|  | /* | 
|  | * EDMA3 support for DaVinci | 
|  | * | 
|  | * Copyright (C) 2006-2009 Texas Instruments. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | */ | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include <mach/edma.h> | 
|  |  | 
|  | /* Offsets matching "struct edmacc_param" */ | 
|  | #define PARM_OPT		0x00 | 
|  | #define PARM_SRC		0x04 | 
|  | #define PARM_A_B_CNT		0x08 | 
|  | #define PARM_DST		0x0c | 
|  | #define PARM_SRC_DST_BIDX	0x10 | 
|  | #define PARM_LINK_BCNTRLD	0x14 | 
|  | #define PARM_SRC_DST_CIDX	0x18 | 
|  | #define PARM_CCNT		0x1c | 
|  |  | 
|  | #define PARM_SIZE		0x20 | 
|  |  | 
|  | /* Offsets for EDMA CC global channel registers and their shadows */ | 
|  | #define SH_ER		0x00	/* 64 bits */ | 
|  | #define SH_ECR		0x08	/* 64 bits */ | 
|  | #define SH_ESR		0x10	/* 64 bits */ | 
|  | #define SH_CER		0x18	/* 64 bits */ | 
|  | #define SH_EER		0x20	/* 64 bits */ | 
|  | #define SH_EECR		0x28	/* 64 bits */ | 
|  | #define SH_EESR		0x30	/* 64 bits */ | 
|  | #define SH_SER		0x38	/* 64 bits */ | 
|  | #define SH_SECR		0x40	/* 64 bits */ | 
|  | #define SH_IER		0x50	/* 64 bits */ | 
|  | #define SH_IECR		0x58	/* 64 bits */ | 
|  | #define SH_IESR		0x60	/* 64 bits */ | 
|  | #define SH_IPR		0x68	/* 64 bits */ | 
|  | #define SH_ICR		0x70	/* 64 bits */ | 
|  | #define SH_IEVAL	0x78 | 
|  | #define SH_QER		0x80 | 
|  | #define SH_QEER		0x84 | 
|  | #define SH_QEECR	0x88 | 
|  | #define SH_QEESR	0x8c | 
|  | #define SH_QSER		0x90 | 
|  | #define SH_QSECR	0x94 | 
|  | #define SH_SIZE		0x200 | 
|  |  | 
|  | /* Offsets for EDMA CC global registers */ | 
|  | #define EDMA_REV	0x0000 | 
|  | #define EDMA_CCCFG	0x0004 | 
|  | #define EDMA_QCHMAP	0x0200	/* 8 registers */ | 
|  | #define EDMA_DMAQNUM	0x0240	/* 8 registers (4 on OMAP-L1xx) */ | 
|  | #define EDMA_QDMAQNUM	0x0260 | 
|  | #define EDMA_QUETCMAP	0x0280 | 
|  | #define EDMA_QUEPRI	0x0284 | 
|  | #define EDMA_EMR	0x0300	/* 64 bits */ | 
|  | #define EDMA_EMCR	0x0308	/* 64 bits */ | 
|  | #define EDMA_QEMR	0x0310 | 
|  | #define EDMA_QEMCR	0x0314 | 
|  | #define EDMA_CCERR	0x0318 | 
|  | #define EDMA_CCERRCLR	0x031c | 
|  | #define EDMA_EEVAL	0x0320 | 
|  | #define EDMA_DRAE	0x0340	/* 4 x 64 bits*/ | 
|  | #define EDMA_QRAE	0x0380	/* 4 registers */ | 
|  | #define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */ | 
|  | #define EDMA_QSTAT	0x0600	/* 2 registers */ | 
|  | #define EDMA_QWMTHRA	0x0620 | 
|  | #define EDMA_QWMTHRB	0x0624 | 
|  | #define EDMA_CCSTAT	0x0640 | 
|  |  | 
|  | #define EDMA_M		0x1000	/* global channel registers */ | 
|  | #define EDMA_ECR	0x1008 | 
|  | #define EDMA_ECRH	0x100C | 
|  | #define EDMA_SHADOW0	0x2000	/* 4 regions shadowing global channels */ | 
|  | #define EDMA_PARM	0x4000	/* 128 param entries */ | 
|  |  | 
|  | #define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5)) | 
|  |  | 
|  | #define EDMA_DCHMAP	0x0100  /* 64 registers */ | 
|  | #define CHMAP_EXIST	BIT(24) | 
|  |  | 
|  | #define EDMA_MAX_DMACH           64 | 
|  | #define EDMA_MAX_PARAMENTRY     512 | 
|  |  | 
|  | /*****************************************************************************/ | 
|  |  | 
|  | static void __iomem *edmacc_regs_base[EDMA_MAX_CC]; | 
|  |  | 
|  | static inline unsigned int edma_read(unsigned ctlr, int offset) | 
|  | { | 
|  | return (unsigned int)__raw_readl(edmacc_regs_base[ctlr] + offset); | 
|  | } | 
|  |  | 
|  | static inline void edma_write(unsigned ctlr, int offset, int val) | 
|  | { | 
|  | __raw_writel(val, edmacc_regs_base[ctlr] + offset); | 
|  | } | 
|  | static inline void edma_modify(unsigned ctlr, int offset, unsigned and, | 
|  | unsigned or) | 
|  | { | 
|  | unsigned val = edma_read(ctlr, offset); | 
|  | val &= and; | 
|  | val |= or; | 
|  | edma_write(ctlr, offset, val); | 
|  | } | 
|  | static inline void edma_and(unsigned ctlr, int offset, unsigned and) | 
|  | { | 
|  | unsigned val = edma_read(ctlr, offset); | 
|  | val &= and; | 
|  | edma_write(ctlr, offset, val); | 
|  | } | 
|  | static inline void edma_or(unsigned ctlr, int offset, unsigned or) | 
|  | { | 
|  | unsigned val = edma_read(ctlr, offset); | 
|  | val |= or; | 
|  | edma_write(ctlr, offset, val); | 
|  | } | 
|  | static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i) | 
|  | { | 
|  | return edma_read(ctlr, offset + (i << 2)); | 
|  | } | 
|  | static inline void edma_write_array(unsigned ctlr, int offset, int i, | 
|  | unsigned val) | 
|  | { | 
|  | edma_write(ctlr, offset + (i << 2), val); | 
|  | } | 
|  | static inline void edma_modify_array(unsigned ctlr, int offset, int i, | 
|  | unsigned and, unsigned or) | 
|  | { | 
|  | edma_modify(ctlr, offset + (i << 2), and, or); | 
|  | } | 
|  | static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or) | 
|  | { | 
|  | edma_or(ctlr, offset + (i << 2), or); | 
|  | } | 
|  | static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j, | 
|  | unsigned or) | 
|  | { | 
|  | edma_or(ctlr, offset + ((i*2 + j) << 2), or); | 
|  | } | 
|  | static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j, | 
|  | unsigned val) | 
|  | { | 
|  | edma_write(ctlr, offset + ((i*2 + j) << 2), val); | 
|  | } | 
|  | static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset) | 
|  | { | 
|  | return edma_read(ctlr, EDMA_SHADOW0 + offset); | 
|  | } | 
|  | static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset, | 
|  | int i) | 
|  | { | 
|  | return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2)); | 
|  | } | 
|  | static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val) | 
|  | { | 
|  | edma_write(ctlr, EDMA_SHADOW0 + offset, val); | 
|  | } | 
|  | static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i, | 
|  | unsigned val) | 
|  | { | 
|  | edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val); | 
|  | } | 
|  | static inline unsigned int edma_parm_read(unsigned ctlr, int offset, | 
|  | int param_no) | 
|  | { | 
|  | return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5)); | 
|  | } | 
|  | static inline void edma_parm_write(unsigned ctlr, int offset, int param_no, | 
|  | unsigned val) | 
|  | { | 
|  | edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val); | 
|  | } | 
|  | static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no, | 
|  | unsigned and, unsigned or) | 
|  | { | 
|  | edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or); | 
|  | } | 
|  | static inline void edma_parm_and(unsigned ctlr, int offset, int param_no, | 
|  | unsigned and) | 
|  | { | 
|  | edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and); | 
|  | } | 
|  | static inline void edma_parm_or(unsigned ctlr, int offset, int param_no, | 
|  | unsigned or) | 
|  | { | 
|  | edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or); | 
|  | } | 
|  |  | 
|  | static inline void set_bits(int offset, int len, unsigned long *p) | 
