|  | /* | 
|  | * PPC64 (POWER4) Huge TLB Page Support for Kernel. | 
|  | * | 
|  | * Copyright (C) 2003 David Gibson, IBM Corporation. | 
|  | * | 
|  | * Based on the IA-32 version: | 
|  | * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/init.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/smp_lock.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/sysctl.h> | 
|  | #include <asm/mman.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/machdep.h> | 
|  | #include <asm/cputable.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/spu.h> | 
|  |  | 
|  | #include <linux/sysctl.h> | 
|  |  | 
|  | #define NUM_LOW_AREAS	(0x100000000UL >> SID_SHIFT) | 
|  | #define NUM_HIGH_AREAS	(PGTABLE_RANGE >> HTLB_AREA_SHIFT) | 
|  |  | 
|  | #ifdef CONFIG_PPC_64K_PAGES | 
|  | #define HUGEPTE_INDEX_SIZE	(PMD_SHIFT-HPAGE_SHIFT) | 
|  | #else | 
|  | #define HUGEPTE_INDEX_SIZE	(PUD_SHIFT-HPAGE_SHIFT) | 
|  | #endif | 
|  | #define PTRS_PER_HUGEPTE	(1 << HUGEPTE_INDEX_SIZE) | 
|  | #define HUGEPTE_TABLE_SIZE	(sizeof(pte_t) << HUGEPTE_INDEX_SIZE) | 
|  |  | 
|  | #define HUGEPD_SHIFT		(HPAGE_SHIFT + HUGEPTE_INDEX_SIZE) | 
|  | #define HUGEPD_SIZE		(1UL << HUGEPD_SHIFT) | 
|  | #define HUGEPD_MASK		(~(HUGEPD_SIZE-1)) | 
|  |  | 
|  | #define huge_pgtable_cache	(pgtable_cache[HUGEPTE_CACHE_NUM]) | 
|  |  | 
|  | /* Flag to mark huge PD pointers.  This means pmd_bad() and pud_bad() | 
|  | * will choke on pointers to hugepte tables, which is handy for | 
|  | * catching screwups early. */ | 
|  | #define HUGEPD_OK	0x1 | 
|  |  | 
|  | typedef struct { unsigned long pd; } hugepd_t; | 
|  |  | 
|  | #define hugepd_none(hpd)	((hpd).pd == 0) | 
|  |  | 
|  | static inline pte_t *hugepd_page(hugepd_t hpd) | 
|  | { | 
|  | BUG_ON(!(hpd.pd & HUGEPD_OK)); | 
|  | return (pte_t *)(hpd.pd & ~HUGEPD_OK); | 
|  | } | 
|  |  | 
|  | static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr) | 
|  | { | 
|  | unsigned long idx = ((addr >> HPAGE_SHIFT) & (PTRS_PER_HUGEPTE-1)); | 
|  | pte_t *dir = hugepd_page(*hpdp); | 
|  |  | 
|  | return dir + idx; | 
|  | } | 
|  |  | 
|  | static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp, | 
|  | unsigned long address) | 
|  | { | 
|  | pte_t *new = kmem_cache_alloc(huge_pgtable_cache, | 
|  | GFP_KERNEL|__GFP_REPEAT); | 
|  |  | 
|  | if (! new) | 
|  | return -ENOMEM; | 
|  |  | 
|  | spin_lock(&mm->page_table_lock); | 
|  | if (!hugepd_none(*hpdp)) | 
|  | kmem_cache_free(huge_pgtable_cache, new); | 
|  | else | 
|  | hpdp->pd = (unsigned long)new | HUGEPD_OK; | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Modelled after find_linux_pte() */ | 
|  | pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) | 
|  | { | 
|  | pgd_t *pg; | 
|  | pud_t *pu; | 
|  |  | 
|  | BUG_ON(! in_hugepage_area(mm->context, addr)); | 
|  |  | 
|  | addr &= HPAGE_MASK; | 
|  |  | 
|  | pg = pgd_offset(mm, addr); | 
|  | if (!pgd_none(*pg)) { | 
|  | pu = pud_offset(pg, addr); | 
|  | if (!pud_none(*pu)) { | 
|  | #ifdef CONFIG_PPC_64K_PAGES | 
|  | pmd_t *pm; | 
|  | pm = pmd_offset(pu, addr); | 
|  | if (!pmd_none(*pm)) | 
|  | return hugepte_offset((hugepd_t *)pm, addr); | 
|  | #else | 
|  | return hugepte_offset((hugepd_t *)pu, addr); | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr) | 
|  | { | 
|  | pgd_t *pg; | 
|  | pud_t *pu; | 
|  | hugepd_t *hpdp = NULL; | 
|  |  | 
|  | BUG_ON(! in_hugepage_area(mm->context, addr)); | 
|  |  | 
|  | addr &= HPAGE_MASK; | 
|  |  | 
|  | pg = pgd_offset(mm, addr); | 
|  | pu = pud_alloc(mm, pg, addr); | 
|  |  | 
|  | if (pu) { | 
|  | #ifdef CONFIG_PPC_64K_PAGES | 
|  | pmd_t *pm; | 
|  | pm = pmd_alloc(mm, pu, addr); | 
|  | if (pm) | 
|  | hpdp = (hugepd_t *)pm; | 
|  | #else | 
|  | hpdp = (hugepd_t *)pu; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | if (! hpdp) | 
|  | return NULL; | 
|  |  | 
|  | if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr)) | 
|  | return NULL; | 
|  |  | 
|  | return hugepte_offset(hpdp, addr); | 
|  | } | 
|  |  | 
|  | int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void free_hugepte_range(struct mmu_gather *tlb, hugepd_t *hpdp) | 
|  | { | 
|  | pte_t *hugepte = hugepd_page(*hpdp); | 
|  |  | 
|  | hpdp->pd = 0; | 
