|  |  | 
|  | /* JEDEC Flash Interface. | 
|  | * This is an older type of interface for self programming flash. It is | 
|  | * commonly use in older AMD chips and is obsolete compared with CFI. | 
|  | * It is called JEDEC because the JEDEC association distributes the ID codes | 
|  | * for the chips. | 
|  | * | 
|  | * See the AMD flash databook for information on how to operate the interface. | 
|  | * | 
|  | * This code does not support anything wider than 8 bit flash chips, I am | 
|  | * not going to guess how to send commands to them, plus I expect they will | 
|  | * all speak CFI.. | 
|  | * | 
|  | * $Id: jedec.c,v 1.22 2005/01/05 18:05:11 dwmw2 Exp $ | 
|  | */ | 
|  |  | 
|  | #include <linux/init.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/mtd/jedec.h> | 
|  | #include <linux/mtd/map.h> | 
|  | #include <linux/mtd/mtd.h> | 
|  | #include <linux/mtd/compatmac.h> | 
|  |  | 
|  | static struct mtd_info *jedec_probe(struct map_info *); | 
|  | static int jedec_probe8(struct map_info *map,unsigned long base, | 
|  | struct jedec_private *priv); | 
|  | static int jedec_probe16(struct map_info *map,unsigned long base, | 
|  | struct jedec_private *priv); | 
|  | static int jedec_probe32(struct map_info *map,unsigned long base, | 
|  | struct jedec_private *priv); | 
|  | static void jedec_flash_chip_scan(struct jedec_private *priv,unsigned long start, | 
|  | unsigned long len); | 
|  | static int flash_erase(struct mtd_info *mtd, struct erase_info *instr); | 
|  | static int flash_write(struct mtd_info *mtd, loff_t start, size_t len, | 
|  | size_t *retlen, const u_char *buf); | 
|  |  | 
|  | static unsigned long my_bank_size; | 
|  |  | 
|  | /* Listing of parts and sizes. We need this table to learn the sector | 
|  | size of the chip and the total length */ | 
|  | static const struct JEDECTable JEDEC_table[] = { | 
|  | { | 
|  | .jedec		= 0x013D, | 
|  | .name		= "AMD Am29F017D", | 
|  | .size		= 2*1024*1024, | 
|  | .sectorsize	= 64*1024, | 
|  | .capabilities	= MTD_CAP_NORFLASH | 
|  | }, | 
|  | { | 
|  | .jedec		= 0x01AD, | 
|  | .name		= "AMD Am29F016", | 
|  | .size		= 2*1024*1024, | 
|  | .sectorsize	= 64*1024, | 
|  | .capabilities	= MTD_CAP_NORFLASH | 
|  | }, | 
|  | { | 
|  | .jedec		= 0x01D5, | 
|  | .name		= "AMD Am29F080", | 
|  | .size		= 1*1024*1024, | 
|  | .sectorsize	= 64*1024, | 
|  | .capabilities	= MTD_CAP_NORFLASH | 
|  | }, | 
|  | { | 
|  | .jedec		= 0x01A4, | 
|  | .name		= "AMD Am29F040", | 
|  | .size		= 512*1024, | 
|  | .sectorsize	= 64*1024, | 
|  | .capabilities	= MTD_CAP_NORFLASH | 
|  | }, | 
|  | { | 
|  | .jedec		= 0x20E3, | 
|  | .name		= "AMD Am29W040B", | 
|  | .size		= 512*1024, | 
|  | .sectorsize	= 64*1024, | 
|  | .capabilities	= MTD_CAP_NORFLASH | 
|  | }, | 
|  | { | 
|  | .jedec		= 0xC2AD, | 
|  | .name		= "Macronix MX29F016", | 
|  | .size		= 2*1024*1024, | 
|  | .sectorsize	= 64*1024, | 
|  | .capabilities	= MTD_CAP_NORFLASH | 
|  | }, | 
|  | { .jedec = 0x0 } | 
|  | }; | 
|  |  | 
|  | static const struct JEDECTable *jedec_idtoinf(__u8 mfr,__u8 id); | 
|  | static void jedec_sync(struct mtd_info *mtd) {}; | 
|  | static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len, | 
|  | size_t *retlen, u_char *buf); | 
|  | static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len, | 
|  | size_t *retlen, u_char *buf); | 
|  |  | 
|  | static struct mtd_info *jedec_probe(struct map_info *map); | 
|  |  | 
|  |  | 
|  |  | 
|  | static struct mtd_chip_driver jedec_chipdrv = { | 
|  | .probe	= jedec_probe, | 
|  | .name	= "jedec", | 
|  | .module	= THIS_MODULE | 
|  | }; | 
|  |  | 
|  | /* Probe entry point */ | 
|  |  | 
|  | static struct mtd_info *jedec_probe(struct map_info *map) | 
|  | { | 
|  | struct mtd_info *MTD; | 
|  | struct jedec_private *priv; | 
|  | unsigned long Base; | 
|  | unsigned long SectorSize; | 
|  | unsigned count; | 
|  | unsigned I,Uniq; | 
|  | char Part[200]; | 
