|  | /* | 
|  | * MTD map driver for AMD compatible flash chips (non-CFI) | 
|  | * | 
|  | * Author: Jonas Holmberg <jonas.holmberg@axis.com> | 
|  | * | 
|  | * $Id: amd_flash.c,v 1.28 2005/11/07 11:14:22 gleixner Exp $ | 
|  | * | 
|  | * Copyright (c) 2001 Axis Communications AB | 
|  | * | 
|  | * This file is under GPL. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/mtd/map.h> | 
|  | #include <linux/mtd/mtd.h> | 
|  | #include <linux/mtd/flashchip.h> | 
|  |  | 
|  | /* There's no limit. It exists only to avoid realloc. */ | 
|  | #define MAX_AMD_CHIPS 8 | 
|  |  | 
|  | #define DEVICE_TYPE_X8	(8 / 8) | 
|  | #define DEVICE_TYPE_X16	(16 / 8) | 
|  | #define DEVICE_TYPE_X32	(32 / 8) | 
|  |  | 
|  | /* Addresses */ | 
|  | #define ADDR_MANUFACTURER		0x0000 | 
|  | #define ADDR_DEVICE_ID			0x0001 | 
|  | #define ADDR_SECTOR_LOCK		0x0002 | 
|  | #define ADDR_HANDSHAKE			0x0003 | 
|  | #define ADDR_UNLOCK_1			0x0555 | 
|  | #define ADDR_UNLOCK_2			0x02AA | 
|  |  | 
|  | /* Commands */ | 
|  | #define CMD_UNLOCK_DATA_1		0x00AA | 
|  | #define CMD_UNLOCK_DATA_2		0x0055 | 
|  | #define CMD_MANUFACTURER_UNLOCK_DATA	0x0090 | 
|  | #define CMD_UNLOCK_BYPASS_MODE		0x0020 | 
|  | #define CMD_PROGRAM_UNLOCK_DATA		0x00A0 | 
|  | #define CMD_RESET_DATA			0x00F0 | 
|  | #define CMD_SECTOR_ERASE_UNLOCK_DATA	0x0080 | 
|  | #define CMD_SECTOR_ERASE_UNLOCK_DATA_2	0x0030 | 
|  |  | 
|  | #define CMD_UNLOCK_SECTOR		0x0060 | 
|  |  | 
|  | /* Manufacturers */ | 
|  | #define MANUFACTURER_AMD	0x0001 | 
|  | #define MANUFACTURER_ATMEL	0x001F | 
|  | #define MANUFACTURER_FUJITSU	0x0004 | 
|  | #define MANUFACTURER_ST		0x0020 | 
|  | #define MANUFACTURER_SST	0x00BF | 
|  | #define MANUFACTURER_TOSHIBA	0x0098 | 
|  |  | 
|  | /* AMD */ | 
|  | #define AM29F800BB	0x2258 | 
|  | #define AM29F800BT	0x22D6 | 
|  | #define AM29LV800BB	0x225B | 
|  | #define AM29LV800BT	0x22DA | 
|  | #define AM29LV160DT	0x22C4 | 
|  | #define AM29LV160DB	0x2249 | 
|  | #define AM29BDS323D     0x22D1 | 
|  |  | 
|  | /* Atmel */ | 
|  | #define AT49xV16x	0x00C0 | 
|  | #define AT49xV16xT	0x00C2 | 
|  |  | 
|  | /* Fujitsu */ | 
|  | #define MBM29LV160TE	0x22C4 | 
|  | #define MBM29LV160BE	0x2249 | 
|  | #define MBM29LV800BB	0x225B | 
|  |  | 
|  | /* ST - www.st.com */ | 
|  | #define M29W800T	0x00D7 | 
|  | #define M29W160DT	0x22C4 | 
|  | #define M29W160DB	0x2249 | 
|  |  | 
|  | /* SST */ | 
|  | #define SST39LF800	0x2781 | 
|  | #define SST39LF160	0x2782 | 
|  |  | 
|  | /* Toshiba */ | 
|  | #define TC58FVT160	0x00C2 | 
|  | #define TC58FVB160	0x0043 | 
|  |  | 
|  | #define D6_MASK	0x40 | 
|  |  | 
|  | struct amd_flash_private { | 
|  | int device_type; | 
|  | int interleave; | 
|  | int numchips; | 
|  | unsigned long chipshift; | 
|  | struct flchip chips[0]; | 
|  | }; | 
|  |  | 
|  | struct amd_flash_info { | 
|  | const __u16 mfr_id; | 
|  | const __u16 dev_id; | 
|  | const char *name; | 
|  | const u_long size; | 
|  | const int numeraseregions; | 
|  | const struct mtd_erase_region_info regions[4]; | 
|  | }; | 
|  |  | 
|  |  | 
|  |  | 
|  | static int amd_flash_read(struct mtd_info *, loff_t, size_t, size_t *, | 
|  | u_char *); | 
|  | static int amd_flash_write(struct mtd_info *, loff_t, size_t, size_t *, | 
|  | const u_char *); | 
|  | static int amd_flash_erase(struct mtd_info *, struct erase_info *); | 
|  | static void amd_flash_sync(struct mtd_info *); | 
|  | static int amd_flash_suspend(struct mtd_info *); | 
|  | static void amd_flash_resume(struct mtd_info *); | 
|  | static void amd_flash_destroy(struct mtd_info *); | 
|  | static struct mtd_info *amd_flash_probe(struct map_info *map); | 
|  |  | 
|  |  | 
|  | static struct mtd_chip_driver amd_flash_chipdrv = { | 
|  | .probe = amd_flash_probe, | 
|  | .destroy = amd_flash_destroy, | 
|  | .name = "amd_flash", | 
|  | .module = THIS_MODULE | 
|  | }; | 
|  |  | 
|  | static inline __u32 wide_read(struct map_info *map, __u32 addr) | 
|  | { | 
|  | if (map->buswidth == 1) { | 
|  | return map_read8(map, addr); | 
|  | } else if (map->buswidth == 2) { | 
|  | return map_read16(map, addr); | 
|  | } else if (map->buswidth == 4) { | 
|  | return map_read32(map, addr); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void wide_write(struct map_info *map, __u32 val, __u32 addr) | 
|  | { | 
|  | if (map->buswidth == 1) { | 
|  | map_write8(map, val, addr); | 
|  | } else if (map->buswidth == 2) { | 
|  | map_write16(map, val, addr); | 
|  | } else if (map->buswidth == 4) { | 
|  | map_write32(map, val, addr); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline __u32 make_cmd(struct map_info *map, __u32 cmd) | 
|  | { | 
|  | const struct amd_flash_private *private = map->fldrv_priv; | 
|  | if ((private->interleave == 2) && | 
|  | (private->device_type == DEVICE_TYPE_X16)) { | 
|  | cmd |= (cmd << 16); | 
|  | } | 
|  |  | 
|  | return cmd; | 
|  | } | 
|  |  | 
|  | static inline void send_unlock(struct map_info *map, unsigned long base) | 
|  | { | 
|  | wide_write(map, (CMD_UNLOCK_DATA_1 << 16) | CMD_UNLOCK_DATA_1, | 
|  | base + (map->buswidth * ADDR_UNLOCK_1)); | 
|  | wide_write(map, (CMD_UNLOCK_DATA_2 << 16) | CMD_UNLOCK_DATA_2, | 
|  | base + (map->buswidth * ADDR_UNLOCK_2)); | 
|  | } | 
|  |  | 
