|  | /* LRW: as defined by Cyril Guyot in | 
|  | *	http://grouper.ieee.org/groups/1619/email/pdf00017.pdf | 
|  | * | 
|  | * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org> | 
|  | * | 
|  | * Based om ecb.c | 
|  | * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of the GNU General Public License as published by the Free | 
|  | * Software Foundation; either version 2 of the License, or (at your option) | 
|  | * any later version. | 
|  | */ | 
|  | /* This implementation is checked against the test vectors in the above | 
|  | * document and by a test vector provided by Ken Buchanan at | 
|  | * http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html | 
|  | * | 
|  | * The test vectors are included in the testing module tcrypt.[ch] */ | 
|  | #include <crypto/algapi.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/scatterlist.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include <crypto/b128ops.h> | 
|  | #include <crypto/gf128mul.h> | 
|  |  | 
|  | struct priv { | 
|  | struct crypto_cipher *child; | 
|  | /* optimizes multiplying a random (non incrementing, as at the | 
|  | * start of a new sector) value with key2, we could also have | 
|  | * used 4k optimization tables or no optimization at all. In the | 
|  | * latter case we would have to store key2 here */ | 
|  | struct gf128mul_64k *table; | 
|  | /* stores: | 
|  | *  key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 }, | 
|  | *  key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 } | 
|  | *  key2*{ 0,0,...1,1,1,1,1 }, etc | 
|  | * needed for optimized multiplication of incrementing values | 
|  | * with key2 */ | 
|  | be128 mulinc[128]; | 
|  | }; | 
|  |  | 
|  | static inline void setbit128_bbe(void *b, int bit) | 
|  | { | 
|  | __set_bit(bit ^ 0x78, b); | 
|  | } | 
|  |  | 
|  | static int setkey(struct crypto_tfm *parent, const u8 *key, | 
|  | unsigned int keylen) | 
|  | { | 
|  | struct priv *ctx = crypto_tfm_ctx(parent); | 
|  | struct crypto_cipher *child = ctx->child; | 
|  | int err, i; | 
|  | be128 tmp = { 0 }; | 
|  | int bsize = crypto_cipher_blocksize(child); | 
|  |  | 
|  | crypto_cipher_clear_flags(child, CRYPTO_TFM_REQ_MASK); | 
|  | crypto_cipher_set_flags(child, crypto_tfm_get_flags(parent) & | 
|  | CRYPTO_TFM_REQ_MASK); | 
|  | if ((err = crypto_cipher_setkey(child, key, keylen - bsize))) | 
|  | return err; | 
|  | crypto_tfm_set_flags(parent, crypto_cipher_get_flags(child) & | 
|  | CRYPTO_TFM_RES_MASK); | 
|  |  | 
|  | if (ctx->table) | 
|  | gf128mul_free_64k(ctx->table); | 
|  |  | 
|  | /* initialize multiplication table for Key2 */ | 
|  | ctx->table = gf128mul_init_64k_bbe((be128 *)(key + keylen - bsize)); | 
|  | if (!ctx->table) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* initialize optimization table */ | 
|  | for (i = 0; i < 128; i++) { | 
|  | setbit128_bbe(&tmp, i); | 
|  | ctx->mulinc[i] = tmp; | 
|  | gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct sinfo { | 
|  | be128 t; | 
|  | struct crypto_tfm *tfm; | 
|  | void (*fn)(struct crypto_tfm *, u8 *, const u8 *); | 
|  | }; | 
|  |  | 
|  | static inline void inc(be128 *iv) | 
|  | { | 