|  | { | 
|  | for (; len > 0; len--) | 
|  | set_bit(offset + (len - 1), p); | 
|  | } | 
|  |  | 
|  | static inline void clear_bits(int offset, int len, unsigned long *p) | 
|  | { | 
|  | for (; len > 0; len--) | 
|  | clear_bit(offset + (len - 1), p); | 
|  | } | 
|  |  | 
|  | /*****************************************************************************/ | 
|  |  | 
|  | /* actual number of DMA channels and slots on this silicon */ | 
|  | struct edma { | 
|  | /* how many dma resources of each type */ | 
|  | unsigned	num_channels; | 
|  | unsigned	num_region; | 
|  | unsigned	num_slots; | 
|  | unsigned	num_tc; | 
|  | unsigned	num_cc; | 
|  | enum dma_event_q 	default_queue; | 
|  |  | 
|  | /* list of channels with no even trigger; terminated by "-1" */ | 
|  | const s8	*noevent; | 
|  |  | 
|  | /* The edma_inuse bit for each PaRAM slot is clear unless the | 
|  | * channel is in use ... by ARM or DSP, for QDMA, or whatever. | 
|  | */ | 
|  | DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY); | 
|  |  | 
|  | /* The edma_unused bit for each channel is clear unless | 
|  | * it is not being used on this platform. It uses a bit | 
|  | * of SOC-specific initialization code. | 
|  | */ | 
|  | DECLARE_BITMAP(edma_unused, EDMA_MAX_DMACH); | 
|  |  | 
|  | unsigned	irq_res_start; | 
|  | unsigned	irq_res_end; | 
|  |  | 
|  | struct dma_interrupt_data { | 
|  | void (*callback)(unsigned channel, unsigned short ch_status, | 
|  | void *data); | 
|  | void *data; | 
|  | } intr_data[EDMA_MAX_DMACH]; | 
|  | }; | 
|  |  | 
|  | static struct edma *edma_cc[EDMA_MAX_CC]; | 
|  | static int arch_num_cc; | 
|  |  | 
|  | /* dummy param set used to (re)initialize parameter RAM slots */ | 
|  | static const struct edmacc_param dummy_paramset = { | 
|  | .link_bcntrld = 0xffff, | 
|  | .ccnt = 1, | 
|  | }; | 
|  |  | 
|  | /*****************************************************************************/ | 
|  |  | 
|  | static void map_dmach_queue(unsigned ctlr, unsigned ch_no, | 
|  | enum dma_event_q queue_no) | 
|  | { | 
|  | int bit = (ch_no & 0x7) * 4; | 
|  |  | 
|  | /* default to low priority queue */ | 
|  | if (queue_no == EVENTQ_DEFAULT) | 
|  | queue_no = edma_cc[ctlr]->default_queue; | 
|  |  | 
|  | queue_no &= 7; | 
|  | edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3), | 
|  | ~(0x7 << bit), queue_no << bit); | 
|  | } | 
|  |  | 
|  | static void __init map_queue_tc(unsigned ctlr, int queue_no, int tc_no) | 
|  | { | 
|  | int bit = queue_no * 4; | 
|  | edma_modify(ctlr, EDMA_QUETCMAP, ~(0x7 << bit), ((tc_no & 0x7) << bit)); | 
|  | } | 
|  |  | 
|  | static void __init assign_priority_to_queue(unsigned ctlr, int queue_no, | 
|  | int priority) | 
|  | { | 
|  | int bit = queue_no * 4; | 
|  | edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit), | 
|  | ((priority & 0x7) << bit)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * map_dmach_param - Maps channel number to param entry number | 
|  | * | 
|  | * This maps the dma channel number to param entry numberter. In | 
|  | * other words using the DMA channel mapping registers a param entry | 
|  | * can be mapped to any channel | 
|  | * | 
|  | * Callers are responsible for ensuring the channel mapping logic is | 
|  | * included in that particular EDMA variant (Eg : dm646x) | 
|  | * | 
|  | */ | 
|  | static void __init map_dmach_param(unsigned ctlr) | 
|  | { | 
|  | int i; | 
|  | for (i = 0; i < EDMA_MAX_DMACH; i++) | 
|  | edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5)); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | setup_dma_interrupt(unsigned lch, | 
|  | void (*callback)(unsigned channel, u16 ch_status, void *data), | 
|  | void *data) | 
|  | { | 
|  | unsigned ctlr; | 
|  |  | 
|  | ctlr = EDMA_CTLR(lch); | 
|  | lch = EDMA_CHAN_SLOT(lch); | 
|  |  | 
|  | if (!callback) | 
|  | edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5, | 
|  | BIT(lch & 0x1f)); | 
|  |  | 
|  | edma_cc[ctlr]->intr_data[lch].callback = callback; | 
|  | edma_cc[ctlr]->intr_data[lch].data = data; | 
|  |  | 
|  | if (callback) { | 
|  | edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5, | 
|  | BIT(lch & 0x1f)); | 
|  | edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5, | 
|  | BIT(lch & 0x1f)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int irq2ctlr(int irq) | 
|  | { | 
|  | if (irq >= edma_cc[0]->irq_res_start && irq <= edma_cc[0]->irq_res_end) | 
|  | return 0; | 
|  | else if (irq >= edma_cc[1]->irq_res_start && | 
|  | irq <= edma_cc[1]->irq_res_end) | 
|  | return 1; | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * | 
|  | * DMA interrupt handler | 
|  | * | 
|  | *****************************************************************************/ | 
|  | static irqreturn_t dma_irq_handler(int irq, void *data) | 
|  | { | 
|  | int i; | 
|  | unsigned ctlr; | 
|  | unsigned int cnt = 0; | 
|  |  | 
|  | ctlr = irq2ctlr(irq); | 
|  |  | 
|  | dev_dbg(data, "dma_irq_handler\n"); | 
|  |  | 
|  | if ((edma_shadow0_read_array(ctlr, SH_IPR, 0) == 0) && | 
|  | (edma_shadow0_read_array(ctlr, SH_IPR, 1) == 0)) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | while (1) { | 
|  | int j; | 
|  | if (edma_shadow0_read_array(ctlr, SH_IPR, 0) & | 
|  | edma_shadow0_read_array(ctlr, SH_IER, 0)) | 
|  | j = 0; | 
|  | else if (edma_shadow0_read_array(ctlr, SH_IPR, 1) & | 
|  | edma_shadow0_read_array(ctlr, SH_IER, 1)) | 
|  | j = 1; | 
|  | else | 
|  | break; | 
|  | dev_dbg(data, "IPR%d %08x\n", j, | 
|  | edma_shadow0_read_array(ctlr, SH_IPR, j)); | 
|  | for (i = 0; i < 32; i++) { | 
|  | int k = (j << 5) + i; | 
|  | if ((edma_shadow0_read_array(ctlr, SH_IPR, j) & BIT(i)) | 
|  | && (edma_shadow0_read_array(ctlr, | 
|  | SH_IER, j) & BIT(i))) { | 
|  | /* Clear the corresponding IPR bits */ | 
|  | edma_shadow0_write_array(ctlr, SH_ICR, j, | 
|  | BIT(i)); | 
|  | if (edma_cc[ctlr]->intr_data[k].callback) | 
|  | edma_cc[ctlr]->intr_data[k].callback( | 
|  | k, DMA_COMPLETE, | 
|  | edma_cc[ctlr]->intr_data[k]. | 
|  | data); | 
|  | } | 
|  | } | 
|  | cnt++; | 
|  | if (cnt > 10) | 
|  | break; | 
|  | } | 
|  | edma_shadow0_write(ctlr, SH_IEVAL, 1); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * | 
|  | * DMA error interrupt handler | 
|  | * | 
|  | *****************************************************************************/ | 
|  | static irqreturn_t dma_ccerr_handler(int irq, void *data) | 
|  | { | 
|  | int i; | 
|  | unsigned ctlr; | 
|  | unsigned int cnt = 0; | 
|  |  | 
|  | ctlr = irq2ctlr(irq); | 
|  |  | 
|  | dev_dbg(data, "dma_ccerr_handler\n"); | 
|  |  | 
|  | if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) && | 
|  | (edma_read_array(ctlr, EDMA_EMR, 1) == 0) && | 
|  | (edma_read(ctlr, EDMA_QEMR) == 0) && | 
|  | (edma_read(ctlr, EDMA_CCERR) == 0)) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | while (1) { | 
