|  | /* | 
|  | *  linux/fs/ext2/inode.c | 
|  | * | 
|  | * Copyright (C) 1992, 1993, 1994, 1995 | 
|  | * Remy Card (card@masi.ibp.fr) | 
|  | * Laboratoire MASI - Institut Blaise Pascal | 
|  | * Universite Pierre et Marie Curie (Paris VI) | 
|  | * | 
|  | *  from | 
|  | * | 
|  | *  linux/fs/minix/inode.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992  Linus Torvalds | 
|  | * | 
|  | *  Goal-directed block allocation by Stephen Tweedie | 
|  | * 	(sct@dcs.ed.ac.uk), 1993, 1998 | 
|  | *  Big-endian to little-endian byte-swapping/bitmaps by | 
|  | *        David S. Miller (davem@caip.rutgers.edu), 1995 | 
|  | *  64-bit file support on 64-bit platforms by Jakub Jelinek | 
|  | * 	(jj@sunsite.ms.mff.cuni.cz) | 
|  | * | 
|  | *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000 | 
|  | */ | 
|  |  | 
|  | #include <linux/time.h> | 
|  | #include <linux/highuid.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/quotaops.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/buffer_head.h> | 
|  | #include <linux/mpage.h> | 
|  | #include <linux/fiemap.h> | 
|  | #include <linux/namei.h> | 
|  | #include "ext2.h" | 
|  | #include "acl.h" | 
|  | #include "xip.h" | 
|  |  | 
|  | MODULE_AUTHOR("Remy Card and others"); | 
|  | MODULE_DESCRIPTION("Second Extended Filesystem"); | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  | static int __ext2_write_inode(struct inode *inode, int do_sync); | 
|  |  | 
|  | /* | 
|  | * Test whether an inode is a fast symlink. | 
|  | */ | 
|  | static inline int ext2_inode_is_fast_symlink(struct inode *inode) | 
|  | { | 
|  | int ea_blocks = EXT2_I(inode)->i_file_acl ? | 
|  | (inode->i_sb->s_blocksize >> 9) : 0; | 
|  |  | 
|  | return (S_ISLNK(inode->i_mode) && | 
|  | inode->i_blocks - ea_blocks == 0); | 
|  | } | 
|  |  | 
|  | static void ext2_truncate_blocks(struct inode *inode, loff_t offset); | 
|  |  | 
|  | static void ext2_write_failed(struct address_space *mapping, loff_t to) | 
|  | { | 
|  | struct inode *inode = mapping->host; | 
|  |  | 
|  | if (to > inode->i_size) { | 
|  | truncate_pagecache(inode, to, inode->i_size); | 
|  | ext2_truncate_blocks(inode, inode->i_size); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called at the last iput() if i_nlink is zero. | 
|  | */ | 
|  | void ext2_evict_inode(struct inode * inode) | 
|  | { | 
|  | struct ext2_block_alloc_info *rsv; | 
|  | int want_delete = 0; | 
|  |  | 
|  | if (!inode->i_nlink && !is_bad_inode(inode)) { | 
|  | want_delete = 1; | 
|  | dquot_initialize(inode); | 
|  | } else { | 
|  | dquot_drop(inode); | 
|  | } | 
|  |  | 
|  | truncate_inode_pages(&inode->i_data, 0); | 
|  |  | 
|  | if (want_delete) { | 
|  | /* set dtime */ | 
|  | EXT2_I(inode)->i_dtime	= get_seconds(); | 
|  | mark_inode_dirty(inode); | 
|  | __ext2_write_inode(inode, inode_needs_sync(inode)); | 
|  | /* truncate to 0 */ | 
|  | inode->i_size = 0; | 
|  | if (inode->i_blocks) | 
|  | ext2_truncate_blocks(inode, 0); | 
|  | } | 
|  |  | 
|  | invalidate_inode_buffers(inode); | 
|  | end_writeback(inode); | 
|  |  | 
|  | ext2_discard_reservation(inode); | 
|  | rsv = EXT2_I(inode)->i_block_alloc_info; | 
|  | EXT2_I(inode)->i_block_alloc_info = NULL; | 
|  | if (unlikely(rsv)) | 
|  | kfree(rsv); | 
|  |  | 
|  | if (want_delete) | 
|  | ext2_free_inode(inode); | 
|  | } | 
|  |  | 
|  | typedef struct { | 
|  | __le32	*p; | 
|  | __le32	key; | 
|  | struct buffer_head *bh; | 
|  | } Indirect; | 
|  |  | 
|  | static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) | 
|  | { | 
|  | p->key = *(p->p = v); | 
|  | p->bh = bh; | 
|  | } | 
|  |  | 
|  | static inline int verify_chain(Indirect *from, Indirect *to) | 
|  | { | 
|  | while (from <= to && from->key == *from->p) | 
|  | from++; | 
|  | return (from > to); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ext2_block_to_path - parse the block number into array of offsets | 
|  | *	@inode: inode in question (we are only interested in its superblock) | 
|  | *	@i_block: block number to be parsed | 
|  | *	@offsets: array to store the offsets in | 
|  | *      @boundary: set this non-zero if the referred-to block is likely to be | 
|  | *             followed (on disk) by an indirect block. | 
|  | *	To store the locations of file's data ext2 uses a data structure common | 
|  | *	for UNIX filesystems - tree of pointers anchored in the inode, with | 
|  | *	data blocks at leaves and indirect blocks in intermediate nodes. | 
|  | *	This function translates the block number into path in that tree - | 
|  | *	return value is the path length and @offsets[n] is the offset of | 
|  | *	pointer to (n+1)th node in the nth one. If @block is out of range | 
|  | *	(negative or too large) warning is printed and zero returned. | 
|  | * | 
|  | *	Note: function doesn't find node addresses, so no IO is needed. All | 
|  | *	we need to know is the capacity of indirect blocks (taken from the | 
|  | *	inode->i_sb). | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Portability note: the last comparison (check that we fit into triple | 
|  | * indirect block) is spelled differently, because otherwise on an | 
|  | * architecture with 32-bit longs and 8Kb pages we might get into trouble | 
|  | * if our filesystem had 8Kb blocks. We might use long long, but that would | 
|  | * kill us on x86. Oh, well, at least the sign propagation does not matter - | 
|  | * i_block would have to be negative in the very beginning, so we would not | 
|  | * get there at all. | 
|  | */ | 
|  |  | 
|  | static int ext2_block_to_path(struct inode *inode, | 
|  | long i_block, int offsets[4], int *boundary) | 
|  | { | 
|  | int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb); | 
|  | int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb); | 
|  | const long direct_blocks = EXT2_NDIR_BLOCKS, | 
|  | indirect_blocks = ptrs, | 
|  | double_blocks = (1 << (ptrs_bits * 2)); | 
|  | int n = 0; | 
|  | int final = 0; | 
|  |  | 
|  | if (i_block < 0) { | 
|  | ext2_msg(inode->i_sb, KERN_WARNING, | 
|  | "warning: %s: block < 0", __func__); | 
|  | } else if (i_block < direct_blocks) { | 
|  | offsets[n++] = i_block; | 
|  | final = direct_blocks; | 
|  | } else if ( (i_block -= direct_blocks) < indirect_blocks) { | 
|  | offsets[n++] = EXT2_IND_BLOCK; | 
|  | offsets[n++] = i_block; | 
|  | final = ptrs; | 
|  | } else if ((i_block -= indirect_blocks) < double_blocks) { | 
|  | offsets[n++] = EXT2_DIND_BLOCK; | 
|  | offsets[n++] = i_block >> ptrs_bits; | 
|  | offsets[n++] = i_block & (ptrs - 1); | 
|  | final = ptrs; | 
|  | } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { | 
|  | offsets[n++] = EXT2_TIND_BLOCK; | 
|  | offsets[n++] = i_block >> (ptrs_bits * 2); | 
|  | offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); | 
|  | offsets[n++] = i_block & (ptrs - 1); | 
|  | final = ptrs; | 
|  | } else { | 
|  | ext2_msg(inode->i_sb, KERN_WARNING, | 
|  | "warning: %s: block is too big", __func__); | 