|  | if (!(iv->b = cpu_to_be64(be64_to_cpu(iv->b) + 1))) | 
|  | iv->a = cpu_to_be64(be64_to_cpu(iv->a) + 1); | 
|  | } | 
|  |  | 
|  | static inline void lrw_round(struct sinfo *s, void *dst, const void *src) | 
|  | { | 
|  | be128_xor(dst, &s->t, src);		/* PP <- T xor P */ | 
|  | s->fn(s->tfm, dst, dst);		/* CC <- E(Key2,PP) */ | 
|  | be128_xor(dst, dst, &s->t);		/* C <- T xor CC */ | 
|  | } | 
|  |  | 
|  | /* this returns the number of consequative 1 bits starting | 
|  | * from the right, get_index128(00 00 00 00 00 00 ... 00 00 10 FB) = 2 */ | 
|  | static inline int get_index128(be128 *block) | 
|  | { | 
|  | int x; | 
|  | __be32 *p = (__be32 *) block; | 
|  |  | 
|  | for (p += 3, x = 0; x < 128; p--, x += 32) { | 
|  | u32 val = be32_to_cpup(p); | 
|  |  | 
|  | if (!~val) | 
|  | continue; | 
|  |  | 
|  | return x + ffz(val); | 
|  | } | 
|  |  | 
|  | return x; | 
|  | } | 
|  |  | 
|  | static int crypt(struct blkcipher_desc *d, | 
|  | struct blkcipher_walk *w, struct priv *ctx, | 
|  | void (*fn)(struct crypto_tfm *, u8 *, const u8 *)) | 
|  | { | 
|  | int err; | 
|  | unsigned int avail; | 
|  | const int bs = crypto_cipher_blocksize(ctx->child); | 
|  | struct sinfo s = { | 
|  | .tfm = crypto_cipher_tfm(ctx->child), | 
|  | .fn = fn | 
|  | }; | 
|  | be128 *iv; | 
|  | u8 *wsrc; | 
|  | u8 *wdst; | 
|  |  | 
|  | err = blkcipher_walk_virt(d, w); | 
|  | if (!(avail = w->nbytes)) | 
|  | return err; | 
|  |  | 
|  | wsrc = w->src.virt.addr; | 
|  | wdst = w->dst.virt.addr; | 
|  |  | 
|  | /* calculate first value of T */ | 
|  | iv = (be128 *)w->iv; | 
|  | s.t = *iv; | 
|  |  | 
|  | /* T <- I*Key2 */ | 
|  | gf128mul_64k_bbe(&s.t, ctx->table); | 
|  |  | 
|  | goto first; | 
|  |  | 
|  | for (;;) { | 
|  | do { | 
|  | /* T <- I*Key2, using the optimization | 
|  | * discussed in the specification */ | 
|  | be128_xor(&s.t, &s.t, &ctx->mulinc[get_index128(iv)]); | 
|  | inc(iv); | 
|  |  | 
|  | first: | 
|  | lrw_round(&s, wdst, wsrc); | 
|  |  | 
|  | wsrc += bs; | 
|  | wdst += bs; | 
|  | } while ((avail -= bs) >= bs); | 
|  |  | 
|  | err = blkcipher_walk_done(d, w, avail); | 
|  | if (!(avail = w->nbytes)) | 
|  | break; | 
|  |  | 
|  | wsrc = w->src.virt.addr; | 
|  | wdst = w->dst.virt.addr; | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, | 
|  | struct scatterlist *src, unsigned int nbytes) | 
|  | { | 
|  | struct priv *ctx = crypto_blkcipher_ctx(desc->tfm); | 
|  | struct blkcipher_walk w; | 
|  |  | 
|  | blkcipher_walk_init(&w, dst, src, nbytes); | 
|  | return crypt(desc, &w, ctx, | 
|  | crypto_cipher_alg(ctx->child)->cia_encrypt); | 
|  | } | 
|  |  | 
|  | static int decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, | 
|  | struct scatterlist *src, unsigned int nbytes) | 
|  | { | 
|  | struct priv *ctx = crypto_blkcipher_ctx(desc->tfm); | 
|  | struct blkcipher_walk w; | 
|  |  | 
|  | blkcipher_walk_init(&w, dst, src, nbytes); | 
|  | return crypt(desc, &w, ctx, | 
|  | crypto_cipher_alg(ctx->child)->cia_decrypt); | 
|  | } | 
|  |  | 
|  | static int init_tfm(struct crypto_tfm *tfm) | 
|  | { | 
|  | struct crypto_cipher *cipher; | 