|  | memset(&priv,0,sizeof(priv)); | 
|  |  | 
|  | MTD = kzalloc(sizeof(struct mtd_info) + sizeof(struct jedec_private), GFP_KERNEL); | 
|  | if (!MTD) | 
|  | return NULL; | 
|  |  | 
|  | priv = (struct jedec_private *)&MTD[1]; | 
|  |  | 
|  | my_bank_size = map->size; | 
|  |  | 
|  | if (map->size/my_bank_size > MAX_JEDEC_CHIPS) | 
|  | { | 
|  | printk("mtd: Increase MAX_JEDEC_CHIPS, too many banks.\n"); | 
|  | kfree(MTD); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | for (Base = 0; Base < map->size; Base += my_bank_size) | 
|  | { | 
|  | // Perhaps zero could designate all tests? | 
|  | if (map->buswidth == 0) | 
|  | map->buswidth = 1; | 
|  |  | 
|  | if (map->buswidth == 1){ | 
|  | if (jedec_probe8(map,Base,priv) == 0) { | 
|  | printk("did recognize jedec chip\n"); | 
|  | kfree(MTD); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  | if (map->buswidth == 2) | 
|  | jedec_probe16(map,Base,priv); | 
|  | if (map->buswidth == 4) | 
|  | jedec_probe32(map,Base,priv); | 
|  | } | 
|  |  | 
|  | // Get the biggest sector size | 
|  | SectorSize = 0; | 
|  | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) | 
|  | { | 
|  | //	   printk("priv->chips[%d].jedec is %x\n",I,priv->chips[I].jedec); | 
|  | //	   printk("priv->chips[%d].sectorsize is %lx\n",I,priv->chips[I].sectorsize); | 
|  | if (priv->chips[I].sectorsize > SectorSize) | 
|  | SectorSize = priv->chips[I].sectorsize; | 
|  | } | 
|  |  | 
|  | // Quickly ensure that the other sector sizes are factors of the largest | 
|  | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) | 
|  | { | 
|  | if ((SectorSize/priv->chips[I].sectorsize)*priv->chips[I].sectorsize != SectorSize) | 
|  | { | 
|  | printk("mtd: Failed. Device has incompatible mixed sector sizes\n"); | 
|  | kfree(MTD); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Generate a part name that includes the number of different chips and | 
|  | other configuration information */ | 
|  | count = 1; | 
|  | strlcpy(Part,map->name,sizeof(Part)-10); | 
|  | strcat(Part," "); | 
|  | Uniq = 0; | 
|  | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) | 
|  | { | 
|  | const struct JEDECTable *JEDEC; | 
|  |  | 
|  | if (priv->chips[I+1].jedec == priv->chips[I].jedec) | 
|  | { | 
|  | count++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Locate the chip in the jedec table | 
|  | JEDEC = jedec_idtoinf(priv->chips[I].jedec >> 8,priv->chips[I].jedec); | 
|  | if (JEDEC == 0) | 
|  | { | 
|  | printk("mtd: Internal Error, JEDEC not set\n"); | 
|  | kfree(MTD); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (Uniq != 0) | 
|  | strcat(Part,","); | 
|  | Uniq++; | 
|  |  | 
|  | if (count != 1) | 
|  | sprintf(Part+strlen(Part),"%x*[%s]",count,JEDEC->name); | 
|  | else | 
|  | sprintf(Part+strlen(Part),"%s",JEDEC->name); | 
|  | if (strlen(Part) > sizeof(Part)*2/3) | 
|  | break; | 
|  | count = 1; | 
|  | } | 
|  |  | 
|  | /* Determine if the chips are organized in a linear fashion, or if there | 
|  | are empty banks. Note, the last bank does not count here, only the | 
|  | first banks are important. Holes on non-bank boundaries can not exist | 
|  | due to the way the detection algorithm works. */ | 
|  | if (priv->size < my_bank_size) | 
|  | my_bank_size = priv->size; | 
|  | priv->is_banked = 0; | 
|  | //printk("priv->size is %x, my_bank_size is %x\n",priv->size,my_bank_size); | 
|  | //printk("priv->bank_fill[0] is %x\n",priv->bank_fill[0]); | 
|  | if (!priv->size) { | 
|  | printk("priv->size is zero\n"); | 
|  | kfree(MTD); | 
|  | return NULL; | 
|  | } | 
|  | if (priv->size/my_bank_size) { | 
|  | if (priv->size/my_bank_size == 1) { | 
|  | priv->size = my_bank_size; | 
|  | } | 
|  | else { | 
|  | for (I = 0; I != priv->size/my_bank_size - 1; I++) | 
|  | { | 
|  | if (priv->bank_fill[I] != my_bank_size) | 
|  | priv->is_banked = 1; | 
|  |  | 
|  | /* This even could be eliminated, but new de-optimized read/write | 