|  | } | 
|  | if (boundary) | 
|  | *boundary = final - 1 - (i_block & (ptrs - 1)); | 
|  |  | 
|  | return n; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ext2_get_branch - read the chain of indirect blocks leading to data | 
|  | *	@inode: inode in question | 
|  | *	@depth: depth of the chain (1 - direct pointer, etc.) | 
|  | *	@offsets: offsets of pointers in inode/indirect blocks | 
|  | *	@chain: place to store the result | 
|  | *	@err: here we store the error value | 
|  | * | 
|  | *	Function fills the array of triples <key, p, bh> and returns %NULL | 
|  | *	if everything went OK or the pointer to the last filled triple | 
|  | *	(incomplete one) otherwise. Upon the return chain[i].key contains | 
|  | *	the number of (i+1)-th block in the chain (as it is stored in memory, | 
|  | *	i.e. little-endian 32-bit), chain[i].p contains the address of that | 
|  | *	number (it points into struct inode for i==0 and into the bh->b_data | 
|  | *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect | 
|  | *	block for i>0 and NULL for i==0. In other words, it holds the block | 
|  | *	numbers of the chain, addresses they were taken from (and where we can | 
|  | *	verify that chain did not change) and buffer_heads hosting these | 
|  | *	numbers. | 
|  | * | 
|  | *	Function stops when it stumbles upon zero pointer (absent block) | 
|  | *		(pointer to last triple returned, *@err == 0) | 
|  | *	or when it gets an IO error reading an indirect block | 
|  | *		(ditto, *@err == -EIO) | 
|  | *	or when it notices that chain had been changed while it was reading | 
|  | *		(ditto, *@err == -EAGAIN) | 
|  | *	or when it reads all @depth-1 indirect blocks successfully and finds | 
|  | *	the whole chain, all way to the data (returns %NULL, *err == 0). | 
|  | */ | 
|  | static Indirect *ext2_get_branch(struct inode *inode, | 
|  | int depth, | 
|  | int *offsets, | 
|  | Indirect chain[4], | 
|  | int *err) | 
|  | { | 
|  | struct super_block *sb = inode->i_sb; | 
|  | Indirect *p = chain; | 
|  | struct buffer_head *bh; | 
|  |  | 
|  | *err = 0; | 
|  | /* i_data is not going away, no lock needed */ | 
|  | add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets); | 
|  | if (!p->key) | 
|  | goto no_block; | 
|  | while (--depth) { | 
|  | bh = sb_bread(sb, le32_to_cpu(p->key)); | 
|  | if (!bh) | 
|  | goto failure; | 
|  | read_lock(&EXT2_I(inode)->i_meta_lock); | 
|  | if (!verify_chain(chain, p)) | 
|  | goto changed; | 
|  | add_chain(++p, bh, (__le32*)bh->b_data + *++offsets); | 
|  | read_unlock(&EXT2_I(inode)->i_meta_lock); | 
|  | if (!p->key) | 
|  | goto no_block; | 
|  | } | 
|  | return NULL; | 
|  |  | 
|  | changed: | 
|  | read_unlock(&EXT2_I(inode)->i_meta_lock); | 
|  | brelse(bh); | 
|  | *err = -EAGAIN; | 
|  | goto no_block; | 
|  | failure: | 
|  | *err = -EIO; | 
|  | no_block: | 
|  | return p; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ext2_find_near - find a place for allocation with sufficient locality | 
|  | *	@inode: owner | 
|  | *	@ind: descriptor of indirect block. | 
|  | * | 
|  | *	This function returns the preferred place for block allocation. | 
|  | *	It is used when heuristic for sequential allocation fails. | 
|  | *	Rules are: | 
|  | *	  + if there is a block to the left of our position - allocate near it. | 
|  | *	  + if pointer will live in indirect block - allocate near that block. | 
|  | *	  + if pointer will live in inode - allocate in the same cylinder group. | 
|  | * | 
|  | * In the latter case we colour the starting block by the callers PID to | 
|  | * prevent it from clashing with concurrent allocations for a different inode | 
|  | * in the same block group.   The PID is used here so that functionally related | 
|  | * files will be close-by on-disk. | 
|  | * | 
|  | *	Caller must make sure that @ind is valid and will stay that way. | 
|  | */ | 
|  |  | 
|  | static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind) | 
|  | { | 
|  | struct ext2_inode_info *ei = EXT2_I(inode); | 
|  | __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; | 
|  | __le32 *p; | 
|  | ext2_fsblk_t bg_start; | 
|  | ext2_fsblk_t colour; | 
|  |  | 
|  | /* Try to find previous block */ | 
|  | for (p = ind->p - 1; p >= start; p--) | 
|  | if (*p) | 
|  | return le32_to_cpu(*p); | 
|  |  | 
|  | /* No such thing, so let's try location of indirect block */ | 
|  | if (ind->bh) | 
|  | return ind->bh->b_blocknr; | 
|  |  | 
|  | /* | 
|  | * It is going to be refered from inode itself? OK, just put it into | 
|  | * the same cylinder group then. | 
|  | */ | 
|  | bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group); | 
|  | colour = (current->pid % 16) * | 
|  | (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16); | 
|  | return bg_start + colour; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ext2_find_goal - find a preferred place for allocation. | 
|  | *	@inode: owner | 
|  | *	@block:  block we want | 
|  | *	@partial: pointer to the last triple within a chain | 
|  | * | 
|  | *	Returns preferred place for a block (the goal). | 
|  | */ | 
|  |  | 
|  | static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block, | 
|  | Indirect *partial) | 
|  | { | 
|  | struct ext2_block_alloc_info *block_i; | 
|  |  | 
|  | block_i = EXT2_I(inode)->i_block_alloc_info; | 
|  |  | 
|  | /* | 
|  | * try the heuristic for sequential allocation, | 
|  | * failing that at least try to get decent locality. | 
|  | */ | 
|  | if (block_i && (block == block_i->last_alloc_logical_block + 1) | 
|  | && (block_i->last_alloc_physical_block != 0)) { | 
|  | return block_i->last_alloc_physical_block + 1; | 
|  | } | 
|  |  | 
|  | return ext2_find_near(inode, partial); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ext2_blks_to_allocate: Look up the block map and count the number | 
|  | *	of direct blocks need to be allocated for the given branch. | 
|  | * | 
|  | * 	@branch: chain of indirect blocks | 
|  | *	@k: number of blocks need for indirect blocks | 
|  | *	@blks: number of data blocks to be mapped. | 
|  | *	@blocks_to_boundary:  the offset in the indirect block | 
|  | * | 
|  | *	return the total number of blocks to be allocate, including the | 
|  | *	direct and indirect blocks. | 
|  | */ | 
|  | static int | 
|  | ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks, | 
|  | int blocks_to_boundary) | 
|  | { | 
|  | unsigned long count = 0; | 
|  |  | 
|  | /* | 
|  | * Simple case, [t,d]Indirect block(s) has not allocated yet | 
|  | * then it's clear blocks on that path have not allocated | 
|  | */ | 
|  | if (k > 0) { | 
|  | /* right now don't hanel cross boundary allocation */ | 
|  | if (blks < blocks_to_boundary + 1) | 
|  | count += blks; | 
|  | else | 
|  | count += blocks_to_boundary + 1; | 
|  | return count; | 
|  | } | 
|  |  | 
|  | count++; | 
|  | while (count < blks && count <= blocks_to_boundary | 
