | 
 |  | 
 | int call_usermodehelper_pipe(char *path, char **argv, char **envp, | 
 | 			     struct file **filp) | 
 | { | 
 | 	DECLARE_COMPLETION(done); | 
 | 	struct subprocess_info sub_info = { | 
 | 		.work		= __WORK_INITIALIZER(sub_info.work, | 
 | 						     __call_usermodehelper), | 
 | 		.complete	= &done, | 
 | 		.path		= path, | 
 | 		.argv		= argv, | 
 | 		.envp		= envp, | 
 | 		.retval		= 0, | 
 | 	}; | 
 | 	struct file *f; | 
 |  | 
 | 	if (!khelper_wq) | 
 | 		return -EBUSY; | 
 |  | 
 | 	if (path[0] == '\0') | 
 | 		return 0; | 
 |  | 
 | 	f = create_write_pipe(); | 
 | 	if (IS_ERR(f)) | 
 | 		return PTR_ERR(f); | 
 | 	*filp = f; | 
 |  | 
 | 	f = create_read_pipe(f); | 
 | 	if (IS_ERR(f)) { | 
 | 		free_write_pipe(*filp); | 
 | 		return PTR_ERR(f); | 
 | 	} | 
 | 	sub_info.stdin = f; | 
 |  | 
 | 	queue_work(khelper_wq, &sub_info.work); | 
 | 	wait_for_completion(&done); | 
 | 	return sub_info.retval; | 
 | } | 
 | EXPORT_SYMBOL(call_usermodehelper_pipe); | 
 |  | 
 | void __init usermodehelper_init(void) | 
 | { | 
 | 	khelper_wq = create_singlethread_workqueue("khelper"); | 
 | 	BUG_ON(!khelper_wq); | 
 | } |