|  | static inline void send_cmd(struct map_info *map, unsigned long base, __u32 cmd) | 
|  | { | 
|  | send_unlock(map, base); | 
|  | wide_write(map, make_cmd(map, cmd), | 
|  | base + (map->buswidth * ADDR_UNLOCK_1)); | 
|  | } | 
|  |  | 
|  | static inline void send_cmd_to_addr(struct map_info *map, unsigned long base, | 
|  | __u32 cmd, unsigned long addr) | 
|  | { | 
|  | send_unlock(map, base); | 
|  | wide_write(map, make_cmd(map, cmd), addr); | 
|  | } | 
|  |  | 
|  | static inline int flash_is_busy(struct map_info *map, unsigned long addr, | 
|  | int interleave) | 
|  | { | 
|  |  | 
|  | if ((interleave == 2) && (map->buswidth == 4)) { | 
|  | __u32 read1, read2; | 
|  |  | 
|  | read1 = wide_read(map, addr); | 
|  | read2 = wide_read(map, addr); | 
|  |  | 
|  | return (((read1 >> 16) & D6_MASK) != | 
|  | ((read2 >> 16) & D6_MASK)) || | 
|  | (((read1 & 0xffff) & D6_MASK) != | 
|  | ((read2 & 0xffff) & D6_MASK)); | 
|  | } | 
|  |  | 
|  | return ((wide_read(map, addr) & D6_MASK) != | 
|  | (wide_read(map, addr) & D6_MASK)); | 
|  | } | 
|  |  | 
|  | static inline void unlock_sector(struct map_info *map, unsigned long sect_addr, | 
|  | int unlock) | 
|  | { | 
|  | /* Sector lock address. A6 = 1 for unlock, A6 = 0 for lock */ | 
|  | int SLA = unlock ? | 
|  | (sect_addr |  (0x40 * map->buswidth)) : | 
|  | (sect_addr & ~(0x40 * map->buswidth)) ; | 
|  |  | 
|  | __u32 cmd = make_cmd(map, CMD_UNLOCK_SECTOR); | 
|  |  | 
|  | wide_write(map, make_cmd(map, CMD_RESET_DATA), 0); | 
|  | wide_write(map, cmd, SLA); /* 1st cycle: write cmd to any address */ | 
|  | wide_write(map, cmd, SLA); /* 2nd cycle: write cmd to any address */ | 
|  | wide_write(map, cmd, SLA); /* 3rd cycle: write cmd to SLA */ | 
|  | } | 
|  |  | 
|  | static inline int is_sector_locked(struct map_info *map, | 
|  | unsigned long sect_addr) | 
|  | { | 
|  | int status; | 
|  |  | 
|  | wide_write(map, CMD_RESET_DATA, 0); | 
|  | send_cmd(map, sect_addr, CMD_MANUFACTURER_UNLOCK_DATA); | 
|  |  | 
|  | /* status is 0x0000 for unlocked and 0x0001 for locked */ | 
|  | status = wide_read(map, sect_addr + (map->buswidth * ADDR_SECTOR_LOCK)); | 
|  | wide_write(map, CMD_RESET_DATA, 0); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static int amd_flash_do_unlock(struct mtd_info *mtd, loff_t ofs, size_t len, | 
|  | int is_unlock) | 
|  | { | 
|  | struct map_info *map; | 
|  | struct mtd_erase_region_info *merip; | 
|  | int eraseoffset, erasesize, eraseblocks; | 
|  | int i; | 
|  | int retval = 0; | 
|  | int lock_status; | 
|  |  | 
|  | map = mtd->priv; | 
|  |  | 
|  | /* Pass the whole chip through sector by sector and check for each | 
|  | sector if the sector and the given interval overlap */ | 
|  | for(i = 0; i < mtd->numeraseregions; i++) { | 
|  | merip = &mtd->eraseregions[i]; | 
|  |  | 
|  | eraseoffset = merip->offset; | 
|  | erasesize = merip->erasesize; | 
|  | eraseblocks = merip->numblocks; | 
|  |  | 
|  | if (ofs > eraseoffset + erasesize) | 
|  | continue; | 
|  |  | 
|  | while (eraseblocks > 0) { | 
|  | if (ofs < eraseoffset + erasesize && ofs + len > eraseoffset) { | 
|  | unlock_sector(map, eraseoffset, is_unlock); | 
|  |  | 
|  | lock_status = is_sector_locked(map, eraseoffset); | 
|  |  | 
|  | if (is_unlock && lock_status) { | 
|  | printk("Cannot unlock sector at address %x length %xx\n", | 
|  | eraseoffset, merip->erasesize); | 
|  | retval = -1; | 
|  | } else if (!is_unlock && !lock_status) { | 
|  | printk("Cannot lock sector at address %x length %x\n", | 
|  | eraseoffset, merip->erasesize); | 
|  | retval = -1; | 
|  | } | 
|  | } | 
|  | eraseoffset += erasesize; | 
|  | eraseblocks --; | 
|  | } | 
|  | } | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int amd_flash_unlock(struct mtd_info *mtd, loff_t ofs, size_t len) | 
|  | { | 
|  | return amd_flash_do_unlock(mtd, ofs, len, 1); | 
|  | } | 
|  |  | 
|  | static int amd_flash_lock(struct mtd_info *mtd, loff_t ofs, size_t len) | 
|  | { | 
|  | return amd_flash_do_unlock(mtd, ofs, len, 0); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Reads JEDEC manufacturer ID and device ID and returns the index of the first | 
|  | * matching table entry (-1 if not found or alias for already found chip). | 
|  | */ | 
|  | static int probe_new_chip(struct mtd_info *mtd, __u32 base, | 
|  | struct flchip *chips, | 
|  | struct amd_flash_private *private, | 
|  | const struct amd_flash_info *table, int table_size) | 
|  | { | 
|  | __u32 mfr_id; | 
|  | __u32 dev_id; | 
|  | struct map_info *map = mtd->priv; | 
|  | struct amd_flash_private temp; | 
|  | int i; | 
|  |  | 
|  | temp.device_type = DEVICE_TYPE_X16;	// Assume X16 (FIXME) | 
|  | temp.interleave = 2; | 
|  | map->fldrv_priv = &temp; | 
|  |  | 
|  | /* Enter autoselect mode. */ | 
|  | send_cmd(map, base, CMD_RESET_DATA); | 
|  | send_cmd(map, base, CMD_MANUFACTURER_UNLOCK_DATA); | 
|  |  | 
|  | mfr_id = wide_read(map, base + (map->buswidth * ADDR_MANUFACTURER)); | 
|  | dev_id = wide_read(map, base + (map->buswidth * ADDR_DEVICE_ID)); | 
|  |  | 
|  | if ((map->buswidth == 4) && ((mfr_id >> 16) == (mfr_id & 0xffff)) && | 
|  | ((dev_id >> 16) == (dev_id & 0xffff))) { | 
|  | mfr_id &= 0xffff; | 
|  | dev_id &= 0xffff; | 
|  | } else { | 