|  | int j = -1; | 
|  | if (edma_read_array(ctlr, EDMA_EMR, 0)) | 
|  | j = 0; | 
|  | else if (edma_read_array(ctlr, EDMA_EMR, 1)) | 
|  | j = 1; | 
|  | if (j >= 0) { | 
|  | dev_dbg(data, "EMR%d %08x\n", j, | 
|  | edma_read_array(ctlr, EDMA_EMR, j)); | 
|  | for (i = 0; i < 32; i++) { | 
|  | int k = (j << 5) + i; | 
|  | if (edma_read_array(ctlr, EDMA_EMR, j) & | 
|  | BIT(i)) { | 
|  | /* Clear the corresponding EMR bits */ | 
|  | edma_write_array(ctlr, EDMA_EMCR, j, | 
|  | BIT(i)); | 
|  | /* Clear any SER */ | 
|  | edma_shadow0_write_array(ctlr, SH_SECR, | 
|  | j, BIT(i)); | 
|  | if (edma_cc[ctlr]->intr_data[k]. | 
|  | callback) { | 
|  | edma_cc[ctlr]->intr_data[k]. | 
|  | callback(k, | 
|  | DMA_CC_ERROR, | 
|  | edma_cc[ctlr]->intr_data | 
|  | [k].data); | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if (edma_read(ctlr, EDMA_QEMR)) { | 
|  | dev_dbg(data, "QEMR %02x\n", | 
|  | edma_read(ctlr, EDMA_QEMR)); | 
|  | for (i = 0; i < 8; i++) { | 
|  | if (edma_read(ctlr, EDMA_QEMR) & BIT(i)) { | 
|  | /* Clear the corresponding IPR bits */ | 
|  | edma_write(ctlr, EDMA_QEMCR, BIT(i)); | 
|  | edma_shadow0_write(ctlr, SH_QSECR, | 
|  | BIT(i)); | 
|  |  | 
|  | /* NOTE:  not reported!! */ | 
|  | } | 
|  | } | 
|  | } else if (edma_read(ctlr, EDMA_CCERR)) { | 
|  | dev_dbg(data, "CCERR %08x\n", | 
|  | edma_read(ctlr, EDMA_CCERR)); | 
|  | /* FIXME:  CCERR.BIT(16) ignored!  much better | 
|  | * to just write CCERRCLR with CCERR value... | 
|  | */ | 
|  | for (i = 0; i < 8; i++) { | 
|  | if (edma_read(ctlr, EDMA_CCERR) & BIT(i)) { | 
|  | /* Clear the corresponding IPR bits */ | 
|  | edma_write(ctlr, EDMA_CCERRCLR, BIT(i)); | 
|  |  | 
|  | /* NOTE:  not reported!! */ | 
|  | } | 
|  | } | 
|  | } | 
|  | if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) && | 
|  | (edma_read_array(ctlr, EDMA_EMR, 1) == 0) && | 
|  | (edma_read(ctlr, EDMA_QEMR) == 0) && | 
|  | (edma_read(ctlr, EDMA_CCERR) == 0)) | 
|  | break; | 
|  | cnt++; | 
|  | if (cnt > 10) | 
|  | break; | 
|  | } | 
|  | edma_write(ctlr, EDMA_EEVAL, 1); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * | 
|  | * Transfer controller error interrupt handlers | 
|  | * | 
|  | *****************************************************************************/ | 
|  |  | 
|  | #define tc_errs_handled	false	/* disabled as long as they're NOPs */ | 
|  |  | 
|  | static irqreturn_t dma_tc0err_handler(int irq, void *data) | 
|  | { | 
|  | dev_dbg(data, "dma_tc0err_handler\n"); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static irqreturn_t dma_tc1err_handler(int irq, void *data) | 
|  | { | 
|  | dev_dbg(data, "dma_tc1err_handler\n"); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static int reserve_contiguous_slots(int ctlr, unsigned int id, | 
|  | unsigned int num_slots, | 
|  | unsigned int start_slot) | 
|  | { | 
|  | int i, j; | 
|  | unsigned int count = num_slots; | 
|  | int stop_slot = start_slot; | 
|  | DECLARE_BITMAP(tmp_inuse, EDMA_MAX_PARAMENTRY); | 
|  |  | 
|  | for (i = start_slot; i < edma_cc[ctlr]->num_slots; ++i) { | 
|  | j = EDMA_CHAN_SLOT(i); | 
|  | if (!test_and_set_bit(j, edma_cc[ctlr]->edma_inuse)) { | 
|  | /* Record our current beginning slot */ | 
|  | if (count == num_slots) | 
|  | stop_slot = i; | 
|  |  | 
|  | count--; | 
|  | set_bit(j, tmp_inuse); | 
|  |  | 
|  | if (count == 0) | 
|  | break; | 
|  | } else { | 
|  | clear_bit(j, tmp_inuse); | 
|  |  | 
|  | if (id == EDMA_CONT_PARAMS_FIXED_EXACT) { | 
|  | stop_slot = i; | 
|  | break; | 
|  | } else { | 
|  | count = num_slots; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We have to clear any bits that we set | 
|  | * if we run out parameter RAM slots, i.e we do find a set | 
|  | * of contiguous parameter RAM slots but do not find the exact number | 
|  | * requested as we may reach the total number of parameter RAM slots | 
|  | */ | 
|  | if (i == edma_cc[ctlr]->num_slots) | 
|  | stop_slot = i; | 
|  |  | 
|  | for (j = start_slot; j < stop_slot; j++) | 
|  | if (test_bit(j, tmp_inuse)) | 
|  | clear_bit(j, edma_cc[ctlr]->edma_inuse); | 
|  |  | 
|  | if (count) | 
|  | return -EBUSY; | 
|  |  | 
|  | for (j = i - num_slots + 1; j <= i; ++j) | 
|  | memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(j), | 
|  | &dummy_paramset, PARM_SIZE); | 
|  |  | 
|  | return EDMA_CTLR_CHAN(ctlr, i - num_slots + 1); | 
|  | } | 
|  |  | 
|  | static int prepare_unused_channel_list(struct device *dev, void *data) | 
|  | { | 
|  | struct platform_device *pdev = to_platform_device(dev); | 
|  | int i, ctlr; | 
|  |  | 
|  | for (i = 0; i < pdev->num_resources; i++) { | 
|  | if ((pdev->resource[i].flags & IORESOURCE_DMA) && | 
|  | (int)pdev->resource[i].start >= 0) { | 
|  | ctlr = EDMA_CTLR(pdev->resource[i].start); | 
|  | clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start), | 
|  | edma_cc[ctlr]->edma_unused); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /*-----------------------------------------------------------------------*/ | 
|  |  | 
|  | static bool unused_chan_list_done; | 
|  |  | 
|  | /* Resource alloc/free:  dma channels, parameter RAM slots */ | 
|  |  | 
|  | /** | 
|  | * edma_alloc_channel - allocate DMA channel and paired parameter RAM | 
|  | * @channel: specific channel to allocate; negative for "any unmapped channel" | 
|  | * @callback: optional; to be issued on DMA completion or errors | 
|  | * @data: passed to callback | 
|  | * @eventq_no: an EVENTQ_* constant, used to choose which Transfer | 
|  | *	Controller (TC) executes requests using this channel.  Use | 
|  | *	EVENTQ_DEFAULT unless you really need a high priority queue. | 
|  | * | 
|  | * This allocates a DMA channel and its associated parameter RAM slot. | 
|  | * The parameter RAM is initialized to hold a dummy transfer. | 
|  | * | 
|  | * Normal use is to pass a specific channel number as @channel, to make | 
|  | * use of hardware events mapped to that channel.  When the channel will | 
|  | * be used only for software triggering or event chaining, channels not | 
|  | * mapped to hardware events (or mapped to unused events) are preferable. | 
|  | * | 
|  | * DMA transfers start from a channel using edma_start(), or by | 
|  | * chaining.  When the transfer described in that channel's parameter RAM | 
|  | * slot completes, that slot's data may be reloaded through a link. | 
|  | * | 
|  | * DMA errors are only reported to the @callback associated with the | 
|  | * channel driving that transfer, but transfer completion callbacks can | 
|  | * be sent to another channel under control of the TCC field in | 
|  | * the option word of the transfer's parameter RAM set.  Drivers must not | 
|  | * use DMA transfer completion callbacks for channels they did not allocate. | 
|  | * (The same applies to TCC codes used in transfer chaining.) | 