|  | functions have to be written */ | 
|  | printk("priv->bank_fill[%d] is %lx, priv->bank_fill[0] is %lx\n",I,priv->bank_fill[I],priv->bank_fill[0]); | 
|  | if (priv->bank_fill[I] != priv->bank_fill[0]) | 
|  | { | 
|  | printk("mtd: Failed. Cannot handle unsymmetric banking\n"); | 
|  | kfree(MTD); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | if (priv->is_banked == 1) | 
|  | strcat(Part,", banked"); | 
|  |  | 
|  | //   printk("Part: '%s'\n",Part); | 
|  |  | 
|  | memset(MTD,0,sizeof(*MTD)); | 
|  | // strlcpy(MTD->name,Part,sizeof(MTD->name)); | 
|  | MTD->name = map->name; | 
|  | MTD->type = MTD_NORFLASH; | 
|  | MTD->flags = MTD_CAP_NORFLASH; | 
|  | MTD->writesize = 1; | 
|  | MTD->erasesize = SectorSize*(map->buswidth); | 
|  | //   printk("MTD->erasesize is %x\n",(unsigned int)MTD->erasesize); | 
|  | MTD->size = priv->size; | 
|  | //   printk("MTD->size is %x\n",(unsigned int)MTD->size); | 
|  | //MTD->module = THIS_MODULE; // ? Maybe this should be the low level module? | 
|  | MTD->erase = flash_erase; | 
|  | if (priv->is_banked == 1) | 
|  | MTD->read = jedec_read_banked; | 
|  | else | 
|  | MTD->read = jedec_read; | 
|  | MTD->write = flash_write; | 
|  | MTD->sync = jedec_sync; | 
|  | MTD->priv = map; | 
|  | map->fldrv_priv = priv; | 
|  | map->fldrv = &jedec_chipdrv; | 
|  | __module_get(THIS_MODULE); | 
|  | return MTD; | 
|  | } | 
|  |  | 
|  | /* Helper for the JEDEC function, JEDEC numbers all have odd parity */ | 
|  | static int checkparity(u_char C) | 
|  | { | 
|  | u_char parity = 0; | 
|  | while (C != 0) | 
|  | { | 
|  | parity ^= C & 1; | 
|  | C >>= 1; | 
|  | } | 
|  |  | 
|  | return parity == 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Take an array of JEDEC numbers that represent interleved flash chips | 
|  | and process them. Check to make sure they are good JEDEC numbers, look | 
|  | them up and then add them to the chip list */ | 
|  | static int handle_jedecs(struct map_info *map,__u8 *Mfg,__u8 *Id,unsigned Count, | 
|  | unsigned long base,struct jedec_private *priv) | 
|  | { | 
|  | unsigned I,J; | 
|  | unsigned long Size; | 
|  | unsigned long SectorSize; | 
|  | const struct JEDECTable *JEDEC; | 
|  |  | 
|  | // Test #2 JEDEC numbers exhibit odd parity | 
|  | for (I = 0; I != Count; I++) | 
|  | { | 
|  | if (checkparity(Mfg[I]) == 0 || checkparity(Id[I]) == 0) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Finally, just make sure all the chip sizes are the same | 
|  | JEDEC = jedec_idtoinf(Mfg[0],Id[0]); | 
|  |  | 
|  | if (JEDEC == 0) | 
|  | { | 
|  | printk("mtd: Found JEDEC flash chip, but do not have a table entry for %x:%x\n",Mfg[0],Mfg[1]); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Size = JEDEC->size; | 
|  | SectorSize = JEDEC->sectorsize; | 
|  | for (I = 0; I != Count; I++) | 
|  | { | 
|  | JEDEC = jedec_idtoinf(Mfg[0],Id[0]); | 
|  | if (JEDEC == 0) | 
|  | { | 
|  | printk("mtd: Found JEDEC flash chip, but do not have a table entry for %x:%x\n",Mfg[0],Mfg[1]); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (Size != JEDEC->size || SectorSize != JEDEC->sectorsize) | 
|  | { | 
|  | printk("mtd: Failed. Interleved flash does not have matching characteristics\n"); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Load the Chips | 
|  | for (I = 0; I != MAX_JEDEC_CHIPS; I++) | 
|  | { | 
|  | if (priv->chips[I].jedec == 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (I + Count > MAX_JEDEC_CHIPS) | 
|  | { | 
|  | printk("mtd: Device has too many chips. Increase MAX_JEDEC_CHIPS\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Add them to the table | 
|  | for (J = 0; J != Count; J++) | 
|  | { | 
|  | unsigned long Bank; | 
|  |  | 
|  | JEDEC = jedec_idtoinf(Mfg[J],Id[J]); | 
|  | priv->chips[I].jedec = (Mfg[J] << 8) | Id[J]; | 
|  | priv->chips[I].size = JEDEC->size; | 
|  | priv->chips[I].sectorsize = JEDEC->sectorsize; | 
|  | priv->chips[I].base = base + J; | 