|  | temp.interleave = 1; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < table_size; i++) { | 
|  | if ((mfr_id == table[i].mfr_id) && | 
|  | (dev_id == table[i].dev_id)) { | 
|  | if (chips) { | 
|  | int j; | 
|  |  | 
|  | /* Is this an alias for an already found chip? | 
|  | * In that case that chip should be in | 
|  | * autoselect mode now. | 
|  | */ | 
|  | for (j = 0; j < private->numchips; j++) { | 
|  | __u32 mfr_id_other; | 
|  | __u32 dev_id_other; | 
|  |  | 
|  | mfr_id_other = | 
|  | wide_read(map, chips[j].start + | 
|  | (map->buswidth * | 
|  | ADDR_MANUFACTURER | 
|  | )); | 
|  | dev_id_other = | 
|  | wide_read(map, chips[j].start + | 
|  | (map->buswidth * | 
|  | ADDR_DEVICE_ID)); | 
|  | if (temp.interleave == 2) { | 
|  | mfr_id_other &= 0xffff; | 
|  | dev_id_other &= 0xffff; | 
|  | } | 
|  | if ((mfr_id_other == mfr_id) && | 
|  | (dev_id_other == dev_id)) { | 
|  |  | 
|  | /* Exit autoselect mode. */ | 
|  | send_cmd(map, base, | 
|  | CMD_RESET_DATA); | 
|  |  | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (private->numchips == MAX_AMD_CHIPS) { | 
|  | printk(KERN_WARNING | 
|  | "%s: Too many flash chips " | 
|  | "detected. Increase " | 
|  | "MAX_AMD_CHIPS from %d.\n", | 
|  | map->name, MAX_AMD_CHIPS); | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | chips[private->numchips].start = base; | 
|  | chips[private->numchips].state = FL_READY; | 
|  | chips[private->numchips].mutex = | 
|  | &chips[private->numchips]._spinlock; | 
|  | private->numchips++; | 
|  | } | 
|  |  | 
|  | printk("%s: Found %d x %ldMiB %s at 0x%x\n", map->name, | 
|  | temp.interleave, (table[i].size)/(1024*1024), | 
|  | table[i].name, base); | 
|  |  | 
|  | mtd->size += table[i].size * temp.interleave; | 
|  | mtd->numeraseregions += table[i].numeraseregions; | 
|  |  | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Exit autoselect mode. */ | 
|  | send_cmd(map, base, CMD_RESET_DATA); | 
|  |  | 
|  | if (i == table_size) { | 
|  | printk(KERN_DEBUG "%s: unknown flash device at 0x%x, " | 
|  | "mfr id 0x%x, dev id 0x%x\n", map->name, | 
|  | base, mfr_id, dev_id); | 
|  | map->fldrv_priv = NULL; | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | private->device_type = temp.device_type; | 
|  | private->interleave = temp.interleave; | 
|  |  | 
|  | return i; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | static struct mtd_info *amd_flash_probe(struct map_info *map) | 
|  | { | 
|  | static const struct amd_flash_info table[] = { | 
|  | { | 
|  | .mfr_id = MANUFACTURER_AMD, | 
|  | .dev_id = AM29LV160DT, | 
|  | .name = "AMD AM29LV160DT", | 
|  | .size = 0x00200000, | 
|  | .numeraseregions = 4, | 
|  | .regions = { | 
|  | { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 }, | 
|  | { .offset = 0x1F0000, .erasesize = 0x08000, .numblocks =  1 }, | 
|  | { .offset = 0x1F8000, .erasesize = 0x02000, .numblocks =  2 }, | 
|  | { .offset = 0x1FC000, .erasesize = 0x04000, .numblocks =  1 } | 
|  | } | 
|  | }, { | 
|  | .mfr_id = MANUFACTURER_AMD, | 
|  | .dev_id = AM29LV160DB, | 
|  | .name = "AMD AM29LV160DB", | 
|  | .size = 0x00200000, | 
|  | .numeraseregions = 4, | 
|  | .regions = { | 
|  | { .offset = 0x000000, .erasesize = 0x04000, .numblocks =  1 }, | 
|  | { .offset = 0x004000, .erasesize = 0x02000, .numblocks =  2 }, | 
|  | { .offset = 0x008000, .erasesize = 0x08000, .numblocks =  1 }, | 
|  | { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 } | 
|  | } | 
|  | }, { | 
|  | .mfr_id = MANUFACTURER_TOSHIBA, | 
|  | .dev_id = TC58FVT160, | 
|  | .name = "Toshiba TC58FVT160", | 
|  | .size = 0x00200000, | 
|  | .numeraseregions = 4, | 
|  | .regions = { | 
|  | { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 }, | 
|  | { .offset = 0x1F0000, .erasesize = 0x08000, .numblocks =  1 }, | 
|  | { .offset = 0x1F8000, .erasesize = 0x02000, .numblocks =  2 }, | 
|  | { .offset = 0x1FC000, .erasesize = 0x04000, .numblocks =  1 } | 
|  | } | 
|  | }, { | 
|  | .mfr_id = MANUFACTURER_FUJITSU, | 
|  | .dev_id = MBM29LV160TE, | 
|  | .name = "Fujitsu MBM29LV160TE", | 
|  | .size = 0x00200000, | 
|  | .numeraseregions = 4, | 
|  | .regions = { | 
|  | { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 }, | 
|  | { .offset = 0x1F0000, .erasesize = 0x08000, .numblocks =  1 }, | 
|  | { .offset = 0x1F8000, .erasesize = 0x02000, .numblocks =  2 }, | 
|  | { .offset = 0x1FC000, .erasesize = 0x04000, .numblocks =  1 } | 
|  | } | 
|  | }, { | 
|  | .mfr_id = MANUFACTURER_TOSHIBA, | 
|  | .dev_id = TC58FVB160, | 
|  | .name = "Toshiba TC58FVB160", | 
|  | .size = 0x00200000, | 
|  | .numeraseregions = 4, | 
|  | .regions = { | 
|  | { .offset = 0x000000, .erasesize = 0x04000, .numblocks =  1 }, | 
|  | { .offset = 0x004000, .erasesize = 0x02000, .numblocks =  2 }, | 
|  | { .offset = 0x008000, .erasesize = 0x08000, .numblocks =  1 }, | 
|  | { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 } | 
|  | } | 
|  | }, { | 
|  | .mfr_id = MANUFACTURER_FUJITSU, | 
|  | .dev_id = MBM29LV160BE, | 
|  | .name = "Fujitsu MBM29LV160BE", | 
|  | .size = 0x00200000, | 
|  | .numeraseregions = 4, | 
|  | .regions = { | 
|  | { .offset = 0x000000, .erasesize = 0x04000, .numblocks =  1 }, | 
|  | { .offset = 0x004000, .erasesize = 0x02000, .numblocks =  2 }, | 