|  | * | 
|  | * Returns the number of the channel, else negative errno. | 
|  | */ | 
|  | int edma_alloc_channel(int channel, | 
|  | void (*callback)(unsigned channel, u16 ch_status, void *data), | 
|  | void *data, | 
|  | enum dma_event_q eventq_no) | 
|  | { | 
|  | unsigned i, done = 0, ctlr = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | if (!unused_chan_list_done) { | 
|  | /* | 
|  | * Scan all the platform devices to find out the EDMA channels | 
|  | * used and clear them in the unused list, making the rest | 
|  | * available for ARM usage. | 
|  | */ | 
|  | ret = bus_for_each_dev(&platform_bus_type, NULL, NULL, | 
|  | prepare_unused_channel_list); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | unused_chan_list_done = true; | 
|  | } | 
|  |  | 
|  | if (channel >= 0) { | 
|  | ctlr = EDMA_CTLR(channel); | 
|  | channel = EDMA_CHAN_SLOT(channel); | 
|  | } | 
|  |  | 
|  | if (channel < 0) { | 
|  | for (i = 0; i < arch_num_cc; i++) { | 
|  | channel = 0; | 
|  | for (;;) { | 
|  | channel = find_next_bit(edma_cc[i]->edma_unused, | 
|  | edma_cc[i]->num_channels, | 
|  | channel); | 
|  | if (channel == edma_cc[i]->num_channels) | 
|  | break; | 
|  | if (!test_and_set_bit(channel, | 
|  | edma_cc[i]->edma_inuse)) { | 
|  | done = 1; | 
|  | ctlr = i; | 
|  | break; | 
|  | } | 
|  | channel++; | 
|  | } | 
|  | if (done) | 
|  | break; | 
|  | } | 
|  | if (!done) | 
|  | return -ENOMEM; | 
|  | } else if (channel >= edma_cc[ctlr]->num_channels) { | 
|  | return -EINVAL; | 
|  | } else if (test_and_set_bit(channel, edma_cc[ctlr]->edma_inuse)) { | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | /* ensure access through shadow region 0 */ | 
|  | edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f)); | 
|  |  | 
|  | /* ensure no events are pending */ | 
|  | edma_stop(EDMA_CTLR_CHAN(ctlr, channel)); | 
|  | memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel), | 
|  | &dummy_paramset, PARM_SIZE); | 
|  |  | 
|  | if (callback) | 
|  | setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel), | 
|  | callback, data); | 
|  |  | 
|  | map_dmach_queue(ctlr, channel, eventq_no); | 
|  |  | 
|  | return EDMA_CTLR_CHAN(ctlr, channel); | 
|  | } | 
|  | EXPORT_SYMBOL(edma_alloc_channel); | 
|  |  | 
|  |  | 
|  | /** | 
|  | * edma_free_channel - deallocate DMA channel | 
|  | * @channel: dma channel returned from edma_alloc_channel() | 
|  | * | 
|  | * This deallocates the DMA channel and associated parameter RAM slot | 
|  | * allocated by edma_alloc_channel(). | 
|  | * | 
|  | * Callers are responsible for ensuring the channel is inactive, and | 
|  | * will not be reactivated by linking, chaining, or software calls to | 
|  | * edma_start(). | 
|  | */ | 
|  | void edma_free_channel(unsigned channel) | 
|  | { | 
|  | unsigned ctlr; | 
|  |  | 
|  | ctlr = EDMA_CTLR(channel); | 
|  | channel = EDMA_CHAN_SLOT(channel); | 
|  |  | 
|  | if (channel >= edma_cc[ctlr]->num_channels) | 
|  | return; | 
|  |  | 
|  | setup_dma_interrupt(channel, NULL, NULL); | 
|  | /* REVISIT should probably take out of shadow region 0 */ | 
|  |  | 
|  | memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel), | 
|  | &dummy_paramset, PARM_SIZE); | 
|  | clear_bit(channel, edma_cc[ctlr]->edma_inuse); | 
|  | } | 
|  | EXPORT_SYMBOL(edma_free_channel); | 
|  |  | 
|  | /** | 
|  | * edma_alloc_slot - allocate DMA parameter RAM | 
|  | * @slot: specific slot to allocate; negative for "any unused slot" | 
|  | * | 
|  | * This allocates a parameter RAM slot, initializing it to hold a | 
|  | * dummy transfer.  Slots allocated using this routine have not been | 
|  | * mapped to a hardware DMA channel, and will normally be used by | 
|  | * linking to them from a slot associated with a DMA channel. | 
|  | * | 
|  | * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific | 
|  | * slots may be allocated on behalf of DSP firmware. | 
|  | * | 
|  | * Returns the number of the slot, else negative errno. | 
|  | */ | 
|  | int edma_alloc_slot(unsigned ctlr, int slot) | 
|  | { | 
|  | if (slot >= 0) | 
|  | slot = EDMA_CHAN_SLOT(slot); | 
|  |  | 
|  | if (slot < 0) { | 
|  | slot = edma_cc[ctlr]->num_channels; | 
|  | for (;;) { | 
|  | slot = find_next_zero_bit(edma_cc[ctlr]->edma_inuse, | 
|  | edma_cc[ctlr]->num_slots, slot); | 
|  | if (slot == edma_cc[ctlr]->num_slots) | 
|  | return -ENOMEM; | 
|  | if (!test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse)) | 
|  | break; | 
|  | } | 
|  | } else if (slot < edma_cc[ctlr]->num_channels || | 
|  | slot >= edma_cc[ctlr]->num_slots) { | 
|  | return -EINVAL; | 
|  | } else if (test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse)) { | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), | 
|  | &dummy_paramset, PARM_SIZE); | 
|  |  | 
|  | return EDMA_CTLR_CHAN(ctlr, slot); | 
|  | } | 
|  | EXPORT_SYMBOL(edma_alloc_slot); | 
|  |  | 
|  | /** | 
|  | * edma_free_slot - deallocate DMA parameter RAM | 
|  | * @slot: parameter RAM slot returned from edma_alloc_slot() | 
|  | * | 
|  | * This deallocates the parameter RAM slot allocated by edma_alloc_slot(). | 
|  | * Callers are responsible for ensuring the slot is inactive, and will | 
|  | * not be activated. | 
|  | */ | 
|  | void edma_free_slot(unsigned slot) | 
|  | { | 
|  | unsigned ctlr; | 
|  |  | 
|  | ctlr = EDMA_CTLR(slot); | 
|  | slot = EDMA_CHAN_SLOT(slot); | 
|  |  | 
|  | if (slot < edma_cc[ctlr]->num_channels || | 
|  | slot >= edma_cc[ctlr]->num_slots) | 
|  | return; | 
|  |  | 
|  | memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), | 
|  | &dummy_paramset, PARM_SIZE); | 
|  | clear_bit(slot, edma_cc[ctlr]->edma_inuse); | 
|  | } | 
|  | EXPORT_SYMBOL(edma_free_slot); | 
|  |  | 
|  |  | 
|  | /** | 
|  | * edma_alloc_cont_slots- alloc contiguous parameter RAM slots | 
|  | * The API will return the starting point of a set of | 
|  | * contiguous parameter RAM slots that have been requested | 
|  | * | 
|  | * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT | 
|  | * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT | 
|  | * @count: number of contiguous Paramter RAM slots | 
|  | * @slot  - the start value of Parameter RAM slot that should be passed if id | 
|  | * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT | 
|  | * | 
|  | * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of | 
|  | * contiguous Parameter RAM slots from parameter RAM 64 in the case of | 
|  | * DaVinci SOCs and 32 in the case of DA8xx SOCs. | 
|  | * | 
|  | * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a | 
|  | * set of contiguous parameter RAM slots from the "slot" that is passed as an | 
|  | * argument to the API. | 
|  | * | 
|  | * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries | 
|  | * starts looking for a set of contiguous parameter RAMs from the "slot" | 