|  | struct crypto_instance *inst = (void *)tfm->__crt_alg; | 
|  | struct crypto_spawn *spawn = crypto_instance_ctx(inst); | 
|  | struct priv *ctx = crypto_tfm_ctx(tfm); | 
|  | u32 *flags = &tfm->crt_flags; | 
|  |  | 
|  | cipher = crypto_spawn_cipher(spawn); | 
|  | if (IS_ERR(cipher)) | 
|  | return PTR_ERR(cipher); | 
|  |  | 
|  | if (crypto_cipher_blocksize(cipher) != 16) { | 
|  | *flags |= CRYPTO_TFM_RES_BAD_BLOCK_LEN; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ctx->child = cipher; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void exit_tfm(struct crypto_tfm *tfm) | 
|  | { | 
|  | struct priv *ctx = crypto_tfm_ctx(tfm); | 
|  | if (ctx->table) | 
|  | gf128mul_free_64k(ctx->table); | 
|  | crypto_free_cipher(ctx->child); | 
|  | } | 
|  |  | 
|  | static struct crypto_instance *alloc(void *param, unsigned int len) | 
|  | { | 
|  | struct crypto_instance *inst; | 
|  | struct crypto_alg *alg; | 
|  |  | 
|  | alg = crypto_get_attr_alg(param, len, CRYPTO_ALG_TYPE_CIPHER, | 
|  | CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_ASYNC); | 
|  | if (IS_ERR(alg)) | 
|  | return ERR_PTR(PTR_ERR(alg)); | 
|  |  | 
|  | inst = crypto_alloc_instance("lrw", alg); | 
|  | if (IS_ERR(inst)) | 
|  | goto out_put_alg; | 
|  |  | 
|  | inst->alg.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER; | 
|  | inst->alg.cra_priority = alg->cra_priority; | 
|  | inst->alg.cra_blocksize = alg->cra_blocksize; | 
|  |  | 
|  | if (alg->cra_alignmask < 7) inst->alg.cra_alignmask = 7; | 
|  | else inst->alg.cra_alignmask = alg->cra_alignmask; | 
|  | inst->alg.cra_type = &crypto_blkcipher_type; | 
|  |  | 
|  | if (!(alg->cra_blocksize % 4)) | 
|  | inst->alg.cra_alignmask |= 3; | 
|  | inst->alg.cra_blkcipher.ivsize = alg->cra_blocksize; | 
|  | inst->alg.cra_blkcipher.min_keysize = | 
|  | alg->cra_cipher.cia_min_keysize + alg->cra_blocksize; | 
|  | inst->alg.cra_blkcipher.max_keysize = | 
|  | alg->cra_cipher.cia_max_keysize + alg->cra_blocksize; | 
|  |  | 
|  | inst->alg.cra_ctxsize = sizeof(struct priv); | 
|  |  | 
|  | inst->alg.cra_init = init_tfm; | 
|  | inst->alg.cra_exit = exit_tfm; | 
|  |  | 
|  | inst->alg.cra_blkcipher.setkey = setkey; | 
|  | inst->alg.cra_blkcipher.encrypt = encrypt; | 
|  | inst->alg.cra_blkcipher.decrypt = decrypt; | 
|  |  | 
|  | out_put_alg: | 
|  | crypto_mod_put(alg); | 
|  | return inst; | 
|  | } | 
|  |  | 
|  | static void free(struct crypto_instance *inst) | 
|  | { | 
|  | crypto_drop_spawn(crypto_instance_ctx(inst)); | 
|  | kfree(inst); | 
|  | } | 
|  |  | 
|  | static struct crypto_template crypto_tmpl = { | 
|  | .name = "lrw", | 
|  | .alloc = alloc, | 
|  | .free = free, | 
|  | .module = THIS_MODULE, | 
|  | }; | 
|  |  | 
|  | static int __init crypto_module_init(void) | 
|  | { | 
|  | return crypto_register_template(&crypto_tmpl); | 
|  | } | 
|  |  | 
|  | static void __exit crypto_module_exit(void) | 
|  | { | 
|  | crypto_unregister_template(&crypto_tmpl); | 
|  | } | 
|  |  | 
|  | module_init(crypto_module_init); | 
|  | module_exit(crypto_module_exit); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_DESCRIPTION("LRW block cipher mode"); |