|  | tlb->need_flush = 1; | 
|  | pgtable_free_tlb(tlb, pgtable_free_cache(hugepte, HUGEPTE_CACHE_NUM, | 
|  | PGF_CACHENUM_MASK)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PPC_64K_PAGES | 
|  | static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud, | 
|  | unsigned long addr, unsigned long end, | 
|  | unsigned long floor, unsigned long ceiling) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | unsigned long next; | 
|  | unsigned long start; | 
|  |  | 
|  | start = addr; | 
|  | pmd = pmd_offset(pud, addr); | 
|  | do { | 
|  | next = pmd_addr_end(addr, end); | 
|  | if (pmd_none(*pmd)) | 
|  | continue; | 
|  | free_hugepte_range(tlb, (hugepd_t *)pmd); | 
|  | } while (pmd++, addr = next, addr != end); | 
|  |  | 
|  | start &= PUD_MASK; | 
|  | if (start < floor) | 
|  | return; | 
|  | if (ceiling) { | 
|  | ceiling &= PUD_MASK; | 
|  | if (!ceiling) | 
|  | return; | 
|  | } | 
|  | if (end - 1 > ceiling - 1) | 
|  | return; | 
|  |  | 
|  | pmd = pmd_offset(pud, start); | 
|  | pud_clear(pud); | 
|  | pmd_free_tlb(tlb, pmd); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, | 
|  | unsigned long addr, unsigned long end, | 
|  | unsigned long floor, unsigned long ceiling) | 
|  | { | 
|  | pud_t *pud; | 
|  | unsigned long next; | 
|  | unsigned long start; | 
|  |  | 
|  | start = addr; | 
|  | pud = pud_offset(pgd, addr); | 
|  | do { | 
|  | next = pud_addr_end(addr, end); | 
|  | #ifdef CONFIG_PPC_64K_PAGES | 
|  | if (pud_none_or_clear_bad(pud)) | 
|  | continue; | 
|  | hugetlb_free_pmd_range(tlb, pud, addr, next, floor, ceiling); | 
|  | #else | 
|  | if (pud_none(*pud)) | 
|  | continue; | 
|  | free_hugepte_range(tlb, (hugepd_t *)pud); | 
|  | #endif | 
|  | } while (pud++, addr = next, addr != end); | 
|  |  | 
|  | start &= PGDIR_MASK; | 
|  | if (start < floor) | 
|  | return; | 
|  | if (ceiling) { | 
|  | ceiling &= PGDIR_MASK; | 
|  | if (!ceiling) | 
|  | return; | 
|  | } | 
|  | if (end - 1 > ceiling - 1) | 
|  | return; | 
|  |  | 
|  | pud = pud_offset(pgd, start); | 
|  | pgd_clear(pgd); | 
|  | pud_free_tlb(tlb, pud); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function frees user-level page tables of a process. | 
|  | * | 
|  | * Must be called with pagetable lock held. | 
|  | */ | 
|  | void hugetlb_free_pgd_range(struct mmu_gather **tlb, | 
|  | unsigned long addr, unsigned long end, | 
|  | unsigned long floor, unsigned long ceiling) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | unsigned long next; | 
|  | unsigned long start; | 
|  |  | 
|  | /* | 
|  | * Comments below take from the normal free_pgd_range().  They | 
|  | * apply here too.  The tests against HUGEPD_MASK below are | 
|  | * essential, because we *don't* test for this at the bottom | 
|  | * level.  Without them we'll attempt to free a hugepte table | 
|  | * when we unmap just part of it, even if there are other | 
|  | * active mappings using it. | 
|  | * | 
|  | * The next few lines have given us lots of grief... | 
|  | * | 
|  | * Why are we testing HUGEPD* at this top level?  Because | 
|  | * often there will be no work to do at all, and we'd prefer | 
|  | * not to go all the way down to the bottom just to discover | 
|  | * that. | 
|  | * | 
|  | * Why all these "- 1"s?  Because 0 represents both the bottom | 
|  | * of the address space and the top of it (using -1 for the | 
|  | * top wouldn't help much: the masks would do the wrong thing). | 
|  | * The rule is that addr 0 and floor 0 refer to the bottom of | 
|  | * the address space, but end 0 and ceiling 0 refer to the top | 
|  | * Comparisons need to use "end - 1" and "ceiling - 1" (though | 
|  | * that end 0 case should be mythical). | 
|  | * | 
|  | * Wherever addr is brought up or ceiling brought down, we | 
|  | * must be careful to reject "the opposite 0" before it | 
|  | * confuses the subsequent tests.  But what about where end is | 
|  | * brought down by HUGEPD_SIZE below? no, end can't go down to | 
|  | * 0 there. | 
|  | * | 
|  | * Whereas we round start (addr) and ceiling down, by different | 
|  | * masks at different levels, in order to test whether a table | 
|  | * now has no other vmas using it, so can be freed, we don't | 
