|  | /* | 
|  | * NTP state machine interfaces and logic. | 
|  | * | 
|  | * This code was mainly moved from kernel/timer.c and kernel/time.c | 
|  | * Please see those files for relevant copyright info and historical | 
|  | * changelogs. | 
|  | */ | 
|  | #include <linux/capability.h> | 
|  | #include <linux/clocksource.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/hrtimer.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/math64.h> | 
|  | #include <linux/timex.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/mm.h> | 
|  |  | 
|  | /* | 
|  | * NTP timekeeping variables: | 
|  | */ | 
|  |  | 
|  | /* USER_HZ period (usecs): */ | 
|  | unsigned long			tick_usec = TICK_USEC; | 
|  |  | 
|  | /* ACTHZ period (nsecs): */ | 
|  | unsigned long			tick_nsec; | 
|  |  | 
|  | u64				tick_length; | 
|  | static u64			tick_length_base; | 
|  |  | 
|  | static struct hrtimer		leap_timer; | 
|  |  | 
|  | #define MAX_TICKADJ		500LL		/* usecs */ | 
|  | #define MAX_TICKADJ_SCALED \ | 
|  | (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ) | 
|  |  | 
|  | /* | 
|  | * phase-lock loop variables | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * clock synchronization status | 
|  | * | 
|  | * (TIME_ERROR prevents overwriting the CMOS clock) | 
|  | */ | 
|  | static int			time_state = TIME_OK; | 
|  |  | 
|  | /* clock status bits:							*/ | 
|  | int				time_status = STA_UNSYNC; | 
|  |  | 
|  | /* TAI offset (secs):							*/ | 
|  | static long			time_tai; | 
|  |  | 
|  | /* time adjustment (nsecs):						*/ | 
|  | static s64			time_offset; | 
|  |  | 
|  | /* pll time constant:							*/ | 
|  | static long			time_constant = 2; | 
|  |  | 
|  | /* maximum error (usecs):						*/ | 
|  | static long			time_maxerror = NTP_PHASE_LIMIT; | 
|  |  | 
|  | /* estimated error (usecs):						*/ | 
|  | static long			time_esterror = NTP_PHASE_LIMIT; | 
|  |  | 
|  | /* frequency offset (scaled nsecs/secs):				*/ | 
|  | static s64			time_freq; | 
|  |  | 
|  | /* time at last adjustment (secs):					*/ | 
|  | static long			time_reftime; | 
|  |  | 
|  | static long			time_adjust; | 
|  |  | 
|  | /* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/ | 
|  | static s64			ntp_tick_adj; | 
|  |  | 
|  | /* | 
|  | * NTP methods: | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Update (tick_length, tick_length_base, tick_nsec), based | 
|  | * on (tick_usec, ntp_tick_adj, time_freq): | 
|  | */ | 
|  | static void ntp_update_frequency(void) | 
|  | { | 
|  | u64 second_length; | 
|  | u64 new_base; | 
|  |  | 
|  | second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) | 
|  | << NTP_SCALE_SHIFT; | 
|  |  | 
|  | second_length		+= ntp_tick_adj; | 
|  | second_length		+= time_freq; | 
|  |  | 
|  | tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT; | 
|  | new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ); | 
|  |  | 
|  | /* | 
|  | * Don't wait for the next second_overflow, apply | 
|  | * the change to the tick length immediately: | 
|  | */ | 
|  | tick_length		+= new_base - tick_length_base; | 
|  | tick_length_base	 = new_base; | 
|  | } | 
|  |  | 
|  | static inline s64 ntp_update_offset_fll(s64 offset64, long secs) | 
|  | { | 
|  | time_status &= ~STA_MODE; | 
|  |  | 
|  | if (secs < MINSEC) | 
|  | return 0; | 
|  |  | 
