|  | /* | 
|  | * regmap based irq_chip | 
|  | * | 
|  | * Copyright 2011 Wolfson Microelectronics plc | 
|  | * | 
|  | * Author: Mark Brown <broonie@opensource.wolfsonmicro.com> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  |  | 
|  | #include <linux/export.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/regmap.h> | 
|  | #include <linux/irq.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  | struct regmap_irq_chip_data { | 
|  | struct mutex lock; | 
|  |  | 
|  | struct regmap *map; | 
|  | struct regmap_irq_chip *chip; | 
|  |  | 
|  | int irq_base; | 
|  |  | 
|  | void *status_reg_buf; | 
|  | unsigned int *status_buf; | 
|  | unsigned int *mask_buf; | 
|  | unsigned int *mask_buf_def; | 
|  | }; | 
|  |  | 
|  | static inline const | 
|  | struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data, | 
|  | int irq) | 
|  | { | 
|  | return &data->chip->irqs[irq - data->irq_base]; | 
|  | } | 
|  |  | 
|  | static void regmap_irq_lock(struct irq_data *data) | 
|  | { | 
|  | struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); | 
|  |  | 
|  | mutex_lock(&d->lock); | 
|  | } | 
|  |  | 
|  | static void regmap_irq_sync_unlock(struct irq_data *data) | 
|  | { | 
|  | struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); | 
|  | int i, ret; | 
|  |  | 
|  | /* | 
|  | * If there's been a change in the mask write it back to the | 
|  | * hardware.  We rely on the use of the regmap core cache to | 
|  | * suppress pointless writes. | 
|  | */ | 
|  | for (i = 0; i < d->chip->num_regs; i++) { | 
|  | ret = regmap_update_bits(d->map, d->chip->mask_base + i, | 
|  | d->mask_buf_def[i], d->mask_buf[i]); | 
|  | if (ret != 0) | 
|  | dev_err(d->map->dev, "Failed to sync masks in %x\n", | 
|  | d->chip->mask_base + i); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&d->lock); | 
|  | } | 
|  |  | 
|  | static void regmap_irq_enable(struct irq_data *data) | 
|  | { | 
|  | struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); | 
|  | const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->irq); | 
|  |  | 
|  | d->mask_buf[irq_data->reg_offset] &= ~irq_data->mask; | 
|  | } | 
|  |  | 
|  | static void regmap_irq_disable(struct irq_data *data) | 
|  | { | 
|  | struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); | 
|  | const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->irq); | 
|  |  | 
|  | d->mask_buf[irq_data->reg_offset] |= irq_data->mask; | 
|  | } | 
|  |  | 
|  | static struct irq_chip regmap_irq_chip = { | 
|  | .name			= "regmap", | 
|  | .irq_bus_lock		= regmap_irq_lock, | 
|  | .irq_bus_sync_unlock	= regmap_irq_sync_unlock, | 
|  | .irq_disable		= regmap_irq_disable, | 
|  | .irq_enable		= regmap_irq_enable, | 
|  | }; | 
|  |  | 
|  | static irqreturn_t regmap_irq_thread(int irq, void *d) | 
|  | { | 
|  | struct regmap_irq_chip_data *data = d; | 
|  | struct regmap_irq_chip *chip = data->chip; | 
|  | struct regmap *map = data->map; | 
|  | int ret, i; | 
|  | u8 *buf8 = data->status_reg_buf; | 
|  | u16 *buf16 = data->status_reg_buf; | 
|  | u32 *buf32 = data->status_reg_buf; | 
|  | bool handled = false; | 
|  |  | 
|  | ret = regmap_bulk_read(map, chip->status_base, data->status_reg_buf, | 
|  | chip->num_regs); | 
|  | if (ret != 0) { | 
|  | dev_err(map->dev, "Failed to read IRQ status: %d\n", ret); | 
|  | return IRQ_NONE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ignore masked IRQs and ack if we need to; we ack early so | 
|  | * there is no race between handling and acknowleding the | 
|  | * interrupt.  We assume that typically few of the interrupts | 
|  | * will fire simultaneously so don't worry about overhead from | 
|  | * doing a write per register. | 
|  | */ | 
|  | for (i = 0; i < data->chip->num_regs; i++) { | 
|  | switch (map->format.val_bytes) { | 
|  | case 1: | 
|  | data->status_buf[i] = buf8[i]; | 
|  | break; | 
|  | case 2: | 
|  | data->status_buf[i] = buf16[i]; | 
|  | break; | 
|  | case 4: | 
|  | data->status_buf[i] = buf32[i]; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | return IRQ_NONE; | 
|  | } | 
|  |  | 
|  | data->status_buf[i] &= ~data->mask_buf[i]; | 
|  |  | 
|  | if (data->status_buf[i] && chip->ack_base) { | 
|  | ret = regmap_write(map, chip->ack_base + i, | 
|  | data->status_buf[i]); | 
|  | if (ret != 0) | 
|  | dev_err(map->dev, "Failed to ack 0x%x: %d\n", | 
|  | chip->ack_base + i, ret); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < chip->num_irqs; i++) { | 
|  | if (data->status_buf[chip->irqs[i].reg_offset] & | 
|  | chip->irqs[i].mask) { | 
|  | handle_nested_irq(data->irq_base + i); | 
|  | handled = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (handled) | 
|  | return IRQ_HANDLED; | 
|  | else | 