|  | * bother to round floor or end up - the tests don't need that. | 
|  | */ | 
|  |  | 
|  | addr &= HUGEPD_MASK; | 
|  | if (addr < floor) { | 
|  | addr += HUGEPD_SIZE; | 
|  | if (!addr) | 
|  | return; | 
|  | } | 
|  | if (ceiling) { | 
|  | ceiling &= HUGEPD_MASK; | 
|  | if (!ceiling) | 
|  | return; | 
|  | } | 
|  | if (end - 1 > ceiling - 1) | 
|  | end -= HUGEPD_SIZE; | 
|  | if (addr > end - 1) | 
|  | return; | 
|  |  | 
|  | start = addr; | 
|  | pgd = pgd_offset((*tlb)->mm, addr); | 
|  | do { | 
|  | BUG_ON(! in_hugepage_area((*tlb)->mm->context, addr)); | 
|  | next = pgd_addr_end(addr, end); | 
|  | if (pgd_none_or_clear_bad(pgd)) | 
|  | continue; | 
|  | hugetlb_free_pud_range(*tlb, pgd, addr, next, floor, ceiling); | 
|  | } while (pgd++, addr = next, addr != end); | 
|  | } | 
|  |  | 
|  | void set_huge_pte_at(struct mm_struct *mm, unsigned long addr, | 
|  | pte_t *ptep, pte_t pte) | 
|  | { | 
|  | if (pte_present(*ptep)) { | 
|  | /* We open-code pte_clear because we need to pass the right | 
|  | * argument to hpte_update (huge / !huge) | 
|  | */ | 
|  | unsigned long old = pte_update(ptep, ~0UL); | 
|  | if (old & _PAGE_HASHPTE) | 
|  | hpte_update(mm, addr & HPAGE_MASK, ptep, old, 1); | 
|  | flush_tlb_pending(); | 
|  | } | 
|  | *ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS); | 
|  | } | 
|  |  | 
|  | pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, | 
|  | pte_t *ptep) | 
|  | { | 
|  | unsigned long old = pte_update(ptep, ~0UL); | 
|  |  | 
|  | if (old & _PAGE_HASHPTE) | 
|  | hpte_update(mm, addr & HPAGE_MASK, ptep, old, 1); | 
|  | *ptep = __pte(0); | 
|  |  | 
|  | return __pte(old); | 
|  | } | 
|  |  | 
|  | struct slb_flush_info { | 
|  | struct mm_struct *mm; | 
|  | u16 newareas; | 
|  | }; | 
|  |  | 
|  | static void flush_low_segments(void *parm) | 
|  | { | 
|  | struct slb_flush_info *fi = parm; | 
|  | unsigned long i; | 
|  |  | 
|  | BUILD_BUG_ON((sizeof(fi->newareas)*8) != NUM_LOW_AREAS); | 
|  |  | 
|  | if (current->active_mm != fi->mm) | 
|  | return; | 
|  |  | 
|  | /* Only need to do anything if this CPU is working in the same | 
|  | * mm as the one which has changed */ | 
|  |  | 
|  | /* update the paca copy of the context struct */ | 
|  | get_paca()->context = current->active_mm->context; | 
|  |  | 
|  | asm volatile("isync" : : : "memory"); | 
|  | for (i = 0; i < NUM_LOW_AREAS; i++) { | 
|  | if (! (fi->newareas & (1U << i))) | 
|  | continue; | 
|  | asm volatile("slbie %0" | 
|  | : : "r" ((i << SID_SHIFT) | SLBIE_C)); | 
|  | } | 
|  | asm volatile("isync" : : : "memory"); | 
|  | } | 
|  |  | 
|  | static void flush_high_segments(void *parm) | 
|  | { | 
|  | struct slb_flush_info *fi = parm; | 
|  | unsigned long i, j; | 
|  |  | 
|  |  | 
|  | BUILD_BUG_ON((sizeof(fi->newareas)*8) != NUM_HIGH_AREAS); | 
|  |  | 
|  | if (current->active_mm != fi->mm) | 
|  | return; | 
|  |  | 
|  | /* Only need to do anything if this CPU is working in the same | 
|  | * mm as the one which has changed */ | 
|  |  | 
|  | /* update the paca copy of the context struct */ | 
|  | get_paca()->context = current->active_mm->context; | 
|  |  | 
|  | asm volatile("isync" : : : "memory"); | 
|  | for (i = 0; i < NUM_HIGH_AREAS; i++) { | 
|  | if (! (fi->newareas & (1U << i))) | 
|  | continue; | 
|  | for (j = 0; j < (1UL << (HTLB_AREA_SHIFT-SID_SHIFT)); j++) | 
|  | asm volatile("slbie %0" | 
|  | :: "r" (((i << HTLB_AREA_SHIFT) | 
|  | + (j << SID_SHIFT)) | SLBIE_C)); | 
|  | } | 
|  | asm volatile("isync" : : : "memory"); | 
|  | } | 
|  |  | 
|  | static int prepare_low_area_for_htlb(struct mm_struct *mm, unsigned long area) | 
|  | { | 
|  | unsigned long start = area << SID_SHIFT; | 
|  | unsigned long end = (area+1) << SID_SHIFT; | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | BUG_ON(area >= NUM_LOW_AREAS); | 
|  |  | 
|  | /* Check no VMAs are in the region */ | 
|  | vma = find_vma(mm, start); | 
|  | if (vma && (vma->vm_start < end)) | 
|  | return -EBUSY; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int prepare_high_area_for_htlb(struct mm_struct *mm, unsigned long area) | 
|  | { | 
|  | unsigned long start = area << HTLB_AREA_SHIFT; | 