|  | { .offset = 0x008000, .erasesize = 0x08000, .numblocks =  1 }, | 
|  | { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 } | 
|  | } | 
|  | }, { | 
|  | .mfr_id = MANUFACTURER_AMD, | 
|  | .dev_id = AM29LV800BB, | 
|  | .name = "AMD AM29LV800BB", | 
|  | .size = 0x00100000, | 
|  | .numeraseregions = 4, | 
|  | .regions = { | 
|  | { .offset = 0x000000, .erasesize = 0x04000, .numblocks =  1 }, | 
|  | { .offset = 0x004000, .erasesize = 0x02000, .numblocks =  2 }, | 
|  | { .offset = 0x008000, .erasesize = 0x08000, .numblocks =  1 }, | 
|  | { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 15 } | 
|  | } | 
|  | }, { | 
|  | .mfr_id = MANUFACTURER_AMD, | 
|  | .dev_id = AM29F800BB, | 
|  | .name = "AMD AM29F800BB", | 
|  | .size = 0x00100000, | 
|  | .numeraseregions = 4, | 
|  | .regions = { | 
|  | { .offset = 0x000000, .erasesize = 0x04000, .numblocks =  1 }, | 
|  | { .offset = 0x004000, .erasesize = 0x02000, .numblocks =  2 }, | 
|  | { .offset = 0x008000, .erasesize = 0x08000, .numblocks =  1 }, | 
|  | { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 15 } | 
|  | } | 
|  | }, { | 
|  | .mfr_id = MANUFACTURER_AMD, | 
|  | .dev_id = AM29LV800BT, | 
|  | .name = "AMD AM29LV800BT", | 
|  | .size = 0x00100000, | 
|  | .numeraseregions = 4, | 
|  | .regions = { | 
|  | { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 15 }, | 
|  | { .offset = 0x0F0000, .erasesize = 0x08000, .numblocks =  1 }, | 
|  | { .offset = 0x0F8000, .erasesize = 0x02000, .numblocks =  2 }, | 
|  | { .offset = 0x0FC000, .erasesize = 0x04000, .numblocks =  1 } | 
|  | } | 
|  | }, { | 
|  | .mfr_id = MANUFACTURER_AMD, | 
|  | .dev_id = AM29F800BT, | 
|  | .name = "AMD AM29F800BT", | 
|  | .size = 0x00100000, | 
|  | .numeraseregions = 4, | 
|  | .regions = { | 
|  | { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 15 }, | 
|  | { .offset = 0x0F0000, .erasesize = 0x08000, .numblocks =  1 }, | 
|  | { .offset = 0x0F8000, .erasesize = 0x02000, .numblocks =  2 }, | 
|  | { .offset = 0x0FC000, .erasesize = 0x04000, .numblocks =  1 } | 
|  | } | 
|  | }, { | 
|  | .mfr_id = MANUFACTURER_AMD, | 
|  | .dev_id = AM29LV800BB, | 
|  | .name = "AMD AM29LV800BB", | 
|  | .size = 0x00100000, | 
|  | .numeraseregions = 4, | 
|  | .regions = { | 
|  | { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 15 }, | 
|  | { .offset = 0x0F0000, .erasesize = 0x08000, .numblocks =  1 }, | 
|  | { .offset = 0x0F8000, .erasesize = 0x02000, .numblocks =  2 }, | 
|  | { .offset = 0x0FC000, .erasesize = 0x04000, .numblocks =  1 } | 
|  | } | 
|  | }, { | 
|  | .mfr_id = MANUFACTURER_FUJITSU, | 
|  | .dev_id = MBM29LV800BB, | 
|  | .name = "Fujitsu MBM29LV800BB", | 
|  | .size = 0x00100000, | 
|  | .numeraseregions = 4, | 
|  | .regions = { | 
|  | { .offset = 0x000000, .erasesize = 0x04000, .numblocks =  1 }, | 
|  | { .offset = 0x004000, .erasesize = 0x02000, .numblocks =  2 }, | 
|  | { .offset = 0x008000, .erasesize = 0x08000, .numblocks =  1 }, | 
|  | { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 15 } | 
|  | } | 
|  | }, { | 
|  | .mfr_id = MANUFACTURER_ST, | 
|  | .dev_id = M29W800T, | 
|  | .name = "ST M29W800T", | 
|  | .size = 0x00100000, | 
|  | .numeraseregions = 4, | 
|  | .regions = { | 
|  | { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 15 }, | 
|  | { .offset = 0x0F0000, .erasesize = 0x08000, .numblocks =  1 }, | 
|  | { .offset = 0x0F8000, .erasesize = 0x02000, .numblocks =  2 }, | 
|  | { .offset = 0x0FC000, .erasesize = 0x04000, .numblocks =  1 } | 
|  | } | 
|  | }, { | 
|  | .mfr_id = MANUFACTURER_ST, | 
|  | .dev_id = M29W160DT, | 
|  | .name = "ST M29W160DT", | 
|  | .size = 0x00200000, | 
|  | .numeraseregions = 4, | 
|  | .regions = { | 
|  | { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 }, | 
|  | { .offset = 0x1F0000, .erasesize = 0x08000, .numblocks =  1 }, | 
|  | { .offset = 0x1F8000, .erasesize = 0x02000, .numblocks =  2 }, | 
|  | { .offset = 0x1FC000, .erasesize = 0x04000, .numblocks =  1 } | 
|  | } | 
|  | }, { | 
|  | .mfr_id = MANUFACTURER_ST, | 
|  | .dev_id = M29W160DB, | 
|  | .name = "ST M29W160DB", | 
|  | .size = 0x00200000, | 
|  | .numeraseregions = 4, | 
|  | .regions = { | 
|  | { .offset = 0x000000, .erasesize = 0x04000, .numblocks =  1 }, | 
|  | { .offset = 0x004000, .erasesize = 0x02000, .numblocks =  2 }, | 
|  | { .offset = 0x008000, .erasesize = 0x08000, .numblocks =  1 }, | 
|  | { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 } | 
|  | } | 
|  | }, { | 
|  | .mfr_id = MANUFACTURER_AMD, | 
|  | .dev_id = AM29BDS323D, | 
|  | .name = "AMD AM29BDS323D", | 
|  | .size = 0x00400000, | 
|  | .numeraseregions = 3, | 
|  | .regions = { | 
|  | { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 48 }, | 
|  | { .offset = 0x300000, .erasesize = 0x10000, .numblocks = 15 }, | 
|  | { .offset = 0x3f0000, .erasesize = 0x02000, .numblocks =  8 }, | 
|  | } | 
|  | }, { | 
|  | .mfr_id = MANUFACTURER_ATMEL, | 
|  | .dev_id = AT49xV16x, | 
|  | .name = "Atmel AT49xV16x", | 
|  | .size = 0x00200000, | 
|  | .numeraseregions = 2, | 
|  | .regions = { | 
|  | { .offset = 0x000000, .erasesize = 0x02000, .numblocks =  8 }, | 
|  | { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 } | 
|  | } | 
|  | }, { | 
|  | .mfr_id = MANUFACTURER_ATMEL, | 