|  | && le32_to_cpu(*(branch[0].p + count)) == 0) { | 
|  | count++; | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ext2_alloc_blocks: multiple allocate blocks needed for a branch | 
|  | *	@indirect_blks: the number of blocks need to allocate for indirect | 
|  | *			blocks | 
|  | * | 
|  | *	@new_blocks: on return it will store the new block numbers for | 
|  | *	the indirect blocks(if needed) and the first direct block, | 
|  | *	@blks:	on return it will store the total number of allocated | 
|  | *		direct blocks | 
|  | */ | 
|  | static int ext2_alloc_blocks(struct inode *inode, | 
|  | ext2_fsblk_t goal, int indirect_blks, int blks, | 
|  | ext2_fsblk_t new_blocks[4], int *err) | 
|  | { | 
|  | int target, i; | 
|  | unsigned long count = 0; | 
|  | int index = 0; | 
|  | ext2_fsblk_t current_block = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * Here we try to allocate the requested multiple blocks at once, | 
|  | * on a best-effort basis. | 
|  | * To build a branch, we should allocate blocks for | 
|  | * the indirect blocks(if not allocated yet), and at least | 
|  | * the first direct block of this branch.  That's the | 
|  | * minimum number of blocks need to allocate(required) | 
|  | */ | 
|  | target = blks + indirect_blks; | 
|  |  | 
|  | while (1) { | 
|  | count = target; | 
|  | /* allocating blocks for indirect blocks and direct blocks */ | 
|  | current_block = ext2_new_blocks(inode,goal,&count,err); | 
|  | if (*err) | 
|  | goto failed_out; | 
|  |  | 
|  | target -= count; | 
|  | /* allocate blocks for indirect blocks */ | 
|  | while (index < indirect_blks && count) { | 
|  | new_blocks[index++] = current_block++; | 
|  | count--; | 
|  | } | 
|  |  | 
|  | if (count > 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* save the new block number for the first direct block */ | 
|  | new_blocks[index] = current_block; | 
|  |  | 
|  | /* total number of blocks allocated for direct blocks */ | 
|  | ret = count; | 
|  | *err = 0; | 
|  | return ret; | 
|  | failed_out: | 
|  | for (i = 0; i <index; i++) | 
|  | ext2_free_blocks(inode, new_blocks[i], 1); | 
|  | if (index) | 
|  | mark_inode_dirty(inode); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ext2_alloc_branch - allocate and set up a chain of blocks. | 
|  | *	@inode: owner | 
|  | *	@num: depth of the chain (number of blocks to allocate) | 
|  | *	@offsets: offsets (in the blocks) to store the pointers to next. | 
|  | *	@branch: place to store the chain in. | 
|  | * | 
|  | *	This function allocates @num blocks, zeroes out all but the last one, | 
|  | *	links them into chain and (if we are synchronous) writes them to disk. | 
|  | *	In other words, it prepares a branch that can be spliced onto the | 
|  | *	inode. It stores the information about that chain in the branch[], in | 
|  | *	the same format as ext2_get_branch() would do. We are calling it after | 
|  | *	we had read the existing part of chain and partial points to the last | 
|  | *	triple of that (one with zero ->key). Upon the exit we have the same | 
|  | *	picture as after the successful ext2_get_block(), excpet that in one | 
|  | *	place chain is disconnected - *branch->p is still zero (we did not | 
|  | *	set the last link), but branch->key contains the number that should | 
|  | *	be placed into *branch->p to fill that gap. | 
|  | * | 
|  | *	If allocation fails we free all blocks we've allocated (and forget | 
|  | *	their buffer_heads) and return the error value the from failed | 
|  | *	ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain | 
|  | *	as described above and return 0. | 
|  | */ | 
|  |  | 
|  | static int ext2_alloc_branch(struct inode *inode, | 
|  | int indirect_blks, int *blks, ext2_fsblk_t goal, | 
|  | int *offsets, Indirect *branch) | 
|  | { | 
|  | int blocksize = inode->i_sb->s_blocksize; | 
|  | int i, n = 0; | 
|  | int err = 0; | 
|  | struct buffer_head *bh; | 
|  | int num; | 
|  | ext2_fsblk_t new_blocks[4]; | 
|  | ext2_fsblk_t current_block; | 
|  |  | 
|  | num = ext2_alloc_blocks(inode, goal, indirect_blks, | 
|  | *blks, new_blocks, &err); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | branch[0].key = cpu_to_le32(new_blocks[0]); | 
|  | /* | 
|  | * metadata blocks and data blocks are allocated. | 
|  | */ | 
|  | for (n = 1; n <= indirect_blks;  n++) { | 
|  | /* | 
|  | * Get buffer_head for parent block, zero it out | 
|  | * and set the pointer to new one, then send | 
|  | * parent to disk. | 
|  | */ | 
|  | bh = sb_getblk(inode->i_sb, new_blocks[n-1]); | 
|  | branch[n].bh = bh; | 
|  | lock_buffer(bh); | 
|  | memset(bh->b_data, 0, blocksize); | 
|  | branch[n].p = (__le32 *) bh->b_data + offsets[n]; | 
|  | branch[n].key = cpu_to_le32(new_blocks[n]); | 
|  | *branch[n].p = branch[n].key; | 
|  | if ( n == indirect_blks) { | 
|  | current_block = new_blocks[n]; | 
|  | /* | 
|  | * End of chain, update the last new metablock of | 
|  | * the chain to point to the new allocated | 
|  | * data blocks numbers | 
|  | */ | 
|  | for (i=1; i < num; i++) | 
|  | *(branch[n].p + i) = cpu_to_le32(++current_block); | 
|  | } | 
|  | set_buffer_uptodate(bh); | 
|  | unlock_buffer(bh); | 
|  | mark_buffer_dirty_inode(bh, inode); | 
|  | /* We used to sync bh here if IS_SYNC(inode). | 
|  | * But we now rely upon generic_write_sync() | 
|  | * and b_inode_buffers.  But not for directories. | 
|  | */ | 
|  | if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) | 
|  | sync_dirty_buffer(bh); | 
|  | } | 
|  | *blks = num; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ext2_splice_branch - splice the allocated branch onto inode. | 
|  | * @inode: owner | 
|  | * @block: (logical) number of block we are adding | 
|  | * @where: location of missing link | 
|  | * @num:   number of indirect blocks we are adding | 
|  | * @blks:  number of direct blocks we are adding | 
|  | * | 
|  | * This function fills the missing link and does all housekeeping needed in | 
|  | * inode (->i_blocks, etc.). In case of success we end up with the full | 
|  | * chain to new block and return 0. | 
|  | */ | 
|  | static void ext2_splice_branch(struct inode *inode, | 
|  | long block, Indirect *where, int num, int blks) | 
|  | { | 
|  | int i; | 
|  | struct ext2_block_alloc_info *block_i; | 
|  | ext2_fsblk_t current_block; | 
|  |  | 
|  | block_i = EXT2_I(inode)->i_block_alloc_info; | 
|  |  | 
|  | /* XXX LOCKING probably should have i_meta_lock ?*/ | 
|  | /* That's it */ | 
|  |  | 
|  | *where->p = where->key; | 
|  |  | 
|  | /* | 
|  | * Update the host buffer_head or inode to point to more just allocated | 
|  | * direct blocks blocks | 
|  | */ | 
|  | if (num == 0 && blks > 1) { | 
|  | current_block = le32_to_cpu(where->key) + 1; | 
|  | for (i = 1; i < blks; i++) | 
|  | *(where->p + i ) = cpu_to_le32(current_block++); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * update the most recently allocated logical & physical block | 