|  | priv->chips[I].datashift = J*8; | 
|  | priv->chips[I].capabilities = JEDEC->capabilities; | 
|  | priv->chips[I].offset = priv->size + J; | 
|  |  | 
|  | // log2 n :| | 
|  | priv->chips[I].addrshift = 0; | 
|  | for (Bank = Count; Bank != 1; Bank >>= 1, priv->chips[I].addrshift++); | 
|  |  | 
|  | // Determine how filled this bank is. | 
|  | Bank = base & (~(my_bank_size-1)); | 
|  | if (priv->bank_fill[Bank/my_bank_size] < base + | 
|  | (JEDEC->size << priv->chips[I].addrshift) - Bank) | 
|  | priv->bank_fill[Bank/my_bank_size] =  base + (JEDEC->size << priv->chips[I].addrshift) - Bank; | 
|  | I++; | 
|  | } | 
|  |  | 
|  | priv->size += priv->chips[I-1].size*Count; | 
|  |  | 
|  | return priv->chips[I-1].size; | 
|  | } | 
|  |  | 
|  | /* Lookup the chip information from the JEDEC ID table. */ | 
|  | static const struct JEDECTable *jedec_idtoinf(__u8 mfr,__u8 id) | 
|  | { | 
|  | __u16 Id = (mfr << 8) | id; | 
|  | unsigned long I = 0; | 
|  | for (I = 0; JEDEC_table[I].jedec != 0; I++) | 
|  | if (JEDEC_table[I].jedec == Id) | 
|  | return JEDEC_table + I; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | // Look for flash using an 8 bit bus interface | 
|  | static int jedec_probe8(struct map_info *map,unsigned long base, | 
|  | struct jedec_private *priv) | 
|  | { | 
|  | #define flread(x) map_read8(map,base+x) | 
|  | #define flwrite(v,x) map_write8(map,v,base+x) | 
|  |  | 
|  | const unsigned long AutoSel1 = 0xAA; | 
|  | const unsigned long AutoSel2 = 0x55; | 
|  | const unsigned long AutoSel3 = 0x90; | 
|  | const unsigned long Reset = 0xF0; | 
|  | __u32 OldVal; | 
|  | __u8 Mfg[1]; | 
|  | __u8 Id[1]; | 
|  | unsigned I; | 
|  | unsigned long Size; | 
|  |  | 
|  | // Wait for any write/erase operation to settle | 
|  | OldVal = flread(base); | 
|  | for (I = 0; OldVal != flread(base) && I < 10000; I++) | 
|  | OldVal = flread(base); | 
|  |  | 
|  | // Reset the chip | 
|  | flwrite(Reset,0x555); | 
|  |  | 
|  | // Send the sequence | 
|  | flwrite(AutoSel1,0x555); | 
|  | flwrite(AutoSel2,0x2AA); | 
|  | flwrite(AutoSel3,0x555); | 
|  |  | 
|  | //  Get the JEDEC numbers | 
|  | Mfg[0] = flread(0); | 
|  | Id[0] = flread(1); | 
|  | //   printk("Mfg is %x, Id is %x\n",Mfg[0],Id[0]); | 
|  |  | 
|  | Size = handle_jedecs(map,Mfg,Id,1,base,priv); | 
|  | //   printk("handle_jedecs Size is %x\n",(unsigned int)Size); | 
|  | if (Size == 0) | 
|  | { | 
|  | flwrite(Reset,0x555); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Reset. | 
|  | flwrite(Reset,0x555); | 
|  |  | 
|  | return 1; | 
|  |  | 
|  | #undef flread | 
|  | #undef flwrite | 
|  | } | 
|  |  | 
|  | // Look for flash using a 16 bit bus interface (ie 2 8-bit chips) | 
|  | static int jedec_probe16(struct map_info *map,unsigned long base, | 
|  | struct jedec_private *priv) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Look for flash using a 32 bit bus interface (ie 4 8-bit chips) | 
|  | static int jedec_probe32(struct map_info *map,unsigned long base, | 
|  | struct jedec_private *priv) | 
|  | { | 
|  | #define flread(x) map_read32(map,base+((x)<<2)) | 
|  | #define flwrite(v,x) map_write32(map,v,base+((x)<<2)) | 
|  |  | 
|  | const unsigned long AutoSel1 = 0xAAAAAAAA; | 
|  | const unsigned long AutoSel2 = 0x55555555; | 
|  | const unsigned long AutoSel3 = 0x90909090; | 
|  | const unsigned long Reset = 0xF0F0F0F0; | 
|  | __u32 OldVal; | 
|  | __u8 Mfg[4]; | 
|  | __u8 Id[4]; | 
|  | unsigned I; | 
|  | unsigned long Size; | 
|  |  | 
|  | // Wait for any write/erase operation to settle | 
|  | OldVal = flread(base); | 
|  | for (I = 0; OldVal != flread(base) && I < 10000; I++) | 
|  | OldVal = flread(base); | 
|  |  | 
|  | // Reset the chip | 
|  | flwrite(Reset,0x555); | 
|  |  | 
|  | // Send the sequence | 
|  | flwrite(AutoSel1,0x555); | 
|  | flwrite(AutoSel2,0x2AA); | 
|  | flwrite(AutoSel3,0x555); | 
|  |  | 
|  | // Test #1, JEDEC numbers are readable from 0x??00/0x??01 | 