|  | * that is passed as an argument to the API. On failure the API will try to | 
|  | * find a set of contiguous Parameter RAM slots from the remaining Parameter | 
|  | * RAM slots | 
|  | */ | 
|  | int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count) | 
|  | { | 
|  | /* | 
|  | * The start slot requested should be greater than | 
|  | * the number of channels and lesser than the total number | 
|  | * of slots | 
|  | */ | 
|  | if ((id != EDMA_CONT_PARAMS_ANY) && | 
|  | (slot < edma_cc[ctlr]->num_channels || | 
|  | slot >= edma_cc[ctlr]->num_slots)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * The number of parameter RAM slots requested cannot be less than 1 | 
|  | * and cannot be more than the number of slots minus the number of | 
|  | * channels | 
|  | */ | 
|  | if (count < 1 || count > | 
|  | (edma_cc[ctlr]->num_slots - edma_cc[ctlr]->num_channels)) | 
|  | return -EINVAL; | 
|  |  | 
|  | switch (id) { | 
|  | case EDMA_CONT_PARAMS_ANY: | 
|  | return reserve_contiguous_slots(ctlr, id, count, | 
|  | edma_cc[ctlr]->num_channels); | 
|  | case EDMA_CONT_PARAMS_FIXED_EXACT: | 
|  | case EDMA_CONT_PARAMS_FIXED_NOT_EXACT: | 
|  | return reserve_contiguous_slots(ctlr, id, count, slot); | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | } | 
|  | EXPORT_SYMBOL(edma_alloc_cont_slots); | 
|  |  | 
|  | /** | 
|  | * edma_free_cont_slots - deallocate DMA parameter RAM slots | 
|  | * @slot: first parameter RAM of a set of parameter RAM slots to be freed | 
|  | * @count: the number of contiguous parameter RAM slots to be freed | 
|  | * | 
|  | * This deallocates the parameter RAM slots allocated by | 
|  | * edma_alloc_cont_slots. | 
|  | * Callers/applications need to keep track of sets of contiguous | 
|  | * parameter RAM slots that have been allocated using the edma_alloc_cont_slots | 
|  | * API. | 
|  | * Callers are responsible for ensuring the slots are inactive, and will | 
|  | * not be activated. | 
|  | */ | 
|  | int edma_free_cont_slots(unsigned slot, int count) | 
|  | { | 
|  | unsigned ctlr, slot_to_free; | 
|  | int i; | 
|  |  | 
|  | ctlr = EDMA_CTLR(slot); | 
|  | slot = EDMA_CHAN_SLOT(slot); | 
|  |  | 
|  | if (slot < edma_cc[ctlr]->num_channels || | 
|  | slot >= edma_cc[ctlr]->num_slots || | 
|  | count < 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | for (i = slot; i < slot + count; ++i) { | 
|  | ctlr = EDMA_CTLR(i); | 
|  | slot_to_free = EDMA_CHAN_SLOT(i); | 
|  |  | 
|  | memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot_to_free), | 
|  | &dummy_paramset, PARM_SIZE); | 
|  | clear_bit(slot_to_free, edma_cc[ctlr]->edma_inuse); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(edma_free_cont_slots); | 
|  |  | 
|  | /*-----------------------------------------------------------------------*/ | 
|  |  | 
|  | /* Parameter RAM operations (i) -- read/write partial slots */ | 
|  |  | 
|  | /** | 
|  | * edma_set_src - set initial DMA source address in parameter RAM slot | 
|  | * @slot: parameter RAM slot being configured | 
|  | * @src_port: physical address of source (memory, controller FIFO, etc) | 
|  | * @addressMode: INCR, except in very rare cases | 
|  | * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the | 
|  | *	width to use when addressing the fifo (e.g. W8BIT, W32BIT) | 
|  | * | 
|  | * Note that the source address is modified during the DMA transfer | 
|  | * according to edma_set_src_index(). | 
|  | */ | 
|  | void edma_set_src(unsigned slot, dma_addr_t src_port, | 
|  | enum address_mode mode, enum fifo_width width) | 
|  | { | 
|  | unsigned ctlr; | 
|  |  | 
|  | ctlr = EDMA_CTLR(slot); | 
|  | slot = EDMA_CHAN_SLOT(slot); | 
|  |  | 
|  | if (slot < edma_cc[ctlr]->num_slots) { | 
|  | unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot); | 
|  |  | 
|  | if (mode) { | 
|  | /* set SAM and program FWID */ | 
|  | i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8)); | 
|  | } else { | 
|  | /* clear SAM */ | 
|  | i &= ~SAM; | 
|  | } | 
|  | edma_parm_write(ctlr, PARM_OPT, slot, i); | 
|  |  | 
|  | /* set the source port address | 
|  | in source register of param structure */ | 
|  | edma_parm_write(ctlr, PARM_SRC, slot, src_port); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(edma_set_src); | 
|  |  | 
|  | /** | 
|  | * edma_set_dest - set initial DMA destination address in parameter RAM slot | 
|  | * @slot: parameter RAM slot being configured | 
|  | * @dest_port: physical address of destination (memory, controller FIFO, etc) | 
|  | * @addressMode: INCR, except in very rare cases | 
|  | * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the | 
|  | *	width to use when addressing the fifo (e.g. W8BIT, W32BIT) | 
|  | * | 
|  | * Note that the destination address is modified during the DMA transfer | 
|  | * according to edma_set_dest_index(). | 
|  | */ | 
|  | void edma_set_dest(unsigned slot, dma_addr_t dest_port, | 
|  | enum address_mode mode, enum fifo_width width) | 
|  | { | 
|  | unsigned ctlr; | 
|  |  | 
|  | ctlr = EDMA_CTLR(slot); | 
|  | slot = EDMA_CHAN_SLOT(slot); | 
|  |  | 
|  | if (slot < edma_cc[ctlr]->num_slots) { | 
|  | unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot); | 
|  |  | 
|  | if (mode) { | 
|  | /* set DAM and program FWID */ | 
|  | i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8)); | 
|  | } else { | 
|  | /* clear DAM */ | 
|  | i &= ~DAM; | 
|  | } | 
|  | edma_parm_write(ctlr, PARM_OPT, slot, i); | 
|  | /* set the destination port address | 
|  | in dest register of param structure */ | 
|  | edma_parm_write(ctlr, PARM_DST, slot, dest_port); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(edma_set_dest); | 
|  |  | 
|  | /** | 
|  | * edma_get_position - returns the current transfer points | 
|  | * @slot: parameter RAM slot being examined | 
|  | * @src: pointer to source port position | 
|  | * @dst: pointer to destination port position | 
|  | * | 
|  | * Returns current source and destination addresses for a particular | 
|  | * parameter RAM slot.  Its channel should not be active when this is called. | 
|  | */ | 
|  | void edma_get_position(unsigned slot, dma_addr_t *src, dma_addr_t *dst) | 
|  | { | 
|  | struct edmacc_param temp; | 
|  | unsigned ctlr; | 
|  |  | 
|  | ctlr = EDMA_CTLR(slot); | 
|  | slot = EDMA_CHAN_SLOT(slot); | 
|  |  | 
|  | edma_read_slot(EDMA_CTLR_CHAN(ctlr, slot), &temp); | 
|  | if (src != NULL) | 
|  | *src = temp.src; | 
|  | if (dst != NULL) | 
|  | *dst = temp.dst; | 
|  | } | 
|  | EXPORT_SYMBOL(edma_get_position); | 
|  |  | 
|  | /** | 
|  | * edma_set_src_index - configure DMA source address indexing | 
|  | * @slot: parameter RAM slot being configured | 
|  | * @src_bidx: byte offset between source arrays in a frame | 
|  | * @src_cidx: byte offset between source frames in a block | 
|  | * | 