|  | * in i_block_alloc_info, to assist find the proper goal block for next | 
|  | * allocation | 
|  | */ | 
|  | if (block_i) { | 
|  | block_i->last_alloc_logical_block = block + blks - 1; | 
|  | block_i->last_alloc_physical_block = | 
|  | le32_to_cpu(where[num].key) + blks - 1; | 
|  | } | 
|  |  | 
|  | /* We are done with atomic stuff, now do the rest of housekeeping */ | 
|  |  | 
|  | /* had we spliced it onto indirect block? */ | 
|  | if (where->bh) | 
|  | mark_buffer_dirty_inode(where->bh, inode); | 
|  |  | 
|  | inode->i_ctime = CURRENT_TIME_SEC; | 
|  | mark_inode_dirty(inode); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocation strategy is simple: if we have to allocate something, we will | 
|  | * have to go the whole way to leaf. So let's do it before attaching anything | 
|  | * to tree, set linkage between the newborn blocks, write them if sync is | 
|  | * required, recheck the path, free and repeat if check fails, otherwise | 
|  | * set the last missing link (that will protect us from any truncate-generated | 
|  | * removals - all blocks on the path are immune now) and possibly force the | 
|  | * write on the parent block. | 
|  | * That has a nice additional property: no special recovery from the failed | 
|  | * allocations is needed - we simply release blocks and do not touch anything | 
|  | * reachable from inode. | 
|  | * | 
|  | * `handle' can be NULL if create == 0. | 
|  | * | 
|  | * return > 0, # of blocks mapped or allocated. | 
|  | * return = 0, if plain lookup failed. | 
|  | * return < 0, error case. | 
|  | */ | 
|  | static int ext2_get_blocks(struct inode *inode, | 
|  | sector_t iblock, unsigned long maxblocks, | 
|  | struct buffer_head *bh_result, | 
|  | int create) | 
|  | { | 
|  | int err = -EIO; | 
|  | int offsets[4]; | 
|  | Indirect chain[4]; | 
|  | Indirect *partial; | 
|  | ext2_fsblk_t goal; | 
|  | int indirect_blks; | 
|  | int blocks_to_boundary = 0; | 
|  | int depth; | 
|  | struct ext2_inode_info *ei = EXT2_I(inode); | 
|  | int count = 0; | 
|  | ext2_fsblk_t first_block = 0; | 
|  |  | 
|  | depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary); | 
|  |  | 
|  | if (depth == 0) | 
|  | return (err); | 
|  |  | 
|  | partial = ext2_get_branch(inode, depth, offsets, chain, &err); | 
|  | /* Simplest case - block found, no allocation needed */ | 
|  | if (!partial) { | 
|  | first_block = le32_to_cpu(chain[depth - 1].key); | 
|  | clear_buffer_new(bh_result); /* What's this do? */ | 
|  | count++; | 
|  | /*map more blocks*/ | 
|  | while (count < maxblocks && count <= blocks_to_boundary) { | 
|  | ext2_fsblk_t blk; | 
|  |  | 
|  | if (!verify_chain(chain, chain + depth - 1)) { | 
|  | /* | 
|  | * Indirect block might be removed by | 
|  | * truncate while we were reading it. | 
|  | * Handling of that case: forget what we've | 
|  | * got now, go to reread. | 
|  | */ | 
|  | err = -EAGAIN; | 
|  | count = 0; | 
|  | break; | 
|  | } | 
|  | blk = le32_to_cpu(*(chain[depth-1].p + count)); | 
|  | if (blk == first_block + count) | 
|  | count++; | 
|  | else | 
|  | break; | 
|  | } | 
|  | if (err != -EAGAIN) | 
|  | goto got_it; | 
|  | } | 
|  |  | 
|  | /* Next simple case - plain lookup or failed read of indirect block */ | 
|  | if (!create || err == -EIO) | 
|  | goto cleanup; | 
|  |  | 
|  | mutex_lock(&ei->truncate_mutex); | 
|  | /* | 
|  | * If the indirect block is missing while we are reading | 
|  | * the chain(ext3_get_branch() returns -EAGAIN err), or | 
|  | * if the chain has been changed after we grab the semaphore, | 
|  | * (either because another process truncated this branch, or | 
|  | * another get_block allocated this branch) re-grab the chain to see if | 
|  | * the request block has been allocated or not. | 
|  | * | 
|  | * Since we already block the truncate/other get_block | 
|  | * at this point, we will have the current copy of the chain when we | 
|  | * splice the branch into the tree. | 
|  | */ | 
|  | if (err == -EAGAIN || !verify_chain(chain, partial)) { | 
|  | while (partial > chain) { | 
|  | brelse(partial->bh); | 
|  | partial--; | 
|  | } | 
|  | partial = ext2_get_branch(inode, depth, offsets, chain, &err); | 
|  | if (!partial) { | 
|  | count++; | 
|  | mutex_unlock(&ei->truncate_mutex); | 
|  | if (err) | 
|  | goto cleanup; | 
|  | clear_buffer_new(bh_result); | 
|  | goto got_it; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Okay, we need to do block allocation.  Lazily initialize the block | 
|  | * allocation info here if necessary | 
|  | */ | 
|  | if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info)) | 
|  | ext2_init_block_alloc_info(inode); | 
|  |  | 
|  | goal = ext2_find_goal(inode, iblock, partial); | 
|  |  | 
|  | /* the number of blocks need to allocate for [d,t]indirect blocks */ | 
|  | indirect_blks = (chain + depth) - partial - 1; | 
|  | /* | 
|  | * Next look up the indirect map to count the totoal number of | 
|  | * direct blocks to allocate for this branch. | 
|  | */ | 
|  | count = ext2_blks_to_allocate(partial, indirect_blks, | 
|  | maxblocks, blocks_to_boundary); | 
|  | /* | 
|  | * XXX ???? Block out ext2_truncate while we alter the tree | 
|  | */ | 
|  | err = ext2_alloc_branch(inode, indirect_blks, &count, goal, | 
|  | offsets + (partial - chain), partial); | 
|  |  | 
|  | if (err) { | 
|  | mutex_unlock(&ei->truncate_mutex); | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | if (ext2_use_xip(inode->i_sb)) { | 
|  | /* | 
|  | * we need to clear the block | 
|  | */ | 
|  | err = ext2_clear_xip_target (inode, | 
|  | le32_to_cpu(chain[depth-1].key)); | 
|  | if (err) { | 
|  | mutex_unlock(&ei->truncate_mutex); | 
|  | goto cleanup; | 
|  | } | 
|  | } | 
|  |  | 
|  | ext2_splice_branch(inode, iblock, partial, indirect_blks, count); | 
|  | mutex_unlock(&ei->truncate_mutex); | 
|  | set_buffer_new(bh_result); | 
|  | got_it: | 
|  | map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key)); | 
|  | if (count > blocks_to_boundary) | 
|  | set_buffer_boundary(bh_result); | 
|  | err = count; | 
|  | /* Clean up and exit */ | 
|  | partial = chain + depth - 1;	/* the whole chain */ | 
|  | cleanup: | 
|  | while (partial > chain) { | 
|  | brelse(partial->bh); | 
|  | partial--; | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create) | 
|  | { | 
|  | unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; | 
|  | int ret = ext2_get_blocks(inode, iblock, max_blocks, | 
|  | bh_result, create); | 
|  | if (ret > 0) { | 
|  | bh_result->b_size = (ret << inode->i_blkbits); | 
|  | ret = 0; | 
|  | } | 
|  | return ret; | 
|  |  | 
|  | } | 
|  |  | 
|  | int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, | 
|  | u64 start, u64 len) | 
|  | { | 
|  | return generic_block_fiemap(inode, fieinfo, start, len, | 
|  | ext2_get_block); | 
|  | } | 
|  |  | 
|  | static int ext2_writepage(struct page *page, struct writeback_control *wbc) | 
|  | { | 
