|  | #ifndef __ASM_AVR32_IO_H | 
|  | #define __ASM_AVR32_IO_H | 
|  |  | 
|  | #include <linux/string.h> | 
|  |  | 
|  | #ifdef __KERNEL__ | 
|  |  | 
|  | #include <asm/addrspace.h> | 
|  | #include <asm/byteorder.h> | 
|  |  | 
|  | /* virt_to_phys will only work when address is in P1 or P2 */ | 
|  | static __inline__ unsigned long virt_to_phys(volatile void *address) | 
|  | { | 
|  | return PHYSADDR(address); | 
|  | } | 
|  |  | 
|  | static __inline__ void * phys_to_virt(unsigned long address) | 
|  | { | 
|  | return (void *)P1SEGADDR(address); | 
|  | } | 
|  |  | 
|  | #define cached_to_phys(addr)	((unsigned long)PHYSADDR(addr)) | 
|  | #define uncached_to_phys(addr)	((unsigned long)PHYSADDR(addr)) | 
|  | #define phys_to_cached(addr)	((void *)P1SEGADDR(addr)) | 
|  | #define phys_to_uncached(addr)	((void *)P2SEGADDR(addr)) | 
|  |  | 
|  | /* | 
|  | * Generic IO read/write.  These perform native-endian accesses.  Note | 
|  | * that some architectures will want to re-define __raw_{read,write}w. | 
|  | */ | 
|  | extern void __raw_writesb(void __iomem *addr, const void *data, int bytelen); | 
|  | extern void __raw_writesw(void __iomem *addr, const void *data, int wordlen); | 
|  | extern void __raw_writesl(void __iomem *addr, const void *data, int longlen); | 
|  |  | 
|  | extern void __raw_readsb(const void __iomem *addr, void *data, int bytelen); | 
|  | extern void __raw_readsw(const void __iomem *addr, void *data, int wordlen); | 
|  | extern void __raw_readsl(const void __iomem *addr, void *data, int longlen); | 
|  |  | 
|  | static inline void writeb(unsigned char b, volatile void __iomem *addr) | 
|  | { | 
|  | *(volatile unsigned char __force *)addr = b; | 
|  | } | 
|  | static inline void writew(unsigned short b, volatile void __iomem *addr) | 
|  | { | 
|  | *(volatile unsigned short __force *)addr = b; | 
|  | } | 
|  | static inline void writel(unsigned int b, volatile void __iomem *addr) | 
|  | { | 
|  | *(volatile unsigned int __force *)addr = b; | 
|  | } | 
|  | #define __raw_writeb writeb | 
|  | #define __raw_writew writew | 
|  | #define __raw_writel writel | 
|  |  | 
|  | static inline unsigned char readb(const volatile void __iomem *addr) | 
|  | { | 
|  | return *(const volatile unsigned char __force *)addr; | 
|  | } | 
|  | static inline unsigned short readw(const volatile void __iomem *addr) | 
|  | { | 
|  | return *(const volatile unsigned short __force *)addr; | 
|  | } | 
|  | static inline unsigned int readl(const volatile void __iomem *addr) | 
|  | { | 
|  | return *(const volatile unsigned int __force *)addr; | 
|  | } | 
|  | #define __raw_readb readb | 
|  | #define __raw_readw readw | 
|  | #define __raw_readl readl | 
|  |  | 
|  | #define writesb(p, d, l)	__raw_writesb((unsigned int)p, d, l) | 
|  | #define writesw(p, d, l)	__raw_writesw((unsigned int)p, d, l) | 
|  | #define writesl(p, d, l)	__raw_writesl((unsigned int)p, d, l) | 
|  |  | 
|  | #define readsb(p, d, l)		__raw_readsb((unsigned int)p, d, l) | 
|  | #define readsw(p, d, l)		__raw_readsw((unsigned int)p, d, l) | 
|  | #define readsl(p, d, l)		__raw_readsl((unsigned int)p, d, l) | 
|  |  | 
|  |  | 
|  | /* | 
|  | * io{read,write}{8,16,32} macros in both le (for PCI style consumers) and native be | 
|  | */ | 
|  | #ifndef ioread8 | 
|  |  | 
|  | #define ioread8(p)	({ unsigned int __v = __raw_readb(p); __v; }) | 
|  |  | 
|  | #define ioread16(p)	({ unsigned int __v = le16_to_cpu(__raw_readw(p)); __v; }) | 
|  | #define ioread16be(p)	({ unsigned int __v = be16_to_cpu(__raw_readw(p)); __v; }) | 