|  | .dev_id = AT49xV16xT, | 
|  | .name = "Atmel AT49xV16xT", | 
|  | .size = 0x00200000, | 
|  | .numeraseregions = 2, | 
|  | .regions = { | 
|  | { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 }, | 
|  | { .offset = 0x1F0000, .erasesize = 0x02000, .numblocks =  8 } | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct mtd_info *mtd; | 
|  | struct flchip chips[MAX_AMD_CHIPS]; | 
|  | int table_pos[MAX_AMD_CHIPS]; | 
|  | struct amd_flash_private temp; | 
|  | struct amd_flash_private *private; | 
|  | u_long size; | 
|  | unsigned long base; | 
|  | int i; | 
|  | int reg_idx; | 
|  | int offset; | 
|  |  | 
|  | mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); | 
|  | if (!mtd) { | 
|  | printk(KERN_WARNING | 
|  | "%s: kmalloc failed for info structure\n", map->name); | 
|  | return NULL; | 
|  | } | 
|  | mtd->priv = map; | 
|  |  | 
|  | memset(&temp, 0, sizeof(temp)); | 
|  |  | 
|  | printk("%s: Probing for AMD compatible flash...\n", map->name); | 
|  |  | 
|  | if ((table_pos[0] = probe_new_chip(mtd, 0, NULL, &temp, table, | 
|  | ARRAY_SIZE(table))) | 
|  | == -1) { | 
|  | printk(KERN_WARNING | 
|  | "%s: Found no AMD compatible device at location zero\n", | 
|  | map->name); | 
|  | kfree(mtd); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | chips[0].start = 0; | 
|  | chips[0].state = FL_READY; | 
|  | chips[0].mutex = &chips[0]._spinlock; | 
|  | temp.numchips = 1; | 
|  | for (size = mtd->size; size > 1; size >>= 1) { | 
|  | temp.chipshift++; | 
|  | } | 
|  | switch (temp.interleave) { | 
|  | case 2: | 
|  | temp.chipshift += 1; | 
|  | break; | 
|  | case 4: | 
|  | temp.chipshift += 2; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Find out if there are any more chips in the map. */ | 
|  | for (base = (1 << temp.chipshift); | 
|  | base < map->size; | 
|  | base += (1 << temp.chipshift)) { | 
|  | int numchips = temp.numchips; | 
|  | table_pos[numchips] = probe_new_chip(mtd, base, chips, | 
|  | &temp, table, ARRAY_SIZE(table)); | 
|  | } | 
|  |  | 
|  | mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) * | 
|  | mtd->numeraseregions, GFP_KERNEL); | 
|  | if (!mtd->eraseregions) { | 
|  | printk(KERN_WARNING "%s: Failed to allocate " | 
|  | "memory for MTD erase region info\n", map->name); | 
|  | kfree(mtd); | 
|  | map->fldrv_priv = NULL; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | reg_idx = 0; | 
|  | offset = 0; | 
|  | for (i = 0; i < temp.numchips; i++) { | 
|  | int dev_size; | 
|  | int j; | 
|  |  | 
|  | dev_size = 0; | 
|  | for (j = 0; j < table[table_pos[i]].numeraseregions; j++) { | 
|  | mtd->eraseregions[reg_idx].offset = offset + | 
|  | (table[table_pos[i]].regions[j].offset * | 
|  | temp.interleave); | 
|  | mtd->eraseregions[reg_idx].erasesize = | 
|  | table[table_pos[i]].regions[j].erasesize * | 
|  | temp.interleave; | 
|  | mtd->eraseregions[reg_idx].numblocks = | 
|  | table[table_pos[i]].regions[j].numblocks; | 
|  | if (mtd->erasesize < | 
|  | mtd->eraseregions[reg_idx].erasesize) { | 
|  | mtd->erasesize = | 
|  | mtd->eraseregions[reg_idx].erasesize; | 
|  | } | 
|  | dev_size += mtd->eraseregions[reg_idx].erasesize * | 
|  | mtd->eraseregions[reg_idx].numblocks; | 
|  | reg_idx++; | 
|  | } | 
|  | offset += dev_size; | 
|  | } | 
|  | mtd->type = MTD_NORFLASH; | 
|  | mtd->writesize = 1; | 
|  | mtd->flags = MTD_CAP_NORFLASH; | 
|  | mtd->name = map->name; | 
|  | mtd->erase = amd_flash_erase; | 
|  | mtd->read = amd_flash_read; | 
|  | mtd->write = amd_flash_write; | 
|  | mtd->sync = amd_flash_sync; | 
|  | mtd->suspend = amd_flash_suspend; | 
|  | mtd->resume = amd_flash_resume; | 
|  | mtd->lock = amd_flash_lock; | 
|  | mtd->unlock = amd_flash_unlock; | 
|  |  | 
|  | private = kmalloc(sizeof(*private) + (sizeof(struct flchip) * | 
|  | temp.numchips), GFP_KERNEL); | 
|  | if (!private) { | 
|  | printk(KERN_WARNING | 
|  | "%s: kmalloc failed for private structure\n", map->name); | 
|  | kfree(mtd); | 
|  | map->fldrv_priv = NULL; | 
|  | return NULL; | 
|  | } | 
|  | memcpy(private, &temp, sizeof(temp)); | 
|  | memcpy(private->chips, chips, | 
|  | sizeof(struct flchip) * private->numchips); | 
|  | for (i = 0; i < private->numchips; i++) { | 
|  | init_waitqueue_head(&private->chips[i].wq); | 
|  | spin_lock_init(&private->chips[i]._spinlock); | 
|  | } | 
|  |  | 
|  | map->fldrv_priv = private; | 
|  |  | 
|  | map->fldrv = &amd_flash_chipdrv; | 
|  |  | 
|  | __module_get(THIS_MODULE); | 
|  | return mtd; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | static inline int read_one_chip(struct map_info *map, struct flchip *chip, | 
|  | loff_t adr, size_t len, u_char *buf) | 
|  | { | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  | unsigned long timeo = jiffies + HZ; | 
|  |  | 
|  | retry: | 
|  | spin_lock_bh(chip->mutex); | 
|  |  | 
|  | if (chip->state != FL_READY){ | 
|  | printk(KERN_INFO "%s: waiting for chip to read, state = %d\n", | 
|  | map->name, chip->state); | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | add_wait_queue(&chip->wq, &wait); | 
|  |  | 
|  | spin_unlock_bh(chip->mutex); | 
|  |  | 
|  | schedule(); | 
|  | remove_wait_queue(&chip->wq, &wait); | 
|  |  | 
|  | if(signal_pending(current)) { | 