|  | if (!(time_status & STA_FLL) && (secs <= MAXSEC)) | 
|  | return 0; | 
|  |  | 
|  | time_status |= STA_MODE; | 
|  |  | 
|  | return div_s64(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs); | 
|  | } | 
|  |  | 
|  | static void ntp_update_offset(long offset) | 
|  | { | 
|  | s64 freq_adj; | 
|  | s64 offset64; | 
|  | long secs; | 
|  |  | 
|  | if (!(time_status & STA_PLL)) | 
|  | return; | 
|  |  | 
|  | if (!(time_status & STA_NANO)) | 
|  | offset *= NSEC_PER_USEC; | 
|  |  | 
|  | /* | 
|  | * Scale the phase adjustment and | 
|  | * clamp to the operating range. | 
|  | */ | 
|  | offset = min(offset, MAXPHASE); | 
|  | offset = max(offset, -MAXPHASE); | 
|  |  | 
|  | /* | 
|  | * Select how the frequency is to be controlled | 
|  | * and in which mode (PLL or FLL). | 
|  | */ | 
|  | secs = get_seconds() - time_reftime; | 
|  | if (unlikely(time_status & STA_FREQHOLD)) | 
|  | secs = 0; | 
|  |  | 
|  | time_reftime = get_seconds(); | 
|  |  | 
|  | offset64    = offset; | 
|  | freq_adj    = (offset64 * secs) << | 
|  | (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant)); | 
|  |  | 
|  | freq_adj    += ntp_update_offset_fll(offset64, secs); | 
|  |  | 
|  | freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED); | 
|  |  | 
|  | time_freq   = max(freq_adj, -MAXFREQ_SCALED); | 
|  |  | 
|  | time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntp_clear - Clears the NTP state variables | 
|  | * | 
|  | * Must be called while holding a write on the xtime_lock | 
|  | */ | 
|  | void ntp_clear(void) | 
|  | { | 
|  | time_adjust	= 0;		/* stop active adjtime() */ | 
|  | time_status	|= STA_UNSYNC; | 
|  | time_maxerror	= NTP_PHASE_LIMIT; | 
|  | time_esterror	= NTP_PHASE_LIMIT; | 
|  |  | 
|  | ntp_update_frequency(); | 
|  |  | 
|  | tick_length	= tick_length_base; | 
|  | time_offset	= 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Leap second processing. If in leap-insert state at the end of the | 
|  | * day, the system clock is set back one second; if in leap-delete | 
|  | * state, the system clock is set ahead one second. | 
|  | */ | 
|  | static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) | 
|  | { | 
|  | enum hrtimer_restart res = HRTIMER_NORESTART; | 
|  |  | 
|  | write_seqlock(&xtime_lock); | 
|  |  | 
|  | switch (time_state) { | 
|  | case TIME_OK: | 
|  | break; | 
|  | case TIME_INS: | 
|  | timekeeping_leap_insert(-1); | 
|  | time_state = TIME_OOP; | 
|  | printk(KERN_NOTICE | 
|  | "Clock: inserting leap second 23:59:60 UTC\n"); | 
|  | hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC); | 
|  | res = HRTIMER_RESTART; | 
|  | break; | 
|  | case TIME_DEL: | 
|  | timekeeping_leap_insert(1); | 
|  | time_tai--; | 
|  | time_state = TIME_WAIT; | 
|  | printk(KERN_NOTICE | 
|  | "Clock: deleting leap second 23:59:59 UTC\n"); | 
|  | break; | 
|  | case TIME_OOP: | 
|  | time_tai++; | 
|  | time_state = TIME_WAIT; | 
|  | /* fall through */ | 
|  | case TIME_WAIT: | 
|  | if (!(time_status & (STA_INS | STA_DEL))) | 
|  | time_state = TIME_OK; | 
|  | break; | 
|  | } | 
|  |  | 
|  | write_sequnlock(&xtime_lock); | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this routine handles the overflow of the microsecond field | 
|  | * | 
|  | * The tricky bits of code to handle the accurate clock support | 