|  | return block_write_full_page(page, ext2_get_block, wbc); | 
|  | } | 
|  |  | 
|  | static int ext2_readpage(struct file *file, struct page *page) | 
|  | { | 
|  | return mpage_readpage(page, ext2_get_block); | 
|  | } | 
|  |  | 
|  | static int | 
|  | ext2_readpages(struct file *file, struct address_space *mapping, | 
|  | struct list_head *pages, unsigned nr_pages) | 
|  | { | 
|  | return mpage_readpages(mapping, pages, nr_pages, ext2_get_block); | 
|  | } | 
|  |  | 
|  | static int | 
|  | ext2_write_begin(struct file *file, struct address_space *mapping, | 
|  | loff_t pos, unsigned len, unsigned flags, | 
|  | struct page **pagep, void **fsdata) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = block_write_begin(mapping, pos, len, flags, pagep, | 
|  | ext2_get_block); | 
|  | if (ret < 0) | 
|  | ext2_write_failed(mapping, pos + len); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int ext2_write_end(struct file *file, struct address_space *mapping, | 
|  | loff_t pos, unsigned len, unsigned copied, | 
|  | struct page *page, void *fsdata) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata); | 
|  | if (ret < len) | 
|  | ext2_write_failed(mapping, pos + len); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int | 
|  | ext2_nobh_write_begin(struct file *file, struct address_space *mapping, | 
|  | loff_t pos, unsigned len, unsigned flags, | 
|  | struct page **pagep, void **fsdata) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata, | 
|  | ext2_get_block); | 
|  | if (ret < 0) | 
|  | ext2_write_failed(mapping, pos + len); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int ext2_nobh_writepage(struct page *page, | 
|  | struct writeback_control *wbc) | 
|  | { | 
|  | return nobh_writepage(page, ext2_get_block, wbc); | 
|  | } | 
|  |  | 
|  | static sector_t ext2_bmap(struct address_space *mapping, sector_t block) | 
|  | { | 
|  | return generic_block_bmap(mapping,block,ext2_get_block); | 
|  | } | 
|  |  | 
|  | static ssize_t | 
|  | ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, | 
|  | loff_t offset, unsigned long nr_segs) | 
|  | { | 
|  | struct file *file = iocb->ki_filp; | 
|  | struct address_space *mapping = file->f_mapping; | 
|  | struct inode *inode = mapping->host; | 
|  | ssize_t ret; | 
|  |  | 
|  | ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, | 
|  | iov, offset, nr_segs, ext2_get_block, NULL); | 
|  | if (ret < 0 && (rw & WRITE)) | 
|  | ext2_write_failed(mapping, offset + iov_length(iov, nr_segs)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int | 
|  | ext2_writepages(struct address_space *mapping, struct writeback_control *wbc) | 
|  | { | 
|  | return mpage_writepages(mapping, wbc, ext2_get_block); | 
|  | } | 
|  |  | 
|  | const struct address_space_operations ext2_aops = { | 
|  | .readpage		= ext2_readpage, | 
|  | .readpages		= ext2_readpages, | 
|  | .writepage		= ext2_writepage, | 
|  | .sync_page		= block_sync_page, | 
|  | .write_begin		= ext2_write_begin, | 
|  | .write_end		= ext2_write_end, | 
|  | .bmap			= ext2_bmap, | 
|  | .direct_IO		= ext2_direct_IO, | 
|  | .writepages		= ext2_writepages, | 
|  | .migratepage		= buffer_migrate_page, | 
|  | .is_partially_uptodate	= block_is_partially_uptodate, | 
|  | .error_remove_page	= generic_error_remove_page, | 
|  | }; | 
|  |  | 
|  | const struct address_space_operations ext2_aops_xip = { | 
|  | .bmap			= ext2_bmap, | 
|  | .get_xip_mem		= ext2_get_xip_mem, | 
|  | }; | 
|  |  | 
|  | const struct address_space_operations ext2_nobh_aops = { | 
|  | .readpage		= ext2_readpage, | 
|  | .readpages		= ext2_readpages, | 
|  | .writepage		= ext2_nobh_writepage, | 
|  | .sync_page		= block_sync_page, | 
|  | .write_begin		= ext2_nobh_write_begin, | 
|  | .write_end		= nobh_write_end, | 
|  | .bmap			= ext2_bmap, | 
|  | .direct_IO		= ext2_direct_IO, | 
|  | .writepages		= ext2_writepages, | 
|  | .migratepage		= buffer_migrate_page, | 
|  | .error_remove_page	= generic_error_remove_page, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Probably it should be a library function... search for first non-zero word | 
|  | * or memcmp with zero_page, whatever is better for particular architecture. | 
|  | * Linus? | 
|  | */ | 
|  | static inline int all_zeroes(__le32 *p, __le32 *q) | 
|  | { | 
|  | while (p < q) | 
|  | if (*p++) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ext2_find_shared - find the indirect blocks for partial truncation. | 
|  | *	@inode:	  inode in question | 
|  | *	@depth:	  depth of the affected branch | 
|  | *	@offsets: offsets of pointers in that branch (see ext2_block_to_path) | 
|  | *	@chain:	  place to store the pointers to partial indirect blocks | 
|  | *	@top:	  place to the (detached) top of branch | 
|  | * | 
|  | *	This is a helper function used by ext2_truncate(). | 
|  | * | 
|  | *	When we do truncate() we may have to clean the ends of several indirect | 
|  | *	blocks but leave the blocks themselves alive. Block is partially | 
|  | *	truncated if some data below the new i_size is refered from it (and | 
|  | *	it is on the path to the first completely truncated data block, indeed). | 
|  | *	We have to free the top of that path along with everything to the right | 
|  | *	of the path. Since no allocation past the truncation point is possible | 
|  | *	until ext2_truncate() finishes, we may safely do the latter, but top | 
|  | *	of branch may require special attention - pageout below the truncation | 
|  | *	point might try to populate it. | 
|  | * | 
|  | *	We atomically detach the top of branch from the tree, store the block | 
|  | *	number of its root in *@top, pointers to buffer_heads of partially | 
|  | *	truncated blocks - in @chain[].bh and pointers to their last elements | 
|  | *	that should not be removed - in @chain[].p. Return value is the pointer | 
|  | *	to last filled element of @chain. | 
|  | * | 
|  | *	The work left to caller to do the actual freeing of subtrees: | 
|  | *		a) free the subtree starting from *@top | 
|  | *		b) free the subtrees whose roots are stored in | 
|  | *			(@chain[i].p+1 .. end of @chain[i].bh->b_data) | 
|  | *		c) free the subtrees growing from the inode past the @chain[0].p | 
|  | *			(no partially truncated stuff there). | 
|  | */ | 
|  |  | 
|  | static Indirect *ext2_find_shared(struct inode *inode, | 
|  | int depth, | 
|  | int offsets[4], | 
|  | Indirect chain[4], | 
|  | __le32 *top) | 
|  | { | 
|  | Indirect *partial, *p; | 
|  | int k, err; | 
|  |  | 
|  | *top = 0; | 
|  | for (k = depth; k > 1 && !offsets[k-1]; k--) | 
|  | ; | 
|  | partial = ext2_get_branch(inode, k, offsets, chain, &err); | 
|  | if (!partial) | 
|  | partial = chain + k-1; | 
|  | /* | 
|  | * If the branch acquired continuation since we've looked at it - | 
|  | * fine, it should all survive and (new) top doesn't belong to us. | 
|  | */ | 
|  | write_lock(&EXT2_I(inode)->i_meta_lock); | 
|  | if (!partial->key && *partial->p) { | 