|  | unsigned long end = (area+1) << HTLB_AREA_SHIFT; | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | BUG_ON(area >= NUM_HIGH_AREAS); | 
|  |  | 
|  | /* Hack, so that each addresses is controlled by exactly one | 
|  | * of the high or low area bitmaps, the first high area starts | 
|  | * at 4GB, not 0 */ | 
|  | if (start == 0) | 
|  | start = 0x100000000UL; | 
|  |  | 
|  | /* Check no VMAs are in the region */ | 
|  | vma = find_vma(mm, start); | 
|  | if (vma && (vma->vm_start < end)) | 
|  | return -EBUSY; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int open_low_hpage_areas(struct mm_struct *mm, u16 newareas) | 
|  | { | 
|  | unsigned long i; | 
|  | struct slb_flush_info fi; | 
|  |  | 
|  | BUILD_BUG_ON((sizeof(newareas)*8) != NUM_LOW_AREAS); | 
|  | BUILD_BUG_ON((sizeof(mm->context.low_htlb_areas)*8) != NUM_LOW_AREAS); | 
|  |  | 
|  | newareas &= ~(mm->context.low_htlb_areas); | 
|  | if (! newareas) | 
|  | return 0; /* The segments we want are already open */ | 
|  |  | 
|  | for (i = 0; i < NUM_LOW_AREAS; i++) | 
|  | if ((1 << i) & newareas) | 
|  | if (prepare_low_area_for_htlb(mm, i) != 0) | 
|  | return -EBUSY; | 
|  |  | 
|  | mm->context.low_htlb_areas |= newareas; | 
|  |  | 
|  | /* the context change must make it to memory before the flush, | 
|  | * so that further SLB misses do the right thing. */ | 
|  | mb(); | 
|  |  | 
|  | fi.mm = mm; | 
|  | fi.newareas = newareas; | 
|  | on_each_cpu(flush_low_segments, &fi, 0, 1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int open_high_hpage_areas(struct mm_struct *mm, u16 newareas) | 
|  | { | 
|  | struct slb_flush_info fi; | 
|  | unsigned long i; | 
|  |  | 
|  | BUILD_BUG_ON((sizeof(newareas)*8) != NUM_HIGH_AREAS); | 
|  | BUILD_BUG_ON((sizeof(mm->context.high_htlb_areas)*8) | 
|  | != NUM_HIGH_AREAS); | 
|  |  | 
|  | newareas &= ~(mm->context.high_htlb_areas); | 
|  | if (! newareas) | 
|  | return 0; /* The areas we want are already open */ | 
|  |  | 
|  | for (i = 0; i < NUM_HIGH_AREAS; i++) | 
|  | if ((1 << i) & newareas) | 
|  | if (prepare_high_area_for_htlb(mm, i) != 0) | 
|  | return -EBUSY; | 
|  |  | 
|  | mm->context.high_htlb_areas |= newareas; | 
|  |  | 
|  | /* the context change must make it to memory before the flush, | 
|  | * so that further SLB misses do the right thing. */ | 
|  | mb(); | 
|  |  | 
|  | fi.mm = mm; | 
|  | fi.newareas = newareas; | 
|  | on_each_cpu(flush_high_segments, &fi, 0, 1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int prepare_hugepage_range(unsigned long addr, unsigned long len, pgoff_t pgoff) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | if (pgoff & (~HPAGE_MASK >> PAGE_SHIFT)) | 
|  | return -EINVAL; | 
|  | if (len & ~HPAGE_MASK) | 
|  | return -EINVAL; | 
|  | if (addr & ~HPAGE_MASK) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (addr < 0x100000000UL) | 
|  | err = open_low_hpage_areas(current->mm, | 
|  | LOW_ESID_MASK(addr, len)); | 
|  | if ((addr + len) > 0x100000000UL) | 
|  | err = open_high_hpage_areas(current->mm, | 
|  | HTLB_AREA_MASK(addr, len)); | 
|  | #ifdef CONFIG_SPE_BASE | 
|  | spu_flush_all_slbs(current->mm); | 
|  | #endif | 
|  | if (err) { | 
|  | printk(KERN_DEBUG "prepare_hugepage_range(%lx, %lx)" | 
|  | " failed (lowmask: 0x%04hx, highmask: 0x%04hx)\n", | 
|  | addr, len, | 
|  | LOW_ESID_MASK(addr, len), HTLB_AREA_MASK(addr, len)); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct page * | 
|  | follow_huge_addr(struct mm_struct *mm, unsigned long address, int write) | 
|  | { | 
|  | pte_t *ptep; | 
|  | struct page *page; | 
|  |  | 
|  | if (! in_hugepage_area(mm->context, address)) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | ptep = huge_pte_offset(mm, address); | 
|  | page = pte_page(*ptep); | 
|  | if (page) | 
|  | page += (address % HPAGE_SIZE) / PAGE_SIZE; | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | int pmd_huge(pmd_t pmd) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct page * | 
|  | follow_huge_pmd(struct mm_struct *mm, unsigned long address, | 
|  | pmd_t *pmd, int write) | 
|  | { | 
|  | BUG(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Because we have an exclusive hugepage region which lies within the | 