|  | * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. | 
|  | * They were originally developed for SUN and DEC kernels. | 
|  | * All the kudos should go to Dave for this stuff. | 
|  | */ | 
|  | void second_overflow(void) | 
|  | { | 
|  | s64 delta; | 
|  |  | 
|  | /* Bump the maxerror field */ | 
|  | time_maxerror += MAXFREQ / NSEC_PER_USEC; | 
|  | if (time_maxerror > NTP_PHASE_LIMIT) { | 
|  | time_maxerror = NTP_PHASE_LIMIT; | 
|  | time_status |= STA_UNSYNC; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compute the phase adjustment for the next second. The offset is | 
|  | * reduced by a fixed factor times the time constant. | 
|  | */ | 
|  | tick_length	 = tick_length_base; | 
|  |  | 
|  | delta		 = shift_right(time_offset, SHIFT_PLL + time_constant); | 
|  | time_offset	-= delta; | 
|  | tick_length	+= delta; | 
|  |  | 
|  | if (!time_adjust) | 
|  | return; | 
|  |  | 
|  | if (time_adjust > MAX_TICKADJ) { | 
|  | time_adjust -= MAX_TICKADJ; | 
|  | tick_length += MAX_TICKADJ_SCALED; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (time_adjust < -MAX_TICKADJ) { | 
|  | time_adjust += MAX_TICKADJ; | 
|  | tick_length -= MAX_TICKADJ_SCALED; | 
|  | return; | 
|  | } | 
|  |  | 
|  | tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ) | 
|  | << NTP_SCALE_SHIFT; | 
|  | time_adjust = 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_GENERIC_CMOS_UPDATE | 
|  |  | 
|  | /* Disable the cmos update - used by virtualization and embedded */ | 
|  | int no_sync_cmos_clock  __read_mostly; | 
|  |  | 
|  | static void sync_cmos_clock(struct work_struct *work); | 
|  |  | 
|  | static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock); | 
|  |  | 
|  | static void sync_cmos_clock(struct work_struct *work) | 
|  | { | 
|  | struct timespec now, next; | 
|  | int fail = 1; | 
|  |  | 
|  | /* | 
|  | * If we have an externally synchronized Linux clock, then update | 
|  | * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be | 
|  | * called as close as possible to 500 ms before the new second starts. | 
|  | * This code is run on a timer.  If the clock is set, that timer | 
|  | * may not expire at the correct time.  Thus, we adjust... | 
|  | */ | 
|  | if (!ntp_synced()) { | 
|  | /* | 
|  | * Not synced, exit, do not restart a timer (if one is | 
|  | * running, let it run out). | 
|  | */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | getnstimeofday(&now); | 
|  | if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2) | 
|  | fail = update_persistent_clock(now); | 
|  |  | 
|  | next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2); | 
|  | if (next.tv_nsec <= 0) | 
|  | next.tv_nsec += NSEC_PER_SEC; | 
|  |  | 
|  | if (!fail) | 
|  | next.tv_sec = 659; | 
|  | else | 
|  | next.tv_sec = 0; | 
|  |  | 
|  | if (next.tv_nsec >= NSEC_PER_SEC) { | 
|  | next.tv_sec++; | 
|  | next.tv_nsec -= NSEC_PER_SEC; | 
|  | } | 
|  | schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next)); | 
|  | } | 
|  |  | 
|  | static void notify_cmos_timer(void) | 
|  | { | 
|  | if (!no_sync_cmos_clock) | 
|  | schedule_delayed_work(&sync_cmos_work, 0); | 
|  | } | 
|  |  | 
|  | #else | 
|  | static inline void notify_cmos_timer(void) { } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Start the leap seconds timer: | 