|  |  | 
|  | #define ioread32(p)	({ unsigned int __v = le32_to_cpu(__raw_readl(p)); __v; }) | 
|  | #define ioread32be(p)	({ unsigned int __v = be32_to_cpu(__raw_readl(p)); __v; }) | 
|  |  | 
|  | #define iowrite8(v,p)	__raw_writeb(v, p) | 
|  |  | 
|  | #define iowrite16(v,p)	__raw_writew(cpu_to_le16(v), p) | 
|  | #define iowrite16be(v,p)	__raw_writew(cpu_to_be16(v), p) | 
|  |  | 
|  | #define iowrite32(v,p)	__raw_writel(cpu_to_le32(v), p) | 
|  | #define iowrite32be(v,p)	__raw_writel(cpu_to_be32(v), p) | 
|  |  | 
|  | #define ioread8_rep(p,d,c)	__raw_readsb(p,d,c) | 
|  | #define ioread16_rep(p,d,c)	__raw_readsw(p,d,c) | 
|  | #define ioread32_rep(p,d,c)	__raw_readsl(p,d,c) | 
|  |  | 
|  | #define iowrite8_rep(p,s,c)	__raw_writesb(p,s,c) | 
|  | #define iowrite16_rep(p,s,c)	__raw_writesw(p,s,c) | 
|  | #define iowrite32_rep(p,s,c)	__raw_writesl(p,s,c) | 
|  |  | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* | 
|  | * These two are only here because ALSA _thinks_ it needs them... | 
|  | */ | 
|  | static inline void memcpy_fromio(void * to, const volatile void __iomem *from, | 
|  | unsigned long count) | 
|  | { | 
|  | char *p = to; | 
|  | while (count) { | 
|  | count--; | 
|  | *p = readb(from); | 
|  | p++; | 
|  | from++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void  memcpy_toio(volatile void __iomem *to, const void * from, | 
|  | unsigned long count) | 
|  | { | 
|  | const char *p = from; | 
|  | while (count) { | 
|  | count--; | 
|  | writeb(*p, to); | 
|  | p++; | 
|  | to++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void memset_io(volatile void __iomem *addr, unsigned char val, | 
|  | unsigned long count) | 
|  | { | 
|  | memset((void __force *)addr, val, count); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Bad read/write accesses... | 
|  | */ | 
|  | extern void __readwrite_bug(const char *fn); | 
|  |  | 
|  | #define IO_SPACE_LIMIT	0xffffffff | 
|  |  | 
|  | /* Convert I/O port address to virtual address */ | 
|  | #define __io(p)		((void __iomem *)phys_to_uncached(p)) | 
|  |  | 
|  | /* | 
|  | *  IO port access primitives | 
|  | *  ------------------------- | 
|  | * | 
|  | * The AVR32 doesn't have special IO access instructions; all IO is memory | 
|  | * mapped. Note that these are defined to perform little endian accesses | 
|  | * only. Their primary purpose is to access PCI and ISA peripherals. | 
|  | * | 
|  | * Note that for a big endian machine, this implies that the following | 
|  | * big endian mode connectivity is in place. | 
|  | * | 
|  | * The machine specific io.h include defines __io to translate an "IO" | 
|  | * address to a memory address. | 
|  | * | 
|  | * Note that we prevent GCC re-ordering or caching values in expressions | 
|  | * by introducing sequence points into the in*() definitions.  Note that | 
|  | * __raw_* do not guarantee this behaviour. | 
|  | * | 
|  | * The {in,out}[bwl] macros are for emulating x86-style PCI/ISA IO space. | 
|  | */ | 
|  | #define outb(v, p)		__raw_writeb(v, __io(p)) | 
|  | #define outw(v, p)		__raw_writew(cpu_to_le16(v), __io(p)) | 
|  | #define outl(v, p)		__raw_writel(cpu_to_le32(v), __io(p)) | 
|  |  | 
|  | #define inb(p)			__raw_readb(__io(p)) | 
|  | #define inw(p)			le16_to_cpu(__raw_readw(__io(p))) | 
|  | #define inl(p)			le32_to_cpu(__raw_readl(__io(p))) | 
|  |  | 
|  | static inline void __outsb(unsigned long port, void *addr, unsigned int count) | 
|  | { | 
|  | while (count--) { | 
|  | outb(*(u8 *)addr, port); | 