|  | * normal user address space, we have to take special measures to make | 
|  | * non-huge mmap()s evade the hugepage reserved regions. */ | 
|  | unsigned long arch_get_unmapped_area(struct file *filp, unsigned long addr, | 
|  | unsigned long len, unsigned long pgoff, | 
|  | unsigned long flags) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct vm_area_struct *vma; | 
|  | unsigned long start_addr; | 
|  |  | 
|  | if (len > TASK_SIZE) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (addr) { | 
|  | addr = PAGE_ALIGN(addr); | 
|  | vma = find_vma(mm, addr); | 
|  | if (((TASK_SIZE - len) >= addr) | 
|  | && (!vma || (addr+len) <= vma->vm_start) | 
|  | && !is_hugepage_only_range(mm, addr,len)) | 
|  | return addr; | 
|  | } | 
|  | if (len > mm->cached_hole_size) { | 
|  | start_addr = addr = mm->free_area_cache; | 
|  | } else { | 
|  | start_addr = addr = TASK_UNMAPPED_BASE; | 
|  | mm->cached_hole_size = 0; | 
|  | } | 
|  |  | 
|  | full_search: | 
|  | vma = find_vma(mm, addr); | 
|  | while (TASK_SIZE - len >= addr) { | 
|  | BUG_ON(vma && (addr >= vma->vm_end)); | 
|  |  | 
|  | if (touches_hugepage_low_range(mm, addr, len)) { | 
|  | addr = ALIGN(addr+1, 1<<SID_SHIFT); | 
|  | vma = find_vma(mm, addr); | 
|  | continue; | 
|  | } | 
|  | if (touches_hugepage_high_range(mm, addr, len)) { | 
|  | addr = ALIGN(addr+1, 1UL<<HTLB_AREA_SHIFT); | 
|  | vma = find_vma(mm, addr); | 
|  | continue; | 
|  | } | 
|  | if (!vma || addr + len <= vma->vm_start) { | 
|  | /* | 
|  | * Remember the place where we stopped the search: | 
|  | */ | 
|  | mm->free_area_cache = addr + len; | 
|  | return addr; | 
|  | } | 
|  | if (addr + mm->cached_hole_size < vma->vm_start) | 
|  | mm->cached_hole_size = vma->vm_start - addr; | 
|  | addr = vma->vm_end; | 
|  | vma = vma->vm_next; | 
|  | } | 
|  |  | 
|  | /* Make sure we didn't miss any holes */ | 
|  | if (start_addr != TASK_UNMAPPED_BASE) { | 
|  | start_addr = addr = TASK_UNMAPPED_BASE; | 
|  | mm->cached_hole_size = 0; | 
|  | goto full_search; | 
|  | } | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This mmap-allocator allocates new areas top-down from below the | 
|  | * stack's low limit (the base): | 
|  | * | 
|  | * Because we have an exclusive hugepage region which lies within the | 
|  | * normal user address space, we have to take special measures to make | 
|  | * non-huge mmap()s evade the hugepage reserved regions. | 
|  | */ | 
|  | unsigned long | 
|  | arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, | 
|  | const unsigned long len, const unsigned long pgoff, | 
|  | const unsigned long flags) | 
|  | { | 
|  | struct vm_area_struct *vma, *prev_vma; | 
|  | struct mm_struct *mm = current->mm; | 
|  | unsigned long base = mm->mmap_base, addr = addr0; | 
|  | unsigned long largest_hole = mm->cached_hole_size; | 
|  | int first_time = 1; | 
|  |  | 
|  | /* requested length too big for entire address space */ | 
|  | if (len > TASK_SIZE) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* dont allow allocations above current base */ | 
|  | if (mm->free_area_cache > base) | 
|  | mm->free_area_cache = base; | 
|  |  | 
|  | /* requesting a specific address */ | 
|  | if (addr) { | 
|  | addr = PAGE_ALIGN(addr); | 
|  | vma = find_vma(mm, addr); | 
|  | if (TASK_SIZE - len >= addr && | 
|  | (!vma || addr + len <= vma->vm_start) | 
|  | && !is_hugepage_only_range(mm, addr,len)) | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | if (len <= largest_hole) { | 
|  | largest_hole = 0; | 
|  | mm->free_area_cache = base; | 
|  | } | 
|  | try_again: | 
|  | /* make sure it can fit in the remaining address space */ | 
|  | if (mm->free_area_cache < len) | 
|  | goto fail; | 
|  |  | 
|  | /* either no address requested or cant fit in requested address hole */ | 
|  | addr = (mm->free_area_cache - len) & PAGE_MASK; | 
|  | do { | 
|  | hugepage_recheck: | 
|  | if (touches_hugepage_low_range(mm, addr, len)) { | 
|  | addr = (addr & ((~0) << SID_SHIFT)) - len; | 
|  | goto hugepage_recheck; | 
|  | } else if (touches_hugepage_high_range(mm, addr, len)) { | 
|  | addr = (addr & ((~0UL) << HTLB_AREA_SHIFT)) - len; | 
|  | goto hugepage_recheck; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lookup failure means no vma is above this address, | 