|  | return -EINTR; | 
|  | } | 
|  |  | 
|  | timeo = jiffies + HZ; | 
|  |  | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | adr += chip->start; | 
|  |  | 
|  | chip->state = FL_READY; | 
|  |  | 
|  | map_copy_from(map, buf, adr, len); | 
|  |  | 
|  | wake_up(&chip->wq); | 
|  | spin_unlock_bh(chip->mutex); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | static int amd_flash_read(struct mtd_info *mtd, loff_t from, size_t len, | 
|  | size_t *retlen, u_char *buf) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct amd_flash_private *private = map->fldrv_priv; | 
|  | unsigned long ofs; | 
|  | int chipnum; | 
|  | int ret = 0; | 
|  |  | 
|  | if ((from + len) > mtd->size) { | 
|  | printk(KERN_WARNING "%s: read request past end of device " | 
|  | "(0x%lx)\n", map->name, (unsigned long)from + len); | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Offset within the first chip that the first read should start. */ | 
|  | chipnum = (from >> private->chipshift); | 
|  | ofs = from - (chipnum <<  private->chipshift); | 
|  |  | 
|  | *retlen = 0; | 
|  |  | 
|  | while (len) { | 
|  | unsigned long this_len; | 
|  |  | 
|  | if (chipnum >= private->numchips) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | if ((len + ofs - 1) >> private->chipshift) { | 
|  | this_len = (1 << private->chipshift) - ofs; | 
|  | } else { | 
|  | this_len = len; | 
|  | } | 
|  |  | 
|  | ret = read_one_chip(map, &private->chips[chipnum], ofs, | 
|  | this_len, buf); | 
|  | if (ret) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | *retlen += this_len; | 
|  | len -= this_len; | 
|  | buf += this_len; | 
|  |  | 
|  | ofs = 0; | 
|  | chipnum++; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | static int write_one_word(struct map_info *map, struct flchip *chip, | 
|  | unsigned long adr, __u32 datum) | 
|  | { | 
|  | unsigned long timeo = jiffies + HZ; | 
|  | struct amd_flash_private *private = map->fldrv_priv; | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  | int ret = 0; | 
|  | int times_left; | 
|  |  | 
|  | retry: | 
|  | spin_lock_bh(chip->mutex); | 
|  |  | 
|  | if (chip->state != FL_READY){ | 
|  | printk("%s: waiting for chip to write, state = %d\n", | 
|  | map->name, chip->state); | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | add_wait_queue(&chip->wq, &wait); | 
|  |  | 
|  | spin_unlock_bh(chip->mutex); | 
|  |  | 
|  | schedule(); | 
|  | remove_wait_queue(&chip->wq, &wait); | 
|  | printk(KERN_INFO "%s: woke up to write\n", map->name); | 
|  | if(signal_pending(current)) | 
|  | return -EINTR; | 
|  |  | 
|  | timeo = jiffies + HZ; | 
|  |  | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | chip->state = FL_WRITING; | 
|  |  | 
|  | adr += chip->start; | 
|  | ENABLE_VPP(map); | 
|  | send_cmd(map, chip->start, CMD_PROGRAM_UNLOCK_DATA); | 
|  | wide_write(map, datum, adr); | 
|  |  | 
|  | times_left = 500000; | 
|  | while (times_left-- && flash_is_busy(map, adr, private->interleave)) { | 
|  | if (need_resched()) { | 
|  | spin_unlock_bh(chip->mutex); | 
|  | schedule(); | 
|  | spin_lock_bh(chip->mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!times_left) { | 
|  | printk(KERN_WARNING "%s: write to 0x%lx timed out!\n", | 
|  | map->name, adr); | 
|  | ret = -EIO; | 
|  | } else { | 
|  | __u32 verify; | 
|  | if ((verify = wide_read(map, adr)) != datum) { | 
|  | printk(KERN_WARNING "%s: write to 0x%lx failed. " | 
|  | "datum = %x, verify = %x\n", | 
|  | map->name, adr, datum, verify); | 
|  | ret = -EIO; | 
|  | } | 
|  | } | 
|  |  | 
|  | DISABLE_VPP(map); | 
|  | chip->state = FL_READY; | 
|  | wake_up(&chip->wq); | 
|  | spin_unlock_bh(chip->mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | static int amd_flash_write(struct mtd_info *mtd, loff_t to , size_t len, | 
|  | size_t *retlen, const u_char *buf) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct amd_flash_private *private = map->fldrv_priv; | 
|  | int ret = 0; | 
|  | int chipnum; | 
|  | unsigned long ofs; | 
|  | unsigned long chipstart; | 
|  |  | 
|  | *retlen = 0; | 
|  | if (!len) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | chipnum = to >> private->chipshift; | 
|  | ofs = to  - (chipnum << private->chipshift); | 
|  | chipstart = private->chips[chipnum].start; | 
|  |  | 
|  | /* If it's not bus-aligned, do the first byte write. */ | 
|  | if (ofs & (map->buswidth - 1)) { | 
|  | unsigned long bus_ofs = ofs & ~(map->buswidth - 1); | 
|  | int i = ofs - bus_ofs; | 
|  | int n = 0; | 
|  | u_char tmp_buf[4]; | 
|  | __u32 datum; | 
|  |  | 
|  | map_copy_from(map, tmp_buf, | 
|  | bus_ofs + private->chips[chipnum].start, | 
|  | map->buswidth); | 
|  | while (len && i < map->buswidth) | 
|  | tmp_buf[i++] = buf[n++], len--; | 
|  |  | 
|  | if (map->buswidth == 2) { | 
|  | datum = *(__u16*)tmp_buf; | 
|  | } else if (map->buswidth == 4) { | 
|  | datum = *(__u32*)tmp_buf; | 
|  | } else { | 
|  | return -EINVAL;  /* should never happen, but be safe */ | 
|  | } | 
|  |  | 
|  | ret = write_one_word(map, &private->chips[chipnum], bus_ofs, | 
|  | datum); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ofs += n; | 
|  | buf += n; | 
|  | (*retlen) += n; | 
|  |  | 
|  | if (ofs >> private->chipshift) { | 
|  | chipnum++; | 