|  | * Offsets are specified to support either contiguous or discontiguous | 
|  | * memory transfers, or repeated access to a hardware register, as needed. | 
|  | * When accessing hardware registers, both offsets are normally zero. | 
|  | */ | 
|  | void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx) | 
|  | { | 
|  | unsigned ctlr; | 
|  |  | 
|  | ctlr = EDMA_CTLR(slot); | 
|  | slot = EDMA_CHAN_SLOT(slot); | 
|  |  | 
|  | if (slot < edma_cc[ctlr]->num_slots) { | 
|  | edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot, | 
|  | 0xffff0000, src_bidx); | 
|  | edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot, | 
|  | 0xffff0000, src_cidx); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(edma_set_src_index); | 
|  |  | 
|  | /** | 
|  | * edma_set_dest_index - configure DMA destination address indexing | 
|  | * @slot: parameter RAM slot being configured | 
|  | * @dest_bidx: byte offset between destination arrays in a frame | 
|  | * @dest_cidx: byte offset between destination frames in a block | 
|  | * | 
|  | * Offsets are specified to support either contiguous or discontiguous | 
|  | * memory transfers, or repeated access to a hardware register, as needed. | 
|  | * When accessing hardware registers, both offsets are normally zero. | 
|  | */ | 
|  | void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx) | 
|  | { | 
|  | unsigned ctlr; | 
|  |  | 
|  | ctlr = EDMA_CTLR(slot); | 
|  | slot = EDMA_CHAN_SLOT(slot); | 
|  |  | 
|  | if (slot < edma_cc[ctlr]->num_slots) { | 
|  | edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot, | 
|  | 0x0000ffff, dest_bidx << 16); | 
|  | edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot, | 
|  | 0x0000ffff, dest_cidx << 16); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(edma_set_dest_index); | 
|  |  | 
|  | /** | 
|  | * edma_set_transfer_params - configure DMA transfer parameters | 
|  | * @slot: parameter RAM slot being configured | 
|  | * @acnt: how many bytes per array (at least one) | 
|  | * @bcnt: how many arrays per frame (at least one) | 
|  | * @ccnt: how many frames per block (at least one) | 
|  | * @bcnt_rld: used only for A-Synchronized transfers; this specifies | 
|  | *	the value to reload into bcnt when it decrements to zero | 
|  | * @sync_mode: ASYNC or ABSYNC | 
|  | * | 
|  | * See the EDMA3 documentation to understand how to configure and link | 
|  | * transfers using the fields in PaRAM slots.  If you are not doing it | 
|  | * all at once with edma_write_slot(), you will use this routine | 
|  | * plus two calls each for source and destination, setting the initial | 
|  | * address and saying how to index that address. | 
|  | * | 
|  | * An example of an A-Synchronized transfer is a serial link using a | 
|  | * single word shift register.  In that case, @acnt would be equal to | 
|  | * that word size; the serial controller issues a DMA synchronization | 
|  | * event to transfer each word, and memory access by the DMA transfer | 
|  | * controller will be word-at-a-time. | 
|  | * | 
|  | * An example of an AB-Synchronized transfer is a device using a FIFO. | 
|  | * In that case, @acnt equals the FIFO width and @bcnt equals its depth. | 
|  | * The controller with the FIFO issues DMA synchronization events when | 
|  | * the FIFO threshold is reached, and the DMA transfer controller will | 
|  | * transfer one frame to (or from) the FIFO.  It will probably use | 
|  | * efficient burst modes to access memory. | 
|  | */ | 
|  | void edma_set_transfer_params(unsigned slot, | 
|  | u16 acnt, u16 bcnt, u16 ccnt, | 
|  | u16 bcnt_rld, enum sync_dimension sync_mode) | 
|  | { | 
|  | unsigned ctlr; | 
|  |  | 
|  | ctlr = EDMA_CTLR(slot); | 
|  | slot = EDMA_CHAN_SLOT(slot); | 
|  |  | 
|  | if (slot < edma_cc[ctlr]->num_slots) { | 
|  | edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot, | 
|  | 0x0000ffff, bcnt_rld << 16); | 
|  | if (sync_mode == ASYNC) | 
|  | edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM); | 
|  | else | 
|  | edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM); | 
|  | /* Set the acount, bcount, ccount registers */ | 
|  | edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt); | 
|  | edma_parm_write(ctlr, PARM_CCNT, slot, ccnt); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(edma_set_transfer_params); | 
|  |  | 
|  | /** | 
|  | * edma_link - link one parameter RAM slot to another | 
|  | * @from: parameter RAM slot originating the link | 
|  | * @to: parameter RAM slot which is the link target | 
|  | * | 
|  | * The originating slot should not be part of any active DMA transfer. | 
|  | */ | 
|  | void edma_link(unsigned from, unsigned to) | 
|  | { | 
|  | unsigned ctlr_from, ctlr_to; | 
|  |  | 
|  | ctlr_from = EDMA_CTLR(from); | 
|  | from = EDMA_CHAN_SLOT(from); | 
|  | ctlr_to = EDMA_CTLR(to); | 
|  | to = EDMA_CHAN_SLOT(to); | 
|  |  | 
|  | if (from >= edma_cc[ctlr_from]->num_slots) | 
|  | return; | 
|  | if (to >= edma_cc[ctlr_to]->num_slots) | 
|  | return; | 
|  | edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000, | 
|  | PARM_OFFSET(to)); | 
|  | } | 
|  | EXPORT_SYMBOL(edma_link); | 
|  |  | 
|  | /** | 
|  | * edma_unlink - cut link from one parameter RAM slot | 
|  | * @from: parameter RAM slot originating the link | 
|  | * | 
|  | * The originating slot should not be part of any active DMA transfer. | 
|  | * Its link is set to 0xffff. | 
|  | */ | 
|  | void edma_unlink(unsigned from) | 
|  | { | 
|  | unsigned ctlr; | 
|  |  | 
|  | ctlr = EDMA_CTLR(from); | 
|  | from = EDMA_CHAN_SLOT(from); | 
|  |  | 
|  | if (from >= edma_cc[ctlr]->num_slots) | 
|  | return; | 
|  | edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff); | 
|  | } | 
|  | EXPORT_SYMBOL(edma_unlink); | 
|  |  | 
|  | /*-----------------------------------------------------------------------*/ | 
|  |  | 
|  | /* Parameter RAM operations (ii) -- read/write whole parameter sets */ | 
|  |  | 
|  | /** | 
|  | * edma_write_slot - write parameter RAM data for slot | 
|  | * @slot: number of parameter RAM slot being modified | 
|  | * @param: data to be written into parameter RAM slot | 
|  | * | 
|  | * Use this to assign all parameters of a transfer at once.  This | 
|  | * allows more efficient setup of transfers than issuing multiple | 
|  | * calls to set up those parameters in small pieces, and provides | 
|  | * complete control over all transfer options. | 
|  | */ | 
|  | void edma_write_slot(unsigned slot, const struct edmacc_param *param) | 
|  | { | 
|  | unsigned ctlr; | 
|  |  | 
|  | ctlr = EDMA_CTLR(slot); | 
|  | slot = EDMA_CHAN_SLOT(slot); | 
|  |  | 
|  | if (slot >= edma_cc[ctlr]->num_slots) | 
|  | return; | 
|  | memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), param, | 
|  | PARM_SIZE); | 
|  | } | 
|  | EXPORT_SYMBOL(edma_write_slot); | 
|  |  | 
|  | /** | 