|  | * i.e. return with success: | 
|  | */ | 
|  | if (!(vma = find_vma_prev(mm, addr, &prev_vma))) | 
|  | return addr; | 
|  |  | 
|  | /* | 
|  | * new region fits between prev_vma->vm_end and | 
|  | * vma->vm_start, use it: | 
|  | */ | 
|  | if (addr+len <= vma->vm_start && | 
|  | (!prev_vma || (addr >= prev_vma->vm_end))) { | 
|  | /* remember the address as a hint for next time */ | 
|  | mm->cached_hole_size = largest_hole; | 
|  | return (mm->free_area_cache = addr); | 
|  | } else { | 
|  | /* pull free_area_cache down to the first hole */ | 
|  | if (mm->free_area_cache == vma->vm_end) { | 
|  | mm->free_area_cache = vma->vm_start; | 
|  | mm->cached_hole_size = largest_hole; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* remember the largest hole we saw so far */ | 
|  | if (addr + largest_hole < vma->vm_start) | 
|  | largest_hole = vma->vm_start - addr; | 
|  |  | 
|  | /* try just below the current vma->vm_start */ | 
|  | addr = vma->vm_start-len; | 
|  | } while (len <= vma->vm_start); | 
|  |  | 
|  | fail: | 
|  | /* | 
|  | * if hint left us with no space for the requested | 
|  | * mapping then try again: | 
|  | */ | 
|  | if (first_time) { | 
|  | mm->free_area_cache = base; | 
|  | largest_hole = 0; | 
|  | first_time = 0; | 
|  | goto try_again; | 
|  | } | 
|  | /* | 
|  | * A failed mmap() very likely causes application failure, | 
|  | * so fall back to the bottom-up function here. This scenario | 
|  | * can happen with large stack limits and large mmap() | 
|  | * allocations. | 
|  | */ | 
|  | mm->free_area_cache = TASK_UNMAPPED_BASE; | 
|  | mm->cached_hole_size = ~0UL; | 
|  | addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags); | 
|  | /* | 
|  | * Restore the topdown base: | 
|  | */ | 
|  | mm->free_area_cache = base; | 
|  | mm->cached_hole_size = ~0UL; | 
|  |  | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | static int htlb_check_hinted_area(unsigned long addr, unsigned long len) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | vma = find_vma(current->mm, addr); | 
|  | if (TASK_SIZE - len >= addr && | 
|  | (!vma || ((addr + len) <= vma->vm_start))) | 
|  | return 0; | 
|  |  | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static unsigned long htlb_get_low_area(unsigned long len, u16 segmask) | 
|  | { | 
|  | unsigned long addr = 0; | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | vma = find_vma(current->mm, addr); | 
|  | while (addr + len <= 0x100000000UL) { | 
|  | BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */ | 
|  |  | 
|  | if (! __within_hugepage_low_range(addr, len, segmask)) { | 
|  | addr = ALIGN(addr+1, 1<<SID_SHIFT); | 
|  | vma = find_vma(current->mm, addr); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!vma || (addr + len) <= vma->vm_start) | 
|  | return addr; | 
|  | addr = ALIGN(vma->vm_end, HPAGE_SIZE); | 
|  | /* Depending on segmask this might not be a confirmed | 
|  | * hugepage region, so the ALIGN could have skipped | 
|  | * some VMAs */ | 
|  | vma = find_vma(current->mm, addr); | 
|  | } | 
|  |  | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static unsigned long htlb_get_high_area(unsigned long len, u16 areamask) | 
|  | { | 
|  | unsigned long addr = 0x100000000UL; | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | vma = find_vma(current->mm, addr); | 
|  | while (addr + len <= TASK_SIZE_USER64) { | 
|  | BUG_ON(vma && (addr >= vma->vm_end)); /* invariant */ | 
|  |  | 
|  | if (! __within_hugepage_high_range(addr, len, areamask)) { | 
|  | addr = ALIGN(addr+1, 1UL<<HTLB_AREA_SHIFT); | 
|  | vma = find_vma(current->mm, addr); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!vma || (addr + len) <= vma->vm_start) | 
|  | return addr; | 
|  | addr = ALIGN(vma->vm_end, HPAGE_SIZE); | 
|  | /* Depending on segmask this might not be a confirmed | 
|  | * hugepage region, so the ALIGN could have skipped | 
|  | * some VMAs */ | 
|  | vma = find_vma(current->mm, addr); | 
|  | } | 
|  |  | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, | 
|  | unsigned long len, unsigned long pgoff, | 
|  | unsigned long flags) | 
|  | { | 
|  | int lastshift; | 
|  | u16 areamask, curareas; | 