|  | if (flread(0) != flread(0x100) || | 
|  | flread(1) != flread(0x101)) | 
|  | { | 
|  | flwrite(Reset,0x555); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Split up the JEDEC numbers | 
|  | OldVal = flread(0); | 
|  | for (I = 0; I != 4; I++) | 
|  | Mfg[I] = (OldVal >> (I*8)); | 
|  | OldVal = flread(1); | 
|  | for (I = 0; I != 4; I++) | 
|  | Id[I] = (OldVal >> (I*8)); | 
|  |  | 
|  | Size = handle_jedecs(map,Mfg,Id,4,base,priv); | 
|  | if (Size == 0) | 
|  | { | 
|  | flwrite(Reset,0x555); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Check if there is address wrap around within a single bank, if this | 
|  | returns JEDEC numbers then we assume that it is wrap around. Notice | 
|  | we call this routine with the JEDEC return still enabled, if two or | 
|  | more flashes have a truncated address space the probe test will still | 
|  | work */ | 
|  | if (base + (Size<<2)+0x555 < map->size && | 
|  | base + (Size<<2)+0x555 < (base & (~(my_bank_size-1))) + my_bank_size) | 
|  | { | 
|  | if (flread(base+Size) != flread(base+Size + 0x100) || | 
|  | flread(base+Size + 1) != flread(base+Size + 0x101)) | 
|  | { | 
|  | jedec_probe32(map,base+Size,priv); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Reset. | 
|  | flwrite(0xF0F0F0F0,0x555); | 
|  |  | 
|  | return 1; | 
|  |  | 
|  | #undef flread | 
|  | #undef flwrite | 
|  | } | 
|  |  | 
|  | /* Linear read. */ | 
|  | static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len, | 
|  | size_t *retlen, u_char *buf) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  |  | 
|  | map_copy_from(map, buf, from, len); | 
|  | *retlen = len; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Banked read. Take special care to jump past the holes in the bank | 
|  | mapping. This version assumes symetry in the holes.. */ | 
|  | static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len, | 
|  | size_t *retlen, u_char *buf) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct jedec_private *priv = map->fldrv_priv; | 
|  |  | 
|  | *retlen = 0; | 
|  | while (len > 0) | 
|  | { | 
|  | // Determine what bank and offset into that bank the first byte is | 
|  | unsigned long bank = from & (~(priv->bank_fill[0]-1)); | 
|  | unsigned long offset = from & (priv->bank_fill[0]-1); | 
|  | unsigned long get = len; | 
|  | if (priv->bank_fill[0] - offset < len) | 
|  | get = priv->bank_fill[0] - offset; | 
|  |  | 
|  | bank /= priv->bank_fill[0]; | 
|  | map_copy_from(map,buf + *retlen,bank*my_bank_size + offset,get); | 
|  |  | 
|  | len -= get; | 
|  | *retlen += get; | 
|  | from += get; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Pass the flags value that the flash return before it re-entered read | 
|  | mode. */ | 
|  | static void jedec_flash_failed(unsigned char code) | 
|  | { | 
|  | /* Bit 5 being high indicates that there was an internal device | 
|  | failure, erasure time limits exceeded or something */ | 
|  | if ((code & (1 << 5)) != 0) | 
|  | { | 
|  | printk("mtd: Internal Flash failure\n"); | 
|  | return; | 
|  | } | 
|  | printk("mtd: Programming didn't take\n"); | 
|  | } | 
|  |  | 
|  | /* This uses the erasure function described in the AMD Flash Handbook, | 
|  | it will work for flashes with a fixed sector size only. Flashes with | 
|  | a selection of sector sizes (ie the AMD Am29F800B) will need a different | 
|  | routine. This routine tries to parallize erasing multiple chips/sectors | 
|  | where possible */ | 
|  | static int flash_erase(struct mtd_info *mtd, struct erase_info *instr) | 
|  | { | 
|  | // Does IO to the currently selected chip | 
|  | #define flread(x) map_read8(map,chip->base+((x)<<chip->addrshift)) | 
|  | #define flwrite(v,x) map_write8(map,v,chip->base+((x)<<chip->addrshift)) | 
|  |  | 
|  | unsigned long Time = 0; | 
|  | unsigned long NoTime = 0; | 
|  | unsigned long start = instr->addr, len = instr->len; | 