|  | ofs = 0; | 
|  | if (chipnum == private->numchips) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* We are now aligned, write as much as possible. */ | 
|  | while(len >= map->buswidth) { | 
|  | __u32 datum; | 
|  |  | 
|  | if (map->buswidth == 1) { | 
|  | datum = *(__u8*)buf; | 
|  | } else if (map->buswidth == 2) { | 
|  | datum = *(__u16*)buf; | 
|  | } else if (map->buswidth == 4) { | 
|  | datum = *(__u32*)buf; | 
|  | } else { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ret = write_one_word(map, &private->chips[chipnum], ofs, datum); | 
|  |  | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ofs += map->buswidth; | 
|  | buf += map->buswidth; | 
|  | (*retlen) += map->buswidth; | 
|  | len -= map->buswidth; | 
|  |  | 
|  | if (ofs >> private->chipshift) { | 
|  | chipnum++; | 
|  | ofs = 0; | 
|  | if (chipnum == private->numchips) { | 
|  | return 0; | 
|  | } | 
|  | chipstart = private->chips[chipnum].start; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (len & (map->buswidth - 1)) { | 
|  | int i = 0, n = 0; | 
|  | u_char tmp_buf[2]; | 
|  | __u32 datum; | 
|  |  | 
|  | map_copy_from(map, tmp_buf, | 
|  | ofs + private->chips[chipnum].start, | 
|  | map->buswidth); | 
|  | while (len--) { | 
|  | tmp_buf[i++] = buf[n++]; | 
|  | } | 
|  |  | 
|  | if (map->buswidth == 2) { | 
|  | datum = *(__u16*)tmp_buf; | 
|  | } else if (map->buswidth == 4) { | 
|  | datum = *(__u32*)tmp_buf; | 
|  | } else { | 
|  | return -EINVAL;  /* should never happen, but be safe */ | 
|  | } | 
|  |  | 
|  | ret = write_one_word(map, &private->chips[chipnum], ofs, datum); | 
|  |  | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | (*retlen) += n; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | static inline int erase_one_block(struct map_info *map, struct flchip *chip, | 
|  | unsigned long adr, u_long size) | 
|  | { | 
|  | unsigned long timeo = jiffies + HZ; | 
|  | struct amd_flash_private *private = map->fldrv_priv; | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  |  | 
|  | retry: | 
|  | spin_lock_bh(chip->mutex); | 
|  |  | 
|  | if (chip->state != FL_READY){ | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | add_wait_queue(&chip->wq, &wait); | 
|  |  | 
|  | spin_unlock_bh(chip->mutex); | 
|  |  | 
|  | schedule(); | 
|  | remove_wait_queue(&chip->wq, &wait); | 
|  |  | 
|  | if (signal_pending(current)) { | 
|  | return -EINTR; | 
|  | } | 
|  |  | 
|  | timeo = jiffies + HZ; | 
|  |  | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | chip->state = FL_ERASING; | 
|  |  | 
|  | adr += chip->start; | 
|  | ENABLE_VPP(map); | 
|  | send_cmd(map, chip->start, CMD_SECTOR_ERASE_UNLOCK_DATA); | 
|  | send_cmd_to_addr(map, chip->start, CMD_SECTOR_ERASE_UNLOCK_DATA_2, adr); | 
|  |  | 
|  | timeo = jiffies + (HZ * 20); | 
|  |  | 
|  | spin_unlock_bh(chip->mutex); | 
|  | msleep(1000); | 
|  | spin_lock_bh(chip->mutex); | 
|  |  | 
|  | while (flash_is_busy(map, adr, private->interleave)) { | 
|  |  | 
|  | if (chip->state != FL_ERASING) { | 
|  | /* Someone's suspended the erase. Sleep */ | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | add_wait_queue(&chip->wq, &wait); | 
|  |  | 
|  | spin_unlock_bh(chip->mutex); | 
|  | printk(KERN_INFO "%s: erase suspended. Sleeping\n", | 
|  | map->name); | 
|  | schedule(); | 
|  | remove_wait_queue(&chip->wq, &wait); | 
|  |  | 
|  | if (signal_pending(current)) { | 
|  | return -EINTR; | 
|  | } | 
|  |  | 
|  | timeo = jiffies + (HZ*2); /* FIXME */ | 
|  | spin_lock_bh(chip->mutex); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* OK Still waiting */ | 
|  | if (time_after(jiffies, timeo)) { | 
|  | chip->state = FL_READY; | 
|  | spin_unlock_bh(chip->mutex); | 
|  | printk(KERN_WARNING "%s: waiting for erase to complete " | 
|  | "timed out.\n", map->name); | 
|  | DISABLE_VPP(map); | 
|  |  | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* Latency issues. Drop the lock, wait a while and retry */ | 
|  | spin_unlock_bh(chip->mutex); | 
|  |  | 
|  | if (need_resched()) | 
|  | schedule(); | 
|  | else | 
|  | udelay(1); | 
|  |  | 
|  | spin_lock_bh(chip->mutex); | 
|  | } | 
|  |  | 
|  | /* Verify every single word */ | 
|  | { | 
|  | int address; | 
|  | int error = 0; | 
|  | __u8 verify; | 
|  |  | 
|  | for (address = adr; address < (adr + size); address++) { | 
|  | if ((verify = map_read8(map, address)) != 0xFF) { | 
|  | error = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (error) { | 
|  | chip->state = FL_READY; | 
|  | spin_unlock_bh(chip->mutex); | 
|  | printk(KERN_WARNING | 
|  | "%s: verify error at 0x%x, size %ld.\n", | 
|  | map->name, address, size); | 
|  | DISABLE_VPP(map); | 
|  |  | 
|  | return -EIO; | 
|  | } | 
|  | } | 
|  |  | 
|  | DISABLE_VPP(map); | 
|  | chip->state = FL_READY; | 
|  | wake_up(&chip->wq); | 
|  | spin_unlock_bh(chip->mutex); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | static int amd_flash_erase(struct mtd_info *mtd, struct erase_info *instr) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct amd_flash_private *private = map->fldrv_priv; | 
|  | unsigned long adr, len; | 
|  | int chipnum; | 
|  | int ret = 0; | 
|  | int i; | 
|  | int first; | 
|  | struct mtd_erase_region_info *regions = mtd->eraseregions; | 