|  | */ | 
|  | static inline void ntp_start_leap_timer(struct timespec *ts) | 
|  | { | 
|  | long now = ts->tv_sec; | 
|  |  | 
|  | if (time_status & STA_INS) { | 
|  | time_state = TIME_INS; | 
|  | now += 86400 - now % 86400; | 
|  | hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (time_status & STA_DEL) { | 
|  | time_state = TIME_DEL; | 
|  | now += 86400 - (now + 1) % 86400; | 
|  | hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Propagate a new txc->status value into the NTP state: | 
|  | */ | 
|  | static inline void process_adj_status(struct timex *txc, struct timespec *ts) | 
|  | { | 
|  | if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) { | 
|  | time_state = TIME_OK; | 
|  | time_status = STA_UNSYNC; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we turn on PLL adjustments then reset the | 
|  | * reference time to current time. | 
|  | */ | 
|  | if (!(time_status & STA_PLL) && (txc->status & STA_PLL)) | 
|  | time_reftime = get_seconds(); | 
|  |  | 
|  | /* only set allowed bits */ | 
|  | time_status &= STA_RONLY; | 
|  | time_status |= txc->status & ~STA_RONLY; | 
|  |  | 
|  | switch (time_state) { | 
|  | case TIME_OK: | 
|  | ntp_start_leap_timer(ts); | 
|  | break; | 
|  | case TIME_INS: | 
|  | case TIME_DEL: | 
|  | time_state = TIME_OK; | 
|  | ntp_start_leap_timer(ts); | 
|  | case TIME_WAIT: | 
|  | if (!(time_status & (STA_INS | STA_DEL))) | 
|  | time_state = TIME_OK; | 
|  | break; | 
|  | case TIME_OOP: | 
|  | hrtimer_restart(&leap_timer); | 
|  | break; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Called with the xtime lock held, so we can access and modify | 
|  | * all the global NTP state: | 
|  | */ | 
|  | static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts) | 
|  | { | 
|  | if (txc->modes & ADJ_STATUS) | 
|  | process_adj_status(txc, ts); | 
|  |  | 
|  | if (txc->modes & ADJ_NANO) | 
|  | time_status |= STA_NANO; | 
|  |  | 
|  | if (txc->modes & ADJ_MICRO) | 
|  | time_status &= ~STA_NANO; | 
|  |  | 
|  | if (txc->modes & ADJ_FREQUENCY) { | 
|  | time_freq = txc->freq * PPM_SCALE; | 
|  | time_freq = min(time_freq, MAXFREQ_SCALED); | 
|  | time_freq = max(time_freq, -MAXFREQ_SCALED); | 
|  | } | 
|  |  | 
|  | if (txc->modes & ADJ_MAXERROR) | 
|  | time_maxerror = txc->maxerror; | 
|  |  | 
|  | if (txc->modes & ADJ_ESTERROR) | 
|  | time_esterror = txc->esterror; | 
|  |  | 
|  | if (txc->modes & ADJ_TIMECONST) { | 
|  | time_constant = txc->constant; | 
|  | if (!(time_status & STA_NANO)) | 
|  | time_constant += 4; | 
|  | time_constant = min(time_constant, (long)MAXTC); | 
|  | time_constant = max(time_constant, 0l); | 
|  | } | 
|  |  | 
|  | if (txc->modes & ADJ_TAI && txc->constant > 0) | 
|  | time_tai = txc->constant; | 
|  |  | 
|  | if (txc->modes & ADJ_OFFSET) | 
|  | ntp_update_offset(txc->offset); | 
|  |  | 
|  | if (txc->modes & ADJ_TICK) | 
|  | tick_usec = txc->tick; | 
|  |  | 
|  | if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET)) | 
|  | ntp_update_frequency(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * adjtimex mainly allows reading (and writing, if superuser) of | 
|  | * kernel time-keeping variables. used by xntpd. | 
|  | */ | 
|  | int do_adjtimex(struct timex *txc) | 
|  | { | 
|  | struct timespec ts; | 