|  | unsigned int I; | 
|  | struct map_info *map = mtd->priv; | 
|  | struct jedec_private *priv = map->fldrv_priv; | 
|  |  | 
|  | // Verify the arguments.. | 
|  | if (start + len > mtd->size || | 
|  | (start % mtd->erasesize) != 0 || | 
|  | (len % mtd->erasesize) != 0 || | 
|  | (len/mtd->erasesize) == 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | jedec_flash_chip_scan(priv,start,len); | 
|  |  | 
|  | // Start the erase sequence on each chip | 
|  | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) | 
|  | { | 
|  | unsigned long off; | 
|  | struct jedec_flash_chip *chip = priv->chips + I; | 
|  |  | 
|  | if (chip->length == 0) | 
|  | continue; | 
|  |  | 
|  | if (chip->start + chip->length > chip->size) | 
|  | { | 
|  | printk("DIE\n"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | flwrite(0xF0,chip->start + 0x555); | 
|  | flwrite(0xAA,chip->start + 0x555); | 
|  | flwrite(0x55,chip->start + 0x2AA); | 
|  | flwrite(0x80,chip->start + 0x555); | 
|  | flwrite(0xAA,chip->start + 0x555); | 
|  | flwrite(0x55,chip->start + 0x2AA); | 
|  |  | 
|  | /* Once we start selecting the erase sectors the delay between each | 
|  | command must not exceed 50us or it will immediately start erasing | 
|  | and ignore the other sectors */ | 
|  | for (off = 0; off < len; off += chip->sectorsize) | 
|  | { | 
|  | // Check to make sure we didn't timeout | 
|  | flwrite(0x30,chip->start + off); | 
|  | if (off == 0) | 
|  | continue; | 
|  | if ((flread(chip->start + off) & (1 << 3)) != 0) | 
|  | { | 
|  | printk("mtd: Ack! We timed out the erase timer!\n"); | 
|  | return -EIO; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* We could split this into a timer routine and return early, performing | 
|  | background erasure.. Maybe later if the need warrents */ | 
|  |  | 
|  | /* Poll the flash for erasure completion, specs say this can take as long | 
|  | as 480 seconds to do all the sectors (for a 2 meg flash). | 
|  | Erasure time is dependent on chip age, temp and wear.. */ | 
|  |  | 
|  | /* This being a generic routine assumes a 32 bit bus. It does read32s | 
|  | and bundles interleved chips into the same grouping. This will work | 
|  | for all bus widths */ | 
|  | Time = 0; | 
|  | NoTime = 0; | 
|  | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) | 
|  | { | 
|  | struct jedec_flash_chip *chip = priv->chips + I; | 
|  | unsigned long off = 0; | 
|  | unsigned todo[4] = {0,0,0,0}; | 
|  | unsigned todo_left = 0; | 
|  | unsigned J; | 
|  |  | 
|  | if (chip->length == 0) | 
|  | continue; | 
|  |  | 
|  | /* Find all chips in this data line, realistically this is all | 
|  | or nothing up to the interleve count */ | 
|  | for (J = 0; priv->chips[J].jedec != 0 && J < MAX_JEDEC_CHIPS; J++) | 
|  | { | 
|  | if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) == | 
|  | (chip->base & (~((1<<chip->addrshift)-1)))) | 
|  | { | 
|  | todo_left++; | 
|  | todo[priv->chips[J].base & ((1<<chip->addrshift)-1)] = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /*      printk("todo: %x %x %x %x\n",(short)todo[0],(short)todo[1], | 
|  | (short)todo[2],(short)todo[3]); | 
|  | */ | 
|  | while (1) | 
|  | { | 
|  | __u32 Last[4]; | 
|  | unsigned long Count = 0; | 
|  |  | 
|  | /* During erase bit 7 is held low and bit 6 toggles, we watch this, | 
|  | should it stop toggling or go high then the erase is completed, | 
|  | or this is not really flash ;> */ | 
|  | switch (map->buswidth) { | 
|  | case 1: | 
|  | Last[0] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off); | 
|  | Last[1] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off); | 
|  | Last[2] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off); | 
|  | break; | 
|  | case 2: | 
|  | Last[0] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off); | 
|  | Last[1] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off); | 
|  | Last[2] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off); | 