|  | return IRQ_NONE; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * regmap_add_irq_chip(): Use standard regmap IRQ controller handling | 
|  | * | 
|  | * map:       The regmap for the device. | 
|  | * irq:       The IRQ the device uses to signal interrupts | 
|  | * irq_flags: The IRQF_ flags to use for the primary interrupt. | 
|  | * chip:      Configuration for the interrupt controller. | 
|  | * data:      Runtime data structure for the controller, allocated on success | 
|  | * | 
|  | * Returns 0 on success or an errno on failure. | 
|  | * | 
|  | * In order for this to be efficient the chip really should use a | 
|  | * register cache.  The chip driver is responsible for restoring the | 
|  | * register values used by the IRQ controller over suspend and resume. | 
|  | */ | 
|  | int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags, | 
|  | int irq_base, struct regmap_irq_chip *chip, | 
|  | struct regmap_irq_chip_data **data) | 
|  | { | 
|  | struct regmap_irq_chip_data *d; | 
|  | int cur_irq, i; | 
|  | int ret = -ENOMEM; | 
|  |  | 
|  | irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0); | 
|  | if (irq_base < 0) { | 
|  | dev_warn(map->dev, "Failed to allocate IRQs: %d\n", | 
|  | irq_base); | 
|  | return irq_base; | 
|  | } | 
|  |  | 
|  | d = kzalloc(sizeof(*d), GFP_KERNEL); | 
|  | if (!d) | 
|  | return -ENOMEM; | 
|  |  | 
|  | d->status_buf = kzalloc(sizeof(unsigned int) * chip->num_regs, | 
|  | GFP_KERNEL); | 
|  | if (!d->status_buf) | 
|  | goto err_alloc; | 
|  |  | 
|  | d->status_reg_buf = kzalloc(map->format.val_bytes * chip->num_regs, | 
|  | GFP_KERNEL); | 
|  | if (!d->status_reg_buf) | 
|  | goto err_alloc; | 
|  |  | 
|  | d->mask_buf = kzalloc(sizeof(unsigned int) * chip->num_regs, | 
|  | GFP_KERNEL); | 
|  | if (!d->mask_buf) | 
|  | goto err_alloc; | 
|  |  | 
|  | d->mask_buf_def = kzalloc(sizeof(unsigned int) * chip->num_regs, | 
|  | GFP_KERNEL); | 
|  | if (!d->mask_buf_def) | 
|  | goto err_alloc; | 
|  |  | 
|  | d->map = map; | 
|  | d->chip = chip; | 
|  | d->irq_base = irq_base; | 
|  | mutex_init(&d->lock); | 
|  |  | 
|  | for (i = 0; i < chip->num_irqs; i++) | 
|  | d->mask_buf_def[chip->irqs[i].reg_offset] | 
|  | |= chip->irqs[i].mask; | 
|  |  | 
|  | /* Mask all the interrupts by default */ | 
|  | for (i = 0; i < chip->num_regs; i++) { | 
|  | d->mask_buf[i] = d->mask_buf_def[i]; | 
|  | ret = regmap_write(map, chip->mask_base + i, d->mask_buf[i]); | 
|  | if (ret != 0) { | 
|  | dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", | 
|  | chip->mask_base + i, ret); | 
|  | goto err_alloc; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Register them with genirq */ | 
|  | for (cur_irq = irq_base; | 
|  | cur_irq < chip->num_irqs + irq_base; | 
|  | cur_irq++) { | 
|  | irq_set_chip_data(cur_irq, d); | 
|  | irq_set_chip_and_handler(cur_irq, ®map_irq_chip, | 
|  | handle_edge_irq); | 
|  | irq_set_nested_thread(cur_irq, 1); | 
|  |  | 
|  | /* ARM needs us to explicitly flag the IRQ as valid | 
|  | * and will set them noprobe when we do so. */ | 
|  | #ifdef CONFIG_ARM | 
|  | set_irq_flags(cur_irq, IRQF_VALID); | 
|  | #else | 
|  | irq_set_noprobe(cur_irq); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | ret = request_threaded_irq(irq, NULL, regmap_irq_thread, irq_flags, | 
|  | chip->name, d); | 
|  | if (ret != 0) { | 
|  | dev_err(map->dev, "Failed to request IRQ %d: %d\n", irq, ret); | 
|  | goto err_alloc; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_alloc: | 
|  | kfree(d->mask_buf_def); | 
|  | kfree(d->mask_buf); | 
|  | kfree(d->status_reg_buf); | 
|  | kfree(d->status_buf); | 
|  | kfree(d); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regmap_add_irq_chip); | 
|  |  | 
|  | /** | 
|  | * regmap_del_irq_chip(): Stop interrupt handling for a regmap IRQ chip | 
|  | * | 
|  | * @irq: Primary IRQ for the device | 
|  | * @d:   regmap_irq_chip_data allocated by regmap_add_irq_chip() | 
|  | */ | 
|  | void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d) | 
|  | { | 
|  | if (!d) | 
|  | return; | 
|  |  | 
|  | free_irq(irq, d); | 
|  | kfree(d->mask_buf_def); | 
|  | kfree(d->mask_buf); | 
|  | kfree(d->status_reg_buf); | 
|  | kfree(d->status_buf); | 
|  | kfree(d); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regmap_del_irq_chip); | 
|  |  | 
|  | /** | 
|  | * regmap_irq_chip_get_base(): Retrieve interrupt base for a regmap IRQ chip | 
|  | * | 
|  | * Useful for drivers to request their own IRQs. | 
|  | * | 
|  | * @data: regmap_irq controller to operate on. | 
|  | */ | 
|  | int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data) | 
|  | { | 
|  | return data->irq_base; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base); |