|  | * edma_read_slot - read parameter RAM data from slot | 
|  | * @slot: number of parameter RAM slot being copied | 
|  | * @param: where to store copy of parameter RAM data | 
|  | * | 
|  | * Use this to read data from a parameter RAM slot, perhaps to | 
|  | * save them as a template for later reuse. | 
|  | */ | 
|  | void edma_read_slot(unsigned slot, struct edmacc_param *param) | 
|  | { | 
|  | unsigned ctlr; | 
|  |  | 
|  | ctlr = EDMA_CTLR(slot); | 
|  | slot = EDMA_CHAN_SLOT(slot); | 
|  |  | 
|  | if (slot >= edma_cc[ctlr]->num_slots) | 
|  | return; | 
|  | memcpy_fromio(param, edmacc_regs_base[ctlr] + PARM_OFFSET(slot), | 
|  | PARM_SIZE); | 
|  | } | 
|  | EXPORT_SYMBOL(edma_read_slot); | 
|  |  | 
|  | /*-----------------------------------------------------------------------*/ | 
|  |  | 
|  | /* Various EDMA channel control operations */ | 
|  |  | 
|  | /** | 
|  | * edma_pause - pause dma on a channel | 
|  | * @channel: on which edma_start() has been called | 
|  | * | 
|  | * This temporarily disables EDMA hardware events on the specified channel, | 
|  | * preventing them from triggering new transfers on its behalf | 
|  | */ | 
|  | void edma_pause(unsigned channel) | 
|  | { | 
|  | unsigned ctlr; | 
|  |  | 
|  | ctlr = EDMA_CTLR(channel); | 
|  | channel = EDMA_CHAN_SLOT(channel); | 
|  |  | 
|  | if (channel < edma_cc[ctlr]->num_channels) { | 
|  | unsigned int mask = BIT(channel & 0x1f); | 
|  |  | 
|  | edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(edma_pause); | 
|  |  | 
|  | /** | 
|  | * edma_resume - resumes dma on a paused channel | 
|  | * @channel: on which edma_pause() has been called | 
|  | * | 
|  | * This re-enables EDMA hardware events on the specified channel. | 
|  | */ | 
|  | void edma_resume(unsigned channel) | 
|  | { | 
|  | unsigned ctlr; | 
|  |  | 
|  | ctlr = EDMA_CTLR(channel); | 
|  | channel = EDMA_CHAN_SLOT(channel); | 
|  |  | 
|  | if (channel < edma_cc[ctlr]->num_channels) { | 
|  | unsigned int mask = BIT(channel & 0x1f); | 
|  |  | 
|  | edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(edma_resume); | 
|  |  | 
|  | /** | 
|  | * edma_start - start dma on a channel | 
|  | * @channel: channel being activated | 
|  | * | 
|  | * Channels with event associations will be triggered by their hardware | 
|  | * events, and channels without such associations will be triggered by | 
|  | * software.  (At this writing there is no interface for using software | 
|  | * triggers except with channels that don't support hardware triggers.) | 
|  | * | 
|  | * Returns zero on success, else negative errno. | 
|  | */ | 
|  | int edma_start(unsigned channel) | 
|  | { | 
|  | unsigned ctlr; | 
|  |  | 
|  | ctlr = EDMA_CTLR(channel); | 
|  | channel = EDMA_CHAN_SLOT(channel); | 
|  |  | 
|  | if (channel < edma_cc[ctlr]->num_channels) { | 
|  | int j = channel >> 5; | 
|  | unsigned int mask = BIT(channel & 0x1f); | 
|  |  | 
|  | /* EDMA channels without event association */ | 
|  | if (test_bit(channel, edma_cc[ctlr]->edma_unused)) { | 
|  | pr_debug("EDMA: ESR%d %08x\n", j, | 
|  | edma_shadow0_read_array(ctlr, SH_ESR, j)); | 
|  | edma_shadow0_write_array(ctlr, SH_ESR, j, mask); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* EDMA channel with event association */ | 
|  | pr_debug("EDMA: ER%d %08x\n", j, | 
|  | edma_shadow0_read_array(ctlr, SH_ER, j)); | 
|  | /* Clear any pending event or error */ | 
|  | edma_write_array(ctlr, EDMA_ECR, j, mask); | 
|  | edma_write_array(ctlr, EDMA_EMCR, j, mask); | 
|  | /* Clear any SER */ | 
|  | edma_shadow0_write_array(ctlr, SH_SECR, j, mask); | 
|  | edma_shadow0_write_array(ctlr, SH_EESR, j, mask); | 
|  | pr_debug("EDMA: EER%d %08x\n", j, | 
|  | edma_shadow0_read_array(ctlr, SH_EER, j)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  | EXPORT_SYMBOL(edma_start); | 
|  |  | 
|  | /** | 
|  | * edma_stop - stops dma on the channel passed | 
|  | * @channel: channel being deactivated | 
|  | * | 
|  | * When @lch is a channel, any active transfer is paused and | 
|  | * all pending hardware events are cleared.  The current transfer | 
|  | * may not be resumed, and the channel's Parameter RAM should be | 
|  | * reinitialized before being reused. | 
|  | */ | 
|  | void edma_stop(unsigned channel) | 
|  | { | 
|  | unsigned ctlr; | 
|  |  | 
|  | ctlr = EDMA_CTLR(channel); | 
|  | channel = EDMA_CHAN_SLOT(channel); | 
|  |  | 
|  | if (channel < edma_cc[ctlr]->num_channels) { | 
|  | int j = channel >> 5; | 
|  | unsigned int mask = BIT(channel & 0x1f); | 
|  |  | 
|  | edma_shadow0_write_array(ctlr, SH_EECR, j, mask); | 
|  | edma_shadow0_write_array(ctlr, SH_ECR, j, mask); | 
|  | edma_shadow0_write_array(ctlr, SH_SECR, j, mask); | 
|  | edma_write_array(ctlr, EDMA_EMCR, j, mask); | 
|  |  | 
|  | pr_debug("EDMA: EER%d %08x\n", j, | 
|  | edma_shadow0_read_array(ctlr, SH_EER, j)); | 
|  |  | 
|  | /* REVISIT:  consider guarding against inappropriate event | 
|  | * chaining by overwriting with dummy_paramset. | 
|  | */ | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(edma_stop); | 
|  |  | 
|  | /****************************************************************************** | 
|  | * | 
|  | * It cleans ParamEntry qand bring back EDMA to initial state if media has | 
|  | * been removed before EDMA has finished.It is usedful for removable media. | 
|  | * Arguments: | 
|  | *      ch_no     - channel no | 
|  | * | 
|  | * Return: zero on success, or corresponding error no on failure | 
|  | * | 
|  | * FIXME this should not be needed ... edma_stop() should suffice. | 
|  | * | 
|  | *****************************************************************************/ | 
|  |  | 
|  | void edma_clean_channel(unsigned channel) | 
|  | { | 
|  | unsigned ctlr; | 
|  |  | 
|  | ctlr = EDMA_CTLR(channel); | 
|  | channel = EDMA_CHAN_SLOT(channel); | 
|  |  | 
|  | if (channel < edma_cc[ctlr]->num_channels) { | 
|  | int j = (channel >> 5); | 
|  | unsigned int mask = BIT(channel & 0x1f); | 
|  |  | 
|  | pr_debug("EDMA: EMR%d %08x\n", j, | 
|  | edma_read_array(ctlr, EDMA_EMR, j)); | 
|  | edma_shadow0_write_array(ctlr, SH_ECR, j, mask); | 
|  | /* Clear the corresponding EMR bits */ | 
|  | edma_write_array(ctlr, EDMA_EMCR, j, mask); | 
|  | /* Clear any SER */ | 
|  | edma_shadow0_write_array(ctlr, SH_SECR, j, mask); | 
|  | edma_write(ctlr, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0)); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(edma_clean_channel); | 
|  |  | 
|  | /* | 
|  | * edma_clear_event - clear an outstanding event on the DMA channel | 
|  | * Arguments: | 
|  | *	channel - channel number | 
|  | */ | 
|  | void edma_clear_event(unsigned channel) | 
|  | { | 
|  | unsigned ctlr; | 
|  |  | 
|  | ctlr = EDMA_CTLR(channel); | 
|  | channel = EDMA_CHAN_SLOT(channel); | 
|  |  | 
|  | if (channel >= edma_cc[ctlr]->num_channels) | 