|  | break; | 
|  | case 3: | 
|  | Last[0] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off); | 
|  | Last[1] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off); | 
|  | Last[2] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off); | 
|  | break; | 
|  | } | 
|  | Count = 3; | 
|  | while (todo_left != 0) | 
|  | { | 
|  | for (J = 0; J != 4; J++) | 
|  | { | 
|  | __u8 Byte1 = (Last[(Count-1)%4] >> (J*8)) & 0xFF; | 
|  | __u8 Byte2 = (Last[(Count-2)%4] >> (J*8)) & 0xFF; | 
|  | __u8 Byte3 = (Last[(Count-3)%4] >> (J*8)) & 0xFF; | 
|  | if (todo[J] == 0) | 
|  | continue; | 
|  |  | 
|  | if ((Byte1 & (1 << 7)) == 0 && Byte1 != Byte2) | 
|  | { | 
|  | //		  printk("Check %x %x %x\n",(short)J,(short)Byte1,(short)Byte2); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (Byte1 == Byte2) | 
|  | { | 
|  | jedec_flash_failed(Byte3); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | todo[J] = 0; | 
|  | todo_left--; | 
|  | } | 
|  |  | 
|  | /*	    if (NoTime == 0) | 
|  | Time += HZ/10 - schedule_timeout(HZ/10);*/ | 
|  | NoTime = 0; | 
|  |  | 
|  | switch (map->buswidth) { | 
|  | case 1: | 
|  | Last[Count % 4] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off); | 
|  | break; | 
|  | case 2: | 
|  | Last[Count % 4] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off); | 
|  | break; | 
|  | case 4: | 
|  | Last[Count % 4] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off); | 
|  | break; | 
|  | } | 
|  | Count++; | 
|  |  | 
|  | /*	    // Count time, max of 15s per sector (according to AMD) | 
|  | if (Time > 15*len/mtd->erasesize*HZ) | 
|  | { | 
|  | printk("mtd: Flash Erase Timed out\n"); | 
|  | return -EIO; | 
|  | }	    */ | 
|  | } | 
|  |  | 
|  | // Skip to the next chip if we used chip erase | 
|  | if (chip->length == chip->size) | 
|  | off = chip->size; | 
|  | else | 
|  | off += chip->sectorsize; | 
|  |  | 
|  | if (off >= chip->length) | 
|  | break; | 
|  | NoTime = 1; | 
|  | } | 
|  |  | 
|  | for (J = 0; priv->chips[J].jedec != 0 && J < MAX_JEDEC_CHIPS; J++) | 
|  | { | 
|  | if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) == | 
|  | (chip->base & (~((1<<chip->addrshift)-1)))) | 
|  | priv->chips[J].length = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | //printk("done\n"); | 
|  | instr->state = MTD_ERASE_DONE; | 
|  | mtd_erase_callback(instr); | 
|  | return 0; | 
|  |  | 
|  | #undef flread | 
|  | #undef flwrite | 
|  | } | 
|  |  | 
|  | /* This is the simple flash writing function. It writes to every byte, in | 
|  | sequence. It takes care of how to properly address the flash if | 
|  | the flash is interleved. It can only be used if all the chips in the | 
|  | array are identical!*/ | 
|  | static int flash_write(struct mtd_info *mtd, loff_t start, size_t len, | 
|  | size_t *retlen, const u_char *buf) | 
|  | { | 
|  | /* Does IO to the currently selected chip. It takes the bank addressing | 
|  | base (which is divisible by the chip size) adds the necessary lower bits | 
|  | of addrshift (interleave index) and then adds the control register index. */ | 
|  | #define flread(x) map_read8(map,base+(off&((1<<chip->addrshift)-1))+((x)<<chip->addrshift)) | 
|  | #define flwrite(v,x) map_write8(map,v,base+(off&((1<<chip->addrshift)-1))+((x)<<chip->addrshift)) | 
|  |  | 
|  | struct map_info *map = mtd->priv; | 
|  | struct jedec_private *priv = map->fldrv_priv; | 
|  | unsigned long base; | 
|  | unsigned long off; | 
|  | size_t save_len = len; | 
|  |  | 
|  | if (start + len > mtd->size) | 
|  | return -EIO; | 
|  |  | 
|  | //printk("Here"); | 
|  |  | 
|  | //printk("flash_write: start is %x, len is %x\n",start,(unsigned long)len); | 
|  | while (len != 0) | 
|  | { | 
|  | struct jedec_flash_chip *chip = priv->chips; | 
|  | unsigned long bank; | 
|  | unsigned long boffset; | 
|  |  | 
|  | // Compute the base of the flash. | 
|  | off = ((unsigned long)start) % (chip->size << chip->addrshift); | 