|  | int result; | 
|  |  | 
|  | /* Validate the data before disabling interrupts */ | 
|  | if (txc->modes & ADJ_ADJTIME) { | 
|  | /* singleshot must not be used with any other mode bits */ | 
|  | if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) | 
|  | return -EINVAL; | 
|  | if (!(txc->modes & ADJ_OFFSET_READONLY) && | 
|  | !capable(CAP_SYS_TIME)) | 
|  | return -EPERM; | 
|  | } else { | 
|  | /* In order to modify anything, you gotta be super-user! */ | 
|  | if (txc->modes && !capable(CAP_SYS_TIME)) | 
|  | return -EPERM; | 
|  |  | 
|  | /* | 
|  | * if the quartz is off by more than 10% then | 
|  | * something is VERY wrong! | 
|  | */ | 
|  | if (txc->modes & ADJ_TICK && | 
|  | (txc->tick <  900000/USER_HZ || | 
|  | txc->tick > 1100000/USER_HZ)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (txc->modes & ADJ_STATUS && time_state != TIME_OK) | 
|  | hrtimer_cancel(&leap_timer); | 
|  | } | 
|  |  | 
|  | getnstimeofday(&ts); | 
|  |  | 
|  | write_seqlock_irq(&xtime_lock); | 
|  |  | 
|  | if (txc->modes & ADJ_ADJTIME) { | 
|  | long save_adjust = time_adjust; | 
|  |  | 
|  | if (!(txc->modes & ADJ_OFFSET_READONLY)) { | 
|  | /* adjtime() is independent from ntp_adjtime() */ | 
|  | time_adjust = txc->offset; | 
|  | ntp_update_frequency(); | 
|  | } | 
|  | txc->offset = save_adjust; | 
|  | } else { | 
|  |  | 
|  | /* If there are input parameters, then process them: */ | 
|  | if (txc->modes) | 
|  | process_adjtimex_modes(txc, &ts); | 
|  |  | 
|  | txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ, | 
|  | NTP_SCALE_SHIFT); | 
|  | if (!(time_status & STA_NANO)) | 
|  | txc->offset /= NSEC_PER_USEC; | 
|  | } | 
|  |  | 
|  | result = time_state;	/* mostly `TIME_OK' */ | 
|  | if (time_status & (STA_UNSYNC|STA_CLOCKERR)) | 
|  | result = TIME_ERROR; | 
|  |  | 
|  | txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) * | 
|  | PPM_SCALE_INV, NTP_SCALE_SHIFT); | 
|  | txc->maxerror	   = time_maxerror; | 
|  | txc->esterror	   = time_esterror; | 
|  | txc->status	   = time_status; | 
|  | txc->constant	   = time_constant; | 
|  | txc->precision	   = 1; | 
|  | txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE; | 
|  | txc->tick	   = tick_usec; | 
|  | txc->tai	   = time_tai; | 
|  |  | 
|  | /* PPS is not implemented, so these are zero */ | 
|  | txc->ppsfreq	   = 0; | 
|  | txc->jitter	   = 0; | 
|  | txc->shift	   = 0; | 
|  | txc->stabil	   = 0; | 
|  | txc->jitcnt	   = 0; | 
|  | txc->calcnt	   = 0; | 
|  | txc->errcnt	   = 0; | 
|  | txc->stbcnt	   = 0; | 
|  |  | 
|  | write_sequnlock_irq(&xtime_lock); | 
|  |  | 
|  | txc->time.tv_sec = ts.tv_sec; | 
|  | txc->time.tv_usec = ts.tv_nsec; | 
|  | if (!(time_status & STA_NANO)) | 
|  | txc->time.tv_usec /= NSEC_PER_USEC; | 
|  |  | 
|  | notify_cmos_timer(); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static int __init ntp_tick_adj_setup(char *str) | 
|  | { | 
|  | ntp_tick_adj = simple_strtol(str, NULL, 0); | 
|  | ntp_tick_adj <<= NTP_SCALE_SHIFT; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("ntp_tick_adj=", ntp_tick_adj_setup); | 
|  |  | 
|  | void __init ntp_init(void) | 
|  | { | 
|  | ntp_clear(); | 
|  | hrtimer_init(&leap_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); | 
|  | leap_timer.function = ntp_leap_second; | 
|  | } |