|  | return; | 
|  | if (channel < 32) | 
|  | edma_write(ctlr, EDMA_ECR, BIT(channel)); | 
|  | else | 
|  | edma_write(ctlr, EDMA_ECRH, BIT(channel - 32)); | 
|  | } | 
|  | EXPORT_SYMBOL(edma_clear_event); | 
|  |  | 
|  | /*-----------------------------------------------------------------------*/ | 
|  |  | 
|  | static int __init edma_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct edma_soc_info	**info = pdev->dev.platform_data; | 
|  | const s8		(*queue_priority_mapping)[2]; | 
|  | const s8		(*queue_tc_mapping)[2]; | 
|  | int			i, j, off, ln, found = 0; | 
|  | int			status = -1; | 
|  | const s16		(*rsv_chans)[2]; | 
|  | const s16		(*rsv_slots)[2]; | 
|  | int			irq[EDMA_MAX_CC] = {0, 0}; | 
|  | int			err_irq[EDMA_MAX_CC] = {0, 0}; | 
|  | struct resource		*r[EDMA_MAX_CC] = {NULL}; | 
|  | resource_size_t		len[EDMA_MAX_CC]; | 
|  | char			res_name[10]; | 
|  | char			irq_name[10]; | 
|  |  | 
|  | if (!info) | 
|  | return -ENODEV; | 
|  |  | 
|  | for (j = 0; j < EDMA_MAX_CC; j++) { | 
|  | sprintf(res_name, "edma_cc%d", j); | 
|  | r[j] = platform_get_resource_byname(pdev, IORESOURCE_MEM, | 
|  | res_name); | 
|  | if (!r[j] || !info[j]) { | 
|  | if (found) | 
|  | break; | 
|  | else | 
|  | return -ENODEV; | 
|  | } else { | 
|  | found = 1; | 
|  | } | 
|  |  | 
|  | len[j] = resource_size(r[j]); | 
|  |  | 
|  | r[j] = request_mem_region(r[j]->start, len[j], | 
|  | dev_name(&pdev->dev)); | 
|  | if (!r[j]) { | 
|  | status = -EBUSY; | 
|  | goto fail1; | 
|  | } | 
|  |  | 
|  | edmacc_regs_base[j] = ioremap(r[j]->start, len[j]); | 
|  | if (!edmacc_regs_base[j]) { | 
|  | status = -EBUSY; | 
|  | goto fail1; | 
|  | } | 
|  |  | 
|  | edma_cc[j] = kmalloc(sizeof(struct edma), GFP_KERNEL); | 
|  | if (!edma_cc[j]) { | 
|  | status = -ENOMEM; | 
|  | goto fail1; | 
|  | } | 
|  | memset(edma_cc[j], 0, sizeof(struct edma)); | 
|  |  | 
|  | edma_cc[j]->num_channels = min_t(unsigned, info[j]->n_channel, | 
|  | EDMA_MAX_DMACH); | 
|  | edma_cc[j]->num_slots = min_t(unsigned, info[j]->n_slot, | 
|  | EDMA_MAX_PARAMENTRY); | 
|  | edma_cc[j]->num_cc = min_t(unsigned, info[j]->n_cc, | 
|  | EDMA_MAX_CC); | 
|  |  | 
|  | edma_cc[j]->default_queue = info[j]->default_queue; | 
|  | if (!edma_cc[j]->default_queue) | 
|  | edma_cc[j]->default_queue = EVENTQ_1; | 
|  |  | 
|  | dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n", | 
|  | edmacc_regs_base[j]); | 
|  |  | 
|  | for (i = 0; i < edma_cc[j]->num_slots; i++) | 
|  | memcpy_toio(edmacc_regs_base[j] + PARM_OFFSET(i), | 
|  | &dummy_paramset, PARM_SIZE); | 
|  |  | 
|  | /* Mark all channels as unused */ | 
|  | memset(edma_cc[j]->edma_unused, 0xff, | 
|  | sizeof(edma_cc[j]->edma_unused)); | 
|  |  | 
|  | if (info[j]->rsv) { | 
|  |  | 
|  | /* Clear the reserved channels in unused list */ | 
|  | rsv_chans = info[j]->rsv->rsv_chans; | 
|  | if (rsv_chans) { | 
|  | for (i = 0; rsv_chans[i][0] != -1; i++) { | 
|  | off = rsv_chans[i][0]; | 
|  | ln = rsv_chans[i][1]; | 
|  | clear_bits(off, ln, | 
|  | edma_cc[j]->edma_unused); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Set the reserved slots in inuse list */ | 
|  | rsv_slots = info[j]->rsv->rsv_slots; | 
|  | if (rsv_slots) { | 
|  | for (i = 0; rsv_slots[i][0] != -1; i++) { | 
|  | off = rsv_slots[i][0]; | 
|  | ln = rsv_slots[i][1]; | 
|  | set_bits(off, ln, | 
|  | edma_cc[j]->edma_inuse); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | sprintf(irq_name, "edma%d", j); | 
|  | irq[j] = platform_get_irq_byname(pdev, irq_name); | 
|  | edma_cc[j]->irq_res_start = irq[j]; | 
|  | status = request_irq(irq[j], dma_irq_handler, 0, "edma", | 
|  | &pdev->dev); | 
|  | if (status < 0) { | 
|  | dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n", | 
|  | irq[j], status); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | sprintf(irq_name, "edma%d_err", j); | 
|  | err_irq[j] = platform_get_irq_byname(pdev, irq_name); | 
|  | edma_cc[j]->irq_res_end = err_irq[j]; | 
|  | status = request_irq(err_irq[j], dma_ccerr_handler, 0, | 
|  | "edma_error", &pdev->dev); | 
|  | if (status < 0) { | 
|  | dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n", | 
|  | err_irq[j], status); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* Everything lives on transfer controller 1 until otherwise | 
|  | * specified. This way, long transfers on the low priority queue | 
|  | * started by the codec engine will not cause audio defects. | 
|  | */ | 
|  | for (i = 0; i < edma_cc[j]->num_channels; i++) | 
|  | map_dmach_queue(j, i, EVENTQ_1); | 
|  |  | 
|  | queue_tc_mapping = info[j]->queue_tc_mapping; | 
|  | queue_priority_mapping = info[j]->queue_priority_mapping; | 
|  |  | 
|  | /* Event queue to TC mapping */ | 
|  | for (i = 0; queue_tc_mapping[i][0] != -1; i++) | 
|  | map_queue_tc(j, queue_tc_mapping[i][0], | 
|  | queue_tc_mapping[i][1]); | 
|  |  | 
|  | /* Event queue priority mapping */ | 
|  | for (i = 0; queue_priority_mapping[i][0] != -1; i++) | 
|  | assign_priority_to_queue(j, | 
|  | queue_priority_mapping[i][0], | 
|  | queue_priority_mapping[i][1]); | 
|  |  | 
|  | /* Map the channel to param entry if channel mapping logic | 
|  | * exist | 
|  | */ | 
|  | if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST) | 
|  | map_dmach_param(j); | 
|  |  | 
|  | for (i = 0; i < info[j]->n_region; i++) { | 
|  | edma_write_array2(j, EDMA_DRAE, i, 0, 0x0); | 
|  | edma_write_array2(j, EDMA_DRAE, i, 1, 0x0); | 
|  | edma_write_array(j, EDMA_QRAE, i, 0x0); | 
|  | } | 
|  | arch_num_cc++; | 
|  | } | 
|  |  | 
|  | if (tc_errs_handled) { | 
|  | status = request_irq(IRQ_TCERRINT0, dma_tc0err_handler, 0, | 
|  | "edma_tc0", &pdev->dev); | 
|  | if (status < 0) { | 
|  | dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n", | 
|  | IRQ_TCERRINT0, status); | 
|  | return status; | 
|  | } | 
|  | status = request_irq(IRQ_TCERRINT, dma_tc1err_handler, 0, | 
|  | "edma_tc1", &pdev->dev); | 
|  | if (status < 0) { | 
|  | dev_dbg(&pdev->dev, "request_irq %d --> %d\n", | 
|  | IRQ_TCERRINT, status); | 
|  | return status; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | for (i = 0; i < EDMA_MAX_CC; i++) { | 
|  | if (err_irq[i]) | 
|  | free_irq(err_irq[i], &pdev->dev); | 
|  | if (irq[i]) | 
|  | free_irq(irq[i], &pdev->dev); | 
|  | } | 
|  | fail1: | 
|  | for (i = 0; i < EDMA_MAX_CC; i++) { | 
|  | if (r[i]) | 
|  | release_mem_region(r[i]->start, len[i]); | 
|  | if (edmacc_regs_base[i]) | 
|  | iounmap(edmacc_regs_base[i]); | 
|  | kfree(edma_cc[i]); | 
|  | } | 
|  | return status; | 
|  | } | 
|  |  | 
|  |  | 
|  | static struct platform_driver edma_driver = { | 
|  | .driver.name	= "edma", | 
|  | }; | 
|  |  | 
|  | static int __init edma_init(void) | 
|  | { | 
|  | return platform_driver_probe(&edma_driver, edma_probe); | 
|  | } | 
|  | arch_initcall(edma_init); | 
|  |  |