|  |  | 
|  | if (instr->addr > mtd->size) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if ((instr->len + instr->addr) > mtd->size) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Check that both start and end of the requested erase are | 
|  | * aligned with the erasesize at the appropriate addresses. | 
|  | */ | 
|  |  | 
|  | i = 0; | 
|  |  | 
|  | /* Skip all erase regions which are ended before the start of | 
|  | the requested erase. Actually, to save on the calculations, | 
|  | we skip to the first erase region which starts after the | 
|  | start of the requested erase, and then go back one. | 
|  | */ | 
|  |  | 
|  | while ((i < mtd->numeraseregions) && | 
|  | (instr->addr >= regions[i].offset)) { | 
|  | i++; | 
|  | } | 
|  | i--; | 
|  |  | 
|  | /* OK, now i is pointing at the erase region in which this | 
|  | * erase request starts. Check the start of the requested | 
|  | * erase range is aligned with the erase size which is in | 
|  | * effect here. | 
|  | */ | 
|  |  | 
|  | if (instr->addr & (regions[i].erasesize-1)) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Remember the erase region we start on. */ | 
|  |  | 
|  | first = i; | 
|  |  | 
|  | /* Next, check that the end of the requested erase is aligned | 
|  | * with the erase region at that address. | 
|  | */ | 
|  |  | 
|  | while ((i < mtd->numeraseregions) && | 
|  | ((instr->addr + instr->len) >= regions[i].offset)) { | 
|  | i++; | 
|  | } | 
|  |  | 
|  | /* As before, drop back one to point at the region in which | 
|  | * the address actually falls. | 
|  | */ | 
|  |  | 
|  | i--; | 
|  |  | 
|  | if ((instr->addr + instr->len) & (regions[i].erasesize-1)) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | chipnum = instr->addr >> private->chipshift; | 
|  | adr = instr->addr - (chipnum << private->chipshift); | 
|  | len = instr->len; | 
|  |  | 
|  | i = first; | 
|  |  | 
|  | while (len) { | 
|  | ret = erase_one_block(map, &private->chips[chipnum], adr, | 
|  | regions[i].erasesize); | 
|  |  | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | adr += regions[i].erasesize; | 
|  | len -= regions[i].erasesize; | 
|  |  | 
|  | if ((adr % (1 << private->chipshift)) == | 
|  | ((regions[i].offset + (regions[i].erasesize * | 
|  | regions[i].numblocks)) | 
|  | % (1 << private->chipshift))) { | 
|  | i++; | 
|  | } | 
|  |  | 
|  | if (adr >> private->chipshift) { | 
|  | adr = 0; | 
|  | chipnum++; | 
|  | if (chipnum >= private->numchips) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | instr->state = MTD_ERASE_DONE; | 
|  | mtd_erase_callback(instr); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | static void amd_flash_sync(struct mtd_info *mtd) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct amd_flash_private *private = map->fldrv_priv; | 
|  | int i; | 
|  | struct flchip *chip; | 
|  | int ret = 0; | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  |  | 
|  | for (i = 0; !ret && (i < private->numchips); i++) { | 
|  | chip = &private->chips[i]; | 
|  |  | 
|  | retry: | 
|  | spin_lock_bh(chip->mutex); | 
|  |  | 
|  | switch(chip->state) { | 
|  | case FL_READY: | 
|  | case FL_STATUS: | 
|  | case FL_CFI_QUERY: | 
|  | case FL_JEDEC_QUERY: | 
|  | chip->oldstate = chip->state; | 
|  | chip->state = FL_SYNCING; | 
|  | /* No need to wake_up() on this state change - | 
|  | * as the whole point is that nobody can do anything | 
|  | * with the chip now anyway. | 
|  | */ | 
|  | case FL_SYNCING: | 
|  | spin_unlock_bh(chip->mutex); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | /* Not an idle state */ | 
|  | add_wait_queue(&chip->wq, &wait); | 
|  |  | 
|  | spin_unlock_bh(chip->mutex); | 
|  |  | 
|  | schedule(); | 
|  |  | 
|  | remove_wait_queue(&chip->wq, &wait); | 
|  |  | 
|  | goto retry; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Unlock the chips again */ | 
|  | for (i--; i >= 0; i--) { | 
|  | chip = &private->chips[i]; | 
|  |  | 
|  | spin_lock_bh(chip->mutex); | 
|  |  | 
|  | if (chip->state == FL_SYNCING) { | 
|  | chip->state = chip->oldstate; | 
|  | wake_up(&chip->wq); | 
|  | } | 
|  | spin_unlock_bh(chip->mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | static int amd_flash_suspend(struct mtd_info *mtd) | 
|  | { | 
|  | printk("amd_flash_suspend(): not implemented!\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | static void amd_flash_resume(struct mtd_info *mtd) | 
|  | { | 
|  | printk("amd_flash_resume(): not implemented!\n"); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | static void amd_flash_destroy(struct mtd_info *mtd) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct amd_flash_private *private = map->fldrv_priv; | 
|  | kfree(private); | 
|  | } | 
|  |  | 
|  | int __init amd_flash_init(void) | 
|  | { | 
|  | register_mtd_chip_driver(&amd_flash_chipdrv); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __exit amd_flash_exit(void) | 
|  | { | 
|  | unregister_mtd_chip_driver(&amd_flash_chipdrv); | 
|  | } | 
|  |  | 
|  | module_init(amd_flash_init); | 
|  | module_exit(amd_flash_exit); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("Jonas Holmberg <jonas.holmberg@axis.com>"); | 
|  | MODULE_DESCRIPTION("Old MTD chip driver for AMD flash chips"); |