|  | write_unlock(&EXT2_I(inode)->i_meta_lock); | 
|  | goto no_top; | 
|  | } | 
|  | for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--) | 
|  | ; | 
|  | /* | 
|  | * OK, we've found the last block that must survive. The rest of our | 
|  | * branch should be detached before unlocking. However, if that rest | 
|  | * of branch is all ours and does not grow immediately from the inode | 
|  | * it's easier to cheat and just decrement partial->p. | 
|  | */ | 
|  | if (p == chain + k - 1 && p > chain) { | 
|  | p->p--; | 
|  | } else { | 
|  | *top = *p->p; | 
|  | *p->p = 0; | 
|  | } | 
|  | write_unlock(&EXT2_I(inode)->i_meta_lock); | 
|  |  | 
|  | while(partial > p) | 
|  | { | 
|  | brelse(partial->bh); | 
|  | partial--; | 
|  | } | 
|  | no_top: | 
|  | return partial; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ext2_free_data - free a list of data blocks | 
|  | *	@inode:	inode we are dealing with | 
|  | *	@p:	array of block numbers | 
|  | *	@q:	points immediately past the end of array | 
|  | * | 
|  | *	We are freeing all blocks refered from that array (numbers are | 
|  | *	stored as little-endian 32-bit) and updating @inode->i_blocks | 
|  | *	appropriately. | 
|  | */ | 
|  | static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q) | 
|  | { | 
|  | unsigned long block_to_free = 0, count = 0; | 
|  | unsigned long nr; | 
|  |  | 
|  | for ( ; p < q ; p++) { | 
|  | nr = le32_to_cpu(*p); | 
|  | if (nr) { | 
|  | *p = 0; | 
|  | /* accumulate blocks to free if they're contiguous */ | 
|  | if (count == 0) | 
|  | goto free_this; | 
|  | else if (block_to_free == nr - count) | 
|  | count++; | 
|  | else { | 
|  | ext2_free_blocks (inode, block_to_free, count); | 
|  | mark_inode_dirty(inode); | 
|  | free_this: | 
|  | block_to_free = nr; | 
|  | count = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (count > 0) { | 
|  | ext2_free_blocks (inode, block_to_free, count); | 
|  | mark_inode_dirty(inode); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ext2_free_branches - free an array of branches | 
|  | *	@inode:	inode we are dealing with | 
|  | *	@p:	array of block numbers | 
|  | *	@q:	pointer immediately past the end of array | 
|  | *	@depth:	depth of the branches to free | 
|  | * | 
|  | *	We are freeing all blocks refered from these branches (numbers are | 
|  | *	stored as little-endian 32-bit) and updating @inode->i_blocks | 
|  | *	appropriately. | 
|  | */ | 
|  | static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth) | 
|  | { | 
|  | struct buffer_head * bh; | 
|  | unsigned long nr; | 
|  |  | 
|  | if (depth--) { | 
|  | int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb); | 
|  | for ( ; p < q ; p++) { | 
|  | nr = le32_to_cpu(*p); | 
|  | if (!nr) | 
|  | continue; | 
|  | *p = 0; | 
|  | bh = sb_bread(inode->i_sb, nr); | 
|  | /* | 
|  | * A read failure? Report error and clear slot | 
|  | * (should be rare). | 
|  | */ | 
|  | if (!bh) { | 
|  | ext2_error(inode->i_sb, "ext2_free_branches", | 
|  | "Read failure, inode=%ld, block=%ld", | 
|  | inode->i_ino, nr); | 
|  | continue; | 
|  | } | 
|  | ext2_free_branches(inode, | 
|  | (__le32*)bh->b_data, | 
|  | (__le32*)bh->b_data + addr_per_block, | 
|  | depth); | 
|  | bforget(bh); | 
|  | ext2_free_blocks(inode, nr, 1); | 
|  | mark_inode_dirty(inode); | 
|  | } | 
|  | } else | 
|  | ext2_free_data(inode, p, q); | 
|  | } | 
|  |  | 
|  | static void __ext2_truncate_blocks(struct inode *inode, loff_t offset) | 
|  | { | 
|  | __le32 *i_data = EXT2_I(inode)->i_data; | 
|  | struct ext2_inode_info *ei = EXT2_I(inode); | 
|  | int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb); | 
|  | int offsets[4]; | 
|  | Indirect chain[4]; | 
|  | Indirect *partial; | 
|  | __le32 nr = 0; | 
|  | int n; | 
|  | long iblock; | 
|  | unsigned blocksize; | 
|  | blocksize = inode->i_sb->s_blocksize; | 
|  | iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb); | 
|  |  | 
|  | n = ext2_block_to_path(inode, iblock, offsets, NULL); | 
|  | if (n == 0) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * From here we block out all ext2_get_block() callers who want to | 
|  | * modify the block allocation tree. | 
|  | */ | 
|  | mutex_lock(&ei->truncate_mutex); | 
|  |  | 
|  | if (n == 1) { | 
|  | ext2_free_data(inode, i_data+offsets[0], | 
|  | i_data + EXT2_NDIR_BLOCKS); | 
|  | goto do_indirects; | 
|  | } | 
|  |  | 
|  | partial = ext2_find_shared(inode, n, offsets, chain, &nr); | 
|  | /* Kill the top of shared branch (already detached) */ | 
|  | if (nr) { | 
|  | if (partial == chain) | 
|  | mark_inode_dirty(inode); | 
|  | else | 
|  | mark_buffer_dirty_inode(partial->bh, inode); | 
|  | ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial); | 
|  | } | 
|  | /* Clear the ends of indirect blocks on the shared branch */ | 
|  | while (partial > chain) { | 
|  | ext2_free_branches(inode, | 
|  | partial->p + 1, | 
|  | (__le32*)partial->bh->b_data+addr_per_block, | 
|  | (chain+n-1) - partial); | 
|  | mark_buffer_dirty_inode(partial->bh, inode); | 
|  | brelse (partial->bh); | 
|  | partial--; | 
|  | } | 
|  | do_indirects: | 
|  | /* Kill the remaining (whole) subtrees */ | 
|  | switch (offsets[0]) { | 
|  | default: | 
|  | nr = i_data[EXT2_IND_BLOCK]; | 
|  | if (nr) { | 
|  | i_data[EXT2_IND_BLOCK] = 0; | 
|  | mark_inode_dirty(inode); | 
|  | ext2_free_branches(inode, &nr, &nr+1, 1); | 
|  | } | 
|  | case EXT2_IND_BLOCK: | 
|  | nr = i_data[EXT2_DIND_BLOCK]; | 
|  | if (nr) { | 
|  | i_data[EXT2_DIND_BLOCK] = 0; | 
|  | mark_inode_dirty(inode); | 
|  | ext2_free_branches(inode, &nr, &nr+1, 2); | 
|  | } | 
|  | case EXT2_DIND_BLOCK: | 
|  | nr = i_data[EXT2_TIND_BLOCK]; | 
|  | if (nr) { | 
|  | i_data[EXT2_TIND_BLOCK] = 0; | 
|  | mark_inode_dirty(inode); | 
|  | ext2_free_branches(inode, &nr, &nr+1, 3); | 
|  | } | 
|  | case EXT2_TIND_BLOCK: | 
|  | ; | 
|  | } | 
|  |  | 
|  | ext2_discard_reservation(inode); | 
|  |  | 
|  | mutex_unlock(&ei->truncate_mutex); | 
|  | } | 
|  |  | 
|  | static void ext2_truncate_blocks(struct inode *inode, loff_t offset) | 
|  | { | 
|  | /* | 
|  | * XXX: it seems like a bug here that we don't allow | 
|  | * IS_APPEND inode to have blocks-past-i_size trimmed off. | 
|  | * review and fix this. | 
|  | * | 
|  | * Also would be nice to be able to handle IO errors and such, | 
|  | * but that's probably too much to ask. | 
|  | */ | 
|  | if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || | 
|  | S_ISLNK(inode->i_mode))) | 
|  | return; | 
|  | if (ext2_inode_is_fast_symlink(inode)) | 
|  | return; | 
|  | if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) | 
|  | return; | 
|  | __ext2_truncate_blocks(inode, offset); | 
|  | } | 
|  |  | 
|  | static int ext2_setsize(struct inode *inode, loff_t newsize) | 
|  | { | 
|  | int error; | 
|  |  | 
|  | if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || | 
|  | S_ISLNK(inode->i_mode))) | 