|  | base = start - off; | 
|  |  | 
|  | // Perform banked addressing translation. | 
|  | bank = base & (~(priv->bank_fill[0]-1)); | 
|  | boffset = base & (priv->bank_fill[0]-1); | 
|  | bank = (bank/priv->bank_fill[0])*my_bank_size; | 
|  | base = bank + boffset; | 
|  |  | 
|  | //  printk("Flasing %X %X %X\n",base,chip->size,len); | 
|  | // printk("off is %x, compare with %x\n",off,chip->size << chip->addrshift); | 
|  |  | 
|  | // Loop over this page | 
|  | for (; off != (chip->size << chip->addrshift) && len != 0; start++, len--, off++,buf++) | 
|  | { | 
|  | unsigned char oldbyte = map_read8(map,base+off); | 
|  | unsigned char Last[4]; | 
|  | unsigned long Count = 0; | 
|  |  | 
|  | if (oldbyte == *buf) { | 
|  | //	 printk("oldbyte and *buf is %x,len is %x\n",oldbyte,len); | 
|  | continue; | 
|  | } | 
|  | if (((~oldbyte) & *buf) != 0) | 
|  | printk("mtd: warn: Trying to set a 0 to a 1\n"); | 
|  |  | 
|  | // Write | 
|  | flwrite(0xAA,0x555); | 
|  | flwrite(0x55,0x2AA); | 
|  | flwrite(0xA0,0x555); | 
|  | map_write8(map,*buf,base + off); | 
|  | Last[0] = map_read8(map,base + off); | 
|  | Last[1] = map_read8(map,base + off); | 
|  | Last[2] = map_read8(map,base + off); | 
|  |  | 
|  | /* Wait for the flash to finish the operation. We store the last 4 | 
|  | status bytes that have been retrieved so we can determine why | 
|  | it failed. The toggle bits keep toggling when there is a | 
|  | failure */ | 
|  | for (Count = 3; Last[(Count - 1) % 4] != Last[(Count - 2) % 4] && | 
|  | Count < 10000; Count++) | 
|  | Last[Count % 4] = map_read8(map,base + off); | 
|  | if (Last[(Count - 1) % 4] != *buf) | 
|  | { | 
|  | jedec_flash_failed(Last[(Count - 3) % 4]); | 
|  | return -EIO; | 
|  | } | 
|  | } | 
|  | } | 
|  | *retlen = save_len; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* This is used to enhance the speed of the erase routine, | 
|  | when things are being done to multiple chips it is possible to | 
|  | parallize the operations, particularly full memory erases of multi | 
|  | chip memories benifit */ | 
|  | static void jedec_flash_chip_scan(struct jedec_private *priv,unsigned long start, | 
|  | unsigned long len) | 
|  | { | 
|  | unsigned int I; | 
|  |  | 
|  | // Zero the records | 
|  | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) | 
|  | priv->chips[I].start = priv->chips[I].length = 0; | 
|  |  | 
|  | // Intersect the region with each chip | 
|  | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) | 
|  | { | 
|  | struct jedec_flash_chip *chip = priv->chips + I; | 
|  | unsigned long ByteStart; | 
|  | unsigned long ChipEndByte = chip->offset + (chip->size << chip->addrshift); | 
|  |  | 
|  | // End is before this chip or the start is after it | 
|  | if (start+len < chip->offset || | 
|  | ChipEndByte - (1 << chip->addrshift) < start) | 
|  | continue; | 
|  |  | 
|  | if (start < chip->offset) | 
|  | { | 
|  | ByteStart = chip->offset; | 
|  | chip->start = 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | chip->start = (start - chip->offset + (1 << chip->addrshift)-1) >> chip->addrshift; | 
|  | ByteStart = start; | 
|  | } | 
|  |  | 
|  | if (start + len >= ChipEndByte) | 
|  | chip->length = (ChipEndByte - ByteStart) >> chip->addrshift; | 
|  | else | 
|  | chip->length = (start + len - ByteStart + (1 << chip->addrshift)-1) >> chip->addrshift; | 
|  | } | 
|  | } | 
|  |  | 
|  | int __init jedec_init(void) | 
|  | { | 
|  | register_mtd_chip_driver(&jedec_chipdrv); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __exit jedec_exit(void) | 
|  | { | 
|  | unregister_mtd_chip_driver(&jedec_chipdrv); | 
|  | } | 
|  |  | 
|  | module_init(jedec_init); | 
|  | module_exit(jedec_exit); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("Jason Gunthorpe <jgg@deltatee.com> et al."); | 
|  | MODULE_DESCRIPTION("Old MTD chip driver for JEDEC-compliant flash chips"); |