|  | addr++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void __insb(unsigned long port, void *addr, unsigned int count) | 
|  | { | 
|  | while (count--) { | 
|  | *(u8 *)addr = inb(port); | 
|  | addr++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void __outsw(unsigned long port, void *addr, unsigned int count) | 
|  | { | 
|  | while (count--) { | 
|  | outw(*(u16 *)addr, port); | 
|  | addr += 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void __insw(unsigned long port, void *addr, unsigned int count) | 
|  | { | 
|  | while (count--) { | 
|  | *(u16 *)addr = inw(port); | 
|  | addr += 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void __outsl(unsigned long port, void *addr, unsigned int count) | 
|  | { | 
|  | while (count--) { | 
|  | outl(*(u32 *)addr, port); | 
|  | addr += 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void __insl(unsigned long port, void *addr, unsigned int count) | 
|  | { | 
|  | while (count--) { | 
|  | *(u32 *)addr = inl(port); | 
|  | addr += 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | #define outsb(port, addr, count)	__outsb(port, addr, count) | 
|  | #define insb(port, addr, count)		__insb(port, addr, count) | 
|  | #define outsw(port, addr, count)	__outsw(port, addr, count) | 
|  | #define insw(port, addr, count)		__insw(port, addr, count) | 
|  | #define outsl(port, addr, count)	__outsl(port, addr, count) | 
|  | #define insl(port, addr, count)		__insl(port, addr, count) | 
|  |  | 
|  | extern void __iomem *__ioremap(unsigned long offset, size_t size, | 
|  | unsigned long flags); | 
|  | extern void __iounmap(void __iomem *addr); | 
|  |  | 
|  | /* | 
|  | * ioremap	-   map bus memory into CPU space | 
|  | * @offset	bus address of the memory | 
|  | * @size	size of the resource to map | 
|  | * | 
|  | * ioremap performs a platform specific sequence of operations to make | 
|  | * bus memory CPU accessible via the readb/.../writel functions and | 
|  | * the other mmio helpers. The returned address is not guaranteed to | 
|  | * be usable directly as a virtual address. | 
|  | */ | 
|  | #define ioremap(offset, size)			\ | 
|  | __ioremap((offset), (size), 0) | 
|  |  | 
|  | #define ioremap_nocache(offset, size)		\ | 
|  | __ioremap((offset), (size), 0) | 
|  |  | 
|  | #define iounmap(addr)				\ | 
|  | __iounmap(addr) | 
|  |  | 
|  | #define cached(addr) P1SEGADDR(addr) | 
|  | #define uncached(addr) P2SEGADDR(addr) | 
|  |  | 
|  | #define virt_to_bus virt_to_phys | 
|  | #define bus_to_virt phys_to_virt | 
|  | #define page_to_bus page_to_phys | 
|  | #define bus_to_page phys_to_page | 
|  |  | 
|  | /* | 
|  | * Create a virtual mapping cookie for an IO port range.  There exists | 
|  | * no such thing as port-based I/O on AVR32, so a regular ioremap() | 
|  | * should do what we need. | 
|  | */ | 
|  | #define ioport_map(port, nr)	ioremap(port, nr) | 
|  | #define ioport_unmap(port)	iounmap(port) | 
|  |  | 
|  | #define dma_cache_wback_inv(_start, _size)	\ | 
|  | flush_dcache_region(_start, _size) | 
|  | #define dma_cache_inv(_start, _size)		\ | 
|  | invalidate_dcache_region(_start, _size) | 
|  | #define dma_cache_wback(_start, _size)		\ | 
|  | clean_dcache_region(_start, _size) | 
|  |  | 
|  | /* | 
|  | * Convert a physical pointer to a virtual kernel pointer for /dev/mem | 
|  | * access | 
|  | */ | 
|  | #define xlate_dev_mem_ptr(p)    __va(p) | 
|  |  | 
|  | /* | 
|  | * Convert a virtual cached pointer to an uncached pointer | 
|  | */ | 
|  | #define xlate_dev_kmem_ptr(p)   p | 
|  |  | 
|  | #endif /* __KERNEL__ */ | 
|  |  | 
|  | #endif /* __ASM_AVR32_IO_H */ |