|  | return -EINVAL; | 
|  | if (ext2_inode_is_fast_symlink(inode)) | 
|  | return -EINVAL; | 
|  | if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) | 
|  | return -EPERM; | 
|  |  | 
|  | if (mapping_is_xip(inode->i_mapping)) | 
|  | error = xip_truncate_page(inode->i_mapping, newsize); | 
|  | else if (test_opt(inode->i_sb, NOBH)) | 
|  | error = nobh_truncate_page(inode->i_mapping, | 
|  | newsize, ext2_get_block); | 
|  | else | 
|  | error = block_truncate_page(inode->i_mapping, | 
|  | newsize, ext2_get_block); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | truncate_setsize(inode, newsize); | 
|  | __ext2_truncate_blocks(inode, newsize); | 
|  |  | 
|  | inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC; | 
|  | if (inode_needs_sync(inode)) { | 
|  | sync_mapping_buffers(inode->i_mapping); | 
|  | ext2_sync_inode (inode); | 
|  | } else { | 
|  | mark_inode_dirty(inode); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino, | 
|  | struct buffer_head **p) | 
|  | { | 
|  | struct buffer_head * bh; | 
|  | unsigned long block_group; | 
|  | unsigned long block; | 
|  | unsigned long offset; | 
|  | struct ext2_group_desc * gdp; | 
|  |  | 
|  | *p = NULL; | 
|  | if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) || | 
|  | ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count)) | 
|  | goto Einval; | 
|  |  | 
|  | block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb); | 
|  | gdp = ext2_get_group_desc(sb, block_group, NULL); | 
|  | if (!gdp) | 
|  | goto Egdp; | 
|  | /* | 
|  | * Figure out the offset within the block group inode table | 
|  | */ | 
|  | offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb); | 
|  | block = le32_to_cpu(gdp->bg_inode_table) + | 
|  | (offset >> EXT2_BLOCK_SIZE_BITS(sb)); | 
|  | if (!(bh = sb_bread(sb, block))) | 
|  | goto Eio; | 
|  |  | 
|  | *p = bh; | 
|  | offset &= (EXT2_BLOCK_SIZE(sb) - 1); | 
|  | return (struct ext2_inode *) (bh->b_data + offset); | 
|  |  | 
|  | Einval: | 
|  | ext2_error(sb, "ext2_get_inode", "bad inode number: %lu", | 
|  | (unsigned long) ino); | 
|  | return ERR_PTR(-EINVAL); | 
|  | Eio: | 
|  | ext2_error(sb, "ext2_get_inode", | 
|  | "unable to read inode block - inode=%lu, block=%lu", | 
|  | (unsigned long) ino, block); | 
|  | Egdp: | 
|  | return ERR_PTR(-EIO); | 
|  | } | 
|  |  | 
|  | void ext2_set_inode_flags(struct inode *inode) | 
|  | { | 
|  | unsigned int flags = EXT2_I(inode)->i_flags; | 
|  |  | 
|  | inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); | 
|  | if (flags & EXT2_SYNC_FL) | 
|  | inode->i_flags |= S_SYNC; | 
|  | if (flags & EXT2_APPEND_FL) | 
|  | inode->i_flags |= S_APPEND; | 
|  | if (flags & EXT2_IMMUTABLE_FL) | 
|  | inode->i_flags |= S_IMMUTABLE; | 
|  | if (flags & EXT2_NOATIME_FL) | 
|  | inode->i_flags |= S_NOATIME; | 
|  | if (flags & EXT2_DIRSYNC_FL) | 
|  | inode->i_flags |= S_DIRSYNC; | 
|  | } | 
|  |  | 
|  | /* Propagate flags from i_flags to EXT2_I(inode)->i_flags */ | 
|  | void ext2_get_inode_flags(struct ext2_inode_info *ei) | 
|  | { | 
|  | unsigned int flags = ei->vfs_inode.i_flags; | 
|  |  | 
|  | ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL| | 
|  | EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL); | 
|  | if (flags & S_SYNC) | 
|  | ei->i_flags |= EXT2_SYNC_FL; | 
|  | if (flags & S_APPEND) | 
|  | ei->i_flags |= EXT2_APPEND_FL; | 
|  | if (flags & S_IMMUTABLE) | 
|  | ei->i_flags |= EXT2_IMMUTABLE_FL; | 
|  | if (flags & S_NOATIME) | 
|  | ei->i_flags |= EXT2_NOATIME_FL; | 
|  | if (flags & S_DIRSYNC) | 
|  | ei->i_flags |= EXT2_DIRSYNC_FL; | 
|  | } | 
|  |  | 
|  | struct inode *ext2_iget (struct super_block *sb, unsigned long ino) | 
|  | { | 
|  | struct ext2_inode_info *ei; | 
|  | struct buffer_head * bh; | 
|  | struct ext2_inode *raw_inode; | 
|  | struct inode *inode; | 
|  | long ret = -EIO; | 
|  | int n; | 
|  |  | 
|  | inode = iget_locked(sb, ino); | 
|  | if (!inode) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | if (!(inode->i_state & I_NEW)) | 
|  | return inode; | 
|  |  | 
|  | ei = EXT2_I(inode); | 
|  | ei->i_block_alloc_info = NULL; | 
|  |  | 
|  | raw_inode = ext2_get_inode(inode->i_sb, ino, &bh); | 
|  | if (IS_ERR(raw_inode)) { | 
|  | ret = PTR_ERR(raw_inode); | 
|  | goto bad_inode; | 
|  | } | 
|  |  | 
|  | inode->i_mode = le16_to_cpu(raw_inode->i_mode); | 
|  | inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); | 
|  | inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); | 
|  | if (!(test_opt (inode->i_sb, NO_UID32))) { | 
|  | inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; | 
|  | inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; | 
|  | } | 
|  | inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); | 
|  | inode->i_size = le32_to_cpu(raw_inode->i_size); | 
|  | inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime); | 
|  | inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime); | 
|  | inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime); | 
|  | inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0; | 
|  | ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); | 
|  | /* We now have enough fields to check if the inode was active or not. | 
|  | * This is needed because nfsd might try to access dead inodes | 
|  | * the test is that same one that e2fsck uses | 
|  | * NeilBrown 1999oct15 | 
|  | */ | 
|  | if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) { | 
|  | /* this inode is deleted */ | 
|  | brelse (bh); | 
|  | ret = -ESTALE; | 
|  | goto bad_inode; | 
|  | } | 
|  | inode->i_blocks = le32_to_cpu(raw_inode->i_blocks); | 
|  | ei->i_flags = le32_to_cpu(raw_inode->i_flags); | 
|  | ei->i_faddr = le32_to_cpu(raw_inode->i_faddr); | 
|  | ei->i_frag_no = raw_inode->i_frag; | 
|  | ei->i_frag_size = raw_inode->i_fsize; | 
|  | ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl); | 
|  | ei->i_dir_acl = 0; | 
|  | if (S_ISREG(inode->i_mode)) | 
|  | inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32; | 
|  | else | 
|  | ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl); | 
|  | ei->i_dtime = 0; | 
|  | inode->i_generation = le32_to_cpu(raw_inode->i_generation); | 
|  | ei->i_state = 0; | 
|  | ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb); | 
|  | ei->i_dir_start_lookup = 0; | 
|  |  | 
|  | /* | 
|  | * NOTE! The in-memory inode i_data array is in little-endian order | 
|  | * even on big-endian machines: we do NOT byteswap the block numbers! | 
|  | */ | 
|  | for (n = 0; n < EXT2_N_BLOCKS; n++) | 
|  | ei->i_data[n] = raw_inode->i_block[n]; | 
|  |  | 
|  | if (S_ISREG(inode->i_mode)) { | 
|  | inode->i_op = &ext2_file_inode_operations; | 
|  | if (ext2_use_xip(inode->i_sb)) { | 
|  | inode->i_mapping->a_ops = &ext2_aops_xip; | 
|  | inode->i_fop = &ext2_xip_file_operations; | 
|  | } else if (test_opt(inode->i_sb, NOBH)) { | 
|  | inode->i_mapping->a_ops = &ext2_nobh_aops; | 
|  | inode->i_fop = &ext2_file_operations; | 