|  |  | 
|  | if (HPAGE_SHIFT == 0) | 
|  | return -EINVAL; | 
|  | if (len & ~HPAGE_MASK) | 
|  | return -EINVAL; | 
|  | if (len > TASK_SIZE) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (!cpu_has_feature(CPU_FTR_16M_PAGE)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Paranoia, caller should have dealt with this */ | 
|  | BUG_ON((addr + len)  < addr); | 
|  |  | 
|  | if (test_thread_flag(TIF_32BIT)) { | 
|  | curareas = current->mm->context.low_htlb_areas; | 
|  |  | 
|  | /* First see if we can use the hint address */ | 
|  | if (addr && (htlb_check_hinted_area(addr, len) == 0)) { | 
|  | areamask = LOW_ESID_MASK(addr, len); | 
|  | if (open_low_hpage_areas(current->mm, areamask) == 0) | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | /* Next see if we can map in the existing low areas */ | 
|  | addr = htlb_get_low_area(len, curareas); | 
|  | if (addr != -ENOMEM) | 
|  | return addr; | 
|  |  | 
|  | /* Finally go looking for areas to open */ | 
|  | lastshift = 0; | 
|  | for (areamask = LOW_ESID_MASK(0x100000000UL-len, len); | 
|  | ! lastshift; areamask >>=1) { | 
|  | if (areamask & 1) | 
|  | lastshift = 1; | 
|  |  | 
|  | addr = htlb_get_low_area(len, curareas | areamask); | 
|  | if ((addr != -ENOMEM) | 
|  | && open_low_hpage_areas(current->mm, areamask) == 0) | 
|  | return addr; | 
|  | } | 
|  | } else { | 
|  | curareas = current->mm->context.high_htlb_areas; | 
|  |  | 
|  | /* First see if we can use the hint address */ | 
|  | /* We discourage 64-bit processes from doing hugepage | 
|  | * mappings below 4GB (must use MAP_FIXED) */ | 
|  | if ((addr >= 0x100000000UL) | 
|  | && (htlb_check_hinted_area(addr, len) == 0)) { | 
|  | areamask = HTLB_AREA_MASK(addr, len); | 
|  | if (open_high_hpage_areas(current->mm, areamask) == 0) | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | /* Next see if we can map in the existing high areas */ | 
|  | addr = htlb_get_high_area(len, curareas); | 
|  | if (addr != -ENOMEM) | 
|  | return addr; | 
|  |  | 
|  | /* Finally go looking for areas to open */ | 
|  | lastshift = 0; | 
|  | for (areamask = HTLB_AREA_MASK(TASK_SIZE_USER64-len, len); | 
|  | ! lastshift; areamask >>=1) { | 
|  | if (areamask & 1) | 
|  | lastshift = 1; | 
|  |  | 
|  | addr = htlb_get_high_area(len, curareas | areamask); | 
|  | if ((addr != -ENOMEM) | 
|  | && open_high_hpage_areas(current->mm, areamask) == 0) | 
|  | return addr; | 
|  | } | 
|  | } | 
|  | printk(KERN_DEBUG "hugetlb_get_unmapped_area() unable to open" | 
|  | " enough areas\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called by asm hashtable.S for doing lazy icache flush | 
|  | */ | 
|  | static unsigned int hash_huge_page_do_lazy_icache(unsigned long rflags, | 
|  | pte_t pte, int trap) | 
|  | { | 
|  | struct page *page; | 
|  | int i; | 
|  |  | 
|  | if (!pfn_valid(pte_pfn(pte))) | 
|  | return rflags; | 
|  |  | 
|  | page = pte_page(pte); | 
|  |  | 
|  | /* page is dirty */ | 
|  | if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) { | 
|  | if (trap == 0x400) { | 
|  | for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) | 
|  | __flush_dcache_icache(page_address(page+i)); | 
|  | set_bit(PG_arch_1, &page->flags); | 
|  | } else { | 
|  | rflags |= HPTE_R_N; | 
|  | } | 
|  | } | 
|  | return rflags; | 
|  | } | 
|  |  | 
|  | int hash_huge_page(struct mm_struct *mm, unsigned long access, | 
|  | unsigned long ea, unsigned long vsid, int local, | 
|  | unsigned long trap) | 
|  | { | 
|  | pte_t *ptep; | 
|  | unsigned long old_pte, new_pte; | 
|  | unsigned long va, rflags, pa; | 
|  | long slot; | 
|  | int err = 1; | 
|  |  | 
|  | ptep = huge_pte_offset(mm, ea); | 
|  |  | 
|  | /* Search the Linux page table for a match with va */ | 
|  | va = (vsid << 28) | (ea & 0x0fffffff); | 
|  |  | 
|  | /* | 
|  | * If no pte found or not present, send the problem up to | 
|  | * do_page_fault | 
|  | */ | 
|  | if (unlikely(!ptep || pte_none(*ptep))) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Check the user's access rights to the page.  If access should be | 
|  | * prevented then send the problem up to do_page_fault. | 
|  | */ | 
|  | if (unlikely(access & ~pte_val(*ptep))) | 
|  | goto out; | 
|  | /* | 
|  | * At this point, we have a pte (old_pte) which can be used to build | 
|  | * or update an HPTE. There are 2 cases: | 
|  | * | 
|  | * 1. There is a valid (present) pte with no associated HPTE (this is | 
|  | *	the most common case) | 
|  | * 2. There is a valid (present) pte with an associated HPTE. The | 
|  | *	current values of the pp bits in the HPTE prevent access | 
|  | *	because we are doing software DIRTY bit management and the | 
|  | *	page is currently not DIRTY. | 
|  | */ | 
|  |  | 
|  |  | 
|  | do { | 
|  | old_pte = pte_val(*ptep); | 
|  | if (old_pte & _PAGE_BUSY) | 
|  | goto out; | 
|  | new_pte = old_pte | _PAGE_BUSY | | 
|  | _PAGE_ACCESSED | _PAGE_HASHPTE; | 
|  | } while(old_pte != __cmpxchg_u64((unsigned long *)ptep, | 
|  | old_pte, new_pte)); | 
|  |  | 
|  | rflags = 0x2 | (!(new_pte & _PAGE_RW)); | 
|  | /* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */ | 
|  | rflags |= ((new_pte & _PAGE_EXEC) ? 0 : HPTE_R_N); | 
|  | if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE)) | 
|  | /* No CPU has hugepages but lacks no execute, so we | 
|  | * don't need to worry about that case */ | 
|  | rflags = hash_huge_page_do_lazy_icache(rflags, __pte(old_pte), | 
|  | trap); | 
|  |  | 
|  | /* Check if pte already has an hpte (case 2) */ | 
|  | if (unlikely(old_pte & _PAGE_HASHPTE)) { | 
|  | /* There MIGHT be an HPTE for this pte */ | 
|  | unsigned long hash, slot; | 
|  |  | 
|  | hash = hpt_hash(va, HPAGE_SHIFT); | 
|  | if (old_pte & _PAGE_F_SECOND) | 
|  | hash = ~hash; | 
|  | slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; | 
|  | slot += (old_pte & _PAGE_F_GIX) >> 12; | 
|  |  | 
|  | if (ppc_md.hpte_updatepp(slot, rflags, va, mmu_huge_psize, | 
|  | local) == -1) | 
|  | old_pte &= ~_PAGE_HPTEFLAGS; | 
|  | } | 
|  |  | 
|  | if (likely(!(old_pte & _PAGE_HASHPTE))) { | 
|  | unsigned long hash = hpt_hash(va, HPAGE_SHIFT); | 
|  | unsigned long hpte_group; | 
|  |  | 
|  | pa = pte_pfn(__pte(old_pte)) << PAGE_SHIFT; | 
|  |  | 
|  | repeat: | 
|  | hpte_group = ((hash & htab_hash_mask) * | 
|  | HPTES_PER_GROUP) & ~0x7UL; | 
|  |  | 
|  | /* clear HPTE slot informations in new PTE */ | 
|  | new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HASHPTE; | 
|  |  | 
|  | /* Add in WIMG bits */ | 
|  | /* XXX We should store these in the pte */ | 
|  | /* --BenH: I think they are ... */ | 
|  | rflags |= _PAGE_COHERENT; | 
|  |  | 
|  | /* Insert into the hash table, primary slot */ | 
|  | slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags, 0, | 
|  | mmu_huge_psize); | 
|  |  | 
|  | /* Primary is full, try the secondary */ | 
|  | if (unlikely(slot == -1)) { | 
|  | hpte_group = ((~hash & htab_hash_mask) * | 
|  | HPTES_PER_GROUP) & ~0x7UL; | 
|  | slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags, | 
|  | HPTE_V_SECONDARY, | 
|  | mmu_huge_psize); | 
|  | if (slot == -1) { | 
|  | if (mftb() & 0x1) | 
|  | hpte_group = ((hash & htab_hash_mask) * | 
|  | HPTES_PER_GROUP)&~0x7UL; | 
|  |  | 
|  | ppc_md.hpte_remove(hpte_group); | 
|  | goto repeat; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (unlikely(slot == -2)) | 
|  | panic("hash_huge_page: pte_insert failed\n"); | 
|  |  | 
|  | new_pte |= (slot << 12) & (_PAGE_F_SECOND | _PAGE_F_GIX); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * No need to use ldarx/stdcx here | 
|  | */ | 
|  | *ptep = __pte(new_pte & ~_PAGE_BUSY); | 
|  |  | 
|  | err = 0; | 
|  |  | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void zero_ctor(void *addr, struct kmem_cache *cache, unsigned long flags) | 
|  | { | 
|  | memset(addr, 0, kmem_cache_size(cache)); | 
|  | } | 
|  |  | 
|  | static int __init hugetlbpage_init(void) | 
|  | { | 
|  | if (!cpu_has_feature(CPU_FTR_16M_PAGE)) | 
|  | return -ENODEV; | 
|  |  | 
|  | huge_pgtable_cache = kmem_cache_create("hugepte_cache", | 
|  | HUGEPTE_TABLE_SIZE, | 
|  | HUGEPTE_TABLE_SIZE, | 
|  | SLAB_HWCACHE_ALIGN | | 
|  | SLAB_MUST_HWCACHE_ALIGN, | 
|  | zero_ctor, NULL); | 
|  | if (! huge_pgtable_cache) | 
|  | panic("hugetlbpage_init(): could not create hugepte cache\n"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | module_init(hugetlbpage_init); |