|  | } else { | 
|  | inode->i_mapping->a_ops = &ext2_aops; | 
|  | inode->i_fop = &ext2_file_operations; | 
|  | } | 
|  | } else if (S_ISDIR(inode->i_mode)) { | 
|  | inode->i_op = &ext2_dir_inode_operations; | 
|  | inode->i_fop = &ext2_dir_operations; | 
|  | if (test_opt(inode->i_sb, NOBH)) | 
|  | inode->i_mapping->a_ops = &ext2_nobh_aops; | 
|  | else | 
|  | inode->i_mapping->a_ops = &ext2_aops; | 
|  | } else if (S_ISLNK(inode->i_mode)) { | 
|  | if (ext2_inode_is_fast_symlink(inode)) { | 
|  | inode->i_op = &ext2_fast_symlink_inode_operations; | 
|  | nd_terminate_link(ei->i_data, inode->i_size, | 
|  | sizeof(ei->i_data) - 1); | 
|  | } else { | 
|  | inode->i_op = &ext2_symlink_inode_operations; | 
|  | if (test_opt(inode->i_sb, NOBH)) | 
|  | inode->i_mapping->a_ops = &ext2_nobh_aops; | 
|  | else | 
|  | inode->i_mapping->a_ops = &ext2_aops; | 
|  | } | 
|  | } else { | 
|  | inode->i_op = &ext2_special_inode_operations; | 
|  | if (raw_inode->i_block[0]) | 
|  | init_special_inode(inode, inode->i_mode, | 
|  | old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); | 
|  | else | 
|  | init_special_inode(inode, inode->i_mode, | 
|  | new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); | 
|  | } | 
|  | brelse (bh); | 
|  | ext2_set_inode_flags(inode); | 
|  | unlock_new_inode(inode); | 
|  | return inode; | 
|  |  | 
|  | bad_inode: | 
|  | iget_failed(inode); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | static int __ext2_write_inode(struct inode *inode, int do_sync) | 
|  | { | 
|  | struct ext2_inode_info *ei = EXT2_I(inode); | 
|  | struct super_block *sb = inode->i_sb; | 
|  | ino_t ino = inode->i_ino; | 
|  | uid_t uid = inode->i_uid; | 
|  | gid_t gid = inode->i_gid; | 
|  | struct buffer_head * bh; | 
|  | struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh); | 
|  | int n; | 
|  | int err = 0; | 
|  |  | 
|  | if (IS_ERR(raw_inode)) | 
|  | return -EIO; | 
|  |  | 
|  | /* For fields not not tracking in the in-memory inode, | 
|  | * initialise them to zero for new inodes. */ | 
|  | if (ei->i_state & EXT2_STATE_NEW) | 
|  | memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size); | 
|  |  | 
|  | ext2_get_inode_flags(ei); | 
|  | raw_inode->i_mode = cpu_to_le16(inode->i_mode); | 
|  | if (!(test_opt(sb, NO_UID32))) { | 
|  | raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid)); | 
|  | raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid)); | 
|  | /* | 
|  | * Fix up interoperability with old kernels. Otherwise, old inodes get | 
|  | * re-used with the upper 16 bits of the uid/gid intact | 
|  | */ | 
|  | if (!ei->i_dtime) { | 
|  | raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid)); | 
|  | raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid)); | 
|  | } else { | 
|  | raw_inode->i_uid_high = 0; | 
|  | raw_inode->i_gid_high = 0; | 
|  | } | 
|  | } else { | 
|  | raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid)); | 
|  | raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid)); | 
|  | raw_inode->i_uid_high = 0; | 
|  | raw_inode->i_gid_high = 0; | 
|  | } | 
|  | raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); | 
|  | raw_inode->i_size = cpu_to_le32(inode->i_size); | 
|  | raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec); | 
|  | raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec); | 
|  | raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec); | 
|  |  | 
|  | raw_inode->i_blocks = cpu_to_le32(inode->i_blocks); | 
|  | raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); | 
|  | raw_inode->i_flags = cpu_to_le32(ei->i_flags); | 
|  | raw_inode->i_faddr = cpu_to_le32(ei->i_faddr); | 
|  | raw_inode->i_frag = ei->i_frag_no; | 
|  | raw_inode->i_fsize = ei->i_frag_size; | 
|  | raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl); | 
|  | if (!S_ISREG(inode->i_mode)) | 
|  | raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl); | 
|  | else { | 
|  | raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32); | 
|  | if (inode->i_size > 0x7fffffffULL) { | 
|  | if (!EXT2_HAS_RO_COMPAT_FEATURE(sb, | 
|  | EXT2_FEATURE_RO_COMPAT_LARGE_FILE) || | 
|  | EXT2_SB(sb)->s_es->s_rev_level == | 
|  | cpu_to_le32(EXT2_GOOD_OLD_REV)) { | 
|  | /* If this is the first large file | 
|  | * created, add a flag to the superblock. | 
|  | */ | 
|  | spin_lock(&EXT2_SB(sb)->s_lock); | 
|  | ext2_update_dynamic_rev(sb); | 
|  | EXT2_SET_RO_COMPAT_FEATURE(sb, | 
|  | EXT2_FEATURE_RO_COMPAT_LARGE_FILE); | 
|  | spin_unlock(&EXT2_SB(sb)->s_lock); | 
|  | ext2_write_super(sb); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | raw_inode->i_generation = cpu_to_le32(inode->i_generation); | 
|  | if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { | 
|  | if (old_valid_dev(inode->i_rdev)) { | 
|  | raw_inode->i_block[0] = | 
|  | cpu_to_le32(old_encode_dev(inode->i_rdev)); | 
|  | raw_inode->i_block[1] = 0; | 
|  | } else { | 
|  | raw_inode->i_block[0] = 0; | 
|  | raw_inode->i_block[1] = | 
|  | cpu_to_le32(new_encode_dev(inode->i_rdev)); | 
|  | raw_inode->i_block[2] = 0; | 
|  | } | 
|  | } else for (n = 0; n < EXT2_N_BLOCKS; n++) | 
|  | raw_inode->i_block[n] = ei->i_data[n]; | 
|  | mark_buffer_dirty(bh); | 
|  | if (do_sync) { | 
|  | sync_dirty_buffer(bh); | 
|  | if (buffer_req(bh) && !buffer_uptodate(bh)) { | 
|  | printk ("IO error syncing ext2 inode [%s:%08lx]\n", | 
|  | sb->s_id, (unsigned long) ino); | 
|  | err = -EIO; | 
|  | } | 
|  | } | 
|  | ei->i_state &= ~EXT2_STATE_NEW; | 
|  | brelse (bh); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int ext2_write_inode(struct inode *inode, struct writeback_control *wbc) | 
|  | { | 
|  | return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL); | 
|  | } | 
|  |  | 
|  | int ext2_sync_inode(struct inode *inode) | 
|  | { | 
|  | struct writeback_control wbc = { | 
|  | .sync_mode = WB_SYNC_ALL, | 
|  | .nr_to_write = 0,	/* sys_fsync did this */ | 
|  | }; | 
|  | return sync_inode(inode, &wbc); | 
|  | } | 
|  |  | 
|  | int ext2_setattr(struct dentry *dentry, struct iattr *iattr) | 
|  | { | 
|  | struct inode *inode = dentry->d_inode; | 
|  | int error; | 
|  |  | 
|  | error = inode_change_ok(inode, iattr); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | if (is_quota_modification(inode, iattr)) | 
|  | dquot_initialize(inode); | 
|  | if ((iattr->ia_valid & ATTR_UID && iattr->ia_uid != inode->i_uid) || | 
|  | (iattr->ia_valid & ATTR_GID && iattr->ia_gid != inode->i_gid)) { | 
|  | error = dquot_transfer(inode, iattr); | 
|  | if (error) | 
|  | return error; | 
|  | } | 
|  | if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) { | 
|  | error = ext2_setsize(inode, iattr->ia_size); | 
|  | if (error) | 
|  | return error; | 
|  | } | 
|  | setattr_copy(inode, iattr); | 
|  | if (iattr->ia_valid & ATTR_MODE) | 
|  | error = ext2_acl_chmod(inode); | 
|  | mark_inode_dirty(inode); | 
|  |  | 
|  | return error